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Abstract

We provide high-speed implementations for simulating reservoirs described by
N -coupled spin-torque oscillators. Here N also corresponds to the number of
reservoir nodes. We benchmark a variety of implementations based on CPU and
GPU. Our new methods are at least 2.6 times quicker than the baseline for N
in range 1 to 104. More specifically, over all implementations the best factor is
78.9 for N = 1 which decreases to 2.6 for N = 103 and finally increases to 23.8
for N = 104. GPU outperforms CPU significantly at N = 2500. Our results
show that GPU implementations should be tested for reservoir simulations. The
implementations considered here can be used for any reservoir with evolution that
can be approximated using an explicit method.

1 Introduction

With the recent advancements in machine learning, such as deep learning and generative models,
the computational demands and associated energy costs have rapidly escalated [SGM19, TGLM20].
Consequently, there is an increasing emphasis on the development of more efficient computers to
perform machine learning tasks. Computers that emulate neural networks in hardware are referred
to as neuromorphic devices and have garnered attention as next-generation efficient computers.
Physical reservoir computing is one of the major frameworks implemented in neuromorphic devices,
which exploits the dynamics of optic, quantum, and spintronics systems [Nak20]. Their evolution
is represented as a coupled network with a massive amount of nonlinear nodes called the reservoir.
Only the readout part has to be trained for the learning task which makes it extremely computationally
efficient. However, finding optimal physical parameters or number of nodes for the reservoir can
be a time-consuming effort. In addition, the information processing capabilities of the reservoir
increase generically with the size [DVSM12, KTN21]. Hence, to aid in this endeavour simulations
of the reservoir are performed. But even in a virtual environment where we consider large number
of nodes over a parameter space it becomes again a time-consuming effort. Although high speed
implementations for toy reservoirs such as ESN exist [Sch18], we think that speeding up current
simulators of physical reservoirs described by ODEs and PDEs would significantly contribute to the
research community.

This study is done by example. Here we consider coupled spintronic devices. Spintronic devices
exhibit excellent characteristics, making them promising candidates for neuromorphic computers,
including high-speed dynamics, minute size, high energy efficiency, and durability against radia-
tions [PW96, GP10, KK17, RTT+18, GQC+20]. A type of spintronic device known as a Spin-Torque
Oscillator (STO) shows diverse dynamics, including periodic oscillation, and transitions between
fixed points and chaos [YZL07, WAR+19, TAN+19, YAN+19, AYT+20, KKT+21]. It has been
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reported that these dynamics can be directly harnessed as computational resources using physi-
cal reservoir computing schemes [TRAA+17, FFN+18, TTM+18, TTN+19, JCZ+19, KSM+19,
MLR+19, YAT+20, AYT+20, AKT+22, TKK+23, Nak20].

Figure 1: N -coupled STO simulations are suitable for parallelization for sufficiently large N as the
coupling computations are matrix multiplications.

In this paper we benchmark CPU and GPU implementations for simulating reservoirs given by
N -coupled STOs. The GPU implementation is motivated by the fact that the coupling terms are
of complexity O(N2) which can run quickly on GPUs due to their high performing parallelization
ability. Each implementation is optimal in some N range. We show that the N used in the literature
is sufficiently large that GPUs are quicker than CPUs. The methods considered here are general and
can be applied to any reservoir which can be approximated using an explicit method. This paper is
accompanied by a github repository with the benchmarking code [Jon23].

2 Background

GPU-deployed reservoirs. In [GMP17, Sch18] a GPU-deployment of Echo State Network (ESN) is
studied with a focus on stacking ESNs. However, no ablation studies are given of CPU versus GPU
computations. In addition, ESNs are not described by differential equations and ESN do not have a
physical representation.

ODE solving with GPUs. Neural networks have made impressive contribution to a new range of
ODE solvers [CRBD18a, CRBD18b, GDY19, CGH+20]. Although their performance is incredible,
these results typically lack rigorous statements concerning convergence and error estimates. As
a consequence neural net approaches are not widely adopted by standard solvers, for example
COMSOL, FreeFEM, Matlab, Mathematica, still rely on conventional methods that are deployed
on CPUs. [Che18] contains some explicit solvers for GPU which would be more efficient than CPU
if the system is sufficiently large and parallizable. In [BKAS23] a PyTorch based micromagnetic
simulation library is presented. The repository contains code for simulating a single spin-torque
oscillator. There is no direct way to introduce the coupling between the oscillators without tearing
the code apart.

Reservoir computer parameters and number of nodes. In theoretical reservoir studies which focus
on predicting complicated chaotic time series the coupled components are typically of order O(103)
[JH04, GBGB21, PHG+18]. For a physical reservoir this is not within the realm of possibilities and
one typically only tests 1 device [TTM+18, TRAA+17]. Generally, in a virtual setting improving
reservoir computer performance and understanding the underlying dynamics requires an exploration
of the parameter space [LHO18, FTA21, AYT+20, PLH+17]. As the reservoir computer has to be
trained and tested for each parameter this is a computationally expensive task.
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Symbol Definition Value

γ gyromagnetic ratio 1.764 · 107 rad/Oe s
α Gilbert damping constant 0.005
M saturation magnetization 1448.3 emu/cm3

HK interfacial magnetic anisotropy field 18.616 kOe
Happl applied field 200 Oe
η spin polarization 0.537
λ spin-transfer torque asymmetry 0.288
I electric current 2.5mA
V volume of free layer π · 602 · 2 nm3

e elementary charge 1.60217733 · 10−19 C
ℏ Planck constant, reduced 1.05457266 · 10−34 Js
p perturbed direction of pinned layer magnetization (1, 0, 6.123234 · 10−17)⊤

Acp coupling amplitude 1 Oe
Ain input amplitude 1 Oe

Table 1: Summary of parameters

3 Methodology

3.1 Coupled STO equations

We consider N -coupled STOs. The differential equations corresponding to the magnetization of
the kth-STO, mk(t) = (mx

k(t),m
y
k(t),m

z
k(t))

⊤, can be obtained through the Landau–Lifshitz–
Gilbert (LLG) equations. In Cartesian co-ordinates we can express them as the following first order
ODE:

dmk

dt
= − γ

1 + α2
mk × bk(m,u)− αγ

1 + α2
mk × (mk × bk(m,u)) (1)

where bk(m,u) = Htotal
k (m,u) +Hs(mk)p×mk with Hs(mk) =

ℏηI
2e(1+λmk·p)MV and the total

field Htotal
k given by the sum of the effective magnetic field, spin-transfer torque, coupling field, and

input field, Htotal
k (m,u) = H(mk) +Hcp

k (m) +Hin
k (u) with

H(mk) = [Happl + (HK − 4πM)mz
k]ez,

Hcp
k (m) = Acp

N∑
i=1

wcp
k,im

x
kex, (2)

Hin
k (u) = Ain

Nin∑
i=1

win
k,iuiex. (3)

The input signal u(t) = (u1(t), u2(t), . . . , uNin
(t))⊤ is a discrete-point series. Let W cp ∈ RN×N

denote the coupling matrix given by (W cp)k,i = wcp
k,i. There is no self-coupling, (W cp)k,k = 0, and

(W cp)k,i with k ̸= i sampled from a uniform distribution on [−1, 1]. The spectral radius of W cp is
set to 1. The components win

k,i are sampled from a uniform distribution on [−1, 1]. A summary of
parameters is given in Table 1. The parameters are chosen such that the solution exhibits oscillatory
motion. These parameter values have been used in various reservoir experiments (virtual and physical)
[KYF+13, TIT+17].

We note that the state space is 3N -dimensional. Typically, N -states are used as the nodes of the
reservoir. For initial conditions we consider

mk(0) = (sin(ϕ0) cos(ϕ0), sin(ϕ0) sin(ϕ0), cos(ϕ0))
⊤, (4)

with ϕ0 = 2π/360. Observe that mk(0) ≈ (0, 0, 1)⊤ and that |mk(0)| = 1. Straightforward
calculation shows that |mk| is conserved [BMS09]. Then, from (4) it follows that

|mk| = 1. (5)

3



Straightforward computations shows that evaluation of the vector field (1) is O(N2). Numerically
we can validate this by showing that the computation time of the vector field for random initialization
increases quadratically in N , see Figure 2

(a) Linear scale (b) Log scale

Figure 2: Computation time vector field for random initialization of m

3.2 Benchmark test

For the benchmark test we set the input, u, equal to zero as the input field term (3) is O(1). We
observe that the coupling field term (2) is O(N). Observe that if the coupling field is set to 0 the
vector field can be evaluated in O(N). Hence, for meaningful results the coupling field has to be
incorporated in the benchmark test. We fix the precision to float64.

Based on Section 2 we consider the N -range 1 to 10 000.

We solve Equation (1) using (classic) 4th order Runge–Kutta with step size 10−11 for 5 · 105 steps.
To validate the correctness for a given N we check for each implementation whether the solutions
and the conservation law |mi| = 1 are identical.

3.3 CPU and GPU implementations

We consider the following Python implementations for the benchmark test:

- CPU, Numpy (Base): vectorized Numpy,

- CPU, Numba-vanilla: straightforward Numba [LPS15],

- CPU, Numba-parallel: parallelization with Numba,

- GPU, Torch: Pytorch tensor running on CUDA.

We provide additional details to the methods. Here we use community provided Numpy code as a
baseline. Numba-vanilla is a fully sequential Numba implementation. When running Numba-vanilla
we observed that the coupling field (2) is a bottle neck as N increases. Hence, in Numba-parallel we
optimize the coupling field computation by parallelization. Over the full vector field the coupling
field can be written as a matrix calculation of the form W cpx with x ∈ RN . In Numba-parallel only
the coupling field computation is parallelized. Finally, Numba acts as a JIT (Just-In-Time) compiler.
We chose to compile the code prior to benchmarking.

We finally note that the order of performing operations differs for each implementation. This leads
to a machine precision difference in the approximation of the solutions at the first time step. The
differences between methods will grow as the number of steps are increased. However, this difference
is at least a factor 10−6 smaller than the error corresponding to the preserved quantity |mi| − 1. The
repository [Jon23] contains supplemental experiments.

3.4 Hardware and module versions

The CPU and GPU used for these experiments are AMD Ryzen 9 5950X (16-core) and Nvidia RTX
A4500, respectively.
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N

CPU/GPU Method 1 10 100 1000 2500 5000 10000

CPU Numpy (Base) 0.81s 0.93s 1.12s 5.78s 36.38s 2.79m 13.40m

CPU Numba-vanilla 0.010s 0.016s 0.14s 12.56s 86.23s 5.99m 23.66m
CPU Numba-parallel X 0.48s 0.60s 2.27s 21.59s 2.60m 11.54m

GPU Torch X 7.47s 7.55s 7.14s 7.59s 0.22m 0.56m
Table 2: Computation time. Here s denotes seconds and m denotes minutes. For each N the best
computation time is denoted in bold.

N

CPU/GPU Method 1 10 100 1000 2500 5000 10000

CPU Numba-vanilla 78.9 57.9 7.9 0.5 0.4 0.5 0.6
CPU Numba-parallel X 1.9 1.9 2.6 1.7 1.1 1.2

GPU Torch X 0.1 0.1 0.8 4.8 12.9 23.8
Table 3: Speed-factor with respect to base (Factor = time base / time method). For each N the best
factor is denoted in bold.

We use Numpy v1.24, Numba v0.57, Torch v2.0. We note that Numpy v1.24 is the most recent
Numba-compatible version.

4 Results

In Table 2 we present the computation times for the benchmark test for different N and in Table 3 we
present the factor improvement over the Numpy base which is an improvement over implementations
used in the literature [AKT+22]. We note that Table 2 concerns averaged results. However, deviations
over multiple runs are small. For all computations the standard deviation is at least less than 2 orders
of the leading decimal of the mean.

For small N Numba-vanilla has the quickest computation times with a factor improvement of O(10)
over the base. For N sufficiently large Numba-parallel performs better than the base with best
computation times at N = 1000 with respect to the other implementations. Finally, the performance
boost through parallelization is most visible for the GPU which beats the CPU for N ≥ 2500. The
GPU hits a factor O(10) improvement over the base as N is increased.

Numba-vanilla does not have any in-built method to deal with large systems, contrary to Numpy.
Hence, it only performs better than the Numpy base for small systems. For N ≥ 103 the overhead
of parallelization becomes cost-effective as Numba-parallel beats the other implementations. This
argument also applies to the GPU results. For small matrix computations the GPU cannot function
optimally which might be the cause for the non-increasing computation times occurring for N ≤ 103.

5 Conclusion and future work

In this work we present implementations for speeding up coupled STO simulations for reservoir
computing. We obtain a speed factor improvement of at least 2.6 which goes up to O(10) for
N ∼ O(10) and O(104). However, the implementations for CPU and GPU considered in this paper
apply to any reservoir whose evolution can be approximated using an explicit method. This paper is
accompanied by a github respository containing the benchmarking code.

An important result is that GPU based reservoir computing should be considered when improving
computation times. Overhead for GPU computations is high. Hence, a priori it is unclear if GPU
usage is meaningful for differential equations. Our work shows by example that in a virtual setting
the reservoir nodes are of an order that GPU implementations should be tested for performance.
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By removing reservoir nodes and artificially replacing them using a delay-operation, such as mul-
tiplexing, the computational time can be reduced. However, this does not necessarily increase the
information processing capabilities of the reservoir. Hence, it is preferable to develop numerical
methods that speed up the simulation of natural reservoirs. This work contributes to this direction.

The physical implementation of reservoirs with a large number of interacting components is likely
not a topic that can be studied in the near future. However, by considering a spatial and discretized
system, i.e. moving from ODEs to PDEs, we can efficiently construct high dimensional reservoirs. A
fluid is a suitable candidate for this approach. Pioneering work was accomplished in [GNN21] by
achieving the first vortex (virtual) reservoir computer. The underlying CPU-based computations are
computationally intensive (order of days) and would greatly benefit from a GPU-based approach.
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