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Abstract
Graph neural networks (GNNs) have shown
strong performance in graph fairness learning,
which aims to ensure that predictions are unbi-
ased with respect to sensitive attributes. However,
existing approaches usually assume that training
and test data share the same distribution, which
rarely holds in the real world. To tackle this
challenge, we propose a novel approach named
Dual Unbiased Expansion with Group-acquired
Alignment (DANCE) for graph fairness learning
under distribution shifts. The core idea of our
DANCE is to synthesize challenging yet unbi-
ased virtual graph data in both graph and hidden
spaces, simulating distribution shifts from a data-
centric view. Specifically, we introduce the unbi-
ased Mixup in the hidden space, prioritizing mi-
nor groups to address the potential imbalance of
sensitive attributes. Simultaneously, we conduct
fairness-aware adversarial learning in the graph
space to focus on challenging samples and im-
prove model robustness. To further bridge the do-
main gap, we propose a group-acquired alignment
objective that prioritizes negative pair groups with
identical sensitive labels. Additionally, a repre-
sentation disentanglement objective is adopted to
decorrelate sensitive attributes and target repre-
sentations for enhanced fairness. Extensive exper-
iments demonstrate the superior effectiveness of
the proposed DANCE.
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Figure 1. An illustration of sensitive group imbalance (Gender and
Income as sensitive attributes) and inevitably removing task-related
information challenges under distribution shifts.

1. Introduction
Graph-based machine learning methods, especially Graph
Neural Networks (GNNs), have been adopted as the de facto
approach for prediction tasks on graph-structured data (Wu
et al., 2020; Ju et al., 2024). Among these tasks, node clas-
sification (Kipf & Welling, 2017) is fundamental, which
endeavors to predict the category of each node within a
graph and has been widely applied in various applications,
i.e., community detection (Ren et al., 2025), molecular prop-
erty prediction (Zhuang et al., 2023) and cross-modal re-
trieval (Li et al., 2024a). However, graph learning often suf-
fers from fairness issues due to inherent biases in the training
data, with the message-passing mechanism in GNNs further
amplifying these biases (Dong et al., 2023).

To mitigate this issue, significant efforts have been devoted
in recent years to achieving fair graph representation learn-
ing. Depending on the stage at which fairness interventions
are applied, these efforts are typically grouped into pre-,
in- and post-processing strategies. Pre-processing strategies
address biases prior to the model training stage by modify-
ing the input graph data, such as by applying node feature
masking (Köse & Shen, 2021; Wang et al., 2024), edge per-
turbation (Li et al., 2021; Spinelli et al., 2021), mixup (Li
et al., 2024c) or distribution alignment (Dong et al., 2022).
In contrast, in-processing strategies incorporate fairness con-
straints during the training stage by modifying learning ob-
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jectives, such as through regularization (Bose & Hamilton,
2019), contrastive learning (Zhang et al., 2025) and adver-
sarial training (Ling et al., 2023). Finally, post-processing
strategies modify the model’s output after training to miti-
gate bias and enhance fairness (Dai & Wang, 2021).

However, most existing fairness-aware learning works are
built on the assumption that training and test nodes in the
graph are independently and identically distributed (i.i.d.),
which rarely holds in real-world scenarios. In practice,
nodes often belong to multiple environments, leading to
distribution shifts caused by complex data generation pro-
cesses (Bengio et al., 2019; Li et al., 2023a). Therefore,
these approaches often suffer from poor performance and
unstable predictions (Li et al., 2022a; Zhang et al., 2024b)
when adapting to new environments (groups) (Pham et al.,
2023; Li et al., 2024b). To address these challenges, signifi-
cant efforts have been devoted to graph out-of-distribution
(OOD) generalization under distribution shifts. Recent
advancements include techniques such as data augmenta-
tion (Han et al., 2022; Sui et al., 2023), (causal) invariant
learning (Li et al., 2022b; Yu et al., 2023) and model archi-
tecture designs (Yang et al., 2023).

Despite significant progress, we argue that achieving fair
graph learning under the distribution shift remains chal-
lenging due to the following two key issues: ❶ Sensitive
group imbalance arising from diverse graph distributions.
Sensitive groups are often imbalanced in the graph, with
the generalization process under the distribution shift in
the graph being highly skewed. This imbalance forces the
model to focus primarily on the majority group, which re-
sults in insufficient learning of the minority group to extract
fair representation. ❷ Inevitably removing task-related in-
formation across environments. Graph distribution shift
often introduces unintended correlation between the target
and sensitive information in practice. For example, prior
studies have observed that a fair income prediction model
trained in one state may lose its fairness when applied to
another state (Ding et al., 2021). When this correlation is
entangled, it will lead to a conflict between the fairness and
performance objectives of the task.

To this end, we propose a novel approach in this paper,
named Dual Unbiased Expansion with Group-acquired
Alignment (DANCE), which aims to address the challenges
of sensitive group imbalance and the fairness-performance
conflict under graph distribution shifts. Specifically, since
the test graph distribution is unknown, we investigate graph
data expansion in both graph structural and feature space,
generating OOD graph data to expand the training distribu-
tion and enhance generalization. We first synthesize harder
minor samples from the structural aspect to enlarge the
squeezed sensitive group. Then, we focus on the feature
aspect and employ an adversarial module to generate the

graph with significant bias. Based on the expanded graph,
we introduce group-acquired alignment to ensure fair node
representations, which prioritizes sample pairs with identi-
cal sensitive labels as negatives. In addition, we explicitly
disentangle sensitive and task-related information to ensure
that task-related information remains invariant across distri-
bution shifts. Experimental results on multiple real-world
datasets show that our DANCE achieves superior fairness
and performance compared to state-of-the-art methods.

In summary, the primary contributions of the paper are as
follows: ❶ New Perspective. We study an underexplored
yet practical problem of out-of-distribution graph fairness
learning and propose a data-centric view to solve the prob-
lem. ❷ Novel Methodology. Our DANCE not only gener-
ates challenging but unbiased virtual graph data to simulate
the distribution shift, but also introduces a group-acquired
alignment to minimize the domain gap with fairness con-
sidered. ❸ Extensive Experiments. We conduct comprehen-
sive experiments on multiple real-world datasets to evaluate
the framework. The results demonstrate that the proposed
DANCE achieves superior performance and fairness un-
der distribution shifts. The code is available at https:
//github.com/HourunLi/DANCE_ICML_2025.

2. Preliminaries & Problem Definition
Notations. Let a graph be represented as G = (V, E ,X), in
which V = {v1, . . . , vN} denotes the node set containingN
nodes, and E ∈ V ×V is the edge set. We use the adjacency
matrix A ∈ {0, 1}N×N to describe the connectivity and
structural dependencies of nodes in the graph, where Auv =
1 if (u, v) ∈ E , otherwise Auv = 0. The node feature matrix
can be represented as X ∈ RN×d, where row Xv ∈ Rd
denote the feature vector of the node v with dimension d.
The sensitive attributes of the node set are specified by the
t-th dimension of X , i.e., S = X:,t = {s1, . . . , sN} ∈
{0, 1}N , where sv is the sensitive attribute associated with
node v. We consider the binary node classification task,
with the node label matrix denoted as Y ∈ {0, 1}N .

Definition 2.1 (Sensitive Group). The sensitive group de-
notes the node set divided by the sensitive attribute:

Vs = {v ∈ V|sv = s}. (1)

Definition 2.2 (EO Group). The Equality Odds (EO) group
of the graph is divided by sensitive attribute s and label y:

Vys = {v ∈ V|(sv = s) ∩ (yv = y)}. (2)

Definition 2.3 (Demographic Parity). Demographic par-
ity (Calders et al., 2009) stipulates that different demo-
graphic groups should have equal positive prediction proba-
bilities. Accordingly, ∆DP can be defined as:

∆DP = |Eu∈V(ŷu=1|su=1)−Ev∈V(ŷv=1|sv=0)|, (3)
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Figure 2. Illustration of DANCE, which contains three modules: (1) Graph Expansion for Distribution Shifts: Generate unbiased
virtual graph in both graph and hidden space. (2) Group-acquired Alignment: We introduce group alignment to prioritize negative pair
groups with identical sensitive labels. (3) Representation Disentanglement: We decorrelate sensitive attributes for enhanced fairness.

where the predicted and ground-truth labels for the node v
are ŷv and yv . The independence between predictions ŷ and
sensitive qualities s, namely ŷ⊥s, is quantified by ∆DP .
Definition 2.4 (Equalized Odds). Equal odds (Hardt et al.,
2016) seeks to enforce that both the True Positive Rate
(TPR) and False Positive Rate (FPR) should be equal in
various demographic groups. And ∆EO can be written as:

∆EO =
1

2

1∑
y=0

|Eu∈V(ŷu=y|yu=y, su=1)−

Ev∈V(ŷv=y|yv=y, sv=0)|,

(4)

where the independence between the ŷ and s conditions on
the ground-truth y, namely ŷ⊥s|y, is quantified by ∆EO.

Problem Definition. We denote the generation process
of a graph as P (A,X,Y |e) = P (A,X|e)P (Y |A,X, e),
where e ∈ E represents the environment in the whole envi-
ronment set E . The structure and feature of graph is gen-
erated by P (A,X|e) and node labels are determined by
P (Y |A,X, e). The distribution shifts of the graph in-
duce that Ptr(Av,Xv) ̸= Pte(Av,Xv), i.e., the graph
distributions generating the ego-graphs Gv = (Av,Xv)
and labels Yv for the training and test nodes are different.
For example, the diverse communities that are partitioned
within the graph. The objective is to learn a powerful GNN
f∗θ (·) = h∗(g∗(·)) that achieves both good performance and
fairness over all environments for node classification task:

f∗ = argmin
fθ

sup
e∈E

R(f |e), (5)

where f∗(·) is decomposed into two parts, with graph en-
coder g(·) and classifier h(·). And R(f |e) represents the
empirical risk that ensures both good performance and fair-
ness for the nodes within environment e.

3. Methodology
This paper studies the problem of out-of-distribution graph
fairness learning and a novel framework DANCE is pro-
posed to solve this problem. The high-level idea of our
DANCE is to expand the graph data in both graph and fea-
ture space, which can simulate the distribution shifts in a
data-centric view. On the one hand, we utilize unbiased
Mixup to enhance the attribute balance in the expanded
dataset. On the other hand, we adopt fairness-aware adver-
sarial learning to generate challenging samples for robust-
ness. These generated virtual data are incorporated into a
group-acquired alignment framework to emphasize negative
pairs with identical sensitive labels for enhanced fairness.
We also leverage representation disentanglement to facilitate
the decorrelation of sensitive and target information. An
overview of our proposed DANCE is illustrated in Figure 2.
More details of the framework are introduced as below.

3.1. Dual Graph Expansion for Simulating Distribution
Shifts

Unbiased Mixup for Balanced Sensitive Attributes. Since
the sensitive groups of nodes in the graph are often imbal-
anced, we are motivated to enlarge the minor group bound-
ary. Specifically, we employ the confidence (Wang et al.,
2021) to calculate the node hardness in the minor sensitive
group, which can be defined as:

cv = 1− σ(yv, ŷv), ŷv = f(Av,Xv), (6)

where σ(yv, ŷv) = yv ŷv + (1 − yv)(1 − ŷv), yv and ŷv
denote the ground-truth and predicted label of node v re-
spectively, and we calculate ŷv from the previous epoch
in practice. Then, we can identify the minor anchor node
vanc from a multinomial distribution with the node hard-
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ness c ∈ RN as the input to calculate probability. Then,
we sample from another multinomial distribution to iden-
tify auxiliary node vaux based on the confidence in class
yvanc

, i.e., cv = 1 − σ(yvanc
, ŷv). We aim to enlarge the

boundary of the minor sensitive group while avoiding de-
generating the other groups in the graph. Thus, we employ
a simple Mixup (Zhang et al., 2018) strategy to generate the
synthesized node feature, which can be defined as:

Xsyn = δXanc + (1− δ)Xaux, (7)

where δ is the trade-off parameter, and as δ decreases, the
generated synthesized node features become more simi-
lar to the auxiliary node, thereby expanding the boundary
of the minor sensitive group. Note that edges dominate
the message-passing procedures during GNN propagation.
Here, we aim for additional synthesized edges for message
passing beyond the minority group boundary while blocking
propagation to the other groups, preserving the degenera-
tion of the sensitive groups. Instead of connecting vsyn
to both Ganc and Gaux, we only connect with meaningful
neighborhoods in Ganc. Specifically, we define the graph
diffusion (Gasteiger et al., 2019) process on the graph:

Sanc =

∞∑
r=0

θrT
r
anc, Tanc = AancD

−1
anc, (8)

where θr = α(1 − α)r for Personalized PageRank (PPR)
and θr = e−t t

r

r! for Heat Kernel (HK) examples, Danc

denote the degree matrix of ego-graph. We can utilize the
sparse output of Sanc to form a multinomial distribution for
sampling neighbors of vsyn, with the number of neighbors
determined based on the entire graph to preserve the degree
statistics (Li et al., 2023b). The synthesized edges and labels
of the synthesized node can be defined as:

Nsyn ∼ P diff1hop (vanc), ysyn = yanc, (9)

where P diff1hop (vanc) is the 1-hop neighbors distribution.
Note that we generate the synthesized node in the graph
w.r.t. ratio r, namely, we add the synthesized minor nodes
fromNmin to (1−γ)∗Nmin+γ ∗Nmax, whereNmin and
Nmax denote the number of nodes in two sensitive groups.

Adversarial Learning for Challenging Graph Data. To
further expand the graph in the feature space, we consider
the worst-case shift near the training graph data. Given the
synthesized graph G′ = (A′,X′), we feed it into f(·) to
get the predicted label ŷ′v . The classification loss can be:

Lsyncls = −
∑
v∈Vtr

BCE(yv, ŷ
′
v)), (10)

where BCE(·) denotes the binary cross-entropy loss. At
regular intervals during training, we utilize an MLP-based
generator ρψ(·) : X ′ → Xρ to identify node features that

contribute to poor fairness performance. By leveraging
adversarial training (Volpi et al., 2018; Liao et al., 2021), the
feature generator is optimized to simultaneously maximize
both the fairness loss and the classification loss:

max
ψ

(Lsyncls +Lfair − λ∥X ′ −Xρ∥2F ),

Lfair =
1

2

1∑
y=0

|Eu∈V′y
1
(ŷu = y|ρ(xu),A′)−

Eu∈V′y
0
(ŷu = y|ρ(xu),A′)|,

(11)

where V ′y
s denote the EO groups in graph G′. Note that we

additionally incorporate a regularization term to guarantee
that the generated features do not deviate significantly from
those of the training graph.

3.2. Group-acquired Alignment for Graph
Heterogeneity Reduction

To ensure the model generates a consistent and fair repre-
sentation under graphs with significant biases, we disentan-
gle the node similarities into fine-grained types for demo-
graphic group alignment, explicitly penalizing the model
that learns unwanted information. Specifically, we treat
the input and generated graphs as two views and encode
them to obtain the node representations, i.e., Z∗ ∈ RN×d′

(∗ ∈ {1, 2}) with dimension d′. We adopt different types
of similarities between the anchor node v and other nodes
in the graph to construct the sample set, which can help
us distinguish positive (negative) pairs with different re-
lationships of sensitive labels (Park et al., 2022; Zhang
et al., 2024a). There are four groups with the following
definition. ❶ Intra-Group (IG): The similarity is defined
within the EO group, and the node set can be defined as
Z∗
ig(v) = {zig ∈ Z∗|sig = sv ∩ yig = yv}. ❷ Sensi-

tive Inter-Group (SG): The similarity is defined between
an anchor and nodes from the same target class but with
different sensitive attributes, and the node set can be written
as Z∗

sg(v) = {zsg ∈ Z∗|ssg ̸= sv ∩ ysg = yv}. ❸ Target
Inter-Group (TG): We focus on the similarity between an
anchor and nodes from the same sensitive attribute, which
are labeled with different target classes, and the node set can
be defined as Z∗

tg(v) = {ztg ∈ Z∗|stg = sv ∩ ytg ̸= yv}.
❹ Target & Sensitive Inter-Group (TSG): The similarity is
defined between an anchor and nodes that differ in both sen-
sitive attributes and target classes. The node set is defined
as Z∗

tsg(v)={ztsg∈Z∗|stsg ̸= sv ∩ ytsg ̸= yv}.

Based on this, we encourage the similarity in IG and SG are
larger than TG and TSG between two views for alignment:

Lalign = −
∑
∀y,s

1

|Z∗,y
s |

∑
zv∈Z∗,y

s

∑
∀s

1

|Z∗
p,s(v)|∑

zp∈Z∗
p,s(v)

log
ϕp∑

ztg∈Z∗
tg(v)

ϕtg
,

(12)
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where Z∗,y
s = {zv ∈ Z∗|yv=y, sv=s}, Z∗

p,s(v) = {zp ∈
Z∗
ig(v)∪Z∗

sg(v)|sp = s}, and ϕtg = exp(zv ·ztg/τ). Note
that since the number of anchors and positive samples is im-
balanced across sensitive groups, we follow prior work (Park
et al., 2022) and apply group-wise normalization to mitigate
the unfairness caused by these disparities.

3.3. Representation Disentanglement for Enhanced
Fairness

To further prevent the conflict between fairness and perfor-
mance during graph distribution shifts, we employ another
GNN to extract node representation Z− of the augmented
graph and cast it as the additional sensitive-aware negative
view. Toward this end, we use a sensitive discriminator
ξ(·) : Z− → S and the classification loss can be:

Lscls = −
∑
v∈Vtr

BCE(sv, ξ(z
−
v )). (13)

Based on the negative view, we utilize a node representa-
tion disentanglement loss to explicitly decorrelate sensitive
information (Park & Byun, 2024), defined as follows:

Ldis = −
∑
∀y,s

1

|Z−,y
s |

∑
zv∈Z−,y

s

∑
∀s

1

|Z−
ig,s(v)|∑

zp∈Z−
ig,s(v)

log
ϕp∑

zig∈Z2
ig(v)

ϕig
,

(14)

where Z−
ig,s(v)={zp∈Z−

ig(v)|sp=s} and ϕig = exp(zv ·
zig/τ). Here, we encourage the augmented graph and its
negative view to contain distinct information by reducing
the similarity within the IG group between Z2 and Z−.

3.4. Overall Optimization

We also train the GNN model f(·) on the input graph to
ensure the node classification accuracy, defined as:

Lcls = −
∑
v∈Vtr

BCE(yv, ŷv)), (15)

where ŷv is the predicted label. The overall optimizing
process of DANCE can be formulated as:{

minθ Lcls + Lscls + Lsyncls + β(Lalign + Ldis),
minψ −Lsyncls − Lfair + λ∥X ′ −Xρ∥2F ,

(16)

where λ denotes the weight of the regularization term.

3.5. Theoretical Analysis

Here, we prove that the graph diffusion process we put
forward can precisely control the information propagation
between different groups. Additionally, the convergence
proof of the loss function is shown.

To begin, we introduce the following notations. Let Vs
and V−s = V \ Vs be the set of minority and non-minority
group nodes, respectively. The adjacency matrix of the
graph with synthetic edges is Aanc, and the corresponding
degree matrix is Danc, where Danc,ii =

∑|V|
j=1 Aanc,ij .

Let H(l) ∈ R|V|×d be the representation matrix of all nodes
in the l-th layer, where Z = H(1)∥ . . . ∥H(L) denotes the
concatenated representation output from all L layers. The
information propagation rule is:

H(l) = σ

( ∞∑
r=0

θr(T r
ancH

(l−1)W (l)) +B(l)

)
, (17)

where σ denotes the activation function. W (l) and B(l)

refers to the learnable weight and bias matrix for the l-th
layer. Let ω be the model parameter, which can represent
either the classifier parameter θ or the generator parameter
ψ. Define the loss function such that when ω = θ,

F(ω) = L1(θ) = Lcls+Lscls+Lsyncls + β(Lalign+Ldis).
(18)

When ω = ψ,

F(ω) = L2(ψ) = −Lsyncls −Lfair + λ∥X ′ −X∥2F . (19)

Theorem 3.1. Given the above notations, for any i ∈ Vs,
there exists j ∈ V−s such that[ ∞∑

r=0

θr(T r
ancH

(l−1))

]
ij

̸= 0; (20)

For any i ∈ V−s, for all j ∈ Vs, we have[ ∞∑
r=0

θr(T r
ancH

(l−1))

]
ij

= 0. (21)

Theorem 3.1 indicates that the graph diffusion method can
precisely control the information propagation between dif-
ferent groups, which is crucial for improving the fairness
and performance of the model when dealing with data from
different groups.

Theorem 3.2. Suppose that the loss function F(ω) is dif-
ferentiable with respect to the parameter ω, and there ex-
ists a constant M > 0 such that the gradient of the loss
function is M -Lipschitz continuous. We adopt the SGD
algorithm to update the parameter. When an appropriate
learning rate α is chosen such that 0 < α < 2

M , we have
limt→∞ ∥∇F(ωt)∥ = 0 and limt→∞ F(ωt) exists, which
means the loss function F(ω) converges.

The Lipschitz continuity assumption limits the rate of
change of the gradient of the loss function, which is a com-
mon condition for the convergence proof of existing opti-
mization algorithms (Meng et al., 2024).
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Table 1. Classification and fairness metrics (%±σ) on Credit-Cs. ↑ indicates that higher values are better, while ↓ indicating the opposite.
We highlight the best results in bold.

Dataset Metric MLP GCN FairVGNN NIFTY EDITS EERM CAF SAGM RFR FatraGNN DANCE

C1

ACC↑ 75.69±5.64 76.69±2.48 77.45±0.31 77.51±0.03 77.06±0.03 77.04±0.09 76.54±0.81 77.16±0.45 76.83±1.26 77.31±0.1 78.58±0.41
ROC-AUC↑ 64.38±0.47 65.54±1.43 67.07±0.4 68.43±0.25 65.25±1.29 66.54±1.37 67.58±1.36 65.35±1.03 66.08±0.81 65.41±1.28 72.18±0.08
∆DP ↓ 5.2±14.92 7.4±6.69 1±0.63 4.34±0.03 2.43±0.03 5.46±0.38 5.61±0.84 5.21±0.76 3.46±0.98 0.50±0.21 0.74±0.56
∆EO ↓ 7.92±15.86 6.31±6 0.85±0.2 2.73±0.04 3.24±0.03 6.47±0.26 5.03±1.49 4.58±0.68 3.19±0.73 0.71±0.03 0.70±0.49

C2

ACC↑ 72.05±2.6 75.42±0.44 75.49±1.7 74.44±0.47 77.07±0.22 76.16±0.91 75.49±0.82 76.38±0.91 75.24±0.68 77.12±0.28 78.4±0.62
ROC-AUC↑ 62.36±6.29 63.76±3.07 63.8±0.25 60.63±10.06 62.5±3.27 65.49±2.39 62.36±1.18 62.65±0.89 61.35±0.92 64.16±0.69 75.5±0.21
∆DP ↓ 8.14±4.39 8.74±3.6 3.54±0.42 3.54±1.6 2.98±0.01 4.22±1.38 3.61±0.74 5.34±0.67 2.35±0.39 1.64±1.06 1.62±1.53
∆EO ↓ 6.7±4.3 7.35±2.64 2.63±0.61 2.34±0.63 3.65±0.16 5.71±1.1 3.57±0.89 4.37±0.98 2.96±0.81 0.95±0.7 0.40±0.08

C3

ACC↑ 68.15±0.16 70.31±1.79 71.49±0.56 70.11±0.04 70.89±0.96 71.43±1.24 71.28±1.35 70.83±0.65 70.03±0.48 71.81±0.39 72.77±0.73
ROC-AUC↑ 64.64±4.49 65.90±1.72 65.96±0.19 64.75±0.14 63.18±2.53 65.36±1.03 64.37±1.06 64.52±0.91 63.59±0.63 65.7±0.91 75.63±0.12
∆DP ↓ 8.7±0.12 9.46±10.06 3.05±1.76 3.54±0.07 3.22±0.45 5.63±9.43 5.28±0.94 5.12±1.36 2.86±1.25 0.25±0.2 1.38±1.18
∆EO ↓ 9.47±0.03 9.71±8.29 3.35±2.46 2.23±0.08 1.87±0.36 5.34±4.62 4.82±1.33 5.57±0.79 3.41±0.89 0.81±0.56 0.31±0.04

C4

ACC↑ 68.26±3.09 70.89±5.38 71.74±0.45 71.84±6.36 71.28±0.2 71.35±4.28 71.48±0.81 71.22±0.29 71.47±0.92 72.15±0.42 72.19±0.71
ROC-AUC↑ 65.32±4.42 64.28±3.45 66.45±1.61 66.98±2.3 63.45±0.6 64.04±0.67 66.59±1.24 63.45±0.88 65.27±0.68 67.66±0.87 77.56±0.02
∆DP ↓ 7.46±12.08 6.13±4.08 3.46±0.05 7.84±9.64 3.42±0.47 4.35±0.85 3.73±0.92 5.46±1.18 3.59±0.41 0.61±0.08 1.24±1.25
∆EO ↓ 6.61±11.22 8.16±2.38 2.82±0.19 2.18±9.91 3.22±0 5.07±0.74 4.18±0.85 5.34±0.22 2.46±0.87 1.16±0.13 0.36±0.20

Rank 11 10 3 5 4 8 7 9 6 2 1

Table 2. Classification and fairness metrics (%±σ) on Pokecs. ↑ indicates that higher values are better, while ↓ indicating the opposite.
We highlight the best results in bold.

Dataset Metric MLP GCN FairVGNN NIFTY CAF SAGM RFR FatraGNN DANCE

Pokec-n

ACC↑ 52.74±3.67 54.83±2.34 60.8±0.54 58.68±5.54 59.37±1.45 58.78±2.33 57.42±3.68 62.00±0.24 66.58±0.20

ROC-AUC↑ 65.38±0.43 63.48±2.34 65.26±1.45 67.09±2.25 66.86±1.32 65.67±2.45 65.29±1.36 67.82±3.23 72.88±0.10

∆DP ↓ 4.86±1.23 7.38±0.28 5.88±2.34 4.21±3.43 5.49±2.65 5.67±3.22 4.56±2.85 1.34±0.27 0.83±0.22

∆EO ↓ 4.16±2.34 6.37±0.52 6.26±2.21 3.82±3.88 5.02±0.73 4.19±2.45 3.41±2.37 1.43±2.68 0.29±0.12

Rank 8 9 7 3 4 6 5 2 1

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the performance of DANCE under
distribution shifts using three real-world datasets, described
as follows: 1) Credit-Cs is derived from the Credit dataset
(Yeh & Lien, 2009), where nodes represent credit card users.
The task involves classifying users’ credit risk as either high
or low, with “age” designated as the sensitive attribute. To
explore the data structure, we apply a modularity-based
community detection method (Newman, 2006), partition-
ing Credit-Cs into five communities labeled C0 through C4.
These partitions reveal different data distributions across
the communities. Community C0 is utilized for training
and validation, and the remaining communities (C1 to C4)
serve as the test set. 2) Pokecs is constructed from the Slo-
vakian social network (Dai & Wang, 2022), where users are
grouped by province. The task is to predict users’ work-
ing fields, with “region” serving as the sensitive attribute.
Pokecs consists of two graphs, Pokec-z and Pokec-n, each
containing users from two different regions. Pokec-z is used
for training and validation, while Pokec-n serves as the test
set. 3) Bail-Bs is derived from a fairness-oriented graph Bail,
in which the nodes represent defendants released on bail
(Jordan & Freiburger, 2015). The task aims to determine
whether a defendant should be granted bail, with “race”
as the sensitive attribute. Following the approach used for
Credit-Cs, Bail-Bs is partitioned into five communities, la-

beled B0 through B4. B0 is used for training and validation,
while B1–B4 serve as the test set.

Baselines. We compare DANCE with four baseline groups:
(A) Traditional learning methods: Foundational represen-
tation learning approaches, including MLP (Pal & Mitra,
1992), GCN (Kipf & Welling, 2016). (B) Fair GNNs: GNNs
designed to improve fairness, including FairVGNN (Wang
et al., 2022), NIFTY (Agarwal et al., 2021), EDITS (Dong
et al., 2022), CAF (Guo et al., 2023). (C) Out-of-distribution
(OOD) methods: Approaches for learning robust represen-
tations that generalize under distribution shifts, including
EERM (Wu et al., 2022), SAGM (Wang et al., 2023). (D)
Fairness under distribution shifts methods: Methods ad-
dressing distribution shifts while preserving fairness across
training and test distributions, such as RFR (Jiang et al.,
2023), FatraGNN (Li et al., 2024b).

Performance Evaluation. We evaluate node classification
performance using two key metrics: accuracy (ACC) and
ROC-AUC. Fairness is measured with ∆DP and ∆EO, as
detailed in Section 2, where lower values indicate better fair-
ness. To comprehensively assess both classification and fair-
ness, we adopt the combined metric proposed in FatraGNN
(Li et al., 2024b), denoted as c = ACC + ROC AUC −
∆DP −∆EO, where higher values indicate better overall
performance. The final score of each method is calculated
by summing its scores across all test graphs, based on which
the overall rankings are provided for comparison.
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Experimental Setting. In the experiments, we perform hy-
perparameter tuning via grid search across all dataset groups
to ensure fair and comprehensive evaluation. For DANCE,
the embedding dimension is set to 256. We explore the num-
ber of graph encoder layers in the range of [1, 5], dropout
rates between [0, 0.5], and learning rates in [0, 0.005]. Ad-
ditionally, the trade-off parameter δ in the Mixup strategy
is adaptively tuned. To ensure robustness, each method is
evaluated over five independent runs with different random
seeds, with the mean and variance of each metric reported.

4.2. Performance Analysis

Table 1 and 2 report the best average performance of all
methods across two real-world datasets (Results for Bail-
Bs are in Appendix A.1). Several key observations can be
drawn: (1) When comparing traditional learning methods
with Fair GNNs, we observe that fairness baselines improve
fairness performance at the expense of classification accu-
racy. (2) While fairness baselines aim to improve fairness,
they struggle with classification under distribution shifts.
In contrast, OOD methods achieve better classification but
exhibit lower fairness across all test graphs due to their
inability to learn fair representations. This highlights the
need for fairness-aware modules to ensure fairness across
varying distributions. (3) DANCE outperforms all other
baselines in most cases, demonstrating the effectiveness of
disentanglement in filtering out sensitive information and
the adversarial module in handling distribution shifts. These
results validate the importance of explicitly modeling both
fairness constraints and distributional robustness to achieve
a trade-off between fairness and classification performance.

4.3. Ablation Study

To assess the effectiveness of the various modules in
DANCE and gain insight into their contributions, we com-
pare DANCE against four variants (Extended ablation stud-
ies are provided in Appendix A.2): (1) Variant 1: It re-
moves the Mixup module. (2) Variant 2: It removes the
adversarial learning module. (3) Variant 3: It removes the
group-acquired alignment module. (4) Variant 4: It removes
the representation disentanglement module. The results of
DANCE and its variants are presented in Table 3, with key
observations as follows: (1) Compared to Variant 1, remov-
ing the Mixup module significantly affects performance,
as extending an accurate classification boundary relies on
properly synthesizing features for generated nodes. (2) The
comparison with Variant 2 reveals that adversarial learning
effectively mitigates distribution shifts, improving both fair-
ness and classification performance. (3) The comparison
with Variant 3 demonstrates that the group-acquired align-
ment module is essential for aligning adversarial learning
representations with original representations, significantly
enhancing fair representation learning. (4) The comparison

Table 3. Ablation studies on the variants of DANCE.
Dataset Metric Var1 Var2 Var3 Var4 DANCE

C1

ACC↑ 78.50±0.15 78.51±0.32 79.52±0.21 78.30±0.13 78.58±0.41
ROC-AUC↑ 71.69±0.01 71.55±0.01 72.01±0.01 71.48±0.06 72.18±0.08
∆DP ↓ 4.11±0.71 3.54±0.69 6.33±1.43 2.71±0.90 0.74±0.56
∆EO ↓ 1.15±0.28 0.72±0.00 1.30±1.11 0.38±0.05 0.70±0.49

C2

ACC↑ 79.65±0.40 79.58±0.34 80.58±0.01 79.42±0.42 78.4±0.62
ROC-AUC↑ 76.82±0.05 76.71±0.04 76.79±0.01 76.30±0.35 75.5±0.21
∆DP ↓ 3.08±0.57 4.54±4.02 8.63±0.24 4.30±2.05 1.62±1.53
∆EO ↓ 2.66±0.38 2.03±0.77 4.10±0.05 1.99±0.21 0.40±0.08

C3

ACC↑ 72.90±0.37 72.48±1.52 72.66±0.02 73.06±0.13 72.77±0.73
ROC-AUC↑ 75.51±0.07 75.95±0.08 75.91±0.01 75.71±0.03 75.63±0.12
∆DP ↓ 2.33±0.29 0.50±0.18 0.43±0.01 1.44±0.18 1.38±1.18
∆EO ↓ 1.91±2.16 2.43±4.51 3.94±0.03 2.03±3.30 0.31±0.04

C4

ACC↑ 72.92±0.37 72.35±0.76 73.02±0.02 72.76±0.01 72.19±0.71
ROC-AUC↑ 77.65±0.03 77.52±0.01 77.42±0.01 77.24±0.09 77.56±0.02
∆DP ↓ 1.02±0.21 1.37±0.46 1.71±0.06 2.55±1.05 1.24±1.25
∆EO ↓ 2.09±0.31 1.29±0.26 1.38±0.19 1.24±0.13 0.36±0.20
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Figure 3. Comparison of performance w.r.t. different values of λ
and β for the overall objective.

with Variant 4 confirms that the representation disentan-
glement module effectively separates sensitive information
from learned representations, thereby enhancing fairness.

4.4. Parameter Analysis

We analyze the impact of three hyperparameter groups in
DANCE: the loss weights λ as well as β in the objective
function (Equation 16), the ratio γ of synthesized nodes, and
the trade-off parameter δ in Mixup Strategy (Equation 7).
Our key findings are as follows: (1) As depicted in Figure 3,
excessively high values of λ and β negatively impact ac-
curacy. The optimal values, approximately λ = 0.6 and
β = 0.4, effectively balance accuracy and fairness. (2) As
shown in Figure 4, the optimal ratio γ depends on the dataset
and its distribution. However, an effective synthesized node
ratio typically falls within the range of 0.5 to 0.6, leading
to improved fairness performance. (3) When the trade-off
parameter δ is fixed, Figure 5 shows that the optimal δ for
both equal odds and demographic parity typically falls be-
tween 0.3 to 0.7. However, as no single value is optimal for
all datasets, adaptive tuning is still required.

4.5. Visualization

We present an intuitive visualization of learned represen-
tations in both the training and test graphs on the Pokec
dataset via t-SNE (Van der Maaten & Hinton, 2008). As
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Figure 4. Comparison of fairness w.r.t. different ratios γ for syn-
thesized minor nodes.
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Figure 5. Comparison of fairness w.r.t. different trade-off parame-
ter δ for unbiased Mixup.

shown in Figure 6, nodes are color-coded by target and sen-
sitive labels in the latent space. The representations of nodes
within the same EO group remain closely aligned across
training and test graphs, demonstrating that DANCE pre-
serves representation consistency under distribution shifts.
This suggests that DANCE mitigates data distribution shift,
enhancing both fairness and classification generalization.

5. Related Work
Fairness in GNNs. Recent studies show that graph rep-
resentation learning, particularly GNNs, tends to inherit
biases from the training graph, with the message-passing
mechanism in GNNs further amplifying these biases (Dai
& Wang, 2021; Dong et al., 2023). Our work primarily
addresses group fairness, which can be grouped into pre-,
in-, and post-processing strategies according to the stage at
which they are applied. Specifically, pre-processing strate-
gies aim to modify the graph data to ensure fairness before
the model is trained. EDITS (Dong et al., 2022) mitigate
both graph attribute and structural bias with Wasserstein
distance minimization between group pairs. In-processing
strategies aim to adjust the learning process itself to pro-
mote fairness during model training. NIFTY (Agarwal et al.,
2021) introduces a new multiple-objective function to en-
force the fairness and stability of the GNN. Graphhair (Ling
et al., 2023) employs automated augmentation to achieve
fairness and informativeness in the generated graph. Post-
processing strategies focus on adjusting the model’s output
to ensure fairness. FairGNN (Dai & Wang, 2021) incorpo-

(a) pokec z (b) pokec n

Figure 6. Visualizations of representations learned from the train-
ing and test graphs on the Pokec dataset.

rates an adversarial task for predictiong sensitive attributes,
ensuring the GNN’s predictions are independent of these
attributes. However, these approaches all assume that the
training and test graphs follow the same distribution.

Fairness under Distribution Shifts. Distribution shifts re-
fer to situations where the test data distribution differs from
that of the training data (Liu et al., 2021). Several studies
have explored fairness under distribution shifts (Rezaei et al.,
2021; Giguere et al., 2022; Lin et al., 2024). Shifty (An et al.,
2022) reweights the training samples to match the group
proportions present in the test samples. The algorithm (Man-
dal et al., 2020) treats test data as weighted combinations
of training samples and focuses on ensuring fairness un-
der the worst-case distribution shift. Additionally, some
works (An et al., 2022) establish sufficient conditions for
fairness transfer and propose self-training to balance and
minimize consistency losses across different groups. Never-
theless, most of these methods are restricted to Euclidean
data. Recently, FatraGNN (Li et al., 2024b) tackled fairness
under distribution shifts in graphs. However, it overlooks
the problem of group imbalance and unintentionally ignores
task-related information during distribution shifts.

6. Conclusion
In this paper, we propose DANCE, a novel approach for
graph fairness learning under distribution shifts. Unlike
traditional methods that the training and test graphs share
the same distribution, DANCE explicitly addresses graph
distribution shifts commonly encountered in real-world sce-
narios. Specifically, we generate challenging yet unbiased
virtual graph data in both graph and hidden spaces by in-
corporating unbiased mixup and fairness-aware adversarial
learning to simulate distribution shifts from a data-centric
view. Building on this, a group-acquired alignment objective
and a representation disentanglement objective are further
proposed to enhance the fairness in the model. Extensive
experiments on several real-world datasets demonstrate that
our DANCE effectively improves both fairness and model
performance under distribution shifts, making it a promising
solution for real-world graph learning tasks.

8



DANCE: Dual Unbiased Expansion with Group-acquired Alignment for Out-of-distribution Graph Fairness Learning

Impact Statement
The proposed DANCE framework advances fairness-aware
graph learning under distribution shifts by integrating dual
unbiased data expansion and group-acquired alignment. By
generating challenging yet unbiased virtual graph data in
both graph and feature spaces, DANCE simulates distri-
bution shifts from a data-centric perspective. It leverages
mixup-based minority group expansion and adversarial per-
turbation to enhance robustness, while explicitly disentan-
gling sensitive and task-related information to improve fair-
ness. Furthermore, the group-acquired alignment mecha-
nism promotes consistency of representations across sen-
sitive groups. This dual expansion and alignment strategy
enables DANCE to achieve superior generalization and fair-
ness on out-of-distribution graphs. The framework holds
broad potential for real-world applications where demo-
graphic disparities and distribution shifts are prevalent, such
as financial risk prediction, social network analysis, and
criminal justice modeling.
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Table 4. Performance comparison (%±σ) on Bail-Bs.
Dataset Metric MLP GCN FairVGNN NIFTY EDITS EERM CAF SAGM RFR FatraGNN DANCE

B1

ACC↑ 70.53±1.01 72.93±4.06 69.76±2.03 69.54±7.26 72.69±1.72 73.25±1.4 69.39±2.30 73.08±4.25 71.63±1.52 86.64±0.93 95.54±12.94

ROC-AUC↑ 62.76±1.87 59.41±14.42 64.82±4.32 62.65±5.95 59.91±0.31 63.98±1.28 62.84±1.84 62.76±3.45 62.39±1.53 89.92±0.01 99.75±0.00

∆DP ↓ 4.83±9.38 4.58±0.78 11.05±4.58 7.21±4.54 4.35±1.3 8.85±2.57 4.46±2.03 7.33±4.59 2.57±1.24 3.45±2.87 3.99±17.19

∆EO ↓ 7.48±7.31 10.19±2.3 8.35±4.82 9.57±2.8 9.22±0.97 10.93±2.38 4.97±2.31 7.35±4.56 2.63±0.87 4.79±3.19 1.41±0.15

B2

ACC↑ 64.33±0.63 69.88±0.45 65.03±2.4 69.95±8.3 69.03±0.16 70.2±0.12 69.36±1.37 68.67±3.24 68.62±1.42 90.48±0.44 99.50±0.01

ROC-AUC↑ 59.21±1.18 68.35±10.68 70.21±2.61 65.93±13.46 74.25±0.73 72.23±0.49 71.58±2.03 70.67±2.14 70.25±2.35 90.88±4.48 99.81±0.00

∆DP ↓ 8.36±1.62 6.91±0.58 5.64±2.78 3.21±4.54 3.2±3.06 8.31±0.5 2.53±3.62 5.78±2.53 2.15±1.94 0.15±0.79 0.07±0.00

∆EO ↓ 6.51±0.32 8.68±0.2 3.23±3.47 3.57±2.8 2.89±0.54 6.29±0.12 3.81±2.08 6.34±3.56 2.64±1.63 0.43±1.14 0.26±0.12

B3

ACC↑ 60.76±0.18 68.56±4.2 70.63±0.61 68.8±9.76 68.56±1.82 70.69±5.42 68.97±2.44 69.50±2.12 68.36±1.89 91.57±4.65 91.46±0.57

ROC-AUC↑ 62.89±2.87 72.99±0.68 80.76±5.01 77.98±5.5 79.28±1.48 79.98±3.61 78.04±2.67 78.43±3.90 78.74±1.95 94.42±3.63 99.06±0.13

∆DP ↓ 9.8±0.38 12.72±2.44 8.05±0.45 6.21±4.54 5.24±0.03 5.64±3.49 6.32±2.45 6.78±3.23 4.23±1.72 5.02±3.54 2.86±0.06

∆EO ↓ 6.29±0.36 14.15±3.09 9.18±0.36 5.57±2.8 3.08±0.27 4.65±1.21 4.32±2.67 5.67±2.84 4.72±2.17 2.43±4.94 3.17±0.25

B4

ACC↑ 63.13±1.69 69.43±0.48 68.99±2.44 57.96±11.99 68.42±0.14 70.9±1.36 67.33±2.67 70.88±0.98 69.18±2.68 90.95±3.39 98.64±0.09

ROC-AUC↑ 61.57±0.97 76.4±0.78 77.23±1.14 69.21±5.39 69.2±1.41 68.81±2.27 71.93±1.64 69.34±1.89 68.35±2.52 94.42±3.79 99.71±0.01

∆DP ↓ 4.45±3.15 4.49±1.13 5.21±6.03 3.21±4.54 3.2±9.1 7.23±0.26 3.84±1.41 6.36±6.32 3.43±2.45 2.48±3.09 0.41±0.04

∆EO ↓ 3.29±3.54 8.74±1.62 5.33±6.18 2.57±2.8 5.6±7.86 9.04±0.86 5.36±2.19 7.34±4.67 3.51±2.39 2.45±6.67 0.75±0.01

Rank 11 10 6 9 3 8 4 7 5 2 1

A. Additional Results
A.1. Results on Bail-Bs

Table 4 shows classification and fairness performance on Bail-Bs.

A.2. Extended Ablation Study on Mixup and the Adversarial Module

To evaluate the effectiveness of the various modules in DANCE and understand their functions, we compare DANCE
with six variants: (1) Variant 1: It selects anchor nodes through random sampling rather than hard sampling. (2) Variant
2: It removes the mixup module. (3) Variant 3: It configures the adversarial function to maximize only the classification
component, excluding the fairness term. (4) Variant 4: It configures the adversarial function to maximize only the fairness
component, excluding the classification term. (5) Variant 5: It eliminates the group-acquired alignment module. (6) Variant
6: It eliminates the representation disentanglement module.

The results of DANCE and its variants are presented in Table 3. Our key observations are as follows: (1) Impact of hard
sampling and mixup. Compared to Variant 1, random sampling alone has a limited effect on final performance. Instead,
constructing sufficiently challenging samples is essential for improving model performance. Compared to Variant 2, removing
the mixup module has a more significant impact on final performance, as extending an accurate classification boundary
relies on appropriately synthesizing features for the generated nodes. (2) Effect of adversarial learning components. The
comparison with Variant 3 and Variant 4 reveals that the max component of the adversarial function enhances generalization
to out-of-distribution data for target classification, whereas the min component focuses on fairness optimization in such
settings. Consequently, Variant 3 achieves better performance in target label classification, while Variant 4 excels in fairness
representation. (3) Role of group-acquired alignment. The comparison with Variant 5 demonstrates that the contrastive
alignment module plays a crucial role in aligning adversarial learning representations with the original representations. This
alignment significantly enhances fair representation learning. (4) Effectiveness of representation disentanglement. The
comparison with Variant 6 confirms that the disentanglement contrast module effectively separates sensitive information
from the representation learning process, thereby facilitating the learning of fairer representations.

B. Theorem Proof
Theorem 3.1: For any i ∈ Vs, there exists j ∈ V−s such that

[ ∞∑
r=0

θr(T r
ancH

(l−1))

]
ij

̸= 0;
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Table 5. Extended ablation studies on the variants of DANCE.
metric Var1 Var2 Var3 Var4 Var5 Var6 DANCE

C1

ACC↑ 78.21±0.31 78.01±0.12 78.90±0.19 78.51±0.32 79.52±0.21 78.30±0.13 78.58±0.41
ROC-AUC↑ 71.15±0.03 71.46±0.02 71.57±0.01 71.55±0.01 72.01±0.01 71.48±0.06 72.18±0.08
∆DP ↓ 1.21±0.43 2.88±0.67 3.55±2.88 3.54±0.69 6.33±1.43 2.71±0.90 0.74±0.56
∆EO ↓ 0.52±0.12 0.74±0.30 0.49±0.05 0.72±0.00 1.30±1.11 0.38±0.05 0.70±0.49

C2

ACC↑ 79.21±0.31 79.33±0.39 80.02±0.02 79.58±0.34 80.58±0.01 79.42±0.42 78.4±0.62
ROC-AUC↑ 75.9±0.28 74.6±0.11 76.74±0.02 76.71±0.04 76.79±0.01 76.30±0.35 75.5±0.21
∆DP ↓ 2.24±0.57 3.11±0.73 5.76±0.73 4.54±4.02 8.63±0.24 4.30±2.05 1.62±1.53
∆EO ↓ 0.87±0.62 1.87±0.33 2.49±0.39 2.03±0.77 4.10±0.05 1.99±0.21 0.40±0.08

C3

ACC↑ 72.79±0.42 72.62±0.10 72.06±0.79 72.48±1.52 72.66±0.02 73.06±0.13 72.77±0.73
ROC-AUC↑ 75.28±0.20 75.30±0.12 75.86±0.02 75.95±0.08 75.91±0.01 75.71±0.03 75.63±0.12
∆DP ↓ 1.18±0.07 2.18±0.15 1.00±0.58 0.50±0.18 0.43±0.01 1.44±0.18 1.38±1.18
∆EO ↓ 0.81±0.47 0.91±0.10 2.48±3.62 2.43±4.51 3.94±0.03 2.03±3.30 0.31±0.04

C4

ACC↑ 72.21±0.37 72.33±0.57 72.78±0.11 72.35±0.76 73.02±0.02 72.76±0.01 72.19±0.71
ROC-AUC↑ 77.01±0.01 77.03±0.03 77.51±0.04 77.52±0.01 77.42±0.01 77.24±0.09 77.56±0.02
∆DP ↓ 1.69±0.17 1.31±0.29 0.90±0.07 1.37±0.46 1.71±0.06 2.55±1.05 1.24±1.25
∆EO ↓ 0.55±0.35 1.35±0.19 0.95±0.14 1.29±0.26 1.38±0.19 1.24±0.13 0.36±0.20

For any i ∈ V−s, for all j ∈ Vs, we have [ ∞∑
r=0

θr(T r
ancH

(l−1))

]
ij

= 0.

Remark: Theorem One indicates that the graph diffusion method can precisely control the information propagation between
different groups, which is crucial for improving the fairness and performance of the model when dealing with data from
different groups.

Proof: First, we consider the propagation within and out of the minority group. Let i ∈ Vs. According to matrix
multiplication, we have

[T 0
anc]ij = δij ,

[T 1
anc]ij = [AancD

−1
anc]ij = Aanc,ij/Danc,jj .

Since when constructing Aanc, for i ∈ Vs exists j /∈ Vs such that Aanc,ij ̸= 0, and
∑∞
r=0 |θr| converges. We have[ ∞∑

r=0

θr(T r
ancH

(l−1))

]
ij

=

∞∑
r=0

θr
|V|∑
k=1

[T r
anc]ik[H

(l−1)]kj .

Hence, for a specific j /∈ Vs,
∑∞
r=0 θ

r
∑|V|
k=1[T

r
anc]ik[H

(l−1)]kj ̸= 0, which means that information from i ∈ Vs can be
propagated to nodes j /∈ Vs.

Then, we show how this method blocks the propagation to the non-minority group. Let i ∈ V−s, for all j ∈ Vs, Aanc,ij = 0.
Suppose that for all j ∈ Vs and s = 1, . . . , r,

[T s
anc]ij = 0.

We have

[T r+1
anc ]ij =

|V|∑
k=1

[T r
anc]ik[T

1
anc]kj .

Since [T 1
anc]kj = 0 (for k, j ∈ Vs) and [T r

anc]ik = 0 (for k ∈ Vs), we have [T r+1
anc ]ij = 0 (for j ∈ Vs). Therefore,[ ∞∑

r=0

θr(T r
ancH

(l−1))

]
ij

= 0 (j ∈ Vs).
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Theorem 3.2: Suppose that the loss function F(ω) is differentiable with respect to the parameter ω, and there exists a
constantM > 0 such that the gradient of the loss function isM -Lipschitz continuous. We adopt the SGD algorithm to update
the parameter. When an appropriate learning rate α is chosen such that 0 < α < 2

M , we have limt→∞ ∥∇F(ωt)∥ = 0 and
limt→∞ F(ωt) exists, which means the loss function F(ω) converges.

Remark: The Lipschitz continuity assumption limits the rate of change of the gradient of the loss function, which is a
common condition for the convergence proof of many optimization algorithms.

Proof: Based on the M -Lipschitz continuity, we have

F(ω2) ≤ F(ω1) +∇F(ω1)
T (ω2 − ω1) +

M

2
∥ω2 − ω1∥2.

Let ω2 = ωt+1 and ω1 = ωt, then we have

F(ωt+1) ≤ F(ωt)− α(1− Mα

2
)∥∇F(ωt)∥2.

When 0 < α < 2
M , we have F(ωt+1) ≤ F(ωt). Moreover, since F(ω) has a lower bound, according to the monotone

convergence theorem, limt→∞ F(ωt) exists.

Next, we prove that limt→∞ ∥∇F(ωt)∥ = 0. From the analysis above, we can get

α(1− Mα

2
)∥∇F(ωt)∥2 ≤ F(ωt)−F(ωt+1).

Sum both sides of the inequality from t = 0 to T − 1:

α(1− Mα

2
)

T−1∑
t=0

∥∇F(ωt)∥2 ≤ F(ω0)−F(ωT ).

Since limt→∞ F(ωt) exists,
∑∞
t=0 ∥∇F(ωt)∥2 converges. According to the necessary condition for the convergence of a

series, we have limt→∞ ∥∇F(ωt)∥ = 0.
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