
Under review as a conference paper at ICLR 2024

SPLIT-ENSEMBLE: EFFICIENT OOD-AWARE
ENSEMBLE VIA TASK AND MODEL SPLITTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Uncertainty estimation is crucial for machine learning models to detect out-of-
distribution (OOD) inputs. However, the conventional discriminative deep learn-
ing classifiers produce uncalibrated closed-set predictions for OOD data. A more
robust classifiers with the uncertainty estimation typically require a potentially
unavailable OOD dataset for outlier exposure training, or a considerable amount
of additional memory and compute to build ensemble models. In this work, we
improve on uncertainty estimation without extra OOD data or additional infer-
ence costs using an alternative Split-Ensemble method. Specifically, we propose
a novel subtask-splitting ensemble training objective, where a common multiclass
classification task is split into several complementary subtasks. Then, each sub-
task’s training data can be considered as OOD to the other subtasks. Diverse
submodels can therefore be trained on each subtask with OOD-aware objectives.
The subtask-splitting objective enables us to share low-level features across sub-
models to avoid parameter and computational overheads. In particular, we build a
tree-like Split-Ensemble architecture by performing iterative splitting and pruning
from a shared backbone model, where each branch serves as a submodel corre-
sponding to a subtask. This leads to improved accuracy and uncertainty estima-
tion across submodels under a fixed ensemble computation budget. Empirical
study with ResNet-18 backbone shows Split-Ensemble, without additional com-
putation cost, improves accuracy over a single model by 0.8%, 1.8%, and 25.5%
on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively. OOD detection for
the same backbone and in-distribution datasets surpasses a single model baseline
by, correspondingly, 2.2%, 8.1%, and 29.6% mean AUROC.

1 INTRODUCTION

Deep learning models achieve high accuracy metrics when applied to in-distribution (ID) data.
However, such models deployed in the real world can also face corrupted, perturbed, or out-of-
distribution inputs (Hendrycks & Dietterich, 2019). Then, model predictions cannot be reliable due
to uncalibrated outputs of the conventional softmax classifiers. Therefore, estimation of the epis-
temic uncertainty with OOD detection is crucial for trustworthy models (Gal & Ghahramani, 2016).

In general, uncertainty estimation is not a trivial task. Practitioners often consider various statistics
derived from the uncalibrated outputs of softmax classifiers as confidence scores (Hendrycks et al.,
2022). On the other hand, deep ensembling is another popular approach (Lakshminarayanan et al.,
2017), where uncertainty can be derived from predictions of independently trained deep networks.
However, deep ensembles come with large memory and computational costs, which grow linearly
with the ensemble size. Recent research investigates strategies to share and reuse parameters and
processing across ensemble submodels (Gal & Ghahramani, 2016; Wen et al., 2020; Turkoglu et al.,
2022). Though these techniques reduce memory overheads, they suffer from the reduced submodel
diversity and, thus, uncertainty calibration. Moreover, their computational costs remain similar to
the naive deep ensemble since the inference through each individual submodel is still required.

More advanced methods for uncertainty estimation using a single model include temperature scal-
ing, adversarial perturbation of inputs (Liang et al., 2017), and classifiers with the explicit OOD
class trained by OOD-aware outlier exposure training (Hendrycks et al., 2018). However, as out-
lier exposure methods typically outperform other approaches that do not rely on external OOD-like
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Figure 1: Overview. We split an original task into complementary subtasks to create objectives for
subtask training. All submodels form an ensemble to perform the original task, and, importantly,
each submodel can be trained with OOD-aware objectives of the subtask as proposed in Section 3. To
implement an efficient Split-Ensemble architecture, we start with a shared backbone and iteratively
perform splitting and pruning based on subtask sensitivity described in Section 4.

data, OOD data distribution can be unknown or unavailable to implement effective outlier exposure
training in practical applications.

This work aims to propose novel training objectives and architectures to build a classifier with a
single-model cost, without external OOD proxy data, while achieving ensemble-level performance
and uncertainty estimation. To avoid the redundancy of having multiple ensemble submodels learn
the same task, we, instead, split an original multiclass classification task into multiple complemen-
tary subtasks. As illustrated in Figure 1, each subtask is defined by considering a subset of classes in
the original training data as ID classes. Then, the rest of the training set is a proxy for OOD distri-
bution for the subtask. This enables our novel training objective with subtask splitting, where each
submodel is trained with OOD-aware subtask objectives without external data. Finally, an ensemble
of all submodels implements the original multiclass classification.

Our splitting objective requires a method to design computationally efficient submodel architectures
for each subtask. Most subtasks processing, as part of the original task, can utilize similar low-level
features. Hence, it is possible to share early layers across submodels. Moreover, as each subtask
is easier than the original task, we can use lighter architectures for the latter unshared processing
in submodels when compared to the backbone design of the original task. By considering these
two observations, we propose a novel iterative splitting and pruning algorithm to learn a tree-like
Split-Ensemble model. As illustrated in Figure 1, the Split-Ensemble shares early layers for all sub-
models. Then, they gradually branch out into different subgroups, and, finally, result in completely
independent branches for each submodel towards the last layers. Global structural pruning is further
performed on all the branches to remove redundancies in submodels. Given the potential large de-
sign space of Split-Ensemble architectures, we propose a correlation-based splitting and a pruning
criteria based on the sensitivity of model weights to each subtask’s objective. This method enables
automated architecture design through a single training run for our Split-Ensemble.

In summary, the paper makes the following contributions:

• We propose a subtask-splitting training objective to allow OOD-aware ensemble training
without external data.

• We propose a dynamic splitting and pruning algorithm to build an efficient tree-like Split-
Ensemble architecture to perform the subtask splitting.

• We empirically show that the proposed Split-Ensemble approach significantly improves
accuracy and OOD detection over a single model baseline with a similar computational
cost, and outperforms 4× larger ensemble baselines.

In the rest of this paper, we discuss related work in Section 2, derive the subtask-splitting training
objectives in Section 3, propose criteria and algorithm for splitting and pruning the architecture in
Section 4, and show experiment results in Section 5.
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2 RELATED WORK

2.1 OOD DETECTION AND OOD-AWARE TRAINING

OOD detection has a long history of research including methods applicable to deep neural networks
(DNNs). Lane et al. (2007) firstly propose to use classification confidence scores to perform in-
domain verification through a linear discriminant model. Liang et al. (2017) enhance OOD detection
by temperature scaling and adversarial perturbations. Papadopoulos et al. (2021) propose a method
for outlier exposure training with OOD proxy data without compromising ID classification accu-
racy. Zhou et al. (2020) investigate the differences between OOD-unaware/-aware DNNs in model
performance, robustness, and uncertainty. Winkens et al. (2020) investigate the use of contrastive
training to boost OOD detection performance. Jeong & Kim (2020) propose a few-shot learning
method for detecting OOD samples. Besides supervised learning, Sehwag et al. (2021) investigate
self-supervised OOD detector based on contrastive learning. Wang et al. (2022) propose partial and
asymmetric supervised contrastive Learning (PASCL) to distinguish between tail-class ID samples
and OOD samples. However, the above single-model OOD detectors cannot be implemented with-
out the availability of OOD proxy data. Unlike this, our work proposes a novel subtask-splitting
training objective to allow OOD-aware learning without external data.

2.2 DEEP ENSEMBLES

Ensemble methods improve performance and uncertainty estimation by using predictions of multiple
ensemble members, known as submodels. Lakshminarayanan et al. (2017) propose the foundational
basis for estimating uncertainty in neural networks using ensemble techniques. However, compu-
tational and memory costs grow linearly with the number of submodels in deep ensembles. To
improve efficiency, Havasi et al. (2021) replace single-input and single-output layers with multiple-
input and multiple-output layers, Gal & Ghahramani (2016) extract model uncertainty using random
dropouts, and Durasov et al. (2021) utilize fixed binary masks to specify network parameters to be
dropped. Wen et al. (2020) enhance efficiency by expanding layer weights using low-rank matri-
ces, and Turkoglu et al. (2022) adopt feature-wise linear modulation to instantiate submodels from
a shared backbone. These methods aim to mitigate the parameter overheads associated with deep
ensembles. However, they cannot reduce computational costs because each submodel runs inde-
pendently. Split-Ensemble overcomes the redundancy of ensemble processing by having submodels
that run complementary subtasks with layer sharing. In addition, we further optimize Split-Ensemble
design with tree-like architecture by splitting and pruning steps.

2.3 EFFICIENT MULTI-TASK LEARNING

With the subtask splitting, our method also falls into the domain of multi-task learning. Given the ex-
pense of training individual models for each task, research has been conducted to train a single model
for multiple similar tasks. Sharma et al. (2017) propose an efficient multi-task learning framework
by simultaneously training multiple tasks. Ding et al. (2021) design Multiple-level Sparse Shar-
ing Model (MSSM), which can learn features selectively with knowledge shared across tasks. Sun
et al. (2021) introduce Task Switching Networks (TSNs), a task-conditioned architecture with a sin-
gle unified encoder/decoder for efficient multi-task learning. Zhang et al. (2022) develop AutoMTL
that automates efficient MTL model development for vision tasks. Sun et al. (2022) propose pruning
algorithm on a shared backbone for multiple tasks. In this work, we explore correlations between
multiple subtasks to design a novel splitting and pruning algorithm. Previous work of split-based
structure search consider layer splitting (Wang et al., 2019; Wu et al., 2019; 2020) to increase the
number of filters in certain layers for better model capacity. Split-Ensemble, on the other hand, uses
architecture splitting as a way of deriving efficient architecture under a multi-task learning scenario
of subtask-splitting training, leading to a novel tree-like architecture.

3 SUBTASK-SPLITTING TRAINING

In this section, we provide the definition of subtask splitting given a full classification task in Sec-
tion 3.1. We also derive proper training objective to improve both accuracy and uncertainty cali-
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Figure 2: Subtask splitting. Each submodel learns its subtask using a subset of the original training
data. OOD detection by outlier exposure training is realized using other subtasks’ examples. Con-
catenated ID logits from all submodels implement the original multiclass classification task.

bration for submodels learning these subtasks in Section 3.2, and how final classification and OOD
detection is performed with the ensemble of subtask models in Section 3.3, as in Figure 2.

3.1 COMPLEMENTARY SUBTASK SPLITTING

Consider a classification task with N classes in total. In most large-scale real-world datasets, it is
by design that some classes are semantically closer than others, and all classes can be grouped into
multiple semantically-close groups (e.g. the superclass in CIFAR-100 (Krizhevsky & Hinton, 2009)
or the WordNet hierarchy in ImageNet (Deng et al., 2009)). Here we group the classes based on
the semantic closeness so as to make the ID and OOD data in each subtask more distinguishable,
which we verify as helpful in Table 5 in the Appendix. Suppose the classes in the original task can
be grouped into n groups with Ki classes in the i-th group, where

∑n
i=1 Ki = N . Then subtask i

can be defined as classifying between the classes of the i-th group. This leads to a complementary
splitting of the original task, where each class is learned by one and only one subtask.

For training, it is possible to train a submodel for each subtask separately with only the data within
the Ki classes. However, at inference, we do not know in advance which submodel we should assign
an input with unknown class to. Therefore, each submodel still needs to handle images from all the
classes, not only within the Ki classes. To address that we add an additional class, namely “OOD”
class, to the subtask to make it a (Ki+1)-way classification task. In the training of the corresponding
submodel, we use the entire dataset of the original task with a label conversion. For images in the
Ki classes of the subtask, we consider them as in-distribution (ID) and correspondingly assign them
label 0 through Ki − 1 in the subtask. While for all the other images from the N −Ki classes, we
consider them as OOD of the subtask, and assign the same label Ki to them indicating the OOD
class. In this way, a well-trained submodel classifier on the subtask can correctly classify the images
within its ID classes, and reject other classes as OOD. Then each input image from the original task
will be correctly classified by one and only one submodel, while rejected by all others.

3.2 SUBMODEL TRAINING OBJECTIVE

Here we derive the training objective for the submodel on each subtask. Without loss of generality,
we consider a subtask with K in-distribution classes out of the total N classes in the derivation.

First we tackle the imbalance of training data in each subtask class. Each ID class only consists
the data from one class in the original task, yet the OOD class corresponds to all data in the rest
N − K classes, leading to a (N − K)× training data to other classes. Directly training with the
imbalance class will lead to significant bias over the OOD class. We refer to recent advances in
imbalance training, and use the class-balance reweighing (Cui et al., 2019) for the loss of each class.
The weight wi of class i of the subtask is formulated as

wi =

{
1−β
1−βn 0 ≤ i ≤ K − 1

1−β
1−β(N−K)n i = K

, (1)

where n is the amount of data in each class of the original task, and β ∈ [0, 1) is a hyperparameter
balancing the weight. We apply the reweighing on the binary cross entropy (BCE) loss to formulate
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the submodel training objective LCB(X,Y ) with submodel output logits X and label Y as

LCB(X,Y ) = Ex∈X

K∑
i=0

[
−wi

(
yi log σ(xi) + (1− yi) log(1− σ(xi))

)]
, (2)

where σ(·) denotes the Sigmoid function, xi is the i-th element of a output logit x, and yi = 1 if the
corresponding label is i or yi = 0 otherwise.

Next, we improve the uncertainty estimation of the submodel for better OOD detection. The ex-
istence of OOD classes in each subtask enables us to perform OOD-aware training for each sub-
model, without utilizing external data outside of the original task. Hence, we use outlier expo-
sure (Hendrycks et al., 2018), where we train with normal one-hot label for ID data, but use a
uniform label for OOD data to prevent the model from over-confidence. Formally, we convert the
original one-hot label of the OOD class to

ŷOOD
i =

{
1/N 0 ≤ i ≤ K − 1

(N −K)/N i = K
. (3)

Note that we set the subtask target of ID classes to 1/N instead of 1/(K + 1) to make the ID logits
comparable across all submodels with different amounts of classes when facing an OOD input.
With our proposed label conversion, optimally all submodels will output a low max probability of
1/N when facing an OOD input of the original task, which is as desired for the outlier exposure
objective (Hendrycks et al., 2018). We substitute the OOD class target in Equation (3) into the loss
formulation of Equation (2) to get LCB(X, Ŷ ), which we use to train each submodel.

3.3 ENSEMBLE TRAINING AND INFERENCE

To get the final output logits for the original task, we concatenate the ID class logits from each
submodel into a N -dimensional vector. Then the classification can be performed with an argmax of
the concatenated logits. In order to calibrate the range of logits across all submodels, we perform a
joint training of all submodels, with the objective defined as

Lens =
∑
i

Li
CB(Xi, Ŷi) + λLCE(X,Y ). (4)

Here Xi and Ŷi denote the output logits and the transformed target of submodel i, as formulated in
Section 3.2. X denotes the concatenated ID logits, Y denotes the label of the original task, and LCE

is the cross entropy loss. Hyperparameter λ balances the losses. Empirically, we find that a small
λ (e.g. 1e-4) is enough for the logits ranges to calibrate across submodels, while not driving the ID
logits of each submodel to be overconfident.

For uncertainty estimation, we compute the probability of the ensemble model output a label y from
the contribution of submodel fi given an input z as p(y|z) = p(y|z, fi)×p(fi|z). Here p(y|z, fi) can
be estimated with the softmax probability of the y class at the output of submodel fi. p(fi|z) can be
estimated with 1− the softmax probability of the OOD class of submodel fi, as the probability that
fi provides a valid ID output for the ensemble. With the design of the OOD-aware training objective
in Equation (3), we use p(y|z) as the OOD detection criteria. Specifically, a single threshold will be
selected so that all input with a smaller probability than the threshold will be considered as OOD.

4 ARCHITECTURE SPLITTING AND PRUNING

In this section, we propose the method of deriving a Split-Ensemble architecture for the afore-
mentioned subtask-splitting training task. Specifically, we discuss the process to decide at which
layer split a submodel from the shared backbone in Section 4.1 and formulate the criteria to prune
unimportant structure in Section 4.2, which we perform iteratively in training towards the final Split-
Ensemble architecture. Figure 3 overviews our pipeline.

4.1 CORRELATION-BASED AUTOMATED SPLITTING

Intuitively, with the subtasks split from the original task, submodels should be able to share the low-
level features learned in the early layers of the model, while using diverse high-level filters in later
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Figure 3: Iterative splitting and pruning. Starting from a shared backbone, we compute the layer-
wise sensitivity mask M for each subtask loss, and calculate pair-wise IoU score J across different
subtasks for the layer-wise correlation graph. Model is split at the layer with a small minimal cutting
threshold (MCT), and, then, is pruned globally. Applying splitting and pruning in an iterative fashion
leads to the final Split-Ensemble architecture that satisfies the cost constraints.

layers in each subtask. Given the difficulty of merging independently training submodels during
training, we instead start our ensemble training from a single backbone model for the original task.
We consider all the submodels using the same architecture with the same parameters of the backbone
model, only with independent fully-connected (FC) classifiers at the end.

The question therefore becomes: On which layer shall we split a submodel from the shared
backbone? Here we propose an automated splitting strategy that can learn a proper splitting archi-
tecture given the split subtasks. Intuitively, two submodels can share the same layer if they are both
benefiting from the existing weights (i.e., removing a filter will hurt both models simultaneously).
Otherwise, if the weight sensitive to submodel 1 can be removed for submodel 2 without harm, and
vice versa, then it would be worth splitting the architecture and shrinking the submodels separately.
We therefore formulate our splitting strategy based on the overlapping of sensitive weight elements
for each subtask. Specifically, for submodels share the same layer with weight W . We perform a
single-shot sensitivity estimation of all the weight elements in W on the subtask loss Li

CB of each
submodel i respectively. The sensitivity sij of element wj on submodel i is measured as

sij =
|g(wj)|∑

wk∈W |g(wk)|
, g(wj) = wj∇wj

Li
CB(W ), (5)

following the criteria proposed in SNIP (Lee et al., 2019). Then we perform a Top-K masking to
select the K weight elements with the largest sensitivity, forming a sensitive mask Mi for submodel
i. Then weight element lies in the intersection of the two masks Mi ∩ Mj are sensitive for both
subtasks, while other elements in the union Mi ∪Mj but not in the intersection are only sensitive
to one subtask. We use the Intersection over Union (IoU) score to measure the pair-wise mask
correlation as Jij =

|Mi∩Mj |
|Mi∪Mj | , where | · | denotes the cardinality of a set. It has been observed in

previous multi-task pruning work that pruning mask correlations will be high in the early layers and
drop sharply towards later layers (Sun et al., 2022), as later layers learn more high-level features
that are diverse across subtasks. A pair of submodels can be split at the earliest layer that the IoU
score drops below a predefined threshold. The architecture and parameters of the new branch are
initialized as the exact copy of the original layers it is splitting from, which guarantees the same
model functionality before and after the split. The branches will then be updated, pruned, and
further split independently after the splitting is performed given their low correlation.

In the case of multiple submodels, we compute the pairwise IoU score between each pair of sub-
models, and build a “correlation graph” for each layer. The correlation graph is constructed as a
weighted complete graph C = (V,E) with each submodel being a node v ∈ V , and the IoU score
between two submodels Juv is assigned as the weight of the edge (u, v) ∈ E between the corre-
sponding nodes. Then a split of the model is equivalent to performing a cut on the correlation graph
to form two separated subgraphs S and T . Here we propose a measurement of “Minimal Cutting
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Threshold” (MCT), which is the minimal correlation threshold for edge removal that can cut the
correlation graph into two. Formally, the MCT of a correlation graph C is defined as

MCT (C) = min
S,T

[
max

u∈S,v∈T,(u,v)∈E
Juv

]
, s.t. S + T = V. (6)

A small MCT indicates that a group of submodels has a weak correlation with the rest, therefore
they can be separated from the shared architecture. In practice, we will iteratively split the earliest
layer with an MCT lower than a predefined value in a branch shared by multiple submodels, until
all submodels have individual branches at the end. The splitting strategy will turn a single backbone
model into a tree-like architecture, as illustrated in Figure 3.

4.2 SENSITIVITY-AWARE GLOBAL PRUNING

To remove the redundancy in the submodels for simpler subtasks, we perform global structural
pruning on the Split-Ensemble architecture. We perform structural sensitivity estimation on a group
of weight element ws belonging to a structure S for the loss Li

CB of each subtask i. We utilize the
Hessian importance estimation (Yang et al., 2023), which is computed as

Ii(S) =

(∑
s∈S

ws∇ws
Li
CB(ws)

)2

. (7)

It has been shown that this importance score is comparable across different layers and different types
of structural components (Yang et al., 2023), making it a good candidate for global pruning. Then,
we greedily prune a fixed number of filters with the smallest Ii in submodel i. In the case where
multiple submodels are sharing the structure, we separately rank the importance of this structure in
each submodel, and will only prune the filters that are prunable for all the submodels sharing it.

Putting everything together, we iteratively perform the aforementioned automated splitting and prun-
ing process during the training of the Split-Ensemble model. Splitting and pruning are performed
alternatively. Removing commonly unimportant structures will reduce the sensitivity correlation in
the remaining parameters, enabling further splitting of the submodels. In contrast, having a new split
enables additional model capacity for further pruning. The splitting will be fixed when all submod-
els have an individual branch towards later layers of the model. Pruning will be stopped when the
Floating-point Operations (FLOPs) of the Split-Ensemble architecture meet a predefined computa-
tional budget, typically the FLOPs of the original backbone model. The Split-Ensemble model will
then train with the fixed model architecture for the remaining training epochs. The detailed process
of Split-Ensemble training is provided in the pseudo-code in Algorithm 1 of Appendix B.

5 EXPERIMENTS

Here we compare the accuracy of Split-Ensemble with baseline single model and ensemble methods
in Section 5.1, and showcase the OOD detection performance on various datasets in Section 5.2.
We provide ablation studies on the design choices of using OOD-aware target in subtask training
and selecting MCT threshold for iterative splitting in Section 5.3. Detailed experiment settings are
available in Appendix A.

5.1 PERFORMANCE ON CLASSIFICATION ACCURACY

We train Split-Ensemble on CIFAR-10, CIFAR-100, and Tiny-ImageNet dataset and evaluate its
classification accuracy. The results are compared with baseline single model, deep ensemble with
4x submodels, and other parameter-efficient ensemble methods (if results available) in Table 1. On
CIFAR-100, we notice that Deep Ensemble with independent submodels achieves the best accu-
racy. Other efficient ensembles cannot reach the same level of accuracy with shared parameters,
yet still require the same amount of computation. Our Split-Ensemble, on the other hand, beats not
only single model but also other efficient ensemble methods, without additional computation cost.
Additional results on CIFAR-10 and Tiny-ImageNet show that Split-Ensemble can bring consistent
performance gain over single model, especially for difficult tasks like Tiny-ImageNet, where a single
model cannot learn well. The improved performance comes from our novel task-splitting training
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Table 1: Classification performance on CIFAR-100, CIFAR-10, and Tiny-ImageNet datasets.
Best score for each metric in bold, second-best underlined. We implement all baselines using default
hyperparameters. All accuracies are given in percentage with ResNet-18/ResNet-34 as backbone

Method FLOPs CIFAR-10 Acc (↑) CIFAR-100 Acc (↑) Tiny-IMNET Acc (↑)

Single Network 1x 94.7 / 95.2 75.9 / 77.3 26.1 / 25.7
Deep Ensemble 4x 95.7 / 95.5 80.1 / 80.4 44.6 / 43.9

MC-Dropout 4x 93.3 / 90.1 73.3 / 66.3 58.1 / 60.3
MIMO 4x 86.8 / 87.5 54.9 / 54.6 46.4 / 47.8
MaskEnsemble 4x 94.3 / 90.8 76.0 / 64.8 61.2 / 62.6
BatchEnsemble 4x 94.0 / 91.0 75.5 / 66.1 61.7 / 62.3
FilmEnsemble 4x 87.8 / 94.3 77.4 / 77.2 51.5 / 53.2

Split-Ensemble (Ours) 1x 95.5 / 95.6 77.7 / 77.4 51.6 / 47.6

objective, where each submodel can learn faster and better on simpler subtasks, leading to better
convergence. The iterative splitting and pruning process further provides efficient architecture for
the Split-Ensemble to achieve high performance without the computational overhead.

5.2 PERFORMANCE ON OOD DETECTION

As we focus the design of Split-Ensemble on better OOD-aware training, here we compare the
OOD detection performance of the Split-Ensemble model with a single model and naive ensemble
baselines with ResNet-18 backbone. All models are trained using the same code under the same
settings. For OOD detection score computation, we use the max softmax probability for the single
model, max softmax probability of the mean logits for the naive ensemble, and use the probability
score proposed in Section 3.3 for our Split-Ensemble. A single threshold is used to detect OOD
with score lower than the threshold. Table 2 shows the comparison between the OOD detection
performance. We can clearly see that our method can outperform single model baseline and 4×
larger Naive ensemble across all of the benchmarks. This improvement shows our OOD-aware
training performed on each subtask can generalize to unseen OOD data, without using additional
data at the training time.

5.3 ABLATION STUDIES

In this section, we provide the results of exploring the use of OOD-aware target (Equation (3)) and
the impact of MCT threshold in automated splitting (Section 4.1). Due to space limitation, we put
additional results on ablating the influence of the number of subtask splittings and the grouping of
classes for each subtask in Appendix C.

OOD-aware target In Section 3.2, we propose to use an outlier exposure-inspired target for the
inputs belonging to the OOD class, so as to better calibrate the confidence during submodel training.
Table 3 compares the results of training Split-Ensemble submodels with the original one-hot labels
for OOD class vs. the proposed OOD-aware targets. No matter how many subtask splittings we
use, using the OOD-aware target significantly improved the AUROC for OOD detection, while also
helping the ID accuracy of the model. The results indicate that having an explicit OOD class is
inadequate for the submodel to learn generalizable OOD detection, and the OOD-aware training
objective is effective. Improving submodel OOD detection also helps ensemble accuracy as the
submodels can better distinguish their ID classes from others.

Automated Splitting Threshold In Section 4.1, we design our automatic splitting strategy as
splitting a (group of) submodels from the backbone when the MCT at a certain layer drops below a
predefined threshold. The choice of this MCT threshold is therefore impactful on the final architec-
ture and performance of the Split-Ensemble model. Table 4 explores the model performance as we
increase the MCT threshold from 0.0 (all-share). As the threshold increases, the models can branch
out easier in earlier layers (see architectures in Appendix C), which improves the flexibility for the
submodels to learn diverse features for the OOD-aware subtasks, leading to improvements in both
ID accuracy and OOD detection. However, more and earlier branches require the use of aggressive
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Table 2: OOD detection results. Models trained on ID dataset are evaluated against multiple OOD
datasets. The results are reported for models with ResNet-18 backbone. FPR and detection error are
evaluated with the threshold achieving 95% TPR.

ID OOD FPR Det. Error AUROC AUPR
dataset dataset (95% TPR)↓ (95% TPR) ↓ ↑ ↑

CIFAR-10

Single Model / Naive Ensemble (4x) / Split-Ensemble (ours)
CIFAR-100 56.9 / 50.6 / 47.9 30.9 / 27.8 / 26.4 87.4 / 87.8 / 89.6 85.7 / 85.6 / 89.5
TinyImageNet (crop) 30.9 / 29.9 / 39.2 17.9 / 17.4 / 22.1 93.1 / 94.4 / 94.9 96.0 / 93.8 / 96.4
TinyImageNet (resize) 54.9 / 50.3 / 46.0 29.9 / 27.7 / 25.5 87.5 / 89.3 / 91.7 86.2 / 88.0 / 92.8
SVHN 48.4 / 31.1 / 30.5 17.0 / 12.2 / 12.1 91.9 / 93.8 / 95.2 84.0 / 85.8 / 91.9
LSUN (crop) 27.5 / 18.7 / 37.5 16.3 / 11.9 / 21.3 92.1 / 95.9 / 95.3 96.8 / 94.8 / 96.8
LSUN (resize) 49.4 / 34.6 / 33.2 27.2 / 19.8 / 19.1 90.5 / 93.4 / 94.5 90.7 / 93.3 / 95.7
Uniform 83.0 / 85.3 / 63.7 76.3 / 78.1 / 58.7 91.9 / 88.5 / 92.5 99.2 / 98.8 / 99.3
Gaussian 9.4 / 95.4 / 33.0 9.3 / 87.2 / 30.5 97.7 / 85.6 / 95.7 99.8 / 98.3 / 99.6
Mean 45.1 / 49.5 / 41.4 28.1 / 35.3 / 27.0 91.5 / 91.1 / 93.7 92.3 / 92.3 / 95.3

CIFAR-100

CIFAR-10 76.2 / 78.6 / 78.5 40.6 / 41.8 / 41.7 80.5 / 80.3 / 79.2 83.2 / 82.2 / 81.7
TinyImageNet (crop) 66.1 / 77.5 / 58.1 41.2 / 49.7 / 31.6 85.8 / 80.3 / 88.4 88.3 / 82.2 / 90.0
TinyImageNet (resize) 68.2 / 78.6 / 72.1 38.9 / 41.8 / 38.6 84.4 / 77.5 / 82.7 86.9/ 79.3 / 84.6
SVHN 60.6 / 75.2 / 75.0 20.4 / 24.5 / 24.4 87.7 / 83.3 / 81.2 81.1 / 74.4 / 69.9
LSUN (crop) 70.9 / 84.7 / 64.7 44.8 / 49.3 / 34.9 76.7 / 76.7 / 85.3 86.6 / 79.9 / 86.6
LSUN (resize) 66.7 / 79.1 / 72.0 35.9 / 42.1 / 38.5 85.4 / 78.3 / 83.2 87.9 / 80.1 / 85.6
Uniform 100.0 / 100.0 / 95.0 90.9 / 90.9 / 65.9 59.2 / 69.1 / 88.3 95.2 / 91.6 / 98.8
Gaussian 100.0 / 100.0 / 99.6 90.9 / 72.5 / 90.9 40.6 / 59.2 / 63.1 92.0 / 95.2 /95.5
Mean 76.1 / 84.2 / 74.0 48.9 / 52.3 / 45.7 73.9 / 75.6 / 82.0 87.3 / 83.7 / 86.6

Tiny-
IMNET

CIFAR-10 99.3 / 97.7 / 100.0 33.3 / 50.3 / 33.3 56.5 / 46.7 / 81.2 48.9 / 48.6 / 82.7
CIFAR-100 99.2 / 97.5 / 100.0 33.3 / 50.3 / 9.1 54.6 / 46.1 / 72.6 45.5 / 47.5 / 51.9
SVHN 95.2 / 97.5 / 100.0 16.1 / 20.1 / 16.1 64.8 / 46.5 / 83.6 38.1 / 26.6 / 80.2
LSUN (crop) 100.0 / 97.5 / 94.0 33.3 / 50.3 / 33.3 28.9 / 45.9 / 80.2 25.9 / 48.8 / 78.5
LSUN (resize) 99.8 / 97.8 / 100.0 50.3 / 50.3 / 33.3 44.9 / 45.9 / 76.3 36.5 / 47.4 / 77.2
Uniform 100.0 / 90.2 / 100.0 83.3 / 73.5 / 83.3 24.2 / 43.9 / 63.8 77.7 / 90.2 / 92.5
Gaussian 100.0 / 96.7 / 100.0 83.3 / 73.5 / 83.3 25.4 / 43.8 / 49.3 78.1 / 89.9 / 88.1
Mean 99.1 / 96.4 / 99.1 45.1 / 52.6 / 46.4 42.8 / 45.8 / 72.4 50.1 / 57.0 / 78.7

Table 3: Ablation on OOD-aware subtask training. Models are trained on CIFAR-100. OOD
detection is against the CIFAR-10 dataset.

# splits OOD class target Accuracy AUROC

2 One-hot 71.0 76.0
OOD-aware 77.7 78.1

4 One-hot 77.2 77.5
OOD-aware 78.0 78.2

5 One-hot 77.7 77.3
OOD-aware 77.9 78.1

pruning to maintain the ensemble under cost constraints, which eventually hurts the model perfor-
mance. A threshold around 0.4 gives a good balance with adequate diversity (as deep ensemble) and
high efficiency (as single model) to the final Split-Ensemble model, leading to good performance.

6 CONCLUSIONS

In this paper, we introduced the Split-Ensemble method, a new approach to improve single-model
accuracy and OOD detection without additional training data or computational overhead. By di-
viding the learning task into complementary subtasks, we enabled OOD-aware learning without
external data. Our split-and-prune algorithm efficiently crafted a tree-like model architecture for the
subtasks, balancing performance and computational demands. Empirical results validated the effec-
tiveness of the Split-Ensemble. We hope this work opens up a promising direction for enhancing
real-world deep learning applications with task and model splitting, where subtasks and submodel
architectures can be co-designed to learn better calibrated efficient models on complicated tasks.

Table 4: Ablation on MCT thresholds. Models are trained on CIFAR-100 with 5 subtask splits.
OOD detection is against CIFAR-10. Detailed split architectures are visualized in Appendix C.

MCT threshold 0.0 (all-share) 0.1 0.2 0.4 0.7

Accuracy 76.2 77.9 78.4 77.9 77.9
AUROC 76.7 78.0 78.8 79.9 78.9
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A EXPERIMENTAL SETUP

A.1 DATASETS AND METRICS.

We perform classification tasks on four popular image classification benchmarks, including CIFAR-
10, CIFAR-100 (Krizhevsky, 2009), Tiny ImageNet (Deng et al., 2009) and ImageNet (Krizhevsky
et al., 2012) datasets. Additionally, we examine our method on the challenging long-tailed dataset,
CIFAR10-LT and CIFAR100-LT datasets (Cao et al., 2019).

• CIFAR10 is a collection of 60,000 32x32 color images spanning 10 different classes, such
as automobiles, birds, and ships, with each class containing 6,000 images. It is commonly
used in machine learning and computer vision tasks for object recognition, serving as a
benchmark to evaluate the performance of various algorithms.

• CIFAR100 is a diverse and challenging image dataset consisting of 60,000 32x32 color
images spread across 100 different classes. Each class represents a distinct object or scene,
making it a comprehensive resource for fine-grained image classification and multi-class
tasks. CIFAR-100 is widely used in machine learning research to evaluate the performance
of models in handling a wide range of object recognition challenges.

• Tiny ImageNet is a compact but diverse dataset containing thousands of small-sized im-
ages, each belonging to one of 200 categories. This dataset serves as a valuable resource
for tasks like image classification, with each image encapsulating a rich variety of objects,
animals, and scenes, making it ideal for training and evaluating machine learning models.

• CIFAR10-LT & CIFAR100-LT are the long-tailed version of CIFAR10 and CIFAR100
datasets with imbalance ratio ρ = 100.

For the out-of-distribution detection task, we use CIFAR-10, and CIFAR-100, Tiny ImageNet as
in-distribution datasets, and use CIFAR-10, CIFAR-100, Tiny ImageNet, SVHN, LSUN, Gaus-
sian Noise, Uniform Noise, as out-of-distribution datasets. Additionally, we adopt a more chal-
lenging OOD detection benchmark, named semantically coherent out-of-distribution detection (SC-
OOD) (Yang et al., 2021).

• SVHN. The Street View House Numbers (SVHN) dataset is a comprehensive collection
of house numbers captured from Google Street View images. It consists of over 600,000
images of house numbers from real-world scenes, making it a critical resource for tasks like
digit recognition and localization. SVHN’s diversity in backgrounds, fonts, and lighting
conditions makes it a challenging but vital dataset for training and evaluating machine
learning algorithms in the domain of computer vision.

• LSUN. The LSUN (Large-scale Scene Understanding) dataset is a vast collection of high-
resolution images, primarily focused on scenes and environments. It encompasses a diverse
range of scenes, including bedrooms, kitchens, living rooms, and more. LSUN serves as a
valuable resource for tasks such as scene recognition and understanding due to its extensive
coverage of real-world contexts and rich visual content.

• Gaussian Noise and Uniform Noise. After introducing Gaussian Noise or Uniform Noise
to the dataset, we obtain a modified dataset, which is then utilized as an OOD dataset for our
experiments. We implement this operation using the library from Kirchheim et al. (2022).

• SC-OOD benchmark. The SC-OOD (Semantically Coherent Out-of-Distribution) bench-
mark is designed for evaluating out-of-distribution detection models by focusing on se-
mantic coherence. This benchmark addresses the limitations of traditional benchmarks that
often require models to distinguish between objects with similar semantics from different
datasets, such as CIFAR dogs and ImageNet dogs.

We use five key metrics to evaluate the performance of ID classification and OOD detection tasks.

• Accuracy. This is defined as the ratio of the number of correct predictions to the total
number of predictions made. We report top-1 classification accuracy on the test(val) sets of
ID datasets.
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• FPR (95% TPR). This metric stands for ’False Positive Rate at 95% True Positive Rate’.
It measures the proportion of negative instances that are incorrectly classified as positive
when the true positive rate is 95%. A lower FPR at 95% TPR is desirable as it indicates
fewer false alarms while maintaining a high rate of correctly identified true positives.

• Detection Error (95% TPR). Detection Error at 95% TPR is a metric that quantifies the
overall error rate when the model achieves a true positive rate of 95%. It combines false
negatives and false positives to provide a single measure of error. Lower detection error
values indicate better performance, as the model successfully identifies more true positives
with fewer errors.

• AUROC is short for Area Under the Receiver Operating Characteristic Curve(AUROC).
This metric measures the ability of a model to distinguish between in-distribution and OOD
samples. The ROC curve plots the true positive rate against the false positive rate at various
threshold settings. The AUROC is the area under this curve, with higher values (closer to
1.0) indicating better discrimination between in-distribution and OOD samples.

• AURP is short for Area Under the Precision-Recall Curve (AUPR), this metric is partic-
ularly useful in scenarios where there is a class imbalance (a significant difference in the
number of in-distribution and OOD samples). It plots precision (the proportion of true pos-
itives among positive predictions) against recall (the proportion of true positives identified).
Higher AUPR values suggest better model performance, especially in terms of handling the
balance between precision and recall.

Implementation Details. Our Split Ensemble model was trained over 200 epochs using a single
NVIDIA A100 GPU with 80GB of memory, for experiments involving CIFAR-10, CIFAR-100,
and Tiny ImageNet datasets. For the larger-scale ImageNet dataset, we employ 8 NVIDIA A100
GPUs, each with 80GB memory, to handle the increased computational demands. We use an SGD
optimizer with a momentum of 0.9 and weight decay of 0.0005. We also adopt a 200-epoch cosine
learning rate schedule with 10 warm-up epochs and a batchsize of 256. Our experiments typically
run for approximately 2 hours on both CIFAR-10 and CIFAR-100 datasets, whereas on the Tiny
ImageNet and ImageNet datasets, they take approximately 10 hours and 24 hours, respectively. We
employ data augmentation techniques such as rotation and flip during the training phase, while the
testing phase does not involve data augmentation. As for the backbone models in our experiments,
we utilize the standard ResNet-18 and ResNet-34 architectures. We heuristically decide the number
of submodels in the Split-Ensemble via ablation study, where we find 8 submodels for ImageNet-1K
and 5 submodels for other datasets leads to the best performance in both ID and OOD detection. The
classes are grouped based on semantic similarity into subtasks for the submodels to learn.

B PSEUDO CODE FOR SPLIT-ENSEMBLE TRAINING

The Pseudo code of Split-Ensemble training is available in Algorithm 1.

C ADDITIONAL RESULTS AND VISUALIZATIONS

In this section, we provide additional results in comparison with baseline methods in different set-
tings as well as ablation results on our design choices following the discussion in Section 5.3.

Subtask grouping strategy In Section 3.1, we propose to use the group of classes that are
semantically-close to form each subtasks of the complementary task splitting. Here we verify this
intuition against have random assignment of classes to each subtask. As illustrated in Table 5, hav-
ing semantically-close subtask grouping significantly improves the OOD detection ability of the
Split-Ensemble model over that of random grouping. This improvement is more significant with
more subtask splittings. We believe that semantic grouping of subtasks help the submodels to better
learn the difference between ID classes and OOD classes of the subtask, as the semantically-close
ID classes may share more distinct features comparing to other classes.

Number of subtask splittings We conducted an analysis to explore the impact of the number of
splits on the accuracy and OOD detection performance of the Split-Ensemble model. Unlike tradi-
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Algorithm 1 Training the Split-Ensemble model
1: # Initialization and preparation
2: Load dataset {X,Y }
3: Subtask label conversion Y → Ŷi as Equation (3)
4: Initialize Split-Ensemble F with all submodels fi sharing backbone model
5: # Split ensemble training
6: while Training do
7: Update F to minimize Lens in Equation (4) with SGD
8: # Iterative splitting and pruning
9: if Epoch % Prune Interval == 0 then

10: # Splitting
11: if ∃ branch in F with multiple submodel fi sharing all layers then
12: for Layers in the branch shared only by fi do
13: Compute sensitivity map following Equation (5) for each fi
14: Compute MCT of the layer following Equation (6)
15: if MCT < threshold then
16: Split branch at the layer
17: Break
18: # Pruning
19: if FLOPs > target then
20: for All submodels fi do
21: Compute Ii

S for all S following Equation (7)
22: Rank Ii

S to decide prunable structures with minS IL
S

23: Remove structures prunable for (all) corresponding submodels

Table 5: Ablation on subtask grouping strategy. Models are trained on CIFAR-100. OOD detec-
tion is against the CIFAR-10 dataset.

# splits Subtask grouping Accuracy AUROC

2 Random 77.3 78.9
Semantic 77.8 79.6

4 Random 77.3 77.5
Semantic 77.5 79.1

5 Random 77.4 77.3
Semantic 77.9 78.9

tional ensemble that repeatedly learn the same task with more submodels, Split-Ensemble always
learns a complementary subtask splitting corresponding to the original task. Increasing the amount
of splits will therefore enable each submodel to learn a simpler subtasks with less ID classes, in-
tuitively leading to a model architecture with more yet smaller branches. As shown in Table 6,
the Split-Ensemble accuracy is not sensitive to the number of splits, showing the scalability of our
learning algorithm. For OOD detection, a larger number of splits enables each submodel to learn
its OOD-aware objective more easily, therefore leading to better AUROC. Yet the performance may
suffer from aggressive pruning with too much branches in the Split-Ensemble, as observed with a
large MCT threshold in Table 4. An interesting future direction would be automatically design the
amount of subtask splitting and the grouping of each subtask during the training process to better fit
the subtasks to the Split-Ensemble architecture.

Table 6: Ablation on number of splits. Models are trained on CIFAR-100. OOD detection is
against the CIFAR-10 dataset. All models are constrained with single-model computation cost.

# splits 2 4 5 8 10

Accuracy 77.7 78.0 77.9 77.5 77.3
AUROC 78.1 78.2 79.9 80.4 77.3
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Additional classification results on ImageNet We perform classification on the large-scale Ima-
geNet1K dataset to examine our method. As shown in Table. 7, our method continues to outperform
the single and 4× more costly ensemble methods, demonstrating the effectiveness of our design.

Table 7: Classification performance on ImageNet1K dataset. The results are reported for models
with ResNet-18 backbone. Best score in bold.

Method Acc

Single 69.0
Naive Ensemble 69.4

Split-Ensemble (ours) 70.9

Additional classification and OOD detection results on CIFAR10-LT with SC-OOD bench-
mark We assess our method on CIFAR10-LT, a complex long-tailed dataset, to evaluate its robust-
ness. As evidenced in Table 8, our approach consistently outperforms in all four metrics. Remark-
ably, this is achieved with only a quarter of the computational cost compared to baseline methods.
This underscores our model’s efficiency and effectiveness in managing intricate classification and
OOD detection tasks.

Table 8: Comparison between previous state-of-the-art ensemble-based methods and ours on
the SC-OOD CIFAR10-LT benchmarks. The results are reported for models with ResNet-18
backbone. Best score in bold, second best underlined.

Method Accuracy ↑ FPR95 ↓ AUROC ↑ AUPR ↑
Naive Ensemble 12.7 98.4 45.3 50.9
MC-Dropout 63.4 90.6 66.6 66.1
MIMO 35.7 96.3 55.1 56.9
MaskEnsemble 67.7 89.0 66.82 67.4
BatchEnsemble 70.1 87.45 68.0 68.7
FilmEnsemble 72.5 84.32 75.5 76.0

Split-Ensemble (ours) 73.7 80.5 81.7 77.6

Additional OOD detection results on CIFAR10 with SC-OOD benchmark We further com-
pare our methods with previous state-of-the-art methods. In Table. 9, our Split-Ensemble model
outperforms single-model approaches in OOD detection without incurring additional computational
costs or requiring extra training data. Its consistent high performance across key metrics highlights
its robustness and efficiency, underscoring its practical utility in OOD tasks. In Table. 10, our Split-
Ensemble model consistently outshines other ensemble-based methods in both image classification
and OOD detection, achieving top rankings across all key metrics, which underscores the model’s
efficiency and effectiveness.

Table 9: Comparison between previous state-of-the-art single-model-based methods and ours
on the SC-OOD CIFAR10 benchmarks. The results are reported for models with ResNet-18
backbone. Best score in bold, second best underlined.

Method Additional Data FPR95 ↓ AUROC ↑ AUPR ↑
ODIN é 52.0 82.0 85.1
EBO é 50.0 83.8 85.1
OE Ë 50.5 88.9 87.8
MCD Ë 73.0 83.9 80.5
UDG é 55.6 90.7 88.3
UDG Ë 36.2 93.8 92.6
Split-Ensemble (ours) é 45.5 91.1 89.9
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Table 10: Comparison between previous state-of-the-art ensemble-based methods and ours
on the SC-OOD CIFAR10 benchmarks. The results are reported for models with ResNet-18
backbone. Best score in bold, second best underlined.

Method Additional Data FPR95 ↓ AUROC ↑ AUPR ↑
Naive Ensemble 4x 42.3 90.4 90.6
MC-Dropout 4x 54.9 88.7 88.0
MIMO 4x 73.7 83.5 80.9
MaskEnsemble 4x 53.2 87.7 87.9
BatchEnsemble 4x 50.4 89.2 88.6
FilmEnsemble 4x 42.6 91.5 91.3

Split-Ensemble (ours) 1x 45.5 91.1 89.9

Model activation map visualization We visualize the learned feature map activations of a Split-
Ensemble model across different layers using Score-CAM (Wang et al., 2020) in Figure 4. The
shared feature maps, delineated by dashed lines, represent the common features extracted across dif-
ferent submodels, emphasizing the model’s capacity to identify and leverage shared representations.
The distinct feature maps outside the dashed boundaries correspond to specialized features pertinent
to individual sub-tasks, demonstrating the Split-Ensemble model’s ability to focus on unique aspects
of the data when necessary. This visualization underscores the effectiveness of the Split-Ensemble
architecture, highlighting its dual strength in capturing both shared and task-specific features within
a single, cohesive framework, thereby bolstering its robustness and adaptability in handling diverse
image classification and OOD detection tasks.

Layer1[0].conv1

Sub 1

Layer2[0].conv2

Layer2[1].conv1

Layer2[1].conv2

Layer3[0].conv2

Layer3[1].conv1

Layer3[1].conv2

Layer4[0].conv1

target: Sub 2 Sub 3Sub 4 Sub 5Sub 6Sub 7 Sub 8

Input Image

Figure 4: Visualization of Split-Ensemble’s learned features using Score-CAM. The number of
splits is set to 8 and the model is trained on ImageNet1K with ResNet-18 as backbone. The feature
maps within the dashed lines across the layers indicate shared representations. The input image’s
class is ’Angora’, targeted by submodel 2.

Model architecture visualization We visualize the Split-Ensemble models achieved under differ-
ent MCT thresholds in Figure 5, as discussed in Table 4 of Section 5.3. Models here use 5 splits
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and are trained on CIFAR-100 dataset with ResNet-18 as backbone. With a larger MCT threshold,
the model will split into more branches at earlier layers. Meanwhile the model will also be pruned
more aggressively to keep the overall computation cost unchanged. We can clearly see that with
a proper MCT threshold, our method can learn a tree-like Split-Ensemble architecture with differ-
ent submodels branching out at different layers, as designed by our iterative splitting and pruning
algorithm in Section 4.
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{5: ['layer1.1.conv2', [0, 1, 2, 3], [4]], 7: ['layer2.0.conv2', [0, 1, 2], [3], [4]], 8: 
['layer2.1.conv1', [0, 2], [1], [3], [4]], 9: ['layer2.1.conv2', [0], [2], [1], [3], [4]]}
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Figure 5: Visualization of Split-Ensemble architectures under different MCT threshold. The
number of splits is set to 5. Number in each block denotes the number of filters in the layer.
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