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Abstract

Automatically generating human-readable text001
describing the functionality of a program is002
the intent of source code summarization. Al-003
though neural language models achieve signif-004
icant performance in this field, they are lim-005
ited by their inability to access external knowl-006
edge. To address this limitation, an emerging007
trend is combining neural models with external008
knowledge through retrieval methods. Previ-009
ous methods have relied on the sentence-level010
retrieval paradigm on the encoder side. How-011
ever, this paradigm is coarse-grained, noise-012
filled and cannot directly take advantage of the013
high-quality retrieved summary tokens on the014
decoder side. In this paper, we propose a fine-015
grained Token-level retrieval-augmented mech-016
anism (Tram) on the decoder side rather than017
the encoder side to enhance the performance of018
neural models and produce more low-frequency019
tokens in generating summaries. Furthermore,020
to overcome the challenge of token-level re-021
trieval in capturing contextual code semantics,022
we also propose integrating code semantics023
into individual summary tokens. The results024
of extensive experiments and human evaluation025
show that our token-level retrieval-augmented026
approach significantly improves performance027
and is more interpretable.028

1 Introduction029

With software functions becoming more compre-030

hensive and complex, it becomes a heavy burden031

for developers to understand software. It has been032

reported that nearly 90% (Wan et al., 2018) of ef-033

fort is used for maintenance, and much of this effort034

is spent on understanding the maintenance task and035

related software source codes. Source code sum-036

mary as a natural language is indispensable in soft-037

ware since humans can easily read and understand038

it, as shown in Table 1. However, manually writing039

source code summaries is time-consuming and te-040

dious. Besides, the source code summary is often041

outdated in continuous software iteration. Hence, 042

automatically generating concise, human-readable 043

source code summaries is critical and meaningful. 044

def cos(x):
np = import module("numpy")
if isinstance(x, (int, float)):

return interval(np.sin(x))
elif isinstance(x, interval):

if (not(np.isifnite(x.start) and
np.isfinite(x.end))):

return interval((-1), 1, is_valid=x.is_valid)
(na, _) = divmod(x.start, (np.pi / 2.0))
(nb, _) = divmod(x.end, (np.pi / 2.0))
start = min(np.cos(x.start), np.cos(x.end))
end = max(np.cos(x.start), np.cos(x.end))
if ((nb - na) > 4):

return interval((-1), 1, is_valid=x.is_valid)
elif (na == nb):

return interval(start, end, is_valid=x.is_valid)
else:

if ((na // 4) != (nb // 4)):
end = 1

if (((na - 2) // 4) != ((nb - 2) // 4)):
start = -1

return interval(start, end, is_valid=x.is_valid)
else:

raise NotImplementedError

Summary: evaluates the cos of an interval.
Token-level retrieval results

at the next generation step "cos":
cos, tangent, sin, hyperbolic, · · ·

Table 1: A sample of source code summarization.

With the development of language models and 045

the linguistic nature of source code, researchers 046

explored Seq2Seq architecture, such as recurrent 047

neural networks to generate summaries (Iyer et al., 048

2016; Loyola et al., 2017; Liang and Zhu, 2018). 049

Soon afterward, transformer-based models (Ah- 050

mad et al., 2020; Wu et al., 2021; Gong et al., 051

2022) were proposed, outperforming previous 052

RNN-based models by a large margin. Recently, 053

many approaches have been proposed to leverage 054

the structural properties of source code, such as 055

Abstract Syntax Tree (AST) and Program Depen- 056

dency Graph (PDG). Current structure-aware meth- 057

ods typically either fuse structural information in a 058

hybrid manner (Hu et al., 2018; Shido et al., 2019; 059

LeClair et al., 2020; Choi et al., 2021; Shi et al., 060

2021), or use a structured-guided way (Wu et al., 061

2021; Son et al., 2022; Gong et al., 2022; Guo 062
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et al., 2022b). Although these methods have shown063

promising results, they primarily focus on lever-064

aging the information within the code to obtain065

richer code representation without fully utilizing066

the potential of the available human-written code-067

summary pairs.068

In order to leverage external existing high-069

quality code and the corresponding summary in-070

stances, recent works (Zhang et al., 2020; Li et al.,071

2021; Liu et al., 2021; Parvez et al., 2021) have072

proposed a retrieval augmented approach. Their073

unified paradigm involves sentence-level retrieval,074

which uses text similarity metrics or code seman-075

tic similarity metrics to retrieve the most similar076

code snippet from a code repository for the given077

input code snippet. The retrieved code snippet078

and its corresponding summary are either directly079

concatenated with the input code snippet or seman-080

tically enhanced to augment the input code snippet081

on the encoder side. However, the granularity of082

sentence-level retrieval methods poses challenges.083

Specifically, they can erroneously retrieve and in-084

corporate code snippets that, while syntactically085

similar, are semantically distinct or those that only086

bear partial semantic resemblance. The unintended087

noise introduced through such mismatches can ad-088

versely affect the generation performance, espe-089

cially for low-frequency tokens. Moreover, code090

summarization is essentially a generative task, the091

decoder autoregressively generates the summary092

tokens. However, previous sentence-level retrieval-093

augmented methods neglect to fuse the retrieved094

information on the decoder side, only doing so on095

the encoder side, which will result in the utilization096

pattern being indirect and insufficient.097

These limitations have inspired us to explore a098

more fine-grained and sufficient retrieval approach099

on the summary generation process. In order to100

achieve the purpose of retrieving semantic simi-101

lar summary tokens on the decoder side, we first102

construct a datastore to store the summary tokens103

and corresponding representations through a pre-104

trained base model offline. Meanwhile, to over-105

come the challenge of not fully utilizing code se-106

mantics on the encoder side when retrieving on107

the decoder side, we intelligently fuse summary108

token representation with code token representa-109

tion and AST node representation with attention110

weight. This approach fully considers contextual111

code semantics associated with summary tokens.112

Then, at each generation step, the fused summary113

token representation is used to retrieve the top-K114

most similar tokens. As illustrated in Table 1, the 115

token-level retrieval results at the next token gener- 116

ation step “cos” are “cos, tangent, sin, hyperbolic, 117

· · ·”. The retrieved top-K tokens are expanded 118

to a probability distribution, which we refer to as 119

the retrieval-based distribution. The retrieval-based 120

distribution is then fused with the vanilla distribu- 121

tion to form the final distribution. Additionally, our 122

proposed token-level retrieval mechanism can be 123

seamlessly integrated with existing sentence-level 124

retrieval methods and code-related large pre-trained 125

models. 126

To facilitate future research, we have made our 127

code publicly available1. Overall, the main contri- 128

butions of this paper can be outlined as follows: 129

(1) We are the first to explore a Token-level 130

retrieval-augmented mechanism (Tram) on the de- 131

coder side for source code summarization. 132

(2) Our proposed retrieval-augmented mecha- 133

nism is orthogonal to existing improvements, such 134

as better code representation, additional sentence- 135

level retrieval approaches, and pre-trained models. 136

(3) Extensive experiments and human evalua- 137

tion show that Tram significantly outperforms other 138

baseline models, generates more low-frequency to- 139

kens and is more interpretable. 140

2 Related Works 141

Retrieval-based Source Code Summarization. 142

Liu et al. (2021) retrieved the most similar code 143

snippet by text similarity metric to enrich target 144

code structure information for getting a better code 145

representation encoder. This retrieval method only 146

carries out from the perspective of text similarity 147

and neglects code semantic similarity. Besides, the 148

summary corresponding to the retrieved code snip- 149

pet is just a simple concatenation to the encoder. 150

Zhang et al. (2020); Parvez et al. (2021) used a 151

pre-trained encoder to obtain code semantic repre- 152

sentation, which was used to retrieve similar code 153

snippets. The former only uses similar code snip- 154

pets and discards the corresponding summaries; 155

the latter directly splice the retrieved code snippet 156

and the corresponding summary behind the target 157

code; both are also aimed at better code representa- 158

tion on the encoder side. Different from the above 159

sentence-level retrieval methods, Tram performs 160

token-level retrieval augmentation at each step of 161

the decoder that generates the next token. 162

1https://anonymous.4open.science/r/
SourceCodeSummary-8ABD
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Figure 1: The overview architecture of Tram.

K-Nearest-Neighbor Machine Translation. Re-163

cently, non-parametric methods have been success-164

fully applied to neural machine translation (Khan-165

delwal et al., 2021; Jiang et al., 2021; Zheng et al.,166

2021a,b). These approaches complement advanced167

NMT models with external memory to alleviate168

the performance degradation in domain adaption.169

Compared to these works, we have taken full ac-170

count of the inherent structural information of the171

code and have intelligently integrated code seman-172

tics in the retrieval process.173

3 Methodology174

3.1 Overview175

The overview architecture of Tram is shown in176

Figure 1. Initially, we introduce the base model,177

which is an encoder-decoder architecture that takes178

a code snippet and corresponding AST as input179

and generates a summary as output. Building upon180

the base model, we then construct a datastore that181

stores summary tokens and corresponding repre-182

sentations, where the representation is an intelli-183

gent combination of the decoder representation,184

code token representation, and AST node repre-185

sentation. Next, we develop a fine-grained token-186

level retrieval mechanism. This mechanism focuses187

on retrieving the top-K most similar tokens from188

the datastore and generating a retrieval-based dis-189

tribution. The retrieval-based distribution is then190

fused with the vanilla base model distribution by a191

weight hyper-parameter λ to form the final distri-192

bution. Additionally, we detail the integration of193

both token-level and sentence-level retrieval. The194

combination of token-level retrieval and sentence-195

level retrieval enables a more comprehensive sum-196
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Attend-Node
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GAT
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AST Source Code Summary Tokens

Multi-Head
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Figure 2: The architecture of base model.

marization process. In terms of integrating Tram 197

with code pre-trained models, the implementation 198

is broadly consistent and detailed in Appendix A. 199

3.2 Base Model 200

The base model serves as the foundation for the 201

subsequent retrieval process. It is designed to con- 202

struct the datastore and generate the base model 203

distribution. Figure 2 illustrates the specific archi- 204

tecture of the base model, which consists of two 205

encoders (SCEnc and ASTEnc) and a decoder. 206

Source Code Encoder (SCEnc). As shown in 207

Figure 2, we utilize Transformer (Vaswani et al., 208

2017) as the encoder for the source code tokens. 209

The Transformer consists of stacked multi-head 210

attention and parameterized linear transformation 211

layers. Each layer emphasizes on self-attention 212

mechanism. Nevertheless, as pointed out in Ah- 213

mad et al. (2020), the code semantic representation 214

is influenced by the mutual interactions between its 215

tokens rather than their absolute positions. There- 216

fore, we adopt the method of relative positional 217

encoding, as proposed by Shaw et al. (2018). 218

Assuming the code snippet contains p tokens 219

[t1, t2, ..., tp], after SCEnc, each token has a hidden 220

representation, which is denoted as: 221

[h1, h2, ..., hp] = SCEnc([t1, t2, ..., tp]) 222

AST Encoder (ASTEnc). Furthermore, the AST 223

of the source code can be considered as a graph 224

structure, making it suitable for representation and 225

learning using Graph Neural Networks (GNNs). 226

Taking advantage of the GAT’s (Veličković et al., 227

2018) exceptional performance and its ability to 228

assign adaptive attention weights to different nodes, 229
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we employ GAT to represent each node in the AST.230

The graph encoder layer processes the AST by first231

aggregating the neighbors of the nodes with edge232

information. It then updates the nodes with the233

aggregated information from their neighborhoods.234

After updating the node information, the node235

representations are put together into a ReLU acti-236

vation followed by residual connection (He et al.,237

2016) and layer normalization (Ba et al., 2016).238

Assuming the AST of the code snippet contains239

q nodes [n1, n2, ..., nq], after the ASTEnc, each240

node has a hidden representation, denoted as:241

[r1, r2, ..., rq] = ASTEnc([n1, n2, ..., nq])242

Summary Decoder. The summary decoder is de-243

signed with modified transformer decoding blocks.244

At time step t, given the existing summary tokens245

[s1, s2, ..., st−1], the decoding blocks first encode246

them by masked multi-head attention. After that,247

we expand the transformer block by leveraging248

two multi-head cross-attention modules to interact249

with the two encoders for summary decoding. One250

multi-head cross-attention module is performed251

over the code token features to get the first-stage252

decoded information, which will then be fed into253

the other over the learned AST node features for254

the second-stage decoding. Then the decoded sum-255

mary vectors [d1, d2, ..., dt−1] are put into a feed-256

forward network for non-linear transformation.257

3.3 Datastore Construction258

Based on the base model, to achieve the goal of259

fine-grained token-level retrieval, we build the data-260

store that stores summary tokens and correspond-261

ing representations. At the stage of datastore es-262

tablishment, we adopt the above pre-trained base263

model to go through all training instances in an264

offline manner. During this process, for each in-265

stance, the SCEnc and ASTEnc encode the code266

tokens and AST nodes into a sequence of hid-267

den states: [h1, h2, ..., hp] and [r1, r2, ..., rq], the268

decoder generates the target summary autoregres-269

sively. At time step t, the decoder takes existing270

summary token [s1, s2, ..., st−1] as input, for the271

last token st−1, the decoder’s first cross-attention272

module gets the attention score of the code tokens273

(called Attend-Code [α1, α2, ..., αp]), the second274

cross-attention module gets the attention score of275

the AST nodes (called Attend-Node [β1, β2, ...βq]).276

We use Attend-Code and Attend-Node to perform277

weighted summation of the representations of code278

tokens and AST nodes, respectively, denoted as: 279

[α1, α2, ..., αp] ∗ [h1, h2, ..., hp]T = Ht 280
281

[β1, β2, ..., βq] ∗ [r1, r2, ..., rp]T = Rt 282

where Ht means weighted code token representa- 283

tion, Rt means weighted AST node representation. 284

After two cross-attention modules, the input to- 285

ken st−1 is converted to token representation dt−1. 286

Because the goal at time step t is to generate the 287

next token st, we pick the token representation 288

dt−1 to represent st. To fully consider the contex- 289

tual code semantics associated with the summary 290

token, we concatenate Ht, Rt, and dt−1 to create 291

the final and more comprehensive representation 292

of st. Besides, to facilitate efficient retrieval in the 293

subsequent steps, we applied L2 regularization to 294

the representations in practice, denoted as: 295

kt = Concat(Ht, Rt, dt−1) 296
297

k̃t = L2_Normalize(kt) 298

where k̃t is the final presentation of token st. Fi- 299

nally, the ground-truth summary token st and cor- 300

responding representation k̃t are inserted into data- 301

store as a key-value pair, denoted as (key, value) = 302

(k̃t, st), the whole datastore can be denoted as: 303

(K,V) = {(k̃t, st),∀st ∈ S} 304

where S means all summary tokens in the training 305

dataset. It is important to note that the datastore 306

contains duplicate tokens because the same sum- 307

mary token can have different keys, representing 308

different semantic representations due to variations 309

in linguistic contexts. 310

3.4 Token-level Retrieval 311

During inference, at each decoding step t, the cur- 312

rent summary token representation dt−1 is com- 313

bined with the corresponding Ht and Rt using 314

the same concatenate and L2 regularization oper- 315

ator as query qt. The query retrieves the top-K 316

most similar summary tokens in the datastore ac- 317

cording to cosine similarity distance. It is worth 318

noting that we use cosine similarity instead of 319

squared-L2 distance because of the performance 320

of the preliminary experiment. As an added bonus, 321

cosine similarity can be seen as retrieval confi- 322

dence. In practice, the retrieval over millions of 323

key-value pairs is carried out using FAISS (John- 324

son et al., 2019), a library for fast nearest neigh- 325

bor search in high-dimensional spaces. The re- 326

trieved key-value pairs (k, v) and corresponding 327
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cosine similarity distance α composed a triple set328

N = {(ki, vi, αi)|i = 1, 2, · · · ,K}. Inspired by329

KNN-MT (Khandelwal et al., 2021), the triple330

set can then be expanded and normalized to the331

retrieval-based distribution as follows:332

Pr(st|c, ŝ<t) ∝
∑

(ki,vi,αi)∈N

1vi=st exp (g(ki, αi))333

334
g(ki, αi) = αi ∗ T335

where g(·) can be any Kernel Density Estimation336

(KDE); in practice, we use the product form; T is337

the temperature to regulate probability distribution.338

3.5 Fused Distribution339

The final prediction distribution can be seen as a340

combination of the vanilla base model output distri-341

bution and the retrieval-based distribution, which342

is interpolated by a hyper-parameter λ:343

P (st|c, ŝ<t) = λ ∗ Pr(st|c, ŝ<t)

+ (1− λ) ∗ Pm(st|c, ŝ<t)
344

where Pm indicates the base model distribution.345

3.6 Additional Sentence-level Retrieval346

Our proposed token-level retrieval augmented347

method can also be seamlessly incorporated with348

additional sentence-level retrieval. Sentence-level349

retrieval here means using the target code snippet to350

retrieve the most semantically similar code snippet351

in the corpus through code semantic representa-352

tions. Then we assign an additional but the same353

base model for the most similar code snippet to354

generate tokens autoregressively. At each genera-355

tion step, the decoder of the additional base model356

(generating similar-code-based next token distribu-357

tion ) is synchronous with the original target code358

snippet decoder (generating base model next token359

distribution). Finally, the above two distributions,360

together with the “token-level retrieved next token361

distribution”, form the final distribution through a362

weighted sum, which is denoted as:363

P (st|c, ŝ<t) = λ1 ∗ Pr(st|c, ŝ<t)

+ λ2 ∗ Sim ∗ Ps(st|⟨c⟩, ŝ<t)

+ (1− λ1 − λ2) ∗ Pm(st|c, ŝ<t)

364

where Ps is the additional base model produced365

distribution, ⟨c⟩ is the most semantically similar366

code snippet to the target code snippet c, and Sim367

is the corresponding similarity score.368

Datasets Java Python CCSD Python‡

Train 69,708 55,538 84,316 65,236
Validation 8,714 18,505 4,432 21,745

Test 8,714 18,502 4,203 21,745
Code: Avg. tokens 73.76 49.42 68.59 150.82

Summary: Avg. tokens 17.73 9.48 8.45 9.93

Table 2: Statistics of the experimental datasets.

4 Experiments 369

4.1 Experimental Setup 370

Datasets. We conduct the experiments on four 371

public benchmarks of Java (Hu et al., 2018), Python 372

(Wan et al., 2018), CCSD (C Code Summarization 373

Dataset) (Liu et al., 2021), and Python‡ (Zhang 374

et al., 2020). The partitioning of train/valida- 375

tion/test sets follows the original datasets. The 376

statistics of the four datasets are shown in Table 2. 377

Out-of-Vocabulary. The vast operators and iden- 378

tifiers in program language may produce a much 379

larger vocabulary than natural language, which can 380

cause Out-of-Vocabulary problem. To avoid this 381

problem, we apply CamelCase and snake−case 382

tokenizers that are consistent with recent works 383

(Gong et al., 2022; Wu et al., 2021; Ahmad et al., 384

2020) to reduce the vocabulary size of source code. 385

Metrics. Similar to recent work (Gong et al., 386

2022; Son et al., 2022), we evaluate the source code 387

summarization performance using three widely- 388

used metrics, BLEU (Papineni et al., 2002), ME- 389

TEOR (Banerjee and Lavie, 2005) and ROUGE-L 390

(Lin, 2004). Furthermore, considering the essence 391

of source code summarization to help humans bet- 392

ter understand code, we also conduct a human eval- 393

uation study. The volunteers are asked to rank sum- 394

maries generated from the anonymized approaches 395

from 1 to 5 (i.e., 1: Poor, 2: Marginal, 3: Accept- 396

able, 4: Good, 5: Excellent) based on Similarity, 397

Relevance, and Fluency metrics. Further details 398

on human evaluation can be found in Appendix C. 399

Training Details. We implement our approach 400

based on JoeyNMT (Kreutzer et al., 2019). The 401

batch size is set to 32 and Adam optimizer is used 402

with an initial learning rate 10−4. For Faiss (John- 403

son et al., 2019) Index, we employ IndexFlatIP and 404

top-K=16 to maintain a balance between retrieval 405

quality and retrieval speed in the large-scale data- 406

store. It is worth noting that only the base model 407

requires training, and once trained, all the parame- 408

ters of the base model are fixed. 409
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Model Java Python
BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

Transformer-based Methods
Transformer (Ahmad et al., 2020) 44.58 54.76 26.43 32.52 46.73 19.77
CAST (Shi et al., 2021) 45.19 55.08 27.88 - - -
mAST + GCN (Choi et al., 2021) 45.49 54.82 27.17 32.82 46.81 20.12
SiT (Wu et al., 2021) 45.70 55.54 27.55 33.46 47.50 20.28
SiT + PDG (Son et al., 2022) 46.86 56.69 - - - -
CODESCRIBE (Guo et al., 2022b) 46.93 56.18 29.13 34.44 49.02 20.91
Our Method

Base 46.84 56.92 28.71 34.20 48.37 20.99
Tram w/o HR 47.92 57.56 29.37 35.41 49.39 21.66
Tram 48.32 58.13 29.56 35.97 49.92 22.09
Tram with SenRe 48.58 58.43 29.77 36.23 50.04 22.23

Our Method on Pre-trained Models
CodeT5 46.47 58.11 27.92 35.37 51.27 23.22
CodeT5 + Tram 47.85(1.38↑) 59.32 28.75 36.23(0.86↑) 52.08 24.13
UniXcoder 45.32 56.61 26.52 35.89 51.17 23.11
UniXcoder + Tram 46.17(0.85↑) 57.22 26.94 36.45(0.56↑) 51.78 23.55

Table 3: Comparison of the performance of our method with other baseline methods on Java and Python benchmarks
in terms of BLEU, ROUGE-L, and METEOR. The results of baseline models are reported in their original papers.
‘-’ refers to no corresponding value from the paper. HR refers to code token and AST node representation; SenRe
refers to additional sentence-level retrieval. All of our results are the mean of 5 runs with different random seeds.

4.2 Baselines410

Transformer-based. Transformer (Ahmad et al.,411

2020) is the first attempt to use transformer archi-412

tecture in this field. Soon, structure-aware methods413

were proposed. Among these are CAST (Shi et al.,414

2021) and mAST+GCN (Choi et al., 2021), which415

integrate structural information in a hybrid manner.416

SiT (Wu et al., 2021), SiT+PDG (Son et al., 2022),417

and CODESCRIBE (Guo et al., 2022b) utilize a418

structured-guided way. The detailed description of419

these baselines is shown in Appendix B.420

Retrieval-based. Rencos (Zhang et al., 2020)421

is the first retrieval-based Seq2Seq model, which422

computes a joint probability conditioned on both423

the original source code and the retrieved most sim-424

ilar source code for a summary generation. HGNN425

(Liu et al., 2021) is the retrieval-based GNN model,426

which retrieval the most similar code and uses a427

Hybrid GNN by fusing static graph and dynamic428

graph to capture global code graph information.429

4.3 Main Results430

The main experiment results are shown in Table431

3 and Table 4 in terms of three automatic evalu-432

ation metrics. The reason we have two tables is433

that transformer-based works compare their perfor-434

mance on the widely-used Java and Python bench-435

marks, while the retrieval-based works use two436

different benchmarks, namely CCSD and Python‡.437

Thus, our experiments are performed on all four 438

datasets for a more thorough comparison. We calcu- 439

late the metric values following the same scripts2. 440

From Table 3, SiT + PDG and CODESCRIBE 441

achieve better results than all previous works. How- 442

ever, it is worth noting that even our base model 443

can achieve comparable performance to other mod- 444

els. This is due to the improved training method we 445

used, Pre-LN (layer normalization inside the resid- 446

ual blocks), which is discussed in (Liu et al., 2020). 447

This method enhances the stability of the training 448

process and leads to better performance. Tram fur- 449

ther boosts results with 1.39 BLEU points on Java 450

and 1.53 BLEU points on Python and achieves new 451

state-of-the-art results. We also observe that the 452

performance improvement for Python is better than 453

that for Java. The main reason we speculate is that 454

Java has a longer average code token length (from 455

Table 2) and richer code structure information. 456

In Table 4, we compare Tram with other retrieval- 457

based models on CCSD and Python‡ benchmarks. 458

Our base model is even superior to other retrieval- 459

based methods; the main reason is that the back- 460

bone 3 are different. We reproduce Rencos archi- 461

tecture4 in our base model for a fair comparison, 462

which we denoted as “Base + Rencos”. Tram out- 463

2https://github.com/gingasan/sit3/blob/main/
c2nl/eval/bleu/google_bleu.py

3Other retrieval-based methods are RNN-based.
4HGNN code is not open source.
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Model CCSD Python‡

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR
Retrieval-based Methods
Rencos (Zhang et al., 2020) 14.80 31.41 14.64 34.73 47.53 21.06
HGNN (Liu et al., 2021) 16.72 34.29 16.25 - - -
Our Method

Base 17.82 35.33 16.71 34.85 48.84 21.49
Base + Rencos 19.43 36.92 17.69 35.26 49.25 22.07
Tram w/o HR 21.27 37.61 18.09 36.41 50.18 22.24
Tram 21.48 37.88 18.35 36.73 50.35 22.53
Tram with SenRe 22.23 38.16 18.96 36.95 50.69 22.93

Table 4: Comparison of other retrieval methods. HR means code token and AST node representation; SenRe means
additional sentence-level retrieval. All of our results are the mean of 5 runs with different random seeds.

Model Java Python‡

Similarity Relevance Fluency Similarity Relevance Fluency
Rencos - - - 3.07 3.06 3.96
CODESCRIBE 3.67 3.72 4.16 - - -
Base 3.62 3.64 4.10 3.20 3.24 4.03
Tram 3.83 3.89 4.23 3.33 3.44 4.14

Table 5: Human Evaluation on Java and Python‡ datasets.

performs all other retrieval-based methods, further464

improving performance with 2.05 BLEU points465

and 1.47 BLEU points on CCSD and Python‡, re-466

spectively. Furthermore, as shown in Table 3 and467

4, enhancing Tram with additional sentence-level468

retrieval (refer as “Tram with SenRe”) and its inte-469

gration with code pre-trained models ("Our Method470

on Pre-trained Models" section in Table 3) leads to471

a notable improvement in performance.472

4.4 Ablation Study473

To validate the effectiveness of intelligently fus-474

ing summary token representation with code token475

representation Ht and AST node representation476

Rt, we conduct an ablation experiment where we477

eliminate the Ht, Rt, and directly use dt−1 to repre-478

sent target summary token st for comparison (refer479

as “Tram w/o HR”). As shown in Table 3 and 4,480

the performance declined by 0.40, 0.56, 0.21, and481

0.32 BLEU points for Java, Python, CCSD, and482

Python‡, respectively. This decline in performance483

across all datasets demonstrated the importance of484

fusing code semantics into the summary token for485

effective token-level retrieval on the decoder side.486

4.5 Human Evaluation487

We perform a human evaluation (details provided in488

Appendix C) to assess the quality of the generated489

summaries by Tram, Rencos, CODESCRIBE, and490

base model in terms of Similarity, Relevance, and491
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Figure 3: λ and T selections in Java and Python datasets.

Fluency as shown in Table 5. The results show that 492

Tram can generate better summaries that are more 493

similar to the ground truth, more relevant to the 494

source code, and more fluent in naturalness. 495

5 Analysis 496

5.1 Hyperparameters Analysis 497

Tram has two primary hyperparameters: λ and T . λ 498

means the weight of the retrieval-based distribution 499
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void scsi_netlink_init(void){
struct netlink_kernle_cfg cfg;
cfg.input = scsi_nl_rcv_msg;
cfg.groups = SCSI_NL_GPRP_CNT;
scsi_nl_sock = netlink_kernel_create(&init_net,
NETLINK_SCSITRANSPORT, &cfg);
if (!scsi_nl_sock){

printk(KERN_ERR "%s: register of receive handler failed\n", __func__);
return;}

return;}
Base: called by scsi netlink initialization to register the scsi netlink interface.
Rencos: called by scsi netlink interface to register the scsi netlink interface.
Tram: called by scsi subsystem to register the scsi transport netlink interface.
Human Written: called by scsi subsystem to initialize the scsi transport netlink interface.
Retrieval Results: “subsystem” (0.90), “transport”(0.04), “stack”(0.02), “command”(0.0034), “device”(0.0025) · · ·

Table 6: A Python instance. The bold red font is the keyword of generated summary. The Retrieval Results line is
the visible retrieval results and corresponding probability after applying softmax on the keyword generation step.

Token Frequency 1 2 5 10 50 100

Java
Base 126 75 45 27 28 16
Rencos 243 138 73 38 37 18
Tram 307 164 115 51 42 21

Python‡
Base 452 376 272 176 84 82
Rencos 799 515 344 223 88 109
Tram 983 647 405 298 103 121

Table 7: Number of correctly generated low-frequency tokens

component in the final distribution; the higher value500

indicates greater reliance on retrieval results, and501

vice versa. T means temperature, which smooths502

the retrieval-based distribution. We plot the perfor-503

mance of Tram with different hyperparameter selec-504

tions in Figure 3. The value of λ has a significant505

impact on the final performance, and we find that506

different datasets have different optimal values (i.e.,507

λ = 0.5 for Java and λ = 0.6 for Python). We also508

observe that λ = 1 outperforms λ = 0. The reason509

is related to the BLEU score (detailed cause anal-510

ysis provided in Appendix D). Regarding T , if it511

is too small, the retrieval-based distribution cannot512

be adequately distinguished; while if it is too large,513

the retrieval-based distribution will concentrate on514

a single token. Our final results indicate that both515

extremes result in a performance decrease.516

5.2 Token Frequency In-Depth Analysis517

Compared to the coarse-grained retrieval approach518

at the sentence-level, the token-level retrieval can519

capture the top-K most semantically relevant to-520

kens at every step. This can increase the likeli-521

hood of generating those low-frequency tokens in522

the summary text. Since these low-frequency to-523

kens and their corresponding representations are524

stored in the datastore, by retrieving the most se-525

mantically similar tokens at each generation step, 526

these low-frequency tokens can be more easily and 527

directly fetched from the datastore compared to 528

purely model generated. We further conduct an in- 529

depth statistical analysis of the generation quantity 530

of low-frequency tokens. We first collect all the 531

correctly generated tokens according to the ground- 532

truth summaries. Then we count the frequencies 533

of all these correct tokens in the training set and 534

record the number of the correct and low-frequency 535

tokens (frequency = 1, 2, 5, 10, 50, 100). From 536

Table 7, we can see that Tram can correctly predict 537

more low-frequency tokens than Rencos (sentence- 538

level retrieval) and Base (vanilla model generated) 539

when the token frequency is small (≤ 100). 540

5.3 Qualitative Analysis 541

We provide a python example in Table 6 to demon- 542

strate the effectiveness and interpretability of Tram. 543

The qualitative analysis reveals that, compared to 544

other models, Tram enables visualization of the 545

Retrieval Results and corresponding probability at 546

each generation step, as depicted in the last line, 547

making our approach more interpretable. More 548

visualized instances can be found in Appendix E. 549

6 Conclusion 550

In this paper, we propose a novel token-level 551

retrieval-augmented mechanism for source code 552

summarization. By a well-designed fine-grained 553

retrieval pattern, Tram can effectively incorporate 554

external human-written code-summary pairs on the 555

decoder side. Extensive experiments and human 556

evaluation show that Tram not only significantly 557

improves performance but also generates more low- 558

frequency tokens and enhances interpretability. 559
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Limitations560

Our retrieval-augmented method (Tram) takes full561

advantage of external retrieval information, and the562

performance improvement relies on high-quality563

code-summary token-level pairs. However, there564

exists some noise in the datastore which will bias565

the final token distribution; therefore, dealing with566

noise deserves our deeper exploration. Further-567

more, our experiments are only on high-resource568

programming language (Python, Java, C) scenarios;569

exploring how to apply our model in a low-resource570

programming language (Ruby, Go, etc.) is our fu-571

ture direction.572

References573

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and574
Kai-Wei Chang. 2020. A transformer-based ap-575
proach for source code summarization. In Proceed-576
ings of the 58th Annual Meeting of the Association577
for Computational Linguistics, pages 4998–5007, On-578
line. Association for Computational Linguistics.579

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-580
ton. 2016. Layer normalization. arXiv preprint581
arXiv:1607.06450.582

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:583
An automatic metric for MT evaluation with im-584
proved correlation with human judgments. In Pro-585
ceedings of the ACL Workshop on Intrinsic and Ex-586
trinsic Evaluation Measures for Machine Transla-587
tion and/or Summarization, pages 65–72, Ann Arbor,588
Michigan. Association for Computational Linguis-589
tics.590

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-591
Hyong Lee. 2021. Learning sequential and structural592
information for source code summarization. In Find-593
ings of the Association for Computational Linguis-594
tics: ACL-IJCNLP 2021, pages 2842–2851, Online.595
Association for Computational Linguistics.596

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-597
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,598
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-599
BERT: A pre-trained model for programming and600
natural languages. In Findings of the Association601
for Computational Linguistics: EMNLP 2020, pages602
1536–1547, Online. Association for Computational603
Linguistics.604

Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu,605
Yun Peng, and Zenglin Xu. 2022. Source code sum-606
marization with structural relative position guided607
transformer. In 2022 IEEE International Conference608
on Software Analysis, Evolution and Reengineering609
(SANER), pages 13–24.610

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming611
Zhou, and Jian Yin. 2022a. UniXcoder: Unified612

cross-modal pre-training for code representation. In 613
Proceedings of the 60th Annual Meeting of the As- 614
sociation for Computational Linguistics (Volume 1: 615
Long Papers), pages 7212–7225, Dublin, Ireland. As- 616
sociation for Computational Linguistics. 617

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, 618
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan, 619
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, 620
Shao Kun Deng, Colin Clement, Dawn Drain, Neel 621
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. 622
2021. Graphcode{bert}: Pre-training code represen- 623
tations with data flow. In International Conference 624
on Learning Representations. 625

Juncai Guo, Jin Liu, Yao Wan, Li Li, and Pingyi Zhou. 626
2022b. Modeling hierarchical syntax structure with 627
triplet position for source code summarization. In 628
Proceedings of the 60th Annual Meeting of the As- 629
sociation for Computational Linguistics (Volume 1: 630
Long Papers), pages 486–500, Dublin, Ireland. Asso- 631
ciation for Computational Linguistics. 632

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 633
Sun. 2016. Deep residual learning for image recog- 634
nition. In Proceedings of the IEEE Conference on 635
Computer Vision and Pattern Recognition (CVPR). 636

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. 637
Deep code comment generation. In Proceedings of 638
the 26th Conference on Program Comprehension, 639
ICPC ’18, page 200–210, New York, NY, USA. As- 640
sociation for Computing Machinery. 641

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and 642
Luke Zettlemoyer. 2016. Summarizing source code 643
using a neural attention model. In Proceedings of the 644
54th Annual Meeting of the Association for Compu- 645
tational Linguistics (Volume 1: Long Papers), pages 646
2073–2083, Berlin, Germany. Association for Com- 647
putational Linguistics. 648

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo 649
Cheng, Shujian Huang, and Lei Li. 2021. Learning 650
kernel-smoothed machine translation with retrieved 651
examples. In Proceedings of the 2021 Conference 652
on Empirical Methods in Natural Language Process- 653
ing, pages 7280–7290, Online and Punta Cana, Do- 654
minican Republic. Association for Computational 655
Linguistics. 656

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 657
Billion-scale similarity search with gpus. IEEE 658
Transactions on Big Data, 7(3):535–547. 659

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke 660
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh- 661
bor machine translation. In International Conference 662
on Learning Representations. 663

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler. 664
2019. Joey NMT: A minimalist NMT toolkit for 665
novices. In Proceedings of the 2019 Conference on 666
Empirical Methods in Natural Language Processing 667
and the 9th International Joint Conference on Natu- 668
ral Language Processing (EMNLP-IJCNLP): System 669

9

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://arxiv.org/abs/1607.06450
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.1109/SANER53432.2022.00013
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/2022.acl-long.37
https://doi.org/10.18653/v1/2022.acl-long.37
https://doi.org/10.18653/v1/2022.acl-long.37
https://ieeexplore.ieee.org/document/7780459/
https://ieeexplore.ieee.org/document/7780459/
https://ieeexplore.ieee.org/document/7780459/
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://arxiv.org/abs/1702.08734
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019


Demonstrations, pages 109–114, Hong Kong, China.670
Association for Computational Linguistics.671

Alexander LeClair, Sakib Haque, Lingfei Wu, and672
Collin McMillan. 2020. Improved code summariza-673
tion via a graph neural network. In Proceedings of674
the 28th International Conference on Program Com-675
prehension, ICPC ’20, page 184–195, New York, NY,676
USA. Association for Computing Machinery.677

Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and678
Zhi Jin. 2021. Editsum: A retrieve-and-edit frame-679
work for source code summarization. In 2021 36th680
IEEE/ACM International Conference on Automated681
Software Engineering (ASE), pages 155–166.682

Yuding Liang and Kenny Zhu. 2018. Automatic gener-683
ation of text descriptive comments for code blocks.684
Proceedings of the AAAI Conference on Artificial685
Intelligence, 32(1).686

Chin-Yew Lin. 2004. ROUGE: A package for auto-687
matic evaluation of summaries. In Text Summariza-688
tion Branches Out, pages 74–81, Barcelona, Spain.689
Association for Computational Linguistics.690

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,691
and Jiawei Han. 2020. Understanding the difficulty692
of training transformers. In Proceedings of the 2020693
Conference on Empirical Methods in Natural Lan-694
guage Processing (EMNLP), pages 5747–5763, On-695
line. Association for Computational Linguistics.696

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,697
and Yang Liu. 2021. Retrieval-augmented generation698
for code summarization via hybrid {gnn}. In Inter-699
national Conference on Learning Representations.700

Pablo Loyola, Edison Marrese-Taylor, and Yutaka Mat-701
suo. 2017. A neural architecture for generating natu-702
ral language descriptions from source code changes.703
In Proceedings of the 55th Annual Meeting of the704
Association for Computational Linguistics (Volume 2:705
Short Papers), pages 287–292, Vancouver, Canada.706
Association for Computational Linguistics.707

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-708
Jing Zhu. 2002. Bleu: A method for automatic evalu-709
ation of machine translation. In Proceedings of the710
40th Annual Meeting on Association for Computa-711
tional Linguistics, ACL ’02, page 311–318, USA.712
Association for Computational Linguistics.713

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,714
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval715
augmented code generation and summarization. In716
Findings of the Association for Computational Lin-717
guistics: EMNLP 2021, pages 2719–2734, Punta718
Cana, Dominican Republic. Association for Compu-719
tational Linguistics.720

Ehud Reiter. 2018. A structured review of the validity of721
BLEU. Computational Linguistics, 44(3):393–401.722

Abigail See, Peter J. Liu, and Christopher D. Manning. 723
2017. Get to the point: Summarization with pointer- 724
generator networks. In Proceedings of the 55th An- 725
nual Meeting of the Association for Computational 726
Linguistics (Volume 1: Long Papers), pages 1073– 727
1083, Vancouver, Canada. Association for Computa- 728
tional Linguistics. 729

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. 730
Self-attention with relative position representations. 731
In Proceedings of the 2018 Conference of the North 732
American Chapter of the Association for Computa- 733
tional Linguistics: Human Language Technologies, 734
Volume 2 (Short Papers), pages 464–468, New Or- 735
leans, Louisiana. Association for Computational Lin- 736
guistics. 737

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang, 738
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021. 739
CAST: Enhancing code summarization with hierar- 740
chical splitting and reconstruction of abstract syntax 741
trees. In Proceedings of the 2021 Conference on 742
Empirical Methods in Natural Language Processing, 743
pages 4053–4062, Online and Punta Cana, Domini- 744
can Republic. Association for Computational Lin- 745
guistics. 746

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, 747
Atsushi Miyamoto, and Tadayuki Matsumura. 2019. 748
Automatic source code summarization with extended 749
tree-lstm. In 2019 International Joint Conference on 750
Neural Networks (IJCNN), pages 1–8. 751

Jikyoeng Son, Joonghyuk Hahn, HyeonTae Seo, and 752
Yo-Sub Han. 2022. Boosting code summarization 753
by embedding code structures. In Proceedings of 754
the 29th International Conference on Computational 755
Linguistics, pages 5966–5977, Gyeongju, Republic 756
of Korea. International Committee on Computational 757
Linguistics. 758

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 759
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 760
Kaiser, and Illia Polosukhin. 2017. Attention is all 761
you need. In Advances in Neural Information Pro- 762
cessing Systems, volume 30. Curran Associates, Inc. 763
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A Integration of Tram with Code811

Pre-trained Models812

We need to clarify that our Tram can be integrated813

with generative code pre-trained models (encoder-814

decoder architecture), such as CodeT5 (Wang et al.,815

2021) and UniXcoder (Guo et al., 2022a), but is816

not suitable for code pre-trained models used for817

code understanding (encoder-only architecture),818

like CodeBERT (Feng et al., 2020) and GraphCode-819

BERT (Guo et al., 2021).820

Specifically, the integration process is similar to821

the Methodology section and primarily consists of822

three steps:823

(1) We use Java (Hu et al., 2018) and Python824

(Wan et al., 2018) datasets to fine-tune the code825

pre-trained models, respectively, and treat the fine-826

tuned models as base models;827

(2) During the datastore establishment phase, the828

process aligns with that described in the Datastore829

Construction section. However, we have omitted830

the AST input to satisfy the input conditions of the831

code pre-trained models;832

(3) Token-level Retrieval: The retrieved top-K 833

tokens are expanded to a probability distribution 834

(which we refer to as the retrieval-based distribu- 835

tion). Then we fused the retrieval-based distribu- 836

tion with the vanilla distribution built on the origi- 837

nal vocabulary table of the code pre-trained models 838

to obtain the final distribution. 839

B Details on Transformer-based Methods 840

Transformer (Ahmad et al., 2020) is the first at- 841

tempt to use transformer architecture, equipped 842

with relative positional encoding and copy mecha- 843

nism (See et al., 2017), effectively capturing long- 844

range dependencies of source code. CAST (Shi 845

et al., 2021) hierarchically splits a large AST into a 846

set of subtrees and utilizes a recursive neural net- 847

work to encode the subtrees. The aim is to capture 848

the rich information in ASTs. mAST + GCN (Choi 849

et al., 2021) adopt the AST and graph convolution 850

to model the structural information and the trans- 851

former to model the sequential information. SiT 852

(Wu et al., 2021) incorporates a multi-view graph 853

matrix into the transformer’s self-attention mecha- 854

nism. SiT + PDG (Son et al., 2022) points program 855

dependency graph is more effective for express- 856

ing the structural information than AST. CODE- 857

SCRIBE (Guo et al., 2022b) model the hierarchical 858

syntax structure of code by introducing a novel 859

triplet position. 860

C Human Evaluation 861

In our human evaluation, we invited 3 PhD stu- 862

dents and 5 master students with at least 2-5 years 863

of software engineering experience as volunteers. 864

We conduct a small-scale random dataset (i.e., 100 865

random Java samples and 100 random Python sam- 866

ples). The volunteers are asked to rank summaries 867

generated from the anonymized approaches from 868

1 to 5 (i.e., 1: Poor, 2: Marginal, 3: Acceptable, 4: 869

Good, 5: Excellent) based on the three following 870

questions: 871

• Similarity: How similar of generated sum- 872

mary and ground truth? 873

• Relevance: Is the generated summary relevant 874

to the source code? 875

• Fluency: Is the generated summary syntacti- 876

cally correct and fluent? 877

For each evaluation summary, the rating scale is 878

from 1 to 5, where a higher score means better 879
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quality. Responses from all volunteers are collected880

and averaged.881

D Cause Analysis: Performance882

Superiority of λ = 1 over λ = 0883

λ means the weight of the retrieval-based distri-884

bution component in the final distribution. The885

reason is related to the BLEU score. The BLEU886

metric measures the similarity between two sen-887

tences by assessing the overlap of words between888

them. Model-generated sentences tend to produce889

more common words, leading to better fluency;890

in contrast, sentences generated through retrieval891

methods are more likely to include factual terms,892

which, when evaluated using the BLEU score, re-893

sults in a higher score (Reiter, 2018). However, it894

may scarify the language quality.895

For example, given the ground truth "start896

a source file within a compilation unit.", the897

retrieval-based generation with λ = 1: "start898

file within a compilation unit unit.", achieves899

a BLEU score of 48.78. This is higher than the900

model-based generation with λ = 0: "start the901

source file within the unit.", which scores a902

BLEU of 33.17. Indeed, neither λ = 1 or λ = 0 is903

good enough, and we need a trade-off between the904

retrieval and the model generation.905

E Qualitative Examples906

Table 8 shows a couple of qualitative examples to907

demonstrate the effectiveness and interpretability908

of Tram.909
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void batadv_sysfs_del_meshif(struct net_device *dev)
{

struct batadv_priv *bat_priv = netdev_priv(dev);
struct batadv_attribute **bat_attr;
for (bat_attr = batadv_mesh_attrs; *bat_attr; ++bat_attr)

sysfs_remove_file(bat_priv->mesh_obj, &((*bat_attr)->attr));

kobject_uevent(bat_priv->mesh_obj, KOBJ_REMOVE);
kobject_del(bat_priv->mesh_obj);
kobject_put(bat_priv->mesh_obj);
bat_priv->mesh_ojb = NULL;

}
Base: Remove mesh interface-related sysfs sysfs entries.
Rencos: Delete mesh junction sysfc attributes.
Tram: Remove soft interface specific sysfs entries.
Human Written: Remove soft interface specific sysfs entries.
Retrieval Results: “interface” (0.82), “portal”(0.11), “bridge”(0.04), “junction”(0.0086), “link”(0.0013) · · ·
def category_structure(category, site):

return {’description’: category.title,
’html_Url’: (’%s://%s%s’%(PROTOCOL, site.domain,

category.get_absolute_url())),
’rss_Url’: (’%s://%s%s’%(PROTOCOL, site.domain,

reverse(’zinnia:category_feed’, args=[category.tree_path]))),
’category_Id’: category.pk ,
’parent_Id’: ((category.parent and category.parent.pk) or 0 ),
’category_Description’: category.description,
’category_Name’: category.title }

Base: updates the structure.
Rencos: a post structure.
Tram: a category structure.
Human Written: a category structure.
Retrieval Results: “category”(0.43), “tag”(0.11), “post”(0.07), “helper”(0.06), “version”(0.06) · · ·

Table 8: Task samples. The first is a C instance; the second is a Python instance. The bold red font is the keyword of
the generated summary. The Retrieval Results line is the visible retrieval results and corresponding probability after
applying softmax on the keyword generation step.
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