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Abstract

Recent years have witnessed significant advancements made in the field of unsu-
pervised domain adaptation for semantic segmentation. Depth information has
been proved to be effective in building a bridge between synthetic datasets and
real-world datasets. However, the existing methods may not pay enough attention
to depth distribution in different categories, which makes it possible to use them for
further improvement. Besides the existing methods that only use depth regression
as an auxiliary task, we propose to use depth distribution density to further support
semantic segmentation. Therefore, considering the relationship among depth distri-
bution density, depth and semantic segmentation, we propose a branch balance loss
for these three sub-tasks in multi-task learning schemes. In addition, we also pro-
pose a spatial aggregation priors of pixels in different categories, which can be used
to refine the pseudo-labels for self-training, thus further improving the performance
of the prediction model. Experiments on SYNTHIA-to-Cityscapes and SYNTHIA-
to-Mapillary benchmarks show the effectiveness of the method. The source code is
available at https://github.com/depdis/Depth_Distribution.

1 Introduction

Semantic segmentation refers to the task of assigning semantic categories to each pixel in an image,
such as sky, road, car, etc. It is very important for many applications, such as autonomous driving [1]
and image editing [2]. In this field, approaches of recent years are mostly based on fully convolutional
network (FCN) [3] with modifications designed for pixel-wise prediction [4, 5, 6]. To tackle the
challenge of large-scale annotations, unsupervised domain adaptation (UDA) is broadly used. A
typical practice of UDA is to adapt the semantic segmentation model trained on synthetic datasets [7]
(source domain) to perform on real-world datasets [8, 9] (target domain). In order to obtain better
adaptation, the GAN [10] structure is widely used to minimize the feature distribution discrepancy,
so that the model can utilize the knowledge learned from the source domain and apply it to the target
domain.

As depth information has been proved to be effective in promoting the performance of semantic
segmentation [11, 12, 13, 14], it is usually used to help build the semantic connection between two
domains. SPIGAN [11] makes use of the privileged information in the source data from a simulator
through the privileged network, which serves as an auxiliary task and is regularized to the main
segmentation network. DADA [12] is a depth-aware domain adaptation scheme to dig deeper into
geometry information, which not only executes the depth regression task when training the generator,
but also fuses it together with semantic information during adversarial learning. CTRL [13] uses
multi-task learning to establish the relationships between different visual semantic categories and
depth levels in UDA context. On the premise of obtaining or generating depth information in advance,
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CorDA [14] leverages self-supervised depth estimation to bridge the domain gap. And the correlations
between semantics and depth greatly improves the performance of target semantic segmentation in
the presence of a domain shift. However, the way of using depth information needs to be further
explored.

[13] mentions that different semantic categories have discrete depth value ranges, but we find that
different semantic classes also have their own depth distribution in images. For example, the sky
is at the top of the image, the road is at the bottom of the image, cars and buses are driving on the
road, people are always walking on the sidewalk, and so on. According to the above observation,
different semantic categories might display relatively consistent depth distribution at their positions
in images. Therefore, we try to make use of the structural information in a more accurate way. In this
paper, we propose to use the Gaussian mixture models(GMMs) to build the depth distribution for
different semantic classes, which can give an estimate of the probabilities of both in-category and
out-of-category pixels within the UDA context for semantic segmentation. Concretely, looking into a
certain category, such as car, the depth distribution of their locations can be learned by a mixture of
several Gaussian models, which share common parameters across images and domains. In order to
add this information to semantic segmentation, we use the multi-task learning framework to learn
three sub-tasks, i.e. semantic segmentation prediction, depth regression and depth distribution density
estimation. In addition, considering the internal relations among three sub-tasks, we propose to
use density estimation to balance the other two sub-tasks, mainly to improve the efficiency of the
main task(semantic segmentation). Moreover, we use the total proportion of class-wise pixels in the
source images as a prior to setting different thresholds, so as to refine pseudo-labels and improve the
efficiency of self-supervised learning on the target domain. We have demonstrated the effectiveness of
our proposed method on the benchmark tasks SYNTHIA-to-Cityscapes and SYNTHIA-to-Mapillary,
on which we have obtained new state-of-the-art segmentation performance.

The main technical contributions of our work are made possible as follows:

• We propose to utilize the probability density of depth distribution, which is similar in source
domain and target domain, to bridge the domain gap in UDA for semantic segmentation in a more
accurate way.

• Based on the proposed density branch, an idea of branch balance training is proposed for our multi-
task learning, and a branch balance strategy is designed to promote segmentation performance.

• A pseudo-labels refinement algorithm is proposed, which uses the aggregation priors of pixels in
different categories on the source samples.

2 Related Work

Unsupervised domain adaptation. A typical practice of UDA is to adapt a semantic segmentation
model trained on synthetic datasets (source domain) to perform on real-world datasets (target domain)
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Hoffman and colleges are the first to leverage adversarial
training to conduct domain adaptation in the semantic segmentation tasks, where features are aligned
and the label statistics of the source domain are transferred by category specific adaptation [25].
Then, other methods are to align the distribution of source and target domains through output space
[26] or feature space [18, 19], align input pixels of the source and target images [27, 28], or to refine
pseudo-labels under the self-training framework [17, 29, 30, 31, 32]. The above methods mainly
focus on improving the architecture of the segmentation networks, but may not make use of the rich
structure information of the two domains.

Use of geometric information in semantic segmentation. To further boost the domain adaptation in
semantic segmentation, some researches have explored the use of depth information in the source
data, which is the additional information available only during training time[11, 12, 33, 13, 14]. The
depth information has been increasingly used to help the domain adaptation, but the relationship
between depth and semantic segmentation needs to be further explored in a more accurate way. Our
method is similar to DADA[12] and CTRL[13], but we use GMMs to learn the depth distribution
possibilities for different categories in the images, so as to establish the relationship between synthetic
data and real data more accurately.

Multi-task learning. Our work makes use of multi-task learning (MTL) [34], where multiple tasks
are predicted by different branches. SPIGAN[11], DADA[12], GIO-Ada[33], CTRL[13] all use the
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Figure 1: An overview of our network. The backbone is Resnet101, which follows three branches. In
the main task branch, the features of the backbone CNN are fed into Deeplab-V2 [6] architectural de-
sign with Atrous Spatial Pyramid Pooling (ASPP) for semantic segmentation prediction. In the depth
regression branch, the backbone CNN features are continuously forwarded to three convolutional
blocks, followed by an average pooling layer, to output depth. We estimate the depth distribution
density using the same network as the depth regression branch. We fuse the features extracted by
density estimation and the features extracted by semantic segmentation for adversarial training.

MTL for depth regression and semantic segmentation, and make use of the depth information to
bridge the domain gap. However, apart from these two tasks, no other new tasks have been proposed
to help semantics. Although CTRL adds a refined segmentation branch as the third task, there is
no close connection between these tasks. We use the standard multi-task learning, and add a depth
distribution density estimation branch to predict a density map which is closely associated with depth
and semantic segmentation. Therefore, we design a branch balance loss for the three branches, which
can significantly improve the accuracy of segmentation. Compared to CTRL, our method has a
simpler network and better prediction performance.

Pseudo-label refinement under self-training frameworks. Our work is also related to self-
supervised learning. By iteratively training the network with gradually improved target pseudo-labels,
the performance on the target domain can be further improved[17, 23, 20, 13]. Different from their
approaches, we explore and add the spatial aggregation priors in different categories of source domain,
as a guide to refine the pseudo-labels for self-training.

3 Methodology

A fitted GMM can give an estimate of the probabilities of both in-sample and out-of-sample data
points, which is known as density estimation. On the observation that the depth distribution of the
same category between synthetic samples and real samples is similar1, we can utilize this information
from source samples and transfer it to target samples using adversarial training. We use standard multi-
task learning framework to obtain three sub-tasks (as shown in Fig. 1), namely semantic segmentation
(main task), depth regression and depth distribution density estimation. In our framework, two
auxiliary tasks work together to improve the performance of the main task. Following an adversarial
training scheme[25, 26], we train the network in a UDA setting. In addition, we also explore pixel
aggregation priors of different categories on the source domain to help refine the pseudo-labels on the
target domain, thus further improving the semantic segmentation performance.

3.1 Problem Formulation

Let Ds and Dt represent the source domain and target domain, and the samples from them are
represented by tuples (Is, Ps, Zs) and (It) respectively, where I ∈ RH×W×3 are color images,
P ∈ {1, ...C}H×W are semantic annotations with C classes, and Z ∈ [Zmin, Zmax]

H×W are
depth maps from a finite frustum. For the source domain training, we optimize the network cost
using supervised loss for semantic segmentation and depth regression. Therefore, an unsupervised
adversarial learning scheme on the target domain is within the same training process. In addition, we

1Please see the GMM parameters file of SYNTHIA and Cityscape datasets on the source code website.
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use a branch balance loss to estimate the depth distribution density on both source and target domains,
which is closely related to segmentation and depth results.

3.2 Supervised Learning

For semantic segmentation prediction, we adopt the standard cross-entropy loss, which is repre-
sented as pixel-wise class probabilities over C classes:

Lseg(P̂ , P ) = −
C∑
i=1

Pi log P̂i, (1)

where P̂ and P are the predicted and ground truth segmentation maps, respectively.

For depth regression, we employ the berHu loss:

Ldep(Ẑ, Z) = berHu
(
Ẑ − Z

)
, (2)

with the reverse Huber loss defined as [35]:

berHu (ez) =

{ |ez| , |ez| ≤ L
(ez)

2+L2

2L , |ez| > L
(3)

L = 0.2max (|ez|) , (4)

where Ẑ and Z are the predicted and ground truth depth maps, respectively. Following [33, 12],
inverse depth is adopted for the depth regression loss.

3.3 Depth Distribution Density Estimation

For density estimation, a density map of each image should be built first. Since the ground truth
segmentation and depth information of source samples have been provided, this information can be
used to construct Gaussian mixture models for each semantic category.

For each category i ∈ (1, ..., C), the depth value z of the pixel associated with its position (x, y) can
form a tuple (x, y, z), and the list of tuples (x, y, z) where the associated pixel is classified as ith
class can be denoted as X⃗i. For each category i, we adopt Expectation-Maximization algorithm [36]
to learn the mixture component weights ϕij , the component means µ⃗ij and variances/covariances
Σij of GMMs from the depth distribution information X⃗i on source samples, where j means the jth
component of a GMM. Therefore, we can learn the GMMs for each semantic class on the source
domain.

The density values of each pixel can be calculated by the following formula:

p
(
X⃗i

)
=

K∑
j=1

ϕijN
(
X⃗i | µ⃗ij ,Σij

)
, (5)

where
∑K

j=1 ϕij = 1, and X⃗i ∼ N (µ⃗ij ,Σij). In our experiment, K is defined as 5.

By calculating the density value of all the pixels by class-wise GMMs, a depth distribution density
map D ∈ RH×W of the image is constructed, which can be regarded as the ground truth. For
Equation 5, every pixel in D describes the probability of seeing the depth value with this semantic
class at this pixel location under the learned GMM.

We propose a branch balance loss for the depth distribution density regression, and its novelty lies in
the different construction ways of the density map D. For source domain training, instead of using
the pre-calculated density maps of the source samples, we use the ground truth depth, the predicted
segmentation map and pre-constructed source domain GMMs to generate the density map Ds for
each sample. For target domain training, we use the estimated depth, the predicted segmentation
maps and pre-constructed source domain GMMs to generate the density map Dt for each sample.
We also use berHu loss (the reversed Huber criterion [35]) to estimate the density. Therefore, the
branch balance loss can be expressed as:

Lbal(D̂,D) = berHu
(
D̂ −D

)
, (6)
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where D̂ is the predicted density map of the density branch, and D is the constructed density map by
the other two branches.

Note that, unlike the losses used for semantic segmentation prediction and depth regression, the
branch balance loss is suitable for the training of source domain and target domain. There are two
advantages to the proposed branch balance loss. On one hand, it can balance the training efficiency of
different branches on the source domain and target domain, especially on the target domain. Because
there exists no ground truth to constrain the sub-tasks training on the target domain, it may not be
easy for each branch to keep balance. In addition, because we use the GMMs of the source domain to
calculate density maps of the target samples, we also build a bridge between the two domains.

The network parameters denoted as θnet are learned to minimize the following objective functions on
the source domain and target domain:

min
θnet

E
D(s)

(λsegLseg + λdepLdep + λbalLbal) , (7)

min
θnet

E
D(t)

(λtarLbal) , (8)

where hyperparameters λseg, λdep, λbal and λtar are the weight values. In our experiments, we use
λseg = 1.0, λdep =0.5× 10−2, λbal = 10−2, λtar = 5× 10−2.

3.4 Adversarial Training

We use a discriminator network to align the source and target domains. Unlike CTRL[13] which
designs a Cross-Task Relation Layer to concatenate three entropy maps (semantic segmentation,
refined semantic segmentation and depth) together, we follow the DADA fusion strategy. However,
different from DADA, we use segmentation to fuse density map rather than depth map.

To be more specific, the weighted self-information maps [19] F
(
P̂
)

is calculated at first by:

F
(
P̂
)
= −P̂ ⊙ log P̂ . (9)

Then, we fuse the C-channel F with the estimated density map D̂ to produce a fused C-channel map
F̂ , and feed it forward to a discriminator.

More specifically, the discriminator network parameters θD can be obtained by correctly classifying
the sample domain as a source or target during training:

min
θD

{
E
Ds

[
logD

(
F̂s

)]
+ E

Dt

[
log

(
1−D

(
F̂t

))]}
. (10)

At the same time, the prediction network parameters θnet is updated using the “fooling” objective
minimization:

min
θnet

E
Dt

[
logD

(
F̂t

)]
. (11)

The hyperparameter λadv is used to weigh the relative importance of the adversarial loss (Equation
11), and we set λadv = 5× 10−2 in our experiment. In our training scheme, the model parameters
of the prediction network (θnet) and the discriminator (θD) are optimized jointly. At each training
iteration, we input a batch of two samples from the source domain and the target domain into the
network. All loss gradients are accumulated and then propagated back to update the network.

3.5 Spatial Aggregation Priors for Pseudo-labels Refinement

After multi-task learning in the framework of adversarial training, self-training can further improve
the effect of semantic segmentation. We find that pixels of large objects, such as sky and road, have
a large-scale aggregation in image space, while pixels of small objects, such as person and bicycle,
have relatively small-scale aggregation in image space. Therefore, since most pixels in the same class
are clustered together, we calculate the total proportion of class-wise pixels in the source images as a
prior, to set different thresholds for refining pseudo-labels on the target domain for self-training.
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thresi = Nbase0 +
Ni −Nmin

Nmax −Nmin
×Nbase1, (12)

where thresi represents the threshold of different category i, Nmin and Nmax represent the minimum
and maximum numbers of pixels of different categories from all source samples, respectively. Ni

represents the number of pixels of the ith category from all source samples. Nbase0 and Nbase1 are
two default values, which are set as 50 and 4950 respectively in our experiment, so the threshold
ranges from 50 to 5000. Please note that, because the aggregation scale of different categories varies
greatly, we set a threshold range of 1:100, which can be further adjusted according to the actual size
of classes in different datasets.

We design an algorithm which adds spatial aggregation priors for refining pseudo-labels. Algorithm 1
is the semantic description of refining the pseudo-labels by using the spatial aggregation priors.

Algorithm 1: Spatial prior pseudo-labels refinement algorithm

Input: A target sample with predicted pseudo-labels.
Output: Refined pseudo-labels.
1 Initialize all pixels to set their flags Twh=0.
2 for w=0 to W do
3 for h=0 to H do
4 if Twh=0 && Confidencewh ≥0.9 then
5 Search around it for pixels that satisfy the following conditions:
6 Their prediction class is the same as Twh, and their confidence value ≥ 0.9.
7 Iterate over taking these points as the fiducial points and search around them outward for the qualified points.
8 Count the number of all qualified pixels, and record as Nc;
9 if Nc ≥ thresi then
10 Set flags of all these pixels to 1;
11 Pixels labeled with 1 are reserved, and their pseudo-labels can be used for self-supervised learning.

Our prediction model can be further improved by self-training schemes. Follow [17], we first train the
prediction and discriminator networks for Q1 iterations. We generate semantic pseudo-labels on the
target training samples using the trained prediction network, and then obtain refined pseudo-labels by
Algorithm 1 to further train the prediction network on the target training samples using pseudo-labels
supervision for Q2 iterations. The above pseudo-labels generation-refinement and self-training
process is executed twice to produce higher quality semantics output on the target domain.

4 Experiments

4.1 UDA Benchmarks

To make a fair comparison with previous methods[11, 26, 37, 38, 19, 12, 13], especially DADA and
CTRL, which are the most similar to our method, we use three standard UDA evaluation protocols
to verify our model: SYNTHIA → Cityscapes (16 classes), SYNTHIA → Cityscapes (7 classes),
and SYNTHIA → Mapillary (7 classes). Detailed descriptions of these settings can be found in
[12] and [13]. In all settings, the SYNTHIA dataset [7] is used as the source domain. Following
[12, 13], we use the SYNTHIA-RAND-CITYSCAPES split consisting of 9,400 synthetic images and
their corresponding pixel-wise semantic labels and depth. For target domains, we use Cityscapes
[8] and Mapillary Vistas [9] datasets. Similar to [26, 19, 12, 13], we report the performance of
semantic segmentation based on “mean Intersection over Union” (mIoU in %) on the 16 classes of the
Cityscapes validation set, and also show the mIoU (%) of the 13 classes (mIoU*) excluding classes
with *. For depth, we use Absolute Relative Difference (|Rel|), Squared Relative Difference (Rel2),
Root Mean Squared Error (RMS), its log-variant LRMS; and the accuracy metrics [39] as denoted
by δ1, δ2, and δ3. For each metric, we use ↑ and ↓ to denote the improvement direction.

4.2 Experimental Setup

All our experiments are conducted on a single NVIDIA 1080Ti GPU with a memory of 11GB. Our
network is implemented on PyTorch [40]. Backbone is a ResNet-101 [41] initialized with ImageNet
[42] weights. Like [26, 19], we apply Atrous Spatial Pyramid Pooling (ASPP) with sampling rates
of {6, 12, 18, 24}. In addition, we use DC-GAN [43] as our domain discriminator for adversarial
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Table 1: The quantitative results of different methods for semantic segmentation performance (IoU
and mIoU, %) on SYNTHIA→ Cityscapes(16 classes).

SYNTHIA → Cityscapes (16 classes)

Models Depth ro
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mIoU↑ mIoU*↑

SPIGAN[11]
√

71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 42.4

AdaptSegnet[26] 79.2 37.2 78.8 – – – 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 – 45.9

AdaptPatch[37] 82.2 39.4 79.4 – – – 6.5 10.8 77.8 82.0 54.9 21.1 67.7 30.7 17.8 32.2 – 46.3

CLAN[38] 81.3 37.0 80.1 – – – 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 – 47.8

Advent[19] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6

DADA[12]
√

89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8

CTRL[13]
√

86.9 43.0 80.7 19.2 0.9 27.2 11.6 12.6 81.3 83.2 60.7 24.0 84.2 46.2 22.0 44.2 45.5 52.4

Ours
√

85.3 40.2 79.7 19.6 1.3 29.4 29.7 32.2 82.5 79.2 64.3 26.7 85.2 49.4 22.7 44.9 48.2 55.5

Table 2: The quantitative results of different methods for semantic segmentation performance (IoU
and mIoU, %) on SYNTHIA→ Cityscapes(7 classes) and SYNTHIA → Mapillary (7 classes) in
low-resolution and full-resolution.

(a) SYNTHIA → Cityscapes (7 classes) (b) SYNTHIA → Mapillary (7 classes)
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mIoU↑

32
0*

64
0 SPIGAN[11]

√
91.2 66.4 9.6 56.8 71.5 17.7 60.3 53.4 74.1 47.1 6.8 43.3 83.7 11.2 42.2 44.1

Advent[19] 86.3 72.7 12.0 70.4 81.2 29.8 62.9 59.4 82.7 51.8 18.4 67.8 79.5 22.7 54.9 54.0
DADA[12]

√
89.6 76.0 16.3 74.4 78.3 43.8 65.7 63.4 83.8 53.7 20.5 62.1 84.5 26.6 59.2 55.8

CTRL[13]
√

90.8 77.5 15.7 77.1 82.9 45.3 68.6 65.4 86.6 57.4 19.7 73.0 87.5 45.1 68.1 62.5
Ours

√
92.6 78.2 23.4 77.2 82.9 49.6 69.8 67.7 86.2 58.7 19.4 68.9 86.1 40.4 62.4 60.3

Fu
ll

Advent[19] 89.6 77.8 22.1 76.3 81.4 54.7 68.7 67.2 86.9 58.8 30.5 74.1 85.1 48.3 72.5 65.2
DADA[12]

√
92.3 78.3 25.0 75.5 82.2 58.7 72.4 70.4 86.7 62.1 34.9 75.9 88.6 51.1 73.8 67.6

CTRL[13]
√

92.4 80.7 27.7 78.1 83.6 59.0 78.6 71.4 88.5 59.2 27.8 79.4 85.7 64.4 79.6 69.2
Ours

√
92.4 81.8 34.3 78.9 82.0 64.5 74.1 72.6 87.7 68.6 33.7 74.8 93.0 61.4 73.4 70.4

learning. The learning rates of the prediction and discriminator networks are set as 2.5× 10−4 and
1.0× 10−3 respectively. In self-training, the parameters are: Q1 = 54K, Q2 = 30K.

4.3 Comparison to Other Methods

4.3.1 SYNTHIA → Cityscapes(16 classes)

Table 1 reports semantic segmentation performance of our proposed model on SYNTHIA →
Cityscapes(16 classes). It shows our method achieves SOTA performance on both 16 and 13 classes,
outperforming other methods by large margins. Compared to the SOTA works, we have improvements
in 11 classes. Compared with the SOTA CTRL[13], which maps depth to a discrete probability
space, our main gains come from the following classes – “light” (+18.1%), “sign” (+19.6%), “person”
(+3.6%), “bus” (+3.2%), “rider” (+2.7%) and "pole" (+2.2%). Besides, our method shows consistent
improvements on the following classes in the target domain: “wall” (+0.4%), “fence” (+0.4%),
“bicycle” (+0.7%), “vegetation” (+1.2%), “car” (+1.0%) and "motorbike” (+0.7%). Fig. 2 shows the
results of the qualitative comparison of our method with DADA[12] and CTRL[13]. We also show
the estimated results of depth and density in the figure. From the results of density estimation, the
trace of segmentation can be seen.

4.3.2 SYNTHIA → Cityscapes (7 classes) and SYNTHIA → Mapillary (7 classes)

Table 2 shows the semantic segmentation results in SYNTHIA → Cityscapes and SYNTHIA →
Mapillary benchmarks, which are trained and evaluated on their common 7 classes. We also train and
evaluate our model on the 320 × 640 resolution, so as to make a fair comparison with the reference
low-resolution models. In the low-resolution model in SYNTHIA → Mapillary benchmark, CTRL is
superior to other methods, and our model ranks second with mIoU loss lower than CTRL by -2.2%.
Besides, our proposed method is superior to previous works. Compared to CTRL, our mIoU gains
are +2.3% and +1.2% for low-resolution and full-resolution of SYNTHIA → Cityscapes, and +1.2%
for full-resolution of SYNTHIA → Mapillary. Fig. 3 shows the results of the qualitative comparison
of our method with DADA[12] and CTRL[13] on these two protocols at full-resolution.
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Figure 2: Qualitative results on SYNTHIA → Cityscapes (16 classes). (a)Test images from Cityscapes
validation set; (b) ground truth segmentation; (c) DADA[12] segmentation; (d) CTRL[13] segmenta-
tion; (e) our segmentation; (f) our depth; (g) our density. Compared to theirs, our method demonstrates
notable improvements on “light and sign”, “vegetation”, “person” and “bus” classes as highlighted
using the yellow boxes.

4.4 Ablation Studies

In order to verify the effectiveness of our proposed components, we trained four different models
for comparison, denoted as M1,...M4. An ablation study is shown in Table 3. "SegPre" represents
segmentation prediction branch, "DepRes" represents depth regression branch, “DenEst” represents
density estimation branch, "SelfTra" means the self-training scheme in our paper without using spatial
prior pseudo-labels refinement algorithm, "SpaPri" means the spatial prior pseudo-labels refinement
algorithm. All the models are trained and evaluated on SYNTHIA → Cityscapes (16 classes).

M1 is backbone network with segmentation predict branch and depth regression branch. Unlike
DADA, we didn’t fuse features for adversarial training in M1. The result shows that segmentation
result (mIoU 41.7) is lower than that of DADA (mIoU 42.6). M2 adds the branch of density estimation,
and this is our model. The segmentation result is 44.8 (mIoU), which is a satisfactory improvement.
Note that, for fair comparison, if without self-training, CTRL result is 42.1(mIoU), which can be
found in their ablation study table[13]. Apart from three sub-tasks, CTRL has an additional Cross-
Task Relation Layer, but we choose a more concise MTL framework. Compared to DADA, M2 has
a mIoU gain of +2.2%. Compared to CTRL without self-training, M2 has a mIoU gain of +2.7%.
This demonstrates the effectiveness of the depth distribution density branch proposed by us. M3
adds our self-training scheme by commonly used pseudo-labels refinement based on confidence, and
M4 adopts our proposed spatial prior refinement algorithm on the basis of M3. The result of M3
demonstrates our model can obtain consistent improvements by using self-supervised training. In
addition, compared to M3, M4 has a mIoU gain of +0.6%, which shows the effectiveness of our
proposed algorithm to obtain higher quality pseudo-labels.

Table 3: Ablation study of different components of
our method in Section 4.4

Model SegPre DepRes DenEst SelfTra SpaPri mIoU(%)↑

M1
√ √

41.7
M2

√ √ √
44.8

M3
√ √ √ √

47.6
M4

√ √ √ √ √
48.2

Table 4: Additional analy-
sis in Section 4.5

Situation mIoU(%)↑

S1 44.1
S2 43.4
S3 37.8
S4 43.7
S5 44.8
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Figure 3: Qualitative results on: SYNTHIA → Cityscapes (7 classes) (upper two rows) and SYNTHIA
→ Mapillary (7 classes) (lower two rows). (a) Test images from Cityscapes and Mapillary validation
sets; (b) ground truth segmentation; (c) DADA[12] segmentation; (d) CTRL[13] segmentation; (e)
our segmentation; (f) our depth; (g) our density. Compared to theirs, our method demonstrates
notable improvements on “object”, “human”, “sky” and “construction” classes as highlighted using
the yellow boxes.

4.5 Additional Experimental Analysis

Branch balance loss for density estimation. The novelty of this loss lies in the density map
constructed for regression, which is calculated online during training. We propose the branch balance
loss for multi-task learning, which is different from the SOTA methods. When the branch balance
loss is removed, density regression on the source domain will use the pre-constructed density map as
the ground truth for supervised training, and density regression on the target domain will not exist.
The mIoU result of this model is 44.1 (S1 in Table 4). Note that S5 is the result of our model, and all
results in Table 4 are without the self-training scheme on SYNTHIA → Cityscapes (16 classes).

Ground truth depth for density map construction during source domain training. For compar-
ison, we use the predicted depth to construct the density map in the source domain training. The
result of mIoU is 43.4 (S2 in Table 4), which is lower than the method we proposed. It is known
that the density map is closely related to the segmentation map and the depth map. In our source
domain training, we eliminate the influence of depth estimation by using its ground truth, but transfer
the influence to segmentation by using the predicted segmentation results. This change makes the
density map closely related to semantic segmentation, and thus improving the segmentation prediction
performance.

Features fused from density and semantic segmentation. Our feature fusion strategy is not only
different from DADA, which fuses depth and segmentation results, but also different from CTRL,
which concatenates the features of three branches together. For comparison, we trained a model to
fuse all results of our three branches together. The result of mIoU is 37.8 (S3 in Table 4). We believe
that depth density with segmentation may enhance the antagonism of segmentation, while the depth
information added to the fused feature may interfere with and weaken the main task segmentation,
which is why the performance of S3 drops so much. In addition, we trained another model with
the same feature fusion as DADA in our framework . The result of mIoU is 43.7 (S4 in Table 4).
Therefore, our fusion strategy (S5 in Table 4) can highlight the effect of the main task.

t-SNE comparison of features learned by two different joint spaces. In Fig. 4, we use t-SNE [44]
to visualize features in target domain through (a) joint space of depth and segmentation, and (b) joint
space of density and segmentation. The two models are trained and evaluated following the UDA
protocol SYNTHIA → Cityscapes (16 classes). For comparison, some classes are circled. The t-SNE
results show that our density+segmentation joint space is better than depth+segmentation joint space,
and it has a high degree of aggregation and a better class separation in the target domain.

The influence between density and depth estimation. To verify whether density can promote depth,
we use M1 model and our M2 model in Table 3 to generate the depth results of the test images of
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Figure 4: t-SNE comparison of features learned by two
different joint spaces.

M1 M2

|Rel|↓ 0.7 0.5
Rel2↓ 13.7 9.0
RMS↓ 20.7 18.3
LRMS↓ 0.9 0.7

δ1↑ 0.21 0.26
δ2↑ 0.40 0.48
δ3↑ 0.56 0.66

Table 5: Depth comparisons
between M1 and M2 model in
Table 3.

Cityscapes dataset. The depth results are shown in Table 5. As can be seen from the table, density
estimation can improve depth results. It can be done from the following two aspects: First, the density
and depth are closely related. In the process of building a bridge between two domains through depth
density, depth prediction is naturally promoted. Secondly, in our training, our branch balance strategy
closely links depth regression with density estimation. Therefore, the density helps to improve the
depth.

Sensitivity analysis of hyper parameters. Because we use multi-task learning, the parameters of
each task are selected as follows: the main task segmentation is a large weight, and we set it to 1.0.
The two auxiliary tasks, density and depth, are small weights. Considering that density is used to
fuse with segmentation, which means that density is more important than depth, we set the weight of
density to 10−2, and the weight of depth to 0.5× 10−2. We also designed the experiments to increase
the hyper parameters of two auxiliary tasks to the level of 10−1, or decrease to the level of 10−3, and
the final results will be worse. However, the change of parameters at the level of 10−2 has little effect
on segmentation.

4.6 Limitations and Discussions

The training cost. Our method is based on multi-task learning, and it will cause a relatively high
cost, which is also inevitable in DADA[12] and CTRL[13] methods. DADA has two sub-tasks, while
CTRL and our method have three sub-tasks. Compared to CTRL and ours, the training time of DADA
is relatively short, and the memory utilization rate is low. The first stage of our training is 60K for
almost 90 hours, and self-training for 10 hours. The GPU memory usage is about 10GB. However,
by adding the branch of depth density estimation, our performance is improved.

The results of depth estimation. Depth estimation is an auxiliary task in our framework, and it
is used with density to promote the main task. We use the same branch network as the previous
methods[12, 13] for depth regression. Like theirs, we find that our depth regression results cannot
be compared with the works focused on depth estimation. This is another limitation of our work.
However, depth density is closely related to depth, so in our method, a more accurate depth and its
distribution density should be able to further improve the performance of semantic segmentation. We
plan to redesign the depth and density branch network in the MTL framework in our further work.

5 Conclusion

We use depth distribution to build a bridge between synthetic datasets and real-world datasets for
semantic segmentation in UDA context. We predict three tasks using the standard MTL framework,
and the two auxiliary tasks are designed to improve the performance of semantic segmentation. By
using our method, a new SOTA segmentation performance is achieved.

Acknowledgments. This work is funded by the National Natural Science Foundation of China
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