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ABSTRACT

With the advancement of deep learning, various generative models have emerged in
recent years. Diffusion models, notably exemplified by the Diffusion Transformer
(DiT), have become a key component in generative modeling, demonstrating
outstanding performance in vision generation tasks. In inference scenarios for
generative tasks, quantization and sparsification are widely used techniques to
reduce the memory consumption and computation cost. However, existing methods
focus on only one of these techniques, and it remains underexplored whether we
can leverage the strengths of both.
To fill this gap, this work develops a brand new acceleration framework that
applies offline sparsification and quantization to DiT models, facilitating faster
image generation while preserving generation quality. Furthermore, we develop a
novel and efficient matrix multiplication kernel that leverages low-bit and sparse
computing capabilities of Tensor Cores. We conduct experiments on both the 12B
open-source FLUX.1-dev model and the 18B closed-source MoE model from our
industrial partner. Empirical results show that our kernel achieves a speedup of
1.64-2.16×, delivering an efficiency improvement of 1.09-1.35× to the end-to-end
workflow, while incurring negligible degradation in generation quality.

1 INTRODUCTION

Generative tasks represent a major category within deep learning. With the advancement of deep
learning, especially the development of Transformers (Vaswani et al., 2017) and diffusion models
(Ho et al., 2020), deep learning models based on the Diffusion Transformer (DiT) (Peebles & Xie,
2023) architecture have achieved increasingly impressive performance on vision generation tasks.

Alongside the development of generative models, model sizes have continued to grow. Early models
like SD 1.5 (Rombach et al., 2022) had only 0.86 billion parameters, while the FLUX.1-dev model
(Labs, 2024) has reached 12 billion parameters, and future models are expected to grow even larger
(Team, 2025; Wu et al., 2025; Gao et al., 2025). While larger models bring improvements in
generation quality and instruction following, they also incur higher deployment and inference costs.
Therefore, reducing the cost of generative tasks has become a critical research direction—specifically,
how to effectively compress models to reduce memory footprint and improve inference efficiency
while preserving generation quality.

Quantization and sparsification are two widely used model compression techniques. Typically,
quantization (Jacob et al., 2018; Nagel et al., 2019; 2020; Lin et al., 2020) reduces model size
by storing parameters in lower-precision data types, while sparsification (LeCun et al., 1989; Han
et al., 2015; Frantar & Alistarh, 2023; Fang et al., 2025; Xia et al., 2025) decreases the total
number of parameters by removing less important weights. Deploying these compression methods
typically requires corresponding system-level support: quantization demands kernels for quantization,
dequantization, and low-precision matrix multiplication, while sparsification requires kernels that
support sparse matrix operations. Nevertheless, existing compression approaches generally focus on
only one of these techniques and rarely combine both. NVIDIA has proposed a method that combines
quantization with sparsification by introducing sparse Tensor Cores (Mishra et al., 2021), but it is
designed for traditional CNN models and based on Per-Tensor quantization, which performs poorly
on large scale diffusion models.
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To fully leverage the benefits of both quantization and sparsification while preserving generation
quality, this paper presents a novel inference acceleration framework based on finer-grained Per-Token
quantization and sparsification. Our main contributions are as follows:

• We apply offline pruning and quantization to multiple models, and build a complete workflow for
model quantization and sparsification, enabling rapid deployment of compression on arbitrary DiT
models through module replacement.

• We design and implement an efficient quantized sparse GEMM kernel, namely QuaSpa, that
supports per-token quantization and exploits the sparse computing capabilities of Tensor Cores.

• We experimentally demonstrate the efficiency of our kernel, and our method can effectively
accelerate generation efficiency while maintaining image generation quality.

2 RELATED WORKS

2.1 DIFFUSION MODEL

Diffusion models are a class of AI techniques based on probabilistic generative models, mainly used
for high-quality image generation, audio synthesis, and data augmentation. The core idea of the
diffusion model involves learning the data distribution through a forward process of gradually adding
noise and a reverse process of denoising, enabling the synthesis of new samples.

In recent years, diffusion models have achieved remarkable success in the field of generative AI,
gradually replacing traditional Generative Adversarial Networks (GAN) (Ian J. Goodfellow, 2014)
and becoming one of the dominant approaches in AI-generated content (AIGC).

Existing diffusion models are built upon various architectures, among which two types constitute the
majority: one represented by SD1.5 (Rombach et al., 2022) and SDXL (Podell et al., 2024) based
on the U-Net (Ronneberger et al., 2015) architecture, and the other represented by SD3 (Esser et al.,
2024) and FLUX.1-dev (Labs, 2024) based on the Diffusion Transformer (DiT) architecture.

2.2 DIFFUSION TRANSFORMER

Diffusion Transformer (DiT) is a diffusion model based on the Transformer architecture, designed
for various image and video generation tasks. DiT demonstrates the effectiveness of integrating the
Transformer paradigm with diffusion models and further validates the strong scaling capability of the
Transformer architecture within this context. As the DiT model size is systematically increased and
the quality of training data improved, its generative performance consistently improves.

Multimodal Diffusion Transformer (MMDiT) (Esser et al., 2024) is a model architecture developed
from the DiT framework. Traditional text-to-image diffusion models typically inject text embed-
dings into the image Transformer via cross-attention mechanisms, while sharing the same set of
weights between modalities, which limits the full potential of each modality. MMDiT addresses
this by assigning separate Transformer weights for text and image modalities, enabling independent
computation in the MLP layers. However, in the attention layers, the activations from both modalities
are concatenated for joint processing. This architecture enables a more effective fusion of multimodal
information, leading to improved instruction following and overall generation quality.

2.3 MODEL QUANTIZATION

Model quantization refers to the process of converting the weights, activations, and other parameters
of a deep learning model that originally stored and computed in high-precision data types (e.g.,
FP32, FP16) into low-precision data types (e.g., FP8, INT4). This reduces the size of model, lowers
computational cost, and accelerates inference. In general, quantization represents a high-precision
weight as a combination of a low-precision quantized weight and shared scale factors, reconstructing
the original weight through the product of the quantized value and its corresponding scale.

Works such as GPTQ (Frantar et al., 2023) and AWQ (Lin et al., 2024) have been devoted to
model quantization, and we can classify these quantization methods according to the granularity and
precision of quantization.
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Based on granularity, existing quantization strategies are typically classified as per-tensor, per-token,
or per-block quantization. Per-tensor quantization (Sakr & Shanbhag, 2019; Nagel et al., 2019)
applies a single scale factor to an entire tensor. Per-token quantization (Wei et al., 2022; Xiao
et al., 2023) computes a separate scale factor for the weights associated with each token. Per-block
quantization (Dettmers et al., 2022b; Jang & Tambe, 2025) divides the tensor along the dimension of
token into multiple blocks, computing a unified scale factor for all tokens within each block, which
offers finer granularity compared to per-token quantization. Figure 1 illustrates the differences among
the three quantization methods. For generative models, finer-grained quantization strategies generally
yield better performance.

quantization

per-tensor per-token per-block

Figure 1: Different types of quantization.

Quantization precision is another criti-
cal metric in quantization methods. It
involves two aspects: the data type
used for model weight storage and
the data type used for activations dur-
ing computation. The model weight
storage type (denoted as W) refers to
the data type of the quantized model
weights, while the activation type (de-
noted as A) refers to the data type
used during computation. For exam-
ple, W4A16 (Lin et al., 2024; Zhao
et al., 2024) indicates that model pa-
rameters are stored in 4-bit formats
(e.g., FP4, INT4) while computations

are performed in 16-bit formats (FP16 or BF16). Since storage and computation data types differ, an
additional dequantization step is required before computation and we generally refer to this type of
method as weight-only quantization. In contrast, W8A8 (Dettmers et al., 2022a; Kuzmin et al., 2022;
Shen et al., 2024) denotes that both storage and computation use 8-bit formats (e.g., FP8, INT8),
eliminating the need for dequantization before computation, which is shown in Figure 2a. This type
of method is generally known as activation-weight quantization. In practice, using low-precision
storage primarily reduces the memory footprint and memory access latency, while low-precision
activations improve computational efficiency.

2.4 SPARSE GEMM

Sparse general matrix multiplication (GEMM) refers to a specialized form of matrix multiplication
where one or both input matrices contain a significant number of zero elements. During computation,
additional metadata, such as the positions of non-zero elements, is typically required to represent these
matrices efficiently. Numerous studies have explored effective representations for sparse matrices
(Cohen, 1998; Buluç & Gilbert, 2008; Demirci & Aykanat, 2020; Zhou et al., 2021). However, due
to the strong dependence of matrix multiplication efficiency on hardware, general-purpose sparse
matrix multiplication implementations often achieve suboptimal computational performance.

Zhu et al. (2019) proposed a scheme to accelerate sparse matrix multiplication using Tensor Cores.
Starting with the NVIDIA Ampere architecture (NVIDIA, 2020), structured sparsity was introduced,
offering enhanced suitability for deep learning inference acceleration. This capability is primarily
delivered through Tensor Cores in NVIDIA GPUs (Mishra et al., 2021), supporting a 2:4 sparsity
pattern—where, in every group of four adjacent weights, at least two are zero, achieving a 50% sparsity
rate. The structured pattern (Teng & Wang, 2022) enables efficient memory access, effective model
inference acceleration, and relatively easy recovery of model accuracy. Conventional computation
methods are often inefficient when processing such structured data, whereas specialized optimizations
for sparse matrix operations enable highly efficient processing, significantly improving computational
efficiency and reducing energy consumption. To utilize sparse Tensor Cores, we require preprocessing
of the sparsified parameters and the workflow is illustrated in Figure 2b.
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[m, n] [m, n / 2] [m, n / 4]

(b)

Figure 2: (a): Example of per-token quantization W8A8 GEMM. (b): Preprocessing workflow of the
sparsified parameters.

3 METHOD

3.1 PRUNING FOR SPARSE MASK

As mentioned in Section 2.4, to leverage the computational capacity of sparse Tensor Cores, we need
to provide a 0-1 sparse mask for each weight that is to be sparsified. Since the sparse Tensor Core
only supports the 2:4 sparsity pattern, where exactly two out of every four adjacent elements are ones
and the other two are zeros, the provided sparse mask must conform to this format.

The sparse mask can be obtained in a manner analogous to model pruning, by setting relatively less
important weights to zero. We follow existing offline model pruning methodologies (Li et al., 2023;
Sun et al., 2024; Yang et al., 2025), acquiring the sparse masks based on these approaches without
modifying the original model weights. Once the sparse masks for all model parameters are obtained,
we can leverage sparse computation for efficient model inference.

LayerNorm
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Linear

K
Linear

V
Linear

Q
Linear

K
Linear

V
Linear

Attention

O
Linear

O
Linear LayerNorm

LayerNorm

MLP

MLP

Input

Input

Output

Output

Image

Text

Sparse Part Not Sparse Part Other Part

Figure 3: The structure of a MMDiT block and our sparsification strategy on a MMDiT block.

An MMDiT block includes two modalities: text and image. Each modality has its own matrix
multiplication weights. We observed in practice that the text modality accounts for a relatively small
portion of the computation. Moreover, sparsifying the weights in the text modality significantly
impacts the generation quality. Therefore, in most cases, we only apply quantization to the matrix
multiplication weights in the image modality. In consideration of generation throughput and quality,
our sparsification strategy is illustrated in Figure 3.
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Figure 4: (a): Preprocessing workflow of quantization and sparsity. (b): Our W8A8 sparse GEMM
inference workflow.

3.2 DYNAMIC QUANTIZATION AND SPARSITY IN INFERENCE

At the infrastructure level, we have implemented a workflow that adaptively deploys quantization
and sparsification inference pipelines based on the model, enabling acceleration of diverse DiT
models through sparsification and quantization. This section illustrates our workflow for combining
quantization and sparsity during model inference.

To minimize the impact of quantization and sparsification on output image quality, our pipeline adopts
a deployment strategy that applies quantization first, followed by sparsification. As illustrated, the
model parameter initialization process consists of the following three steps. We employ a layer-wise
parameter loading workflow to minimize peak GPU memory consumption:

1. Load the original model weights (in FP16 / BF16).

2. Quantize the weights to the target precision (FP8). For a weight tensor w, this yields the quantized
weights wq and the corresponding scale factors ws.

3. Apply sparsification based on the sparse mask associated with each parameter. Positions where
the mask value is 1 are retained, while positions with a mask value of 0 are discarded. Since
our masks conform to the 2:4 sparsity pattern, a parameter tensor of shape [m,n] is transformed
into shape [m,n/2] after sparsification, reducing its memory footprint by half. Additionally, we
compute the sparse metadata required by the sparse matrix multiplication kernel based on the
sparse mask, which is then passed as input to the kernel.

Our deployment workflow is shown in Figure 4a.

Throughout the inference pipeline, we adopt a dynamic quantization scheme, which quantizes high-
precision activations x to low-precision xq and computes the corresponding scale factor xs on-the-fly
before each GEMM operation. Our sparse matrix multiplication kernel takes the inputs x, w, meta,
xs, and ws, and computes the output o. The data types and shapes of each component are illustrated
in the figure.

Since both the sparse GEMM and dense GEMM kernels have the same input format requirements
for activations, no additional modifications are needed in this part. The workflow of our FP8 sparse
GEMM is shown in Figure 4b.

3.3 SPARSE GEMM KERNEL WITH PER-TOKEN QUANTIZATION

After introducing both quantization and sparsification, the overall GEMM workflow also changes.
Compared to the original GEMM, the new workflow introduces additional computational overhead:

(1) Per-token quantization introduces extra scale factors: for the output matrix of the GEMM kernel,
we must multiply by the scale factors of both the input and the weight to obtain an accurate output
matrix.
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(2) GEMM follows the rule that a row-wise input matrix A multiplied by a column-wise input matrix
B produces a row-wise output matrix D. In model inference, matrix A typically represents activations
(input) while matrix B corresponds to model weights (weight). Sparsification requires the use of
sparse Tensor Core Matrix Multiply-Accumulate (MMA) instructions. However, the sparse Tensor
Core only supports sparsification on matrix A. Therefore, we must swap the positions of the input
matrices, treating the model weights as matrix A and the activations as matrix B. After this swap,
to obtain the correct GEMM result for subsequent computations, the resulting matrix D must be
transposed.

A

input
[m, k]

B

weight
[n, k]

GEMM

output
[m, n]

(a)
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E
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[n, k / 4]

QuaSpa
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Figure 5: (a): Workflow of original GEMM kernel. (b): Workflow of sparse GEMM kernel with
per-token quantization.

Our workflow is illustrated in Figure 5b. Compared to the original GEMM in Figure 5a, we introduce
three additional kernels. If the kernels are executed independently, they will incur extra memory
access and kernel launch overhead. To maximize inference efficiency, we fused these kernels together
and designed a hardware-friendly sparse GEMM kernel with per-token quantization, which is named
QuaSpa. Figure 6a illustrates our kernel implementation based on the GPU multi-level cache
hierarchy.

3.3.1 FUSED WITH PER-TOKEN QUANTIZATION

To minimize the associated memory transfer and computational overhead, we prefetch the correspond-
ing scale factors into registers prior to the MMA. After the kernel completes the FP32 accumulation
of the MMA, the accumulated results are scaled by the pre-loaded factors before being written back
to global memory. Since the scaling operation is entirely decoupled from the MMA computation, it
introduces negligible impact on overall computational efficiency.

3.3.2 FUSED WITH TRANSPOSE

Directly fusing the transpose operation introduces additional memory access overhead: the global
memory addresses corresponding to the MMA computation results are originally contiguous but
become noncontiguous after transposition, thereby forcing what could have been coalesced memory
transactions into separate accesses and degrading overall memory efficiency. To integrate the matrix
transpose into the sparse matrix multiplication kernel while minimizing the associated overhead,
we leverage GPU shared memory to reorganize the process of writing back MMA results to global
memory. This write-back procedure can be decomposed into two steps: (1) writing from registers to
shared memory and (2) writing from shared memory to global memory. The comparision between our
writeback strategy and the naive strategy is shown in Figure 6b. By introducing relatively low-cost
memory transfers from registers to shared memory (R2S), we significantly reduce the number of
memory transfers from shared memory to global memory (S2G), thereby decreasing memory access
time accordingly.

3.3.3 SPARSE GROUPGEMM

For Transformer models based on the Mixture-of-Experts (MoE) architecture, GroupGEMM kernels
are commonly employed to accelerate computations in the MLP layers. Similarly to GEMM,
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Figure 6: (a): Our QuaSpa kernel design. (b) The comparision between our writeback strategy and naive one.

GroupGEMM can also benefit from quantization combined with sparsification for acceleration.
We have implemented an extension of QuaSpa to support sparse GroupGEMM with per-token
quantization, enabling efficient inference acceleration for MoE-based DiTs.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Our experiments primarily focus on two types of DiT models: the open-source FLUX.1-dev model
and our closed-source model MoE model FLUX-MoE. FLUX.1-dev is a 12B DiT-based model with
19 MMDiT Transformer Blocks (T) and 38 Single Transformer Blocks (S). FLUX-MoE is a 18B DiT
model based on the mixture of experts (MoE) architecture.

For FLUX.1-dev, we sparsify the GEMM weights of image modality in the MMDiT Transformer
blocks and all GEMM weights in the Single Transformer blocks. For FLUX-MoE, we sparsify the all
GroupGEMM weights in MLP layers.

The experiments are performed on 1 GPU server equipped with 8×NVIDIA-L20 GPUs with Ada
Lovelace architecture. Each NVIDIA-L20 GPU delivers 239 TFLOPS of dense FP8 compute
performance and 478 TFLOPS of sparse FP8 compute performance.

Table 1: GEMM shapes in model inference and efficiency comparison between FP8 qGEMM and FP8
QuaSpa. The values outside the parentheses represent execution time in milliseconds (ms), and the values
inside the parentheses denote Model FLOPs Utilization (MFU).

Resolution Part M N K FP8 qGEMM FP8 QuaSpa Speedup

512 × 512

T/qkvo proj 4096 3072 3072 0.39 (80.1%) 0.22 (71.0%) 1.77×
T/up proj 4096 12288 3072 1.41 (92.3%) 0.86 (75.8%) 1.64×

T/down proj 4096 3072 12288 1.64 (78.9%) 0.76 (85.1%) 2.16×
S/qkvo proj 6144 3072 3072 0.57 (82.2%) 0.33 (71.0%) 1.72×
S/up proj 6144 12288 3072 2.10 (93.0%) 1.27 (77.0%) 1.65×

S/down proj 6144 3072 12288 2.36 (82.2%) 1.10 (88.2%) 2.15×

1024 × 1024

T/qkvo proj 16384 3072 3072 1.59 (78.9%) 0.85 (73.5%) 1.87×
T/up proj 16384 12288 3072 5.72 (91.1%) 3.48 (74.9%) 1.64×

T/down proj 16384 3072 12288 6.24 (82.9%) 2.97 (87.1%) 2.10×
S/qkvo proj 18432 3072 3072 1.80 (80.8%) 0.99 (73.5%) 1.81×
S/up proj 18432 12288 3072 6.50 (90.2%) 3.91 (75.0%) 1.66×

S/down proj 18432 3072 12288 7.00 (83.1%) 3.35 (86.9%) 2.09×

7
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Table 2: Single-step DiT inference latency of different strategies at different resolutions.

Time (ms) BF16 sparse FP8 quantization FP8 QuaSpa

FLUX.1-dev
512 × 512 201 (1.33×) 192 (1.27×) 151

1024 × 1024 608 (1.35×) 561 (1.25×) 449

FLUX-MoE
2048 × 2048 182 (1.24×) 168 (1.14×) 147

3072 × 3072 436 (1.21×) 403 (1.12×) 359

4096 × 4096 934 (1.17×) 873 (1.09×) 800

4.2 KERNEL PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our QuaSpa. We primarily evaluate the computation
time and Model FLOPs Utilization (MFU) of two kernels under several representative GEMM shapes
from the FLUX.1-dev model: (1) FP8 GEMM kernel with per-token quantization (FP8 qGEMM)
(2) FP8 QuaSpa. The experimental results are shown in Table 1. QuaSpa achieves 1.64–2.16×
performance improvement over qGEMM while maintaining the MFU above 70%.

4.3 END-TO-END IMAGE GENERATION PERFORMANCE EVALUATION

In this section, we evaluate the compute performance and generation quality of our method in
end-to-end inference tasks.

4.3.1 COMPUTE EFFICIENCY

We compare the efficiency of our hybrid method with FP8 quantization and BF16 sparsification
methods. For the FLUX.1-dev model, we evaluated its image generation efficiency at resolutions
of 512 × 512 and 1024 × 1024. For FLUX-MoE, we evaluated its image generation efficiency at
resolutions of 2048 × 2048, 3072 × 3072 and 4096 × 4096. Table 2 summarizes the experimental
results and our method achieves a speedup of 1.09 – 1.35 × compared to existing methods.

4.3.2 GENERATION QUALITY

Table 3: Quantitative evaluation of our method. Origin refers
to the original model, QuaSpa refers to the model after quan-
tization and sparsification.

model CLIP
Score

Pick
Score

Image
Reward

FLUX.1-dev
Origin 33.48 22.47 0.95

QuaSpa 33.97 22.40 0.92

FLUX-MoE
Origin 34.08 23.27 1.43

QuaSpa 34.35 23.19 1.44

We evaluated the quantitative comparison
and qualitative comparison of image gen-
eration between our compressed model
and the original model.

Quantitative Comparison. We evalu-
ated the generation quality metrics in-
cluding CLIPScore (Hessel et al., 2021),
PickScore (Kirstain et al., 2023), and
ImageReward (Xu et al., 2023) on MS-
COCO (Lin et al., 2014) dataset. The re-
sults in Table 3 show that the metrics of
our compressed model are close to those
of the original model.

Qualitative Comparison. We compare
the image generation results of the model after our quantization and pruning with those of the original
model, as shown in Figure 7. The experimental results demonstrate that our model compression
approach has minimal impact on overall generation quality.

4.4 ABLATION STUDY OF KERNEL DESIGN

We evaluate the performance benefits of our kernel-level optimizations. As discussed in Section 3.3,
our kernel incorporates two key optimizations: (1) fusing the kernels of GEMM workflow into a single

8
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Figure 7: Comparison of generation quality between our sparse quantization model and the original model. In
each pair, the left image is generated by the original model, and the right image by the sparsely quantized model,
using the same prompt and random seed. The top three pairs show results from the FLUX.1-dev model at 1024
× 1024 resolution, while the bottom three pairs show results from the MoE model at 2048 × 2048 resolution.
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Figure 8: Ablation study of GEMM and transpose kernel. Naive: no kernel fusion. Fused: kernel fusion.
Fused + Smem: using shared memory for memory access optimization after kernel fusion (QuaSpa).

kernel. (2) leveraging shared memory to improve the memory access efficiency of the transpose. We
conduct corresponding ablation studies to validate the effectiveness of these optimization techniques.
The experimental results are shown in the Figure 8.

5 CONCLUSION

This paper presents a co-design of algorithm and system that combines model quantization and sparsi-
fication to optimize the inference efficiency of DiT models. We obtain sparse models through offline
pruning and develop an efficient FP8 quantized sparse matrix multiplication kernel by leveraging
kernel fusion and memory access optimizations, fully utilizing the sparse computing capabilities
of Tensor Cores for acceleration. The proposed approach achieves better performance compared to
existing quantization or pruning methods, while maintaining a negligible impact on overall image
generation quality. Our kernel design can be extended to other quantization precisions and to GPU
architectures that provide sparse computing capabilities. Furthermore, our method is compatible with
other techniques such as model distillation and sparse attention, enabling further improvements in
inference efficiency when combined.
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A USAGE OF LARGE LANGUAGE MODELS

We use large language model to polish our writing, including the Introduction and Method. We
take full responsibility for the content of the paper, including any text generated or polished by the
LLM. We ensure that the LLM-generated text adheres to ethical guidelines and does not contribute to
plagiarism or scientific misconduct.
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This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
tation was involved. The datasets used in the experiments were sourced according to relevant usage
guidelines, ensuring no violation of privacy. We ensure the absence of biases and discriminatory
outcomes throughout our research. The study does not include any personally identifiable information,
and all experiments were carried out without raising any privacy or security concerns.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. Our
method, including kernel design, model compress strategy, and hardware details, is described in
detail in the paper. We believe these measures will facilitate the reproducibility of our work and help
advance the field.
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