
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POSE PRIORS FROM LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

“Their faces are touching as 
they lean into each other”

“The yogi reaches their hands back 
to touch their heels.”

from LMM… … to pose from LMM… … to pose

Figure 1: Optimizing contacts in 3D human pose. Our approach leverages the semantic priors of a Large Mul-
timodal Model (LMM) by converting natural language descriptions of individuals in an image into mathematical
constraints. We can then optimize the 3D pose estimates using these constraints. These examples show image
descriptions generated by an LMM and corresponding refined pose estimates.

ABSTRACT

We present a pose optimization method that enforces accurate physical contact
constraints when estimating the 3D pose of humans. Our central insight is that
since language is often used to describe physical interaction, large pretrained
text-based models can act as priors on pose estimation. We can thus leverage this
insight to improve pose estimation by converting natural language descriptors,
generated by a large multimodal model (LMM), into tractable losses to constrain
the 3D pose optimization. Despite its simplicity, our method produces surprisingly
compelling pose reconstructions of people in close contact, correctly capturing
the semantics of the social and physical interactions. We demonstrate that our
method rivals more complex state-of-the-art approaches that require expensive
human annotation of contact points and training specialized models. Moreover,
unlike previous approaches, our method provides a unified framework for resolving
self-contact and person-to-person contact.1

1 INTRODUCTION

In 3D pose estimation, the dominant forms of labeled training data are 3D pose (obtained via
motion capture) and 2D keypoints (Goel et al., 2023). Scaling the amount of this data is expensive,
as it requires either special technology or fine-grained human effort. On the other hand, in 2D
computer vision tasks such as recognition and segmentation, prior work shows that natural language
supervision provides a path to strong performance (Radford et al., 2021; Xu et al., 2022a). Can we
use language-based models to improve 3D pose estimation?

Our focus in this work is enabling computers to correctly perceive physical contact when estimating
pose (See Figure 1). Specifically, we aim to build a system that takes as input a single view of people
during close physical interaction or one person in a pose that involves self-contact and produces
accurate 3D mesh reconstructions of each person as output. This setting is challenging for state-of-
the-art pose regression models, as some body parts are frequently occluded by other ones, and also

1Our code will be publicly available at the time of publication.
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challenging for pose optimization methods relying on 2D keypoints, which do not convey contact
points. Previously proposed approaches address these issues by curating task-specific datasets via
motion capture or human-annotated points of contact between body parts (Muller et al., 2021; Fieraru
et al., 2021; Müller et al., 2023).

As physical contact is a universal human social signal, humans developed extensive terminology for
its particularities. Detailed descriptions of touch in different contexts are widely discussed in texts that
range from love-song lyrics such as Paul Anka’s “Put your head on my shoulder” to Shakespeare’s
“See how she leans her cheek upon her hand.” (Romeo and Juliet). It touches on subjects from love to
meditative poses.

Our main insight is that since written language discusses our physical interactions (hugs, kisses, fist
fights, yoga poses, etc.) at great length, we should be able to extract a semantic prior on humans’
poses from a pretrained large multimodal model (LMM) (Achiam et al., 2023; Liu et al., 2023;
Dai et al., 2023). Just like a prior trained on motion capture data, this language-based prior can tell
us which contacts are most likely in poses and interactions. Through this approach, we avoid the
time-consuming and expensive collection of training data involving motion capture or annotated self
and cross-person contacts that previous refinement methods require.

This insight leads us to a simple framework, which we call ProsePose. We prompt a pre-trained
LMM, with the image and request as output a formatted list of contact constraints between body parts.
We then convert this list of constraints into a loss function that can be optimized jointly with other
common losses, such as 2D keypoint loss, to refine the initial estimates of a pose regression model.
The prompt provides an intuitive way for the system designer to adapt the generated constraints to
their setting (e.g. if they want to focus on yoga or dance).

We show in experiments on three 2-person interaction datasets and one dataset of complex yoga
poses that ProsePose produces more accurate reconstructions than previous approaches that do not
use a large amount of task-specific data for training. These results indicate that LMMs, without any
additional finetuning, offer a useful prior for pose reconstruction.

In summary, (1) we show that LMMs have implicit semantic knowledge of poses that is useful for
pose estimation, and (2) we formulate a novel framework that converts free-form natural language
responses from a pre-trained LMM into tractable loss functions that can be used for pose optimization.

2 RELATED WORK

2.1 3D HUMAN POSE RECONSTRUCTION

Reconstructing 3D human poses from single images is an active area of research. Prior works have
explored using optimization-based approaches (Pavlakos et al., 2019a; Guan et al., 2009; Lassner et al.,
2017; Pavlakos et al., 2019b; Rempe et al., 2021) or pure regression (Kanazawa et al., 2018; Arnab
et al., 2019; Guler & Kokkinos, 2019; Joo et al., 2021; Kolotouros et al., 2019) to estimate the 3D
body pose given a single image. HMR2 (Goel et al., 2023) is a recent state-of-the-art regression model
in this line of work. Building on these monocular reconstruction approaches, some methods have
looked into reconstructing multiple individuals jointly from a single image. These methods (Zanfir
et al., 2018; Jiang et al., 2020; Sun et al., 2021) use deep networks to reason about multiple people in
a scene to directly output multi-person 3D pose predictions. BEV (Sun et al., 2022) accounts for the
relative proximity of people explicitly using relative depth annotations to reason about proxemics
when predicting and placing each individuals in the scene (e.g. depth of people with respect to one
another). However, approaches in both categories generally do not accurately capture physical contact
between parts of a single person or between people (Müller et al., 2023; Muller et al., 2021).

2.2 CONTACT INFERENCE IN 3D POSE RECONSTRUCTION

3D pose reconstruction is especially challenging when there is self-contact or inter-person contact.
This has motivated a line of work on pose reconstruction approaches tailored for this setting. Muller
et al. (2021) focuses on predicting self contact regions for 3D pose estimation by leveraging a dataset
with collected contact annotations to model complex poses such as arm on hip or crossed arms.
Fieraru et al. (2020) introduces the first dataset with hand-annotated ground truth contact labels
between two people. REMIPS (Fieraru et al., 2021) and BUDDI (Müller et al., 2023) train models on
the person-to-person contact maps in this data in order to improve 3D pose estimation of multiple
people from a single image. CloseInt (Huang et al., 2024) trains a physics-guided diffusion model on
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LMM

Arm, Waist (front)
Hand, Waist (front)
Waist(front), Butt
Leg, Butt

Constraint Generation

Constrained Optimization

Output:

Reference Image:

3D Pose Regressor

Initialization:

Prompt: “Identify all pairs of 
body parts of Person 1 and 
Person 2 that are touching.” def lmm_loss(...):

  shoulder_waist_loss = ...
  arm_waist_loss = ...
  hand_stomach_loss = ...
  total_loss = ...

Figure 2: LMM-guided Pose Estimation Our method takes as input an image of one or two people in contact.
We first obtain initial pose estimates for each person from a pose regressor. Then we use an LMM to generate
contact constraints, each of which is a pair of body parts that should be touching. This list of contacts is converted
into a loss function LLMM. We optimize the pose estimates using LLMM and other losses to produce a refined
estimate of each person’s pose that respects the predicted contacts.
two-person motion capture data for this task. However, contact annotations, which are crucial for
these approaches, are difficult and expensive to acquire. Our method does not require any training on
such annotations. Instead, we leverage an LMM’s implicit knowledge about pose to constrain pose
optimization to capture both self- and person-to-person contact.

2.3 LANGUAGE PRIORS ON HUMAN POSE

There exists a plethora of text to 3D human pose and motion datasets (Punnakkal et al., 2021; Guo
et al., 2022; Plappert et al., 2016), which have enabled work focused on generating 3D motion
sequences of a single person performing a general action (Tevet et al., 2023; Jiang et al., 2023; Zhang
et al., 2023). This line of work has been extended to generating the motion of two people conditioned
on text (Shafir et al., 2023; Liang et al., 2023).

PoseScript (Delmas, Ginger and Weinzaepfel, Philippe and Lucas, Thomas and Moreno-Noguer,
Francesc and Rogez, Grégory, 2022) is a method for generating a single person’s pose from fine-
grained descriptions. They leverage a library of predefined pose descriptors, from which they form
detailed textual annotations for their motion capture dataset. By training a model on this data, they can
generate various plausible poses. PoseFix (Delmas, Ginger and Weinzaepfel, Philippe and Moreno-
Noguer, Francesc and Rogez, Grégory, 2023) considers the problem of modifying a pose given a
fine-grained description of the desired change, and introduces a labeled dataset for this task. The
PoseFix method then trains a model on this data to predict the modified pose given the initial pose
and description. PoseGPT (Feng et al., 2023), like our work, focuses on the problem of monocular 3D
reconstruction of people. PoseGPT is a pose regressor that uses language as part of its training data.
However, PoseGPT does not produce better pose estimates than previous state-of-the-art regressors
(i.e. regressors that do not use language) and applies only to the one-person setting.

Our work differs from previous work on language and pose in several ways. First, whereas all prior
work trains a model on data with pairs of language and pose, which is expensive to collect, our
method leverages the existing knowledge in an LMM to reason about pose. Second, prior work in
this area focuses on either the one-person or the two-person setting. In contrast, our work presents a
single framework to reason about physical contacts within or between poses. Finally, in scenes with
physical contact, we show that our method improves the pose estimates of state-of-the-art regressors.

3 GUIDING POSE OPTIMIZATION WITH AN LMM
Given an image, our goal is to estimate the 3D body pose of individuals in the image while capturing
the self and cross-person contact points. While we cannot trivially use natural language responses
(hug, kiss) to directly optimize 3D body poses, we leverage the key insight that LMMs understand
how to articulate a given pose (arms around waist, lips touching). We propose a method to structure
these articulations into constraints and convert them into loss functions.

3
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More concretely, our framework, illustrated by Figure 2, takes as input the image I and the bounding
boxes B of the subjects of interest. In the first stage, the image is passed to a pose regressor to
obtain a rough estimate of the 3D pose Xp for each individual p in the image. In the second stage,
we prompt a LMM with the image and a set of instructions in order to generate a list of self- or
inter-person contact constraints, which we then convert into a loss function (Sec. 3.4). Finally, in the
third stage, we jointly optimize the generated loss function with several other pre-defined loss terms
(Sec. 3.4). We refer to our framework as ProsePose .

3.1 PRELIMINARIES

While our approach scales in principle to an arbitrary number of individuals, we focus our description
on the two-person case to keep the exposition simple. We also demonstrate results on the one-person
case, which is simply an extension of the two-person case. In particular, we apply our method to
the one-person case by setting X0 = X1. Please see § 6 for details on the differences between the
two-person and one-person cases.

Large Multimodal Models An LMM is a model that takes as input an image and a text prompt and
produces text output that answers the prompt based on the image. Our framework is agnostic to the
architecture of the LMM. LMMs are typically trained to respond to wide variety of instructions (Liu
et al., 2023; Dai et al., 2023), but at the same time, LMMs are prone to hallucination (Leng et al.,
2023; Li et al., 2023). Handling cases of hallucination is a key challenge when using LMMs, and we
mitigate this issue by aggregating information across several samples from the LMM.

Pose representation. We use a human body model (Pavlakos et al., 2019a) to represent each person
p ∈ {0, 1}. The body model is composed of a pose parameter that defines the joint rotations
θ ∈ Rdθ×3, where dθ is the number of joints, and a shape parameter β ∈ Rdβ , where dβ is the
dimensions of the shape parameter. We can apply a global rotation Φ ∈ R3 and translation t ∈ R3 to
place each person in the world coordinate space. The full set of parameters for each person is denoted
by Xp = [θp,βp,Φp, tp]. For simplicity, we refer to the parameter set (X0,X1) as X .

These parameters can be plugged into a differentiable function that maps to a mesh consisting of
dv vertices V ∈ Rdv×3. From the mesh, we can obtain a subset of the vertices representing the
3D locations of the body’s joints J ∈ Rdj×3. From these joints, we can calculate the 2D keypoints
Kproj by projecting the 3D joints to 2D using the camera intrinsics Π predicted from (Pavlakos et al.,
2019a).

Kproj = Π(J) ∈ Rdj×2. (1)

Vertex regions. In order to define contact constraints between body parts, we define a set of regions
of vertices. Prior work on contact has partitioned the body in to fine-grained regions (Fieraru et al.,
2020). However, since our constraints are specified by a LMM trained on natural language, the
referenced body parts are often coarser in granularity. We therefore update the set of regions to reflect
this language bias by combining these fine-grain regions into larger, more commonly referenced
body parts such as arm, shoulder (front&back), back, and waist (front&back). Please see § 6.2 for
a visualization of the coarse regions. Formally, we write R ∈ Rdr×3 to denote a region with dr
vertices, which is part of the full mesh (R ⊂ V ).

Constraint definition. A contact constraint specifies which body parts from two meshes should be
touching. Using the set of coarse regions, we define contact constraints as pairs of coarse regions
c = (Ra,Rb) between a region Ra of one mesh and Rb of the other mesh, as shown in Figure 3.
For instance, (“hand”, “arm”) indicates a hand should touch an arm.
3.2 POSE INITIALIZATION

We obtain a rough initial estimate of the 3D pose from a regression-based method. The regressor
takes as input the image I and outputs estimates for the body model parameters θ,β, r, and t for
each subject.

3.3 CONSTRAINT GENERATION WITH A LMM

Our method strives to enforce contact constraints for the estimated 3D poses. Our key insight is
to leverage a LMM to identify regions of contact between different body parts on the human body
surface. As shown in Figure 2 (top), we prompt the LMM with an image and ask it to output a list of

4
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all plausible regions that are in contact. However, we cannot simply use natural language descriptions
to directly optimize a 3D mesh. As such, we propose a framework to convert these constraints into a
loss function.

Figure 3: Notation. Given an image I , we can lift each
individual into corresponding 3D meshes V . We define
contact constraints c as pairs of regions (Ra,Rb) in
contact. The loss is defined in terms of the distance
between the vertices (va,vb) on the mesh.

LMM-based constraint generation. Given the
image I , we first use the bounding boxes B
to crop the part containing the subjects. We
then use an image segmentation model to mask
any extraneous individuals. While cropping and
masking the image may remove information, we
find the LMMs are relatively robust to missing
context, and more importantly, this allows us to
indicate which individuals to focus on. Given the
segmented image, we ask the LMM to generate
a set C = {c1, ...cm} of all pairs of body parts
that are touching, where m is the total number
of constraints the LMM generates for the image.

In the prompt, we specify the full set of coarse
regions to pick from. We find that LMMs fail to
reliably reference the left and right limbs correctly or consistently, so we designed this set of coarse
regions such that they do not disambiguate the chirality of the hands, arms, legs, feet, and shoulders.
Instead, the two hands are grouped together, the two arms are grouped together, etc. Nevertheless, if
the LMM uses “left” or “right” to reference a region, despite the instruction to not do so, we directly
use the part of the region with the specified chirality rather than considering both possibilities.

Motivated by the chain-of-thought technique, which has been shown to improve language model
performance on reasoning tasks (Wei et al., 2022), we ask the LMM to write its reasoning or describe
the pose before listing the constraints. For the full prompt used in each setting, please refer to § 6.

We sample N responses from the LMM, yielding N sets of constraints {C1,C2, ...,CN}. The next
step is to convert each constraint set Cj , where j ∈ {1, 2, ...N}, into a loss term.

Loss function generation. We first filter out contact pairs that occur fewer than f times across all
constraint sets, where f is a hyperparameter. Then for each contact pair c = (Ra,Rb) in Cj , we
define dist(c) as the minimum distance between the two regions:

dist(c) = min ∥va − vb∥2 ∀va ∈ Ra,∀vb ∈ Rb (2)
where {va,vb} ∈ R3. In practice, the number of vertices in each region can be very large. To make
this computation tractable, we first take a random sample of vertices from Ra and from Rb before
computing distances between pairs of vertices in these samples. Furthermore, since the ordering
of the people in the LMM constraints is unknown (i.e. does Ra come from the mesh defined by
parameter X0 or X1), we compute the overall loss for both possibilities and take the minimum. We
use c⊤ = (Rb,Ra) to denote the flipped ordering. We then sum over all constraints in the list Cj :

distsum(Cj) = min

 ∑
c∈Cj

dist(c),
∑
c∈Cj

dist(c⊤)

 (3)

Each constraint set sampled from the LMM is likely to contain noise or hallucination. To mitigate the
effect of this, we average over all N losses corresponding to each constraint set to obtain the overall
LMM loss. This technique is similar to self-consistency (Wang et al., 2022), which is commononly
used for code generation tasks. Concretely, the overall LMM loss is defined as

LLMM =
1

N

N∑
j=1

distsum(Cj) (4)

If a constraint set Cj is empty (i.e. the LMM does not suggest any contact pairs), then we set
distsum(Cj) = 0. If there are several such constraint sets, we infer that the LMM has low confidence
about the contact points (if any) in the image. To handle these cases, we set a threshold t and if the
number of empty constraint sets is at least as large as t, we gracefully backoff to the appropriate
baseline optimization procedure (described in Sections 4.1 and 4.2 for each setting).
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3.4 CONSTRAINED POSE OPTIMIZATION

Drawing from previous optimization-based approaches (Müller et al., 2023; Bogo et al., 2016;
Pavlakos et al., 2019b), we employ several additional losses in the optimization. We then minimize
the joint loss to obtain a refined subset of the body model parameters X ′ = [θ′,β′, t′]:

[θ′,β′, t′] = argmin(λLMMLLMM + λGMMLGMM + λβLβ + λθLθ + λ2DL2D + λPLP )

Following Müller et al. (2023), we divide the optimization into two stages. In the first stage, we
optimize all three parameters. In the second stage, we optimize only θ and t, keeping the shape β
fixed. Here, we detail all of the remaining losses used in the optimization.

Pose and shape priors. We compute a loss LGMM based on the Gaussian Mixture pose prior of Bogo
et al. (2016) and a shape loss Lβ = ∥β∥22, which penalizes extreme deviations from the body model’s
mean shape.

Initial pose loss. To ensure we do not stray too far from the initialization, we penalize large deviations
from the initial pose Lθ = ||θ′ − θ||22.

2D keypoint loss. Similar to BUDDI (Müller et al., 2023), for each person in the image, we
obtain pseudo ground truth 2D keypoints and their confidences from OpenPose (Cao et al., 2019)
and ViTPose (Xu et al., 2022b). Given this pseudo ground truth, we merge all the keypoints into
K ∈ Rdj×2, and their corresponding confidences into γ ∈ Rdj . From the predicted X ′, we can
compute the 2D projection of each 3D joint location using Equation 3.1. Then, the 2D keypoint loss
is defined as:

L2D =

dj∑
j=1

γ(Kproj −K)2 (5)

Interpenetration loss. To prevent parts of one mesh from being in the interior of the other, we add
an interpenetration loss. Generically, given two sets of vertices V0 and V1, we use winding numbers
to compute the subset of V0 that intersects V1, which we denote as V0,1. Similarly, V1,0 is the subset
of V1 that intersects V0. The interpenetration loss is then defined as

LP =
∑

x∈V0,1

min
v1∈V1

∥x− v1∥22 +
∑

y∈V1,0

min
v0∈V0

∥y − v0∥22 (6)

Due to computational cost, this loss is computed on low-resolution versions of the two meshes
(roughly 1000 vertices per mesh).

4 EXPERIMENTS

We conduct experiments on several datasets in the two-person and one-person settings. In this section,
we first provide important implementation details and a description of the metrics that we use to
evaluate our method and previous approaches. We then present quantitative and qualitative results
showing that ProsePose refines pose estimates to capture semantically relevant contact in each setting.

Implementation details. Following prior work on two-person pose estimation (Müller et al., 2023),
we use BEV (Sun et al., 2022) to initialize the poses since it was trained to predict both the body pose
parameters and the placement of each person in the scene. However, on the single person yoga poses,
we find that the pose parameter estimates of HMR2 (Goel et al., 2023) are much higher quality, so we
initialize the body pose using HMR2.

We use the SMPL-X (Pavlakos et al., 2019a) body model and GPT4-V (Achiam et al., 2023) as the
LMM with temperature = 0.7 when sampling from it.2 We also include results when using LLaVA
as the LMM in § 7.4. We use Segment Anything (Kirillov et al., 2023) as the segmentation model,
used to remove extraneous people in the image (we only apply this step for FlickrCI3D, since other
datasets are from motion capture). Unless otherwise specified, we set N = 20 samples. For all

2We access GPT4-V, specifically the gpt-4-vision-preview model, via the OpenAI API: plat-
form.openai.com. We use the “high” detail setting for image input.
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Table 1: Two-person Results. Joint PA-MPJPE (lower is better) and Avg. PCC (higher is better). For Flick-
rCI3D, PA-MPJPE is computed using the pseudo-ground-truth fits. Bold indicates best method without contact
supervision in each column.

Hi4D FlickrCI3D CHI3D
PA-MPJPE↓ PA-MPJPE↓ PCC↑ PA-MPJPE↓ PCC↑

Without contact supervision
BEV (Sun et al., 2022) 144 106 64.8 96 71.4
Heuristic 116 67 77.8 105 74.1
ProsePose 93 58 79.9 100 75.8

With contact supervision
BUDDI (Müller et al., 2023) 89 65.9 81.9 68 78.6

of our 2-person experiments, f = 1, while f = 10 in the 1-person setting. We set t = 2 for the
experiment on the CHI3D dataset and t = N for all other experiments. We set λLMM = 1000 in the
2-person experiments, and λLMM = 10000 in the 1-person setting. In the two-person case, all other
loss coefficients are taken directly from Müller et al. (2023). In the one-person case, we find that
removing the GMM pose prior and doubling the weight on the initial pose loss improves optimization
dramatically, likely because the complex yoga poses are out of distribution for the GMM prior.
These hyperparameters and our prompts were chosen based on experiments on the validation sets.
Furthermore, following Müller et al. (2023), we run both optimization stages for at most 1000 steps.
We use the Adam optimizer (Kingma & Ba, 2014) with learning rate 0.01. For other implementation
details such as prompts, the list of coarse regions in each setting, and additional differences between
the 1- and 2-person cases, please refer to § 6.

Metrics. As is standard in the pose estimation literature, we report Procrustes-aligned Mean Per
Joint Position Error (PA-MPJPE) in millimeters. This metric finds the best alignment between the
estimated and ground-truth pose before computing the joint error. In the two-person setting, we focus
on the joint PA-MPJPE, as this evaluation incorporates the relative translation and orientation of the
two people. See § 7.2 for the per-person PA-MPJPE.

We also include the percentage of correct contact points (PCC) metric introduced by (Müller et al.,
2023). This metric captures the fraction of ground-truth contact pairs that are accurately predicted.
For a given radius r, a pair is classified as “in contact” if the two regions are both within the specified
radius. We use the set of fine-grained regions defined in Fieraru et al. (2020) to compute PCC. The
metric is averaged over r ∈ 0, 5, 10, 15, ..., 95 mm. Please note that since these regions are defined
on the SMPL-X mesh topology, we convert the regression baselines– BEV and HMR2– from the
SMPL mesh topology to SMPL-X to compute this metric. Please see § 7.1for more details on the
regions and on the mesh conversion.

4.1 TWO-PERSON POSE REFINEMENT

Datasets We evaluate on three datasets, and our dataset processing largely follows (Müller et al.,
2023). Hi4D (Yin et al., 2023) is a motion capture dataset of pairs of people interacting. Each
sequence has a subset of frames marked as contact frames, and we take every fifth contact frame. We
use the images from a single camera, resulting in roughly 247 images. Flickr Close Interactions
3D (FlickrCI3D) (Fieraru et al., 2020) is a collection of Flickr images of multiple people in close
interaction. The dataset includes manual annotations of the contact maps between pairs of people.
(Müller et al., 2023) used these contact maps to create pseudo-ground truth 3D meshes and curated a
version of the test set to exclude noisy annotations, which has roughly 1403 images. CHI3D (Fieraru
et al., 2020) is a motion capture dataset of pairs of people interacting. We present results on the
validation set. There are 126 different sequences, each of which has a single designated “contact
frame.” Each frame is captured from 4 cameras, so there are roughly 504 images in this set.

To develop our method, we experimented on the validation sets of FlickrCI3D and Hi4D, and a
sample of the training set from CHI3D. For our experiments, we can compute the PCC on FlickrCI3D
and CHI3D, which have annotated ground-truth contact maps. Since all baselines also use BEV for
initialization, we exclude images where BEV fails to detect one of the subjects in the interaction pair.

Baselines We compare our estimated poses to the following:
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.

Table 2: Two-person PCC. Percent of correct contact points (PCC) for five different radii r in mm. Bold
indicates the best score wothout contact supervision in each column. At the ground-truth contact points, our
method brings the meshes closer together than the baselines.

PCC↑ @ r on FlickrCI3D PCC↑ @ r on CHI3D
5 10 15 20 25 5 10 15 20 25

Without contact supervision
BEV (Sun et al., 2022) 3.6 6.3 10.8 17.1 28.6 5.8 17.4 32.5 47.3 61.9
Heuristic 14.6 33.9 49.3 60.8 70.3 11.1 28.0 45.3 55.3 64.4
ProsePose 15.6 39.9 57.1 67.9 75.8 13.5 35.2 52.5 61.3 68.4

With contact supervision
BUDDI (Müller et al., 2023) 18.5 44.2 61.8 73.1 80.8 15.7 39.4 57.1 68.8 78.0

Input ProsePose BUDDI Heuristic Input ProsePose BUDDI Heuristic

Hand, Hand ×20Hand, Shoulder (front) ×21

Hand, Hand × 17
Arm, Shoulder (front) × 4

Arm, Waist (front) × 15
Back, Shoulder (front) × 13

Back, Head × 4

Hand, Shoulder (front) × 12
Hand, Shoulder (back) × 2

Hand, Leg × 1

Figure 4: Two-person results We show qualitative results from ProsePose , BUDDI (Müller et al., 2023), and
the contact heuristic. Under each example, we show the top 3 constraints predicted by GPT4-V and the number
of times each constraint was predicted across all 20 samples. Our method correctly reconstructs people in a
variety of interactions, and the predicted constraints generally align with the interaction type in each example.

• BEV (Sun et al., 2022) Multi-person 3D pose estimation method. Uses relative depth
to reason about spatial placement of individuals in the scene. ProsePose , Heuristic, and
BUDDI use BEV to initialize pose estimates.

• Heuristic A contact heuristic which includes the auxiliary losses in Section 3.4 as well as a
term that minimizes the minimum distance between the two meshes. Introduced by (Müller
et al., 2023). We use their hyperparameters for this heuristic. Please note, this baseline is
used as the default when the number of empty constraint sets is at least the threshold t.

• BUDDI (Müller et al., 2023) This method uses a learned diffusion prior to constrain the
optimization. We stress that BUDDI requires a large amount of annotated training data on
pairs of interacting bodies, which is not used in our method.

Quantitative Results Table 1 provides quantitative results on the three datasets.

Across datasets, ProsePose consistently improves over the strongest baseline, Heuristic.

On the Hi4D dataset, ProsePose reduces 85% of the gap in PA-MPJPE between Heuris-
tic and the fully supervised BUDDI. On the FlickrCI3D and CHI3D datasets, ProsePose
narrows the gap in the average PCC between Heuristic and BUDDI by more than one-
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third. (While ProsePose achieves a better PA-MPJPE than BUDDI on FlickrCI3D, for this
dataset, we rely primarily on PCC since PA-MPJPE is computed on pseudo-ground-truth fits.)

# of samples

Av
er

ag
e 

PC
C

PA
-M

PJ
PE

# of samples

Figure 5: More samples improve pose estimation. On
the FlickrCI3D validation set, taking more samples from
the LMM and averaging the resulting loss functions im-
proves joint PA-MPJPE (left) and average PCC (right).

On CHI3D, ProsePose outperforms Heuristic
but underperforms BEV in terms of PA-MPJPE.
We find that on the subset of images where we do
not default to the heuristic (i.e. on images where
GPT4-V predicts enough non-empty constraint
sets), the PA-MPJPE for ProsePose and BEV is
86 and 87, respectively. In other words, in the
cases where our method is actually used, the
joint error is slightly less than that of BEV. As a
result, we can attribute the worse overall error to
the poorer performance of the heuristic. Overall,
our method improves over the other methods
that do not use 3D supervision in terms of both
joint error and PCC. Table 2 shows the PCC
for each method at various radii. The results
show that ProsePose brings the meshes closer
together at the correct contact points. On both
the FlickrCI3D and CHI3D datasets, ProsePose
outperforms the other baselines that do not use
contact supervision.
Next, we ablate important aspects of ProsePose
. In Figure 5, we show that averaging the loss
over several samples from the LMM improves
performance, mitigating the effect of LMM hal-
lucination. Table 3 presents an ablation of all the
losses involved in our optimization on the Hi4D
validation set. LLMM and L2D have the greatest
impact, indicating that our LMM-based loss is crucial for the large improvement in joint error.

.

PA-MPJPE↓

All Losses 81
w/o. LLMM 138
w/o. LGMM 85
w/o. Lβ 91
w/o. Lθ 84
w/o. L2D 130
w/o. LP 78

Table 3: Ablations on Hi4D. Joint PA-MPJPE (lower
is better). We evaluate the impact of each loss in our
optimization on the Hi4D by removing one loss at a
time. For all experiments, we use the same settings. The
set of cases where we default to the baseline (Heuristic)
is also kept the same.

Qualitative Results Figure 4 shows examples
of reconstructions from ProsePose , Heuristic, and BUDDI. Below each of our predictions, we list
the most common constraints predicted by GPT4-V for the image. The predicted constraints correctly
capture the semantics of each interaction. For instance, it is inherent that in tango, one person’s arm
should touch the other’s back. In a rugby tackle, a player’s arms are usually wrapped around the
other player. Using these constraints, ProsePose correctly reconstructs a variety of interactions, such
as tackling, dancing, and holding hands. In contrast, the heuristic struggles to accurately position
individuals and/or predict limb placements, often resulting in awkward distances.

4.2 ONE-PERSON POSE REFINEMENT

Datasets Next, we evaluate ProsePose on a single-person setting. For this setting, we evaluate on
MOYO (Tripathi et al., 2023), a motion capture dataset with videos of a single person performing
various yoga poses. The dataset provides views from multiple different cameras. We pick a single
camera that shows the side view for evaluation. For each video, we take single frame from the middle
as it generally shows the main pose. There is no official test set, and the official validation set consists
of only 16 poses. Therefore, we created our own split by picking 79 arbitrary examples from the
training set to form our validation set. We then combine the remaining examples in the training set
with the official validation set to form our test set. In total, our test set is composed of 76 examples.
Since this dataset does not have annotated region contact pairs, we compute the pesudo-ground-truth
contact maps using the Euclidean and geodesic distance following Muller et al. (2021).

Baselines We compare against the following baselines:

• HMR2 (Goel et al., 2023) State-of-the-art pose regression method. We use this baseline to
initialize our pose estimates for optimization.

• HMR2+opt Optimization procedure that is identical to our method without LLMM. This
method is the default when the number of empty constraint sets is at least the threshold t.

Both the quantitative and qualitative results echo the trends discussed in the 2-person setting. Table 4
provides the quantitative results. The PCC metrics show that our LMM loss improves the predicted
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.

Table 4: One-person Results. PA-MPJPE (lower is better) and Avg. PCC (higher is better). Our method captures
ground-truth contacts better than the baseline methods, as shown by the PCC.

PCC↑ @ r
PA-MPJPE↓ PCC↑ 5 10 15 20 25

HMR2 (Goel et al., 2023) 84 83.0 34.2 55.2 69.5 78.4 83.9
HMR2+opt 81 85.2 47.7 65.5 74.6 80.9 86.2
ProsePose 82 87.8 54.2 73.8 81.4 86.5 91.3

Input ProsePose HMR2 HMR2-opt Input HMR2 HMR2-opt

Hand, Foot × 21

Hand, Foot × 21

Hand, Foot 

Hand, Hand × 14

Hand, Foot × 18

ProsePose

Figure 6: Single-person results We show qualitative results from ProsePose , HMR2 (Goel et al., 2023), and
HMR2-optim on complex yoga poses. Each example also shows the constraints that are predicted by the LMM
at least f = 10 times (and are thus used to compute LLMM) with their counts. ProsePose correctly identifies
self-contact points and optimizes the poses to respect these contacts.

self-contact in complex yoga poses relative to the two baselines. Figure 6 provides a qualitative
comparison of poses predicted by ProsePose versus the two baselines. Below each of our predictions,
we list the corresponding constraints predicted by GPT4-V. In each case, the predicted constraint
captures the correct self-contact, which is reflected in the final pose estimates. With the addition of
the semantically guided loss, ProsePose effectively refines the pose to ensure proper contact between
hand-foot or hand-hand, an important detail consistently overlooked by the baselines.
4.3 LIMITATIONS

While ProsePose consistently improves contact across settings and datasets, it has some limitations.
First, though we mitigate it through averaging, LMM hallucination of incorrect constraints may lead
to an unexpected output. Second, when taking the minimum loss across the possible chiralities of
limbs, the pose initialization may lead to a suboptimal choice. We show in § 7.3 examples of failure
cases like these. We also note that the LMM may be biased toward poses common in certain cultures
due to its training data. In addition, we find that GPT4-V performs worse with some of the camera
angles in the MOYO dataset (e.g. frontal or aerial), perhaps because in photos yoga poses are most
often captured from a side view.

5 CONCLUSION

We present ProsePose , a zero-shot framework for refining 3D pose estimates to capture touch
accurately using the implicit semantic knowledge of poses in LMMs. Our key novelty is that we
generate structured pose descriptions from LMMs and convert them into loss functions used to
optimize the pose. Since ProsePose does not require training, we eliminate the need for the expensive
contact annotations used in prior work to train priors for contact estimation. Our framework applies
in principle to an arbitrary number of people, and our experiments show in both one-person and
two-person settings, ProsePose improves over previous zero-shot baselines. More broadly, this
work provides evidence that LMMs are promising tools for 3D pose estimation, which may have
implications beyond touch.
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APPENDIX FOR POSE PRIORS FROM LANGUAGE MODELS

In this appendix, we provide additional details about our method (Section 6), details about metrics
(Section 7.1), additional quantitative results (Section 7.2), examples of failure cases (Section 7.3),
experiments with a different LMM (Section 7.4), and more qualitative comparisons (Section 7.5). We
also provide a video overview of the method and qualitative results: https://drive.google.
com/file/d/1blaLnALiOd4C-au8GW61CtThsolWeLf3/view?usp=sharing.

6 ADDITIONAL METHOD DETAILS

6.1 LMM PROMPTS

The box below contains our prompt for the two-person experiments.

You are a helpful assistant. You follow all directions correctly and precisely.
For each image, identify all pairs of body parts of Person 1 and Person 2 that are touching.
Write all of these in a Markdown table where the first column is ”Person 1 Body Part” and
the second column is ”Person 2 Body Part”.
You can pick which is Person 1 and which is Person 2.
The list of possible body parts is: head, neck, chest, stomach, waist (back), waist (front), back,
shoulder (back), shoulder (front), arm, hand, leg, foot, butt.
Do not include left/right.
List ALL pairs you are confident about.
If you are not confident about any pairs, output an empty table.
Carefully write your reasoning first, and then write the Markdown table.

The box below contains our prompt for the one-person experiment.

You are a helpful assistant. You answer all questions carefully and correctly.
Identify which body parts of the yogi are touching each other in this image (if any).
Write each pair in a Markdown table with two columns.
Each body part MUST be from this list:
head, back, shoulder, arm, hand, leg, foot, stomach, butt, ground
Do not write ”left” or ”right”.
Describe and name the yoga pose, and then write the Markdown table.
Note that the pose may differ from the standard version, so pay close attention.
Only list a part if you’re certain about it.

In each setting, the prompt is given as the “system prompt” to the GPT-4 API, and the only other
message given as input contains the input image with the “high” detail setting.

6.2 COARSE REGIONS

Figure 7 illustrates the coarse regions referenced in the prompt in our two-person experiments.
Figure 8 illustrates the coarse regions referenced in the prompt in our one-person experiments. In
the one-person case, the prompt does not mention the “chest,” “neck,” or “waist” regions, since they
tend to be less important for contacts in yoga poses, and the front/back shoulders are merged into one
region, since the distinction tends to be less important for contacts in yoga poses.

6.3 CONVERTING CONSTRAINTS TO LOSSES IN 1 VS. 2 PERSON CASES

Our implementation of the conversion from constraints output by the LMM to loss functions differs
slightly between the two-person and one-person cases.
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Figure 7: Color-coded coarse regions in the two-person prompt: head, neck, chest, stomach, waist (back), waist
(front), back, shoulder (back), shoulder (front), arm, hand, leg, foot, butt. Note that some of these regions overlap.
For instance, the “back” includes the “waist (back)” and “shoulder (back)” regions as a subset.

Figure 8: Color-coded coarse regions in the one-person prompt: head, stomach, back, shoulder, arm, hand, leg,
foot, butt. Note that the “chest,” “neck,” and “waist (front)” regions are not covered by the regions in the prompt,
since they tend to have less importance for contacts in yoga poses.
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6.3.1 TWO-PERSON

Since we ask the VLM not to differentiate between “left” and “right” limbs, when there should be
a constraint on both limbs (e.g. both hands), taking the minimum distance independently for each
constraint pair may lead to a constraint on only one limb. Consequently, if the same body part (e.g.
“hand”) is mentioned in at least two separate rows of the table output by the LMM (without any “left”
or “right” prefix), we enforce that both the left and right limbs of this type must participate in the loss.

We also handle some variations in how the LMM references body parts. First, we check for the
following terms in addition to the coarse regions named in the prompt: left hand, right hand, left arm,
right arm, left foot, right foot, left leg, right leg, left shoulder, right shoulder, left shoulder (front),
right shoulder (front), left shoulder (back), right shoulder (back), waist. “waist” corresponds to the
union of “waist (front)” and “waist (back).” Each of these terms is mapped to the corresponding set
of fine-grained regions, similar to the coarse regions shown in Figure 7. As stated in Section 3.3 of
the main paper, if a “left” or “right” part is explicitly named by the LMM’s output, this part of the
coarse region is directly used without considering the other part.

Second, we find there are some cases where the LMM expresses uncertainty between regions using a
delimiter like “/” (e.g. “hand / arm”). So we split each entry in the Markdown Table’s output by the
delimiter “/” and we compute the loss for each possible region that is listed; we then sum all of these
losses.

6.3.2 ONE-PERSON

In the one-person experiment, we do not make use of the constraints involving the “ground” that the
LMM outputs. Similar to the two-person case, the code for converting the LMM’s output to a loss
function checks for the following terms in addition to the body regions listed in the prompt: left hand,
right hand, left arm, right arm, left foot, right foot, left leg, right leg, left shoulder, right shoulder, left
shoulder (front), right shoulder (front), left shoulder (back), right shoulder (back), waist . Each of
these terms is mapped to the corresponding set of fine-grained regions, similar to the coarse regions
shown in Figure 7.

6.4 BOUNDING BOXES AND CROPPING

As stated in Section 3 of the main paper, we take bounding boxes of the subjects of interest as input
and use them to crop the image in order to isolate the person/people of interest when prompting the
LMM. For FlickrCI3D, we use the ground-truth bounding boxes of the two subjects of interest. For
the other datasets, we use keypoints detected by ViTPose/OpenPose to create the bounding boxes. For
the single-person MOYO dataset, we manually check that the bounding boxes from the keypoints and
the selected HMR2 outputs correspond to the correct person in the image. We note that the baseline
HMR2+opt also benefits from this manual checking, since HMR2+opt also depends on the HMR2
outputs and accurate keypoints.

7 EXPERIMENTS

7.1 PCC CALCULATION

Figure 9 illustrates the 75 fine-grained regions used for PCC calculation, which are the same as those
used in Fieraru et al. (2020). We opted to compute PCC on the fine-grained regions rather than on the
coarse ones since prior work uses the fine-grained regions Müller et al. (2023) and since we want
to measure contact correctness at a finer granularity (e.g. upper vs. lower thigh vs. knee). Since the
regressors BEV and HMR2 use the SMPL mesh while the fine-grained regions are defined on the
SMPL-X mesh, we use a matrix M ∈ Rnum vertices smplx×num vertices smpl to convert the SMPL meshes
to SMPL-X in order to compute PCC.

7.2 PER-PERSON PA-MPJPE

Table 5 shows the per-person PA-MPJPE for each of the datasets used in our two-person experiments.
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Figure 9: Color-coded 75 fine-grained regions used for PCC calculation

Table 5: Two-person Results. Per-person PA-MPJPE (lower is better). For FlickrCI3D, PA-MPJPE is computed
using the pseudo-ground-truth fits.

Hi4D FlickrCI3D CHI3D
PA-MPJPE↓ PA-MPJPE↓ PA-MPJPE↓

Without contact supervision
BEV Sun et al. (2022) 76 71 51
Heuristic 65 31 48
ProsePose 65 31 49

With contact supervision
BUDDI Müller et al. (2023) 70 43 47

7.3 FAILURE CASES

Figure 10 shows examples of two types of LingoPose failures: (1) incorrect chirality (example a) and
(2) hallucination (examples b and c). In example (a), the top constraints are correct but without the
chirality specified. The optimization then brings both hands of one person to roughly the same point
on the other person’s waist, rather than positioning one hand on each hip. Similarly, both hands of the
other person are positioned on the same shoulder of the first person. Examples (b) and (c) both show
cases of hallucination. In example (b), the hand is predicted to touch the back rather than the hand.
In example (c), the hand is predicted to touch the foot rather than the leg. Interestingly, in the yoga
example, GPT4-V correctly predicts the name of the yoga pose in all 20 samples (“Parivrtta Janu
Sirsasana”). However, it outputs a constraint between a hand and a foot, which is true in the standard
form of this pose but not in the displayed form of the pose. Consequently, the optimization brings the
left hand closer to the right foot than to the right knee.

7.4 DIFFERENT MULTIMODAL MODEL

In this section, we evaluate ProsePose when using a different LMM. We use LLaVA-NeXT 34B (i.e.
LLaVA v1.6) Liu et al. (2023) as the LMM. We find that the model does not perform well in directly
generating the table of constraints from the image. This is presumably a result of a weaker language
model in LLaVA compared to GPT4 Therefore, we instead generate a caption from the LMM, and
we feed the caption alone to GPT4 in order to convert it into a table of constraints. We evaluated a
few different prompts on the validation sets and chose the prompts with the best performance therein.
For the two-person experiments, we use the following prompt for LLaVA:
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Arm, Waist (Back) × 9
Arm, Back × 8

Hand, Waist (Back) × 7

Hand, Back × 8
Arm, Back × 6

Arm, Waist (Back) × 5

Hand, Foot × 16
(c)

(b)

(a)

Original Image Subject(s) ProsePose

Figure 10: Failure cases We show examples in which ProsePose fails to output a semantically correct pose.
The constraints shown are the top 3 constraints (or the total number of constraints, whichever is smaller) that
meet the threshold f along with their counts (f = 1 for two-person experiments and f = 10 for the one-person
experiment).

Describe the pose of the two people.

We then use the following prompt with GPT4 to rewrite the caption so that it does not mention left
and right to refer to limbs, since we find that the LMM is not reliably correct in doing so:

Rewrite the caption below so that it doesn’t mention ”left” or ”right” to describe any hand,
arm, foot, or leg. The revised caption should otherwise be identical. Write only the revised
caption and no other text.

We then use the following prompt with GPT4 to create the formatted table.

You are a helpful assistant. You will follow ALL rules and directions entirely and precisely.
Given a description of Person 1 and Person 2 who are physically in contact with each other,
create a Markdown table with the columns ”Person 1 Body Part” and ”Person 2 Body Part”,
listing the body parts of the two people that are guaranteed to be in contact with each other,
from the following list. ALL body parts that you list must be from this list. You can choose
which person is Person 1 and which is Person 2. Body parts: ”chest”, ”stomach”, ”waist
(front)”, ”waist (back)”, ”shoulder (front)”, ”shoulder (back)”, ”back”, ”hand”, ”arm”, ”foot”,
”leg”, ”head”, ”neck”, ”butt” Note that ”back” includes the entire area of the back.
Include all contact points that are directly implied by the description, not just those that
are explicitly mentioned. If there are no contact points between these body parts that the
description implicitly or explicitly implies, your table should contain only the column names
and no other rows.
First, write your reasoning. Then write the Markdown table.

For the one-person case, we use the following prompt for LLaVA:

Describe the person’s pose.

We use the same prompt as above to rewrite the caption. We then use the following prompt to create
the formatted table:

5
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Table 6: LLaVA Results. Err denotes Joint PA-MPJPE for the two-person datasets (Hi4D, FlickrCI3D, CHI3D)
and PA-MPJPE for MOYO. Lower is better for Err, and higher is better for Avg. PCC. Bold indicates best
method without contact supervision in each column.

Hi4D FlickrCI3D CHI3D MOYO
Err↓ Err↓ PCC↑ Err↓ PCC↑ Err↓ PCC↑

Heuristic 116 67 77.8 105 74.1 – –
HMR2+opt – – – – – 81 85.2
GPT4-V 93 58 79.9 100 75.8 82 87.8
LLaVA+GPT4 95 60 79.7 101 75.2 82 85.2

You are a helpful assistant. You will follow ALL rules and directions entirely and precisely.
Given a description of a yoga pose, create a Markdown table with the columns ”Body Part 1”
and ”Body Part 2”, listing the body parts of the person that are guaranteed to be in contact
with each other, from the following list. ALL body parts that you list must be from this list.
Body parts: ”head”, ”back”, ”shoulder”, ”arm”, ”hand”, ”leg”, ”foot”, ”stomach”, ”butt”,
”ground” Note that ”back” includes the entire area of the back.
Include all contact points that are directly implied by the description, not just those that
are explicitly mentioned. If there are no contact points between these body parts that the
description implicitly or explicitly implies, your table should contain only the column names
and no other rows.
First, write your reasoning. Then write the Markdown table.

We use the gpt-4-0125-preview version of GPT4 via the OpenAI API (we obtained better
results using this model than gpt-4-1106-preview). The latency of this approach is much higher
than the single-stage approach used with GPT4-V, since we must feed each caption individually to
the OpenAI API. Therefore, we set N = 5 for these experiments. Since we change N , we also need
to select appropriate thresholds f and t. As in the experiments with GPT4-V, we set t = N for all
datasets except CHI3D. For CHI3D, we find on the validation set that t = 2 works better than t = 1,
so we set t = 2. As in the experiments with GPT4-V, we set f = 1 for the 2-person datasets, and we
set f = 3 for MOYO, to approximate the ratio f/N used in the GPT4-V experiments. Finally, when
converting the constraint pairs to loss functions, we found that on a small number of examples, the
pipeline produced a large number of constraints, leading to very slow loss functions. Therefore, we
discarded loss functions that are longer than 10000 characters.

Table 6 shows the results. On the 2-person datasets, the LLaVA+GPT4 approach performs better than
the contact heuristic but not as well as GPT4-V. This is in line with holistic multimodal evaluations
that indicate that GPT4-V performs better than LLaVA Lu et al. (2024). On the 1-person yoga dataset,
the performance of LLaVA+GPT4 is comparable with that of the baseline (HMR2+opt). The reason
that LLaVA performs worse than GPT4-V in this setting may be that LLaVA does not have enough
training data on yoga to provide useful constraints.

7.5 ADDITIONAL QUALITATIVE RESULTS

Figures 11, 12, 13, and 14 show additional, randomly selected examples from the multi-person
FlickrCI3D test set. Figures 15, 16, 17, and 18 show the same examples comparing ProsePose with
the pseudo-ground truth fits. Figures 19, 20, and 21 show additional, randomly selected examples
from the Hi4D test set. Figures 22 and 23 show additional, randomly selected examples from the
CHI3D validation set (which we use as the test set following Müller et al. (2023)). Figures 24 and 25
show additional, randomly selected examples from the 1-person yoga MOYO test set.
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Figure 11: Non-curated examples from the FlickrCI3D test set. They are randomly selected from the examples
for which there is at least one non-empty constraint set.
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Figure 12: Non-curated examples from the FlickrCI3D test set. They are randomly selected from the examples
for which there is at least one non-empty constraint set.
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Figure 13: Non-curated examples from the FlickrCI3D test set. They are randomly selected from the examples
for which there is at least one non-empty constraint set.

9



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Pr
os

eP
os

e
H

eu
ri

st
ic

B
U

D
D

I [
28

]

Figure 14: Non-curated examples from the FlickrCI3D test set. They are randomly selected from the examples
for which there is at least one non-empty constraint set.
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Figure 15: Non-curated examples from the FlickrCI3D test set, comparing ProsePose with the pseudo-ground
truth fits. They are randomly selected from the examples for which there is at least one non-empty constraint set.
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Figure 16: Non-curated examples from the FlickrCI3D test set, comparing ProsePose with the pseudo-ground
truth fits. They are randomly selected from the examples for which there is at least one non-empty constraint set.
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Figure 17: Non-curated examples from the FlickrCI3D test set, comparing ProsePose with the pseudo-ground
truth fits. They are randomly selected from the examples for which there is at least one non-empty constraint set.

13



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Pr
os

eP
os

e
Ps

eu
do

-G
ro

un
d 

Tr
ut

h

Figure 18: Non-curated examples from the FlickrCI3D test set, comparing ProsePose with the pseudo-ground
truth fits. They are randomly selected from the examples for which there is at least one non-empty constraint set.
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Figure 19: Non-curated examples from the Hi4D test set. They are randomly selected from the examples for
which there is at least one non-empty constraint set.
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Figure 20: Non-curated examples from the Hi4D test set. They are randomly selected from the examples for
which there is at least one non-empty constraint set.
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Figure 21: Non-curated examples from the Hi4D test set. They are randomly selected from the examples for
which there is at least one non-empty constraint set.
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Figure 22: Non-curated examples from the CHI3D validation set (which we use as the test set). They are
randomly selected from the examples for which there are at least nineteen non-empty constraint sets (since we
set t = 2 for CHI3D).
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Figure 23: Non-curated examples from the CHI3D validation set (which we use as the test set). They are
randomly selected from the examples for which there are at least nineteen non-empty constraint sets (since we
set t = 2 for CHI3D).
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Figure 24: Non-curated examples from the MOYO test set. They are randomly selected from the examples for
which there is at least one non-empty constraint set.
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Figure 25: Non-curated examples from the MOYO test set. They are randomly selected from the examples for
which there is at least one non-empty constraint set.
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