

000 001 002 003 004 005 006 007 008 009 010 FPDOU: MASTERING DOUDIZHU WITH FICTITIOUS PLAY

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 DouDizhu is a challenging three-player imperfect-information game involving
 012 competition and cooperation. Despite strong performance, existing methods are pri-
 013 marily developed with reinforcement learning (RL) without closely examining the
 014 stationary assumption. Specifically, DouDizhu’s three-player nature entails algo-
 015 rithms to approximate Nash equilibria, but existing methods typically update/learn
 016 all players’ strategies simultaneously. This creates a non-stationary environment
 017 that impedes RL-based best-response learning and hinders convergence to Nash
 018 equilibria. Inspired by Generalized Weakened Fictitious Play (GWFP), we propose
 019 FPDou. More specifically, to ease the use of GWFP, we adopt a perfect-training-
 020 imperfect-execution paradigm: we treat the two Peasants as one player by sharing
 021 information during training, which converts DouDizhu into a two-player zero-sum
 022 game amenable to GWFP’s analysis. To mitigate the training-execution gap, we
 023 introduce a regularization term to penalize the policy discrepancy between per-
 024 fect and imperfect information. To make learning efficient, we design a practical
 025 implementation that consolidates RL and supervised learning into a single step,
 026 eliminating the need to train two separate networks. To address non-stationarity,
 027 we alternate on-policy/off-policy updates. This not only preserves stationarity for
 028 ϵ -best-response learning but also enhances sample efficiency by using data for both
 029 sides. FPDou achieves a new state of the art: it uses a $3 \times$ smaller model without
 030 handcrafted features, outperforms DouZero and PerfectDou in both win rate and
 031 score, and ranks first among 452 bots on the Botzone platform. The anonymous
 032 demo and code are provided for reproducibility.

032 1 INTRODUCTION

033 DouDizhu (Fighting the Landlord) is a three-player imperfect-information game that involves both
 034 competition and cooperation. Its strategic complexity and large state-action space have made it a
 035 popular benchmark in artificial intelligence research (Zhang et al., 2024). Early approaches based
 036 on rule-based systems (Zha et al., 2021a) and supervised learning (Li et al., 2019; Tan et al., 2021)
 037 achieved limited performance. Over the years, advancements in self-play methods combined with
 038 deep RL (Sutton & Barto, 2018) have been introduced to mastering the game, yielding significant
 039 performance improvements (Jiang et al., 2019; Zha et al., 2021b; Yang et al., 2022). Despite these
 040 successes achieved by integrating various RL techniques, we argue that one key overlooked aspect
 041 is that: in *multi-player games*, simultaneous adaptation of all players’ strategies based on recently
 042 played games violates the *stationary* assumption in standard RL. In fact, in games, it is known that
 043 *best-response* learning is often essential for algorithm convergence (Bowling, 2004; Shamma &
 044 Arslan, 2005; Xu, 2016; Gao et al., 2018). Yet in DouDizhu, this theoretical result has been largely
 045 neglected due to the empirical success of directly introducing RL techniques to the game.

046 Motivated to fill this gap, we introduce FPDou in this paper: a self-play method developed by more
 047 strictly following game-theoretic frameworks of fictitious play (FP) (Brown, 1951; Robinson, 1951)
 048 and generalized weakened fictitious play (GWFP) (Leslie & Collins, 2006). To ease learning for
 049 DouDizhu and align it with GWFP analysis, we adopt a *perfect-training-imperfect-execution* with
 050 regularization. This reduces DouDizhu to a *two-player zero-sum game* in training: the two Peasants
 051 act like one player by sharing card information, competing against the Landlord with efficient
 052 coordination from the beginning. To properly adapt GWFP, we analyze GWFP’s process and propose
 053 to use a simplified form. Based on this form, we design a practical implementation of FPDou that
 consolidates RL and supervised learning into a single step—eliminating the need to train two separate

054 networks. This design not only reduces computational complexity but also facilitates the practical
 055 deployment of GWFP for DouDizhu.

056 We next describe the detailed design for FPDou. First, by treating the two Peasants as a unified
 057 player, FPDou updates their policies together. To mitigate the gap between training and testing,
 058 a regularization term is used, ensuring that the agent can approximate the perfect-training policy
 059 at test time when the model only has access to imperfect observations. Second, FPDou alternates
 060 between updating Peasants-team and Landlord across iterations. One side is trained on-policy in a
 061 stationary environment, while a copy of the other side is trained off-policy using data from the replay
 062 buffer. This on-policy/off-policy alternation ensures each side learns an ϵ -best response in a stationary
 063 environment—fulfilling GWFP’s requirement for best-response learning within an RL framework—
 064 while improving data efficiency by leveraging data to update both sides concurrently. Finally, we
 065 employ a distributional Q-network to model value distributions, enabling flexible evaluation across
 066 different objectives, such as Winning Percentage (WP) and Average Difference in Points (ADP) (Jiang
 067 et al., 2019), without retraining.

068 Due to a principled algorithm design that more closely follows the spirit of GWFP, FPDou achieves
 069 state-of-the-art performance with remarkable efficiency: despite a $3\times$ smaller model, it outperforms
 070 all competitors on both WP and ADP when trained on a single server (32 CPUs, 6 GPUs). It surpasses
 071 RLCard (Zha et al., 2021a) in 30 minutes, SL (Zha et al., 2021b) in 5 hours, and the strongest
 072 baselines (DouZero, DouZero-WP (Zha et al., 2021b), PerfectDou (Yang et al., 2022)) within 5–20
 073 days. Our experiments reveal several interesting findings: (1) The strength shifts during training. The
 074 Landlord exhibits dominance over the Peasants during early training. As training progresses, the
 075 Peasants learn to cooperate and surpass the Landlord. (2) Explicit exploration appears unnecessary.
 076 This may be attributed to the high diversity in game initialization—more pronounced than in Atari and
 077 Go—and the effect of policy churn (Schaul et al., 2022), which provides implicit exploration. (3) The
 078 first action is pivotal. A poor opening move significantly lowers the chance of winning, even if the
 079 player makes their best possible decisions thereafter.

080 2 BACKGROUND

081 2.1 GAME OF DOUDIZHU

082 DouDizhu is a shedding-type game, where players aim to be the first to empty their hand cards. The
 083 game features asymmetric roles: one player is the Landlord, while the other two form a cooperative
 084 team as the Peasants. The players cannot communicate. The game consists of two phases: bidding
 085 and card-playing. In the bidding phase, players bid to be the Landlord, who then receives three
 086 additional face-down cards. The others form a team as Peasants. In the card-playing phase, players
 087 take turns counterclockwise, starting with the Landlord. In each round, the first player can play any
 088 valid card combination (e.g., single, pair). Players must either pass or play a stronger combination of
 089 the same type, or a bomb/rocket that beats all other combinations. Each bomb or rocket doubles the
 090 final score. A round ends after two consecutive passes, and the player who last played leads the next
 091 round. After the game, the winner side (Peasants or Landlord) receives a reward from the other side.
 092 As in previous work, we skip the bidding phase and focus on training for the card-playing phase.
 093 More detailed description on game rules are provided in Section B.

094 2.2 PRELIMINARIES ON GAME THEORY

095 **Markov Decision Process (MDP), Markov Games and Reinforcement Learning.** For single-
 096 agent sequential decision-making, a *Markov Decision Process (MDP)* (Bellman, 1957) is defined
 097 by a tuple $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$. \mathcal{S} is the state space, \mathcal{A} is the action space, $P(s'|s, a)$ is the transition
 098 probability, $R(s, a)$ is the reward function, $\gamma \in [0, 1]$ is the discount factor. The goal is to learn a
 099 policy that maximizes the expected cumulative rewards $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$. For multi-agent interactions
 100 (e.g., DouDizhu), *Markov Games* (Littman, 1994) (or *Stochastic Games*) generalize MDPs to n
 101 players, defined by $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$. $\mathcal{N} = \{1, \dots, n\}$ is the set of players. $\mathcal{A} = \times_{i \in \mathcal{N}} \mathcal{A}^i$ is the
 102 joint action set, with \mathcal{A}^i being player i ’s action set. $P(s'|s, a)$ is the transition probability, dependent
 103 on the joint action profile $a = (a^1, \dots, a^n)$. $R(s, a) = (R^1(s, a), \dots, R^n(s, a))$ is the reward
 104 vector, with $R^i(s, a)$ being player i ’s reward. Markov games model dynamic interactions where
 105 players’ actions jointly shape state transitions and rewards. Reinforcement learning (Sutton & Barto,
 106 2018) refers to a learning process where an agent learns the optimal policy by interacting with an
 107 environment. Most RL algorithms are developed with MDP formulation due to *stationary* property
 of MDPs. When applying RL to games, the terms *policy* and *strategy* are often used interchangeably.

108 **Normal-Form and Extensive-Form Games** (Fudenberg & Tirole, 1991; Osborne & Rubinstein, 109
 110 1994). Markov games can be connected to two classic game categories, static (normal-form) and 111
 112 sequential (extensive-form), based on how their interactive processes are structured. A *normal-form* 113
 114 game, which ignores S and P , is defined by $\langle \mathcal{N}, \mathcal{A}, R \rangle$. It is played in a single round, with players 115
 116 selecting actions simultaneously. The game is *zero-sum* if the rewards sum across all players is zero, 117
 118 i.e., $\sum_{i \in \mathcal{N}} R^i(a) = 0 \forall a \in \mathcal{A}$. An *extensive-form* game involves multiple rounds. It aligns with 119
 120 the tuple structure of Markov games, though it does not emphasize the Markov property. Players 121
 122 take turns making decisions, and the game progresses through a sequence of states. The game is 123
 124 *imperfect-information* if players lack full access to the game state. In this case, each player must act 125
 126 based on an *information set* $u \in \mathcal{U}$, which contains states that a player cannot distinguish between. 127
 128

129 **Strategy.** A strategy $\pi^i \in \Delta(\mathcal{A}^i)$ is a complete plan for player i , specifying an action for every 130 possible state. Here, $\Delta(\mathcal{A}^i)$ denotes the set of probability distributions over the action set \mathcal{A}^i . A *pure* 131 strategy deterministically selects one action per state, while a *mixed strategy* is a distribution over pure 132 strategies. In extensive-form games, players typically use *behavior strategies* $\pi^i(u) \in \Delta(\mathcal{A}^i(u))$, 133 which assign independent action distributions at each information set $u \in \mathcal{U}^i$. Given a *strategy profile* 134 $\pi = (\pi^1, \dots, \pi^n)$, a *best response* $b^i(\pi^{-i})$ is a strategy for player i that maximizes its expected 135 reward against π^{-i} ,

$$b^i(\pi^{-i}) = \arg \max_{\pi^i} R^i(\pi^i, \pi^{-i}). \quad (1)$$

136 Here, π^{-i} denotes the strategy profile of all players except i . We slightly overload R : it denotes 137 immediate reward when applied to states or action profiles, and expected reward for strategies.

138 **Nash Equilibrium.** A Nash equilibrium (Nash, 1950; 1951) is a strategy profile $\pi^* = (\pi^{*,1}, \dots, \pi^{*,n})$ 139 where no player i can unilaterally improve its expected reward by deviating from the strategy 140 $\pi^{*,i}$, given the strategies of others $\pi^{*, -i}$. Formally, π^* is a Nash equilibrium if for each player $i \in \mathcal{N}$, 141 $\pi^{*,i}$ is a best response to $\pi^{*, -i}$, i.e.,

$$R^i(\pi^*) \geq R^i(\pi^i, \pi^{*, -i}), \quad \forall \pi^i \in \Delta(\mathcal{A}^i). \quad (2)$$

142 Thus, learning best responses for all players is a common approach to finding Nash equilibria.

3 APPLYING FICTITIOUS PLAY TO DOUDIZHU

143 Fictitious play (FP) (Brown, 1951; Robinson, 1951; Berger, 2007) is a self-play algorithm in which 144 each player iteratively computes best responses to the empirical average of opponents' strategies. 145 We first review an extended variant of FP, generalized weakened fictitious play (GWFP) (Leslie & 146 Collins, 2006), and then examine its applicability to DouDizhu. The key finding is that the primitive 147 form of GWFP is better suited for neural network-based policy learning in large-scale games such as 148 DouDizhu. Based on this insight, we design FPDou, an RL algorithm for DouDizhu that adheres 149 closely to the spirit of GWFP while maintaining high sample efficiency.

3.1 GENERALIZED WEAKENED FICTITIOUS PLAY

150 GWFP extends FP by allowing approximate best responses and tolerating learning errors, while still 151 ensuring convergence to a Nash equilibrium in two-player zero-sum games (Leslie & Collins, 2006).

152 **Definition 3.1. Generalized Weakened Fictitious Play (GWFP)** (Leslie & Collins, 2006) is a 153 process $\{\pi_t\}$, $\pi_t \in \times_{i \in \mathcal{N}} \Delta(\mathcal{A}^i)$, such that for each player $i \in \mathcal{N}$ and time step $t \geq 0$, the strategy 154 update is given by:

$$\pi_{t+1}^i \in (1 - \alpha_{t+1})\pi_t^i + \alpha_{t+1}(b_{\epsilon_t}^i(\pi_t^{-i}) + M_{t+1}^i), \quad \forall i \in \mathcal{N}, t \geq 0, \quad (3)$$

155 with $\alpha_t \rightarrow 0$ and $\epsilon_t \rightarrow 0$ as $t \rightarrow \infty$, $\sum_{t=1}^{\infty} \alpha_t = \infty$, and $\{M_t\}$ a sequence of perturbations such that 156 $\forall T > 0$, $\lim_{t \rightarrow \infty} \sup_k \left\{ \left\| \sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1} \right\| \text{ s.t. } \sum_{i=t}^{k-1} \alpha_{i+1} \leq T \right\} = 0$.

157 Here, b_{ϵ}^i denotes a ϵ -*best response*, which relax best response with a margin ϵ :

$$b_{\epsilon}^i(\pi^{-i}) \in \{\pi^i : R^i(\pi^i, \pi^{-i}) \geq R^i(b^i(\pi^{-i}), \pi^{-i}) - \epsilon\}. \quad (4)$$

158 FP is recovered by setting $\epsilon_t = M_t = 0$ and $\alpha_t = 1/t$. The use of ϵ -best responses makes GWFP 159 practical in large-scale domains where exact best responses are intractable, and the perturbation term 160 M_t accommodates estimation errors arising from function approximation (Heinrich et al., 2015).

161 In Definition 3.1, π_t is defined over mixed strategies, which can be implemented as weighted 162 combinations of realization-equivalent behavioral strategies under perfect recall (Heinrich et al.,

162 Two strategies are *realization-equivalent* if they induce the same distribution over information
 163 sets (Kuhn, 1953). *Perfect recall* means each player remembers the history $\{u_1^i, a_1^i, \dots, u_k^i\}$ that led
 164 to the current information set u_k^i . Behavioral strategies allow players to make decisions based on
 165 local policies at each information set, which naturally aligns with how deep RL agents are trained.
 166 The behavioral strategy formulation preserves GWFP’s convergence guarantees and enables scalable
 167 implementations using neural networks. These insights establish GWFP as a theoretically well-
 168 founded yet practical self-play framework for complex domains (Heinrich & Silver, 2016; Vinyals
 169 et al., 2019; Berner et al., 2019; Zha et al., 2021b; Yang et al., 2022).

170 3.2 EQUIVALENT FORM OF GWFP FOR BETTER APPLICABILITY

172 Directly implementing GWFP in deep RL is inefficient. It typically requires maintaining and training
 173 two separate networks per player: one for the average policy π_t^i (via supervised learning) and another
 174 for the new best response $b_{\epsilon_t}^i(\pi_t^{-i})$ (via RL) (Heinrich et al., 2015; Heinrich & Silver, 2016; Cloud
 175 et al., 2023). This approach of learning two distinct networks is computationally demanding.

176 To create a more practical algorithm, the recursive update rule of GWFP can be expanded into a
 177 non-recursive average over the sequence of ϵ -best responses. For the common choice of $\alpha_t = 1/t$,
 178 the next average policy π_{t+1}^i has the following form:

$$\pi_{t+1}^i = \underbrace{\frac{1}{t+1} \pi_0^i + \sum_{k=1}^t \left(\frac{1}{t+1} b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right)}_{\text{Past } \epsilon\text{-Best Responses}} + \underbrace{\frac{1}{t+1} b_{\epsilon_t}^i(\pi_t^{-i})}_{\text{New } \epsilon\text{-Best Response}}. \quad (5)$$

182 The perturbation term M_t is omitted here for clarity, and a full derivation is provided in Section D.2.

184 As t increases, the influence of the initial strategy π_0^i fades and has no impact on convergence.
 185 Moreover, since no prior strategy exists before π_0^i , π_0^i can be viewed as an $\hat{\epsilon}$ -best response to an
 186 unknown opponent strategy (with a sufficiently large $\hat{\epsilon}$)—consistent with the semantics of the ϵ -best
 187 response sequence. This means the right-hand side of Eq. (5) consists solely of an average over a
 188 sequence of ϵ -best responses, all sharing consistent input-output semantics. This consistency is the
 189 key insight underpinning our algorithm’s design. It allows us to consolidate the two-step process into
 190 one step: each player uses one network π_t^i , eliminating the need to maintain two separate networks for
 191 π_t^i and $b_{\epsilon_t}^i(\pi_t^{-i})$. Specifically, our FPDou agent uses one network to learn the **new ϵ -best response**
 192 via on-policy RL against the current fixed opponent, and simultaneously learns the average of the
 193 **past ϵ -best responses** by training on historical data sampled from a replay buffer. This formulation
 194 provides a practical and efficient implementation of GWFP for large-scale games.

196 3.3 FPDOU: PRACTICAL AGENT FOR DOUDIZHU WITH FICTITIOUS PLAY

197 Returning to DouDizhu, we find that one commonality of existing methods such as DouZero (Zha
 198 et al., 2021b) and PerfectDou (Yang et al., 2022) is that they use deep RL to learn best responses but
 199 update all players’ policies simultaneously. This scheme, although it works in practice with some
 200 success, breaks the key stationary assumption of RL since the opponent’s policy is changing at the
 201 same time. Simultaneous strategy update is also inconsistent with the spirit of GWFP: each player’s
 202 policy may not be an ϵ -best response to others, causing a convergence issue (Bowling, 2004; Gao
 203 et al., 2018). Furthermore, learning only against the latest strategy without averaging the historical
 204 sequence failed to obey the history averaging principle of FP. Motivated by applying the core ideas of
 205 GWFP for a better agent, we design FPDou—a method that is aspired to be not only more principled
 206 in theory but also remains highly sample efficient in practice. The key components are as follows:

207 **Perfect Training with Regularization and Imperfect Execution.** The two peasants are treated as a
 208 unified player against the Landlord during training. To bridge the gap between training and testing,
 209 we introduce a regularization term during training. The objective is to encourage consistency between
 210 decisions made with and without access to perfect information.

211 **Learning ϵ -best response and average strategy.** To ensure ϵ -best response learning and to improve
 212 sample efficiency, we adopt an alternating training scheme. When training the Peasants, the Landlord’s
 213 policy is fixed, and the Peasants are trained on-policy to learn an ϵ -best response. Meanwhile, a
 214 copy of the Landlord is updated off-policy using data from the replay buffer. Once the Peasants’
 215 policy is learned, we switch roles: the Landlord is trained on-policy against fixed Peasants, while
 a copy of the Peasants is updated off-policy. On-policy learning against fixed opponents ensures

216 a stationary environment; it also enables direct assessment of whether an ϵ -best response has been
 217 achieved, eliminating the need for separate policy evaluation. Off-policy learning of the other side
 218 improves sample efficiency by enabling data use for both sides. This alternating scheme balances
 219 theoretical soundness with practical sample efficiency.

220 To approximate the average ϵ -best response sequence $\{b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i})\}$ in Eq. (5)–without maintaining
 221 parameters of historical strategies—we store trajectories collected from past best responses in a replay
 222 buffer and learn the average over this mixture. Thus each time we not only learn from recently
 223 collected trajectories, but also learn from historical data. This averaging is performed alongside
 224 ϵ -best response learning simply by sampling from the buffer, analogous to AlphaGo that maintains a
 225 buffer and conducts supervised learning (Silver et al., 2016; 2017). This unified process enables us to
 226 directly approximate the next average policy π_{t+1}^i : simultaneously learning the new ϵ -best response
 227 from newly collected data and the average of past responses from buffer-stored data.

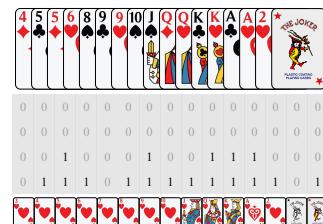
228 **Distributional Learning.** We use a distributional Q-network (Bellemare et al., 2017) to model
 229 the value distribution. It enables us to compute different objectives at test-time, such as Winning
 230 Percentage (WP) and Average Difference in Points (ADP), without retraining.

232 4 IMPLEMENTATION OF FPDou SYSTEM

233 We present the implementation details of FPDou. Specifically, Section 4.1 describes the card
 234 representation and network architecture, designed to satisfy perfect recall and support multiple
 235 evaluation objectives. Section 4.2 contains the training details, including ϵ -best response learning,
 236 information sharing between Peasants, and the distributed training pipeline.

237 4.1 CARD REPRESENTATION AND NETWORK ARCHITECTURE

238 Both states and actions are represented using one-hot 4×15 matrices,
 239 which encode the number of cards for each rank. Fig. 1 illustrates the
 240 hand representation. Since each deck has only one big joker and one
 241 small joker, we mark the six unused entries in the last two columns
 242 as 1 to represent the “Pass” action. To approximate perfect recall,
 243 each state stacks the current hand with the previous 60 actions, as
 244 99% of games are completed within 60 steps (Section G Table 7).
 245 Unlike prior works (Jiang et al., 2019; Yang et al., 2022), we avoid
 246 human-designed features and rely solely on raw card and action
 247 history. Details of each channel are provided in Section E.2 Table 3.



248 Figure 1: Hand representation.

249 Consistent with prior works (Zha et al., 2021b; Yang et al.,
 250 2022), three networks are maintained (one for each position). Each network is a distributional Q-network (Belle-
 251 mare et al., 2017), implemented as a CNN with skip con-
 252 nections (He et al., 2016), and takes state-action pairs as
 253 input. Compared to fully connected networks, CNNs al-
 254 low efficient extension of action history without significantly increasing model size. FPDou is only
 255 4.5 MB, significantly smaller than DouZero and PerfectDou (Table 1). The output is a distribution
 256 over Q-values, represented using 8 bins that correspond to win/loss with different numbers of bombs
 257 (0, 1, 2, or ≥ 3), mapped to rewards of $r = [-4, -3, -2, -1, 1, 2, 3, 4]$ ¹. Since outcomes with ≥ 3
 258 bombs occur in fewer than 0.5% of games (Section G Fig. 8), 8 bins suffice to approximate the return
 259 distribution. Detailed network architecture is provided in Section E.3.

260 4.2 TRAINING DETAILS

261 We begin with the Q-network training and feature regularization, then describe their integration into
 262 the GWFP framework, and finally present the complete distributed implementation.

263 4.2.1 DEEP REINFORCEMENT LEARNING USING MONTE CARLO ESTIMATION

264 While Monte Carlo methods are often criticized for high variance, 99% of DouDizhu games finish
 265 within 60 steps, which is far shorter than games such as Go (Silver et al., 2016) and Atari (Belle-
 266 mare et al., 2013) with hundreds or thousands of steps. As a result, Monte Carlo estimation in
 267 DouDizhu (Zha et al., 2021b) suffers less from high variance and introduces no estimation bias.

268 Table 1: FPDou has the smallest model.

Model	DouZero / SL	PerfectDou	FPDou
Size	18 MB	13.4 MB	4.5 MB

269 ¹Since DouDizhu provides only a final reward, we use the terms *reward* and *return* interchangeably.

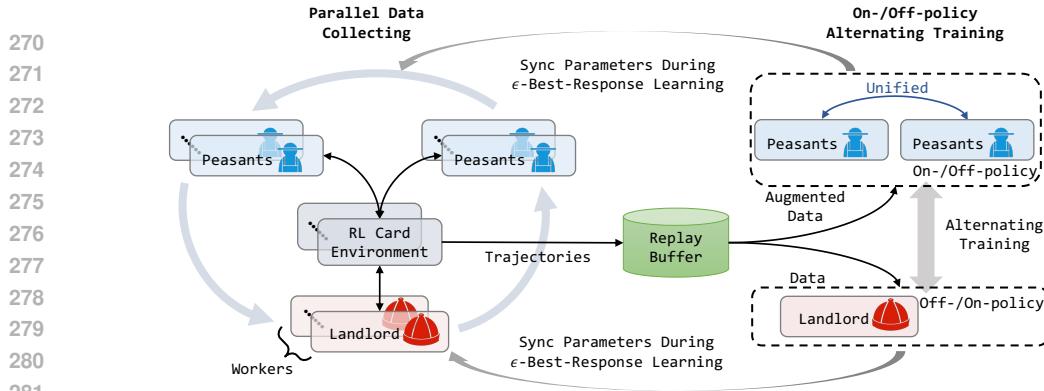


Figure 2: FPDoU training pipeline. **(Left)** Multiple actor workers collect data into replay buffers. **(Right)** A centralized learner samples from all buffers to train global Q-networks. Only the side currently learning its ϵ -best response synchronizes parameters from the learner.

To collect data, we adopt a near-greedy exploration strategy, $\text{top-}k@n$, which samples the top $k = 3$ actions with the highest Q-values for the first $n = 3$ steps (i.e., one step per player) and then switches to greedy. We wait until the end of the game, assign the final reward to all transitions along the trajectory, and store them in the replay buffer. During Landlord training, we sample batches of transitions $\{(s_i, a_i, y_i)\}_{i=1}^B$, where y_i is a one-hot vector of the game reward. Let $(p, z) = f_\theta(s, a)$ denote the network output: p is the predicted Q-distribution, and z is the output of the penultimate layer. The training objective minimizes cross-entropy loss:

$$\mathcal{L} = -\frac{1}{B} \sum_{i=1}^B y_i^\top \log p_i, \quad \text{where } (p_i, z_i) = f_\theta(s_i, a_i). \quad (6)$$

During Peasants training, we additionally provide perfect observation to Peasants to promote cooperation, enabling them to act as a unified player. To recover this policy when only using imperfect observation at test time, we introduce a regularization term. Specifically, with s denoting a Peasant's imperfect observation and \bar{s} the augmented perfect observation including the other Peasant's hand, we regularize the output features z and \bar{z} uses an L2 loss:

$$\mathcal{L} = \frac{1}{B} \sum_{i=1}^B (-y_i^\top \log p_i + \|z_i - \bar{z}_i\|^2), \quad \text{where } (p_i, z_i) = f_\theta(s_i, a_i), (\bar{z}_i) = f_\theta(\bar{s}_i, a_i). \quad (7)$$

Here, we include both s_i and \bar{s}_i in a single batch, so training time is not doubled. Note that \bar{s}_i is only used during training; during test time, we only provide the imperfect s_i . Notably, the Q-network enables the integration of reinforcement learning and supervised learning. When interacting with the environment and learning from newly collected data, it corresponds to the policy iteration of reinforcement learning; when learning from buffer-stored historical data, it learns the average of past ϵ -best responses. Thus, the Q-network allows us to unify these two processes under the same loss function, with the only distinction lying in the data source.

4.2.2 ϵ -BEST RESPONSE IN FICTITIOUS PLAY

To ensure learning an ϵ -best response at each iteration, we track results from the most recent 200 games and apply a win-rate threshold $\tau \in (0, 1)$ to determine whether the current policy qualifies as an ϵ -best response. Once the threshold is met, the on-policy training switches to the other player. Since the game's Nash value is unknown, we set $\tau = 0.5$: assuming a balanced game, and aligning with fuzzy measurement practice, where 0.5 (distinct from values near 0 or 1) represents the membership degree for high uncertainty (Verma & Kumar, 2020; Wan & Yi, 2015). Early in training, when the opponent is weak, achieving a win rate meeting τ implies an ϵ_t -best response with $\epsilon_t > 0$. As training progresses and all players improve, approaching τ implies a decreasing ϵ_t ; ideally, $\epsilon_t \rightarrow 0$ under the balanced game assumption and align with GWFP's condition in Definition 3.1. This learning scheme is incorporated into the GWFP process in Eq. (5). Besides this fixed threshold, we also conducted a complementary experiment with adaptive threshold adjustment during training; details are in Section G.5. Moreover, Section F further discusses approximations in our algorithm design when adapting GWFP to a practical method for DouDizhu.

4.2.3 DISTRIBUTED TRAINING PIPELINE

To accelerate training, we implement a distributed system using multiple GPUs. The system consists of parallel actor workers and a centralized learner. Each actor maintains three local Q-networks

(one for each position) to interact with the environment and collect trajectories into a replay buffer. The learner maintains global Q-networks for all three positions and samples data from all replay buffers to update the models. At each iteration, only the player currently learning its ϵ -best response synchronizes with the learner to fetch the latest parameters; the other players use fixed parameters from the previous iteration to ensure a stationary environment. Experiments were conducted on a machine equipped with 2 AMD EPYC 7313 CPUs (16 cores, 32 threads in total) and 6 NVIDIA GPUs (1 RTX A5000, 2 TITAN RTX, and 3 RTX 2080Ti). One GPU is dedicated to the learner, while the remaining five GPUs serve actor workers, with two actors per GPU. Given the heterogeneous GPU setup, we aggregate training batches across all replay buffers to mitigate performance discrepancies caused by varying GPU speeds. Training lasted for one month. Fig. 2 shows the training pipeline, with pseudocode and hyperparameters provided in Section E.

5 EXPERIMENTS

Evaluation Metrics. We evaluate FPDou using the RLCard environment (Zha et al., 2021a), following the same protocol and metrics as in the previous work (Zha et al., 2021b; Yang et al., 2022). Specifically, we adopt two widely used metrics: (1) Winning Percentage (WP), the proportion of games won. $WP > 0.5$ indicates better performance. (2) Average Difference in Points (ADP), the average per-game point difference between two methods. The base point is 1. Each bomb doubles the point. $ADP > 0$ indicates better performance. For evaluation, we randomly generate 10,000 decks and have each pair of methods compete on them. For fair comparison, each deck is played twice: model A first plays as Landlord and B as Peasants, then they switch roles and replay the same deck.

Baseline Methods. We compare FPDou with recent and state-of-the-art (SoTA) open-source models: **PerfectDou** (Yang et al., 2022)—uses actor-critic with “perfect training, imperfect execution” and a heuristic reward function; **DouZero** (Zha et al., 2021b)—uses Deep Monte Carlo (DMC) optimized for ADP; **DouZero-WP**—DouZero trained for WP; **SL** (Zha et al., 2021b)—supervised agent trained on 49 million expert games; **RLCard** (Zha et al., 2021a)—simple rule-based agent. For reference, we also include the comparison to **Random**—an agent that uniformly samples actions.

Table 2: Performance of FPDou against baselines over 10,000 decks, rounded to three decimal places. A outperforms B if $WP > 0.5$ or $ADP > 0$ (in boldface). Methods are ranked based on ADP.

Rank	B		FPDou		PerfectDou		DouZero		DouZero-WP		SL		RLCard		Random	
	A		WP	ADP	WP	ADP	WP	ADP	WP	ADP	WP	ADP	WP	ADP	WP	ADP
1	FPDou		-	-	0.520	0.100	0.562	0.197	0.510	0.333	0.684	0.996	0.894	2.522	0.993	3.107
2	PerfectDou		0.480	-0.100	-	-	0.543	0.141	0.489	0.212	0.669	1.033	0.890	2.495	0.993	3.087
3	DouZero		0.439	-0.197	0.457	-0.141	-	-	0.453	0.119	0.611	0.774	0.857	2.377	0.987	3.043
4	DouZero-WP		0.490	-0.333	0.511	-0.212	0.548	-0.119	-	-	0.660	0.715	0.884	2.164	0.988	2.741
5	SL		0.316	-0.996	0.331	-1.033	0.389	-0.774	0.340	-0.715	-	-	0.808	1.787	0.974	2.696
6	RLCard		0.106	-2.522	0.110	-2.495	0.144	-2.377	0.116	-2.164	0.192	-1.787	-	-	0.942	2.504
7	Random		0.007	-3.107	0.007	-3.087	0.013	-3.043	0.012	-2.741	0.026	-2.696	0.058	-2.504	-	-

5.1 SUPERIOR PERFORMANCE OVER BASELINES

As shown in Table 2, FPDou ranks first in both WP and ADP. It achieves a 52% WP and 0.1 ADP against PerfectDou, with larger performance improvements over other baselines. Regarding training time to surpass baselines: For WP, FPDou surpasses RLCard within 30 minutes, SL in 5 hours, DouZero in 2 days, and both PerfectDou and DouZero-WP in 18 days. For ADP, it surpasses RLCard in 30 minutes, SL in 5 hours, DouZero-WP in 5 days, DouZero in 9 days, and PerfectDou in 20 days. Furthermore, FPDou ranks first among 452 bots on the Botzone platform ², demonstrating its strong performance. Detailed results and learning curves for each position are provided in Section G.

5.2 ANALYSIS OF FPDOU

To answer the following four questions, we analyze FPDou’s training process over the first 10^9 steps. **Q1:** How do the CNN design, off-policy learning, and regularization each contribute to the superior performance of FPDou? **Q2:** How does on-policy ϵ -best response learning evolve over training? **Q3:** How effective is the top-k@n exploration strategy in FPDou? **Q4:** How scalable is FPDou w.r.t. different batch sizes and neural network sizes?

²<https://botzone.org.cn/>

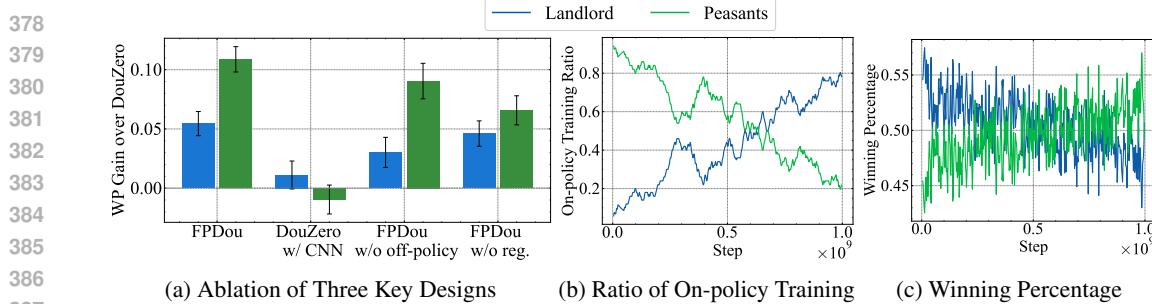


Figure 3: (a) Full FPDou achieves the strongest performance. DouZero w/ CNN (FPDou’s architecture, DouZero’s algorithm) achieves similar performance as DouZero but reduces model size from 18 MB to 4.5 MB. FPDou w/o off-policy and FPDou w/o reg. show reduced performance in comparison to FPDou. (b) As training progresses, ratio of on-policy learning computation for Peasants decreases while increases for Landlord. (c) As training progresses, Peasants’ winning percentage increases while Landlord’s decreases.

How do the CNN design, off-policy learning, and regularization each contribute to the superior performance of FPDou? We evaluate four algorithms: (1) full FPDou, (2) DouZero w/ CNN—which adopts FPDou’s neural network architecture but retains DouZero’s algorithmic design, (3) FPDou w/o off-policy—which only updates players via on-policy learning, (4) FPDou w/o reg.—which removes the regularization term from FPDou. Fig. 3a presents the winning percentages against DouZero for each algorithm both as Peasants and Landlord. Clearly, FPDou achieves the strongest performance, indicating the collective effectiveness of the *off-policy* learning and regularization term. DouZero w/ CNN exhibits similar playing strength as DouZero, despite that the model size is reduced from 18 MB to 4.5 MB—this implies that the CNN architecture we designed for FPDou is not only effective but also highly efficient. FPDou w/o off-policy shows reduced performance relative to FPDou, highlighting the importance of off-policy updates for fixed players. Removing the regularization term (FPDou w/o reg.) degrades the Peasants’ performance due to the increased gap between *training* and *testing*, underscoring the importance of an explicit mechanism for handling the disparity of “perfect-training” and “imperfect-execution”.

How on-policy ϵ -best response learning evolves over training? To show the training dynamics of FPDou, we plot the computation ratio allocated for *on-policy* learning for both Peasants and Landlord. As shown in Fig. 3b, early in training, there is a high on-policy ratio for Peasants and a low ratio for Landlord. As training progresses, the phenomenon gradually reversed—more and more on-policy learning is performed by the Landlord side. Fig. 3c shows the reason behind Fig. 3b. Early on, it is hard for the Peasants to beat Landlord because of the extra cards given to Landlord, thus Peasants-team has to leverage more on-policy best response learning to compete with the Landlord. Over time, the Landlord faces increasing difficulty maintaining its advantage. Therefore, the on-policy training gradually shifts toward the Landlord. This asymmetric training pattern shows that FPDou’s *on-policy* learning is an effective approach that can automatically adjust the learning budget to the side that requires it most.

How effective is the top-k@n exploration strategy in FPDou? We compare the following strategies. ϵ -greedy, used in DouZero (Mnih et al., 2015; Zha et al., 2021b), selects a random action with probability ϵ and the greedy action otherwise. Greedy selects the action with the highest Q-value. Top-k sampling, widely used in language models (Radford et al., 2019; Liu et al., 2024), samples uniformly from the top k actions. Our method, top-k@n sampling, uses top-k sampling for the first n steps before switching to greedy. softmax@n relaxes top-k@n by sampling from the full action space upon normalized softmax scores over Q-values for the first n steps, then greedy. We compare these strategies in terms of WP against DouZero with parameters set as follows: $\epsilon = 0.01$ (Zha et al., 2021b), $k = 3$, $n = 3$. Results are shown in Fig. 4a. The greedy policy slightly outperforms ϵ -greedy and clearly outperforms top-k and softmax@n, suggesting that excessive exploration is unnecessary. This could be attributed to the inherent randomness of initial hands, along with policy churn effect in (Schaul et al., 2022), which already introduces sufficient exploration. The softmax@n performs poorly, showing that early-game decisions are critical—one bad move at the start can compromise the entire game. Top-k@n achieves strongest performance.

How scalable is FPDou w.r.t different batch sizes and neural network sizes? It is a question whether we can further enhance FPDou by scaling up the model size and batch size. To see this,

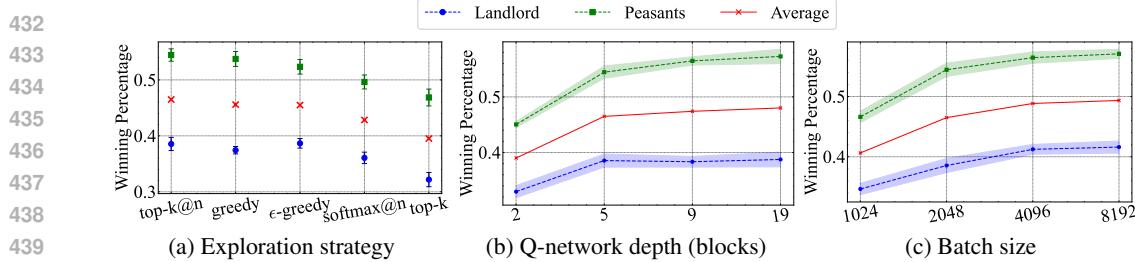


Figure 4: Winning percentage against DouZero under different settings. (a) Greedy policy slightly outperforms ϵ -greedy, while top-k and softmax@n perform poorly, indicating excessive exploration is unnecessary. (b,c) Larger models and batch sizes improve performance.

we try different numbers of residual blocks and batch sizes. As in Figs. 4b and 4c, larger models and batch sizes lead to better performance given the same number of environment steps along with more computation cost and slower training speed on same server. A network with 19 blocks achieves the highest win rate but runs at only 3100 frames per second (FPS)—twice slower than the 5-block version (near 6000 FPS). This result also highlights the scalability of FPDou. Due to resource constraints, our main results are based on a small model (5 blocks) and batch size (2048). Results in Figs. 4b and 4c suggest that further gains might be achieved with larger-scale training for FPDou.

6 RELATED WORK

Early approaches for DouDizhu rely on rule-based systems (Zha et al., 2021a) and supervised learning (Li et al., 2019; 2020; Tan et al., 2021); they achieve limited performance and are largely supplanted by deep RL with self-play (Zhang et al., 2024). The first breakthrough is DeltaDou (Jiang et al., 2019), which adopts AlphaZero-style frameworks (Silver et al., 2016; 2017)—combining value networks with Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006; Lattimore & Szepesvári, 2020)—and reaches human-level performance for the first time. DeltDou is computationally expensive and sensitive to heuristic quality, a limitation that is common for search-based approaches in games with hidden information (Whitehouse et al., 2011; Zhang et al., 2021). Model-free RL with self-play quickly becomes the dominant paradigm, thanks to its scalability (You et al., 2019; Luo et al., 2022; Yang et al., 2022; Zhao et al., 2022; Wang et al., 2022; Zhao et al., 2023; Yu et al., 2023; Luo & Tan, 2023; Luo et al., 2024; Lei & Lei, 2024). DouZero (Zha et al., 2021b) uses Deep Monte Carlo estimation and Q-networks trained via self-play. PerfectDou (Yang et al., 2022) adopts a sample-efficient actor-critic framework with “perfect training, imperfect execution” and introduces a heuristic reward based on the minimum number of steps to victory. Subsequent enhancements focus on opponent modeling, action pruning, bidding strategies, and training stabilization. These include DouZero+, Full DouZero+, WagerWin, NV-Dou, MDou, RARSMSDou, and OADMCDou, contributing improvements from distributional value decomposition, noise-based exploration, reward shaping to oracle-guided distillation (Zhao et al., 2022; Wang et al., 2022; Yu et al., 2023; Luo et al., 2022; Luo & Tan, 2023; Luo et al., 2024). See Section C for a detailed discussion of these methods.

7 CONCLUSION AND LIMITATIONS

We present FPDou, a learning agent that successfully mastered the game of DouDizhu by following the core ideas of GWFP. FPDou approximates DouDizhu via a two-player zero-sum formulation but introduces a novel regularization term for explicitly mitigating the gap between training and testing. It efficiently consolidates reinforcement learning and supervised learning into a single update step and alternates on-/off-policy training between the Peasants team and the Landlord. The experiment results certify that FPDou is not only theoretically plausible but also empirically efficacious, achieving stronger playing strength against state-of-the-art models both in terms of WP and ADP.

While FPDou achieves state-of-the-art performance, several limitations deserve further discussion. Specifically, we adopt a fixed replay buffer for experience storage; considering a large buffer size and the neural networks’ memory capacity, α_t is approximately treated as $1/t$, and a more elegant alternative would be to employ reservoir sampling (Vitter, 1985; Heinrich & Silver, 2016). Additionally, our method focuses on training two well-coordinated peasant teammates, as official DouDiZhu competitions are team-based. Whereas in casual community games, zero-shot coordination between unfamiliar teammates is required, which could be an interesting future work.

486 **Ethics Statement.** This study focuses on the design and evaluation of an AI algorithm (FPDou)
 487 for the game of DouDizhu, aiming to propose an effective method for achieving high performance.
 488 It involves no human participants, animals, or sensitive data. The game data used for training and
 489 testing was synthetically generated by the algorithm itself for research purposes. No ethical risks
 490 (e.g., privacy violation, algorithmic bias, or harm to individuals) are associated with this research. All
 491 methods were conducted in line with the general ethical principles for academic research in computer
 492 science and game AI, and no specific ethical approval was required for this type of study.

493 **Reproducibility Statement.** An anonymous source code for FPDou is provided at [\[this link\]](#) for
 494 reproducibility, as also mentioned in the abstract. Additionally, an anonymous demo for interactive
 495 testing is accessible at [\[this address\]](#). Implementation details and specific hyperparameters are further
 496 provided in the appendix, which supports the reliable reproduction of this paper.

497 **REFERENCES**

499 M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade learning environment: An
 500 evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47:253–279,
 501 2013.

502

503 Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
 504 learning. In *International conference on machine learning*, pp. 449–458. PMLR, 2017.

505

506 Richard Bellman. A markovian decision process. *Journal of mathematics and mechanics*, pp.
 507 679–684, 1957.

508

509 Ulrich Berger. Brown’s original fictitious play. *Journal of Economic Theory*, 135(1):572–578, 2007.

510

511 Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
 512 Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
 deep reinforcement learning. *arXiv preprint arXiv:1912.06680*, 2019.

513

514 Michael Bowling. Convergence and no-regret in multiagent learning. *Advances in neural information
 515 processing systems*, 17, 2004.

516

517 George W Brown. Iterative solution of games by fictitious play. *Act. Anal. Prod Allocation*, 13(1):
 374, 1951.

518

519 Alex Cloud, Albert Wang, and Wesley Kerr. Anticipatory fictitious play. In *Proceedings of the
 520 Thirty-Second International Joint Conference on Artificial Intelligence*, pp. 73–81, 2023.

521

522 Drew Fudenberg and Jean Tirole. *Game theory*. MIT press, 1991.

523

524 Chao Gao, Martin Mueller, and Ryan Hayward. Adversarial policy gradient for alternating markov
 games. 2018.

525

526 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 527 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 pp. 770–778, 2016.

528

529 Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
 530 information games. *arXiv preprint arXiv:1603.01121*, 2016.

531

532 Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
 533 *International conference on machine learning*, pp. 805–813. PMLR, 2015.

534

535 Qiqi Jiang, Kuangzheng Li, Boyao Du, Hao Chen, and Hai Fang. Deltadou: Expert-level doudizhu ai
 through self-play. In *IJCAI*, pp. 1265–1271, 2019.

536

537 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 538 arXiv:1412.6980*, 2014.

539

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In *ECML’06 Proceedings
 of the 17th European conference on Machine Learning*, pp. 282–293, 2006.

540 Harold W Kuhn. Extensive games and the problem of information. *Contributions to the Theory of*
 541 *Games*, 2(28):193–216, 1953.

542

543 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

544

545 Chang Lei and Huan Lei. Alphadou: High-performance end-to-end doudizhu ai integrating bidding.
 546 *arXiv preprint arXiv:2407.10279*, 2024.

547

548 David S Leslie and Edmund J Collins. Generalised weakened fictitious play. *Games and Economic*
 549 *Behavior*, 56(2):285–298, 2006.

550

551 Shuqin Li, Renzhi Wu, and Jianbo Bo. Study on the play strategy of dou dizhu poker based on
 552 convolution neural network. In *2019 IEEE International Conferences on Ubiquitous Computing &*
553 Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart
554 Computing, Networking and Services (SmartCNS), pp. 702–707. IEEE, 2019.

555

556 Shuqin Li, Saisai Li, Hengyang Cao, Kun Meng, and Meng Ding. Study on the strategy of playing
 557 doudizhu game based on multirole modeling. *Complexity*, 2020(1):1764594, 2020.

558

559 Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
 560 *Machine learning proceedings 1994*, pp. 157–163. Elsevier, 1994.

561

562 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 563 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
564 arXiv:2412.19437, 2024.

565

566 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*
567 ence on Learning Representations, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

568

569 Qian Luo and Tien-Ping Tan. Rarsmsdou: Master the game of doudizhu with deep reinforcement
 570 learning algorithms. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 8(1):
 571 427–439, 2023.

572

573 Qian Luo, Tien-Ping Tan, Yi Su, and Zhanggen Jin. Mdou: Accelerating doudizhu self-play learning
 574 using monte-carlo method with minimum split pruning and a single q-network. *IEEE Transactions*
575 on Games, 16(1):90–101, 2022.

576

577 Qian Luo, Tien Ping Tan, Daochen Zha, and Tianqiao Zhang. Enhanced doudizhu card game strategy
 578 using oracle guiding and adaptive deep monte carlo method. In *Proceedings of the Thirty-Third*
579 International Joint Conference on Artificial Intelligence, pp. 5972–5980, 2024.

580

581 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
 582 mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
 583 Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
 584 Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

585

586 John Nash. Equilibrium points in n-person games. *Proceedings of the national academy of sciences*,
 587 36(1):48–49, 1950.

588

589 John Nash. Non-cooperative games. *ANNALS OF MATHEMATICS*, 54(2), 1951.

590

591 Martin J Osborne and Ariel Rubinstein. *A course in game theory*. MIT press, 1994.

592

593 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 594 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

595

596 Julia Robinson. An iterative method of solving a game. *Annals of mathematics*, 54(2):296–301, 1951.

597

598 Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn.
599 Advances in Neural Information Processing Systems, 35:2537–2549, 2022.

600

601 Jeff S Shamma and Gürdal Arslan. Dynamic fictitious play, dynamic gradient play, and distributed
 602 convergence to nash equilibria. *IEEE Transactions on Automatic Control*, 50(3):312–327, 2005.

594 David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
 595 Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
 596 Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
 597 Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
 598 of Go with deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.

599 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 600 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan
 601 Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
 602 game of Go without human knowledge. *Nature*, 550(7676):354–359, 2017.

603

604 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
 605 Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
 606 Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
 607 shogi, and Go through self-play. *Science*, 362(6419):1140–1144, 2018.

608 Richard Sutton. The bitter lesson. *Incomplete Ideas (blog)*, 13(1):38, 2019.

609

610 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

611 Guangyun Tan, Peipei Wei, Yongyi He, Huahu Xu, and Xinxin Shi. Solving the playing strategy
 612 of dou dizhu using convolutional neural network: a residual learning approach. *Journal of*
 613 *Computational Methods in Science and Engineering*, 21(1):3–18, 2021.

614

615 Tina Verma and Amit Kumar. *Fuzzy solution concepts for non-cooperative games*. Springer, 2020.

616 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
 617 Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
 618 starcraft ii using multi-agent reinforcement learning. *nature*, 575(7782):350–354, 2019.

619

620 Jeffrey S Vitter. Random sampling with a reservoir. *ACM Transactions on Mathematical Software
 621 (TOMS)*, 11(1):37–57, 1985.

622 Shu-Ping Wan and Zhi-Hong Yi. Power average of trapezoidal intuitionistic fuzzy numbers using
 623 strict t-norms and t-conorms. *IEEE Transactions on Fuzzy Systems*, 24(5):1035–1047, 2015.

624

625 Haoli Wang, Hejun Wu, and Guoming Lai. Wagerwin: An efficient reinforcement learning framework
 626 for gambling games. *IEEE Transactions on Games*, 15(3):483–491, 2022.

627 Daniel Whitehouse, Edward J Powley, and Peter I Cowling. Determinization and information set
 628 monte carlo tree search for the card game dou di zhu. In *2011 IEEE Conference on Computational
 629 Intelligence and Games (CIG'11)*, pp. 87–94. IEEE, 2011.

630

631 Zibo Xu. Convergence of best-response dynamics in extensive-form games. *Journal of Economic
 632 Theory*, 162:21–54, 2016.

633

634 Guan Yang, Minghuan Liu, Weijun Hong, Weinan Zhang, Fei Fang, Guangjun Zeng, and Yue Lin.
 635 Perfectdou: Dominating douidzhu with perfect information distillation. *Advances in Neural
 636 Information Processing Systems*, 35:34954–34965, 2022.

637

638 Y You, L Li, B Guo, et al. Combinational q-learning for dou di zhu. *arXiv preprint arXiv:1901.08925*,
 2019.

639

640 Xiaomin Yu, Yisong Wang, Jin Qin, and Panfeng Chen. A q-based policy gradient optimization
 641 approach for douidzhu. *Applied Intelligence*, 53(12):15372–15389, 2023.

642

643 Daochen Zha, Kwei-Herng Lai, Songyi Huang, Yuanpu Cao, Keerthana Reddy, Juan Vargas, Alex
 644 Nguyen, Ruzhe Wei, Junyu Guo, and Xia Hu. Rlcard: a platform for reinforcement learning in
 645 card games. In *Proceedings of the twenty-ninth international conference on international joint
 646 conferences on artificial intelligence*, pp. 5264–5266, 2021a.

647

648 Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and Ji Liu. Douzero:
 649 Mastering douidzhu with self-play deep reinforcement learning. In *international conference on
 650 machine learning*, pp. 12333–12344. PMLR, 2021b.

648 Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng
649 Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning.
650 *arXiv preprint arXiv:2408.01072*, 2024.

651

652 Yunsheng Zhang, Dong Yan, Bei Shi, Haobo Fu, Qiang Fu, Hang Su, Jun Zhu, and Ning Chen.
653 Combining tree search and action prediction for state-of-the-art performance in doudizhu. In *IJCAI*,
654 pp. 3413–3419, 2021.

655 Youpeng Zhao, Jian Zhao, Xunhan Hu, Wengang Zhou, and Houqiang Li. Douzero+: Improving
656 doudizhu ai by opponent modeling and coach-guided learning. In *2022 IEEE conference on games*
657 (*CoG*), pp. 127–134. IEEE, 2022.

658 Youpeng Zhao, Jian Zhao, Xunhan Hu, Wengang Zhou, and Houqiang Li. Full douzero+: Improving
659 doudizhu ai by opponent modeling, coach-guided training and bidding learning. *IEEE Transactions*
660 *on Games*, 2023.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

Appendix

Table of Contents

A LLM Usage Disclosure	15
B The Game of DouDizhu	15
C Extended Related Work	16
D Analysis of Generalized Weakened Fictitious Play and Its Equivalent Form	17
D.1 Game Theory Background and Its Connections with Reinforcement Learning	17
D.2 Derivation of the Primitive Equivalent Formulations of GWFP	18
E Implementation Details	20
E.1 Pseudocode of FPDou	20
E.2 Card Representation	21
E.3 Network Architecture	22
E.4 Hyperparameters	23
F Approximations of FPDou Relative to GWFP’s Theoretical Conditions	23
G Additional Results	27
G.1 Game Statistics Observed During Training	27
G.2 Performance Comparison with Existing DouDizhu Programs	28
G.3 Results on the Botzone Platform	30
G.4 More Ablation Study Results	33
G.5 FPDou with adaptive threshold	34

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A LLM USAGE DISCLOSURE**
757

758 In this study, Large Language Models (LLMs) were solely used as a general-purpose language
759 refinement tool to enhance the clarity and fluency the manuscript text. The LLM did not participate
760 in any core research processes, including but not limited to research ideation, experimental design,
761 data analysis, result interpretation, or the development of the FPDou algorithm. Its role was limited
762 to polishing the expression of pre-drafted content (e.g., optimizing sentence structure, standardizing
763 academic terminology, and improving logical coherence) without altering the original meaning, data,
764 or conclusions of the research. Thus, the LLM does not qualify as a contributor, and no further
765 substantial role beyond language polishing is disclosed.

766 **B THE GAME OF DOUDIZHU**
767

768 DouDizhu is one of the most popular card games in China, with hundreds of millions of daily active
769 players (Jiang et al., 2019; Zha et al., 2021b). It is a three-player, shedding-type game involving both
770 competition and collaboration under imperfect information. The game is played using a standard
771 54-card deck, consisting of 15 different ranks: 3, 4, 5, 6, 7, 8, 9, 10 (T), J, Q, K, A, 2, black joker (B),
772 and red joker (R), ranked from lowest to highest. Each of the ranks, except for the jokers, has four
773 cards representing four suits: heart, spade, club, and diamond. The game is composed of two phases:
774 the bidding phase and the card-playing phase.

775 **Game Setup and Roles.** At the start of each game, 17 cards are dealt to each of the three players, and
776 the remaining 3 cards are placed face-down. These three cards are known as the “Landlord cards” and
777 are awarded to the player who wins the bidding phase. Players take on one of three roles: Landlord,
778 Peasant Up (to the Landlord’s left), or Peasant Down (to the Landlord’s right). The two Peasants play
779 as a team against the Landlord.

780 **Bidding Phase.** In the bidding phase, players sequentially bid for the Landlord position based on
781 their private 17-card hands. The three players take turns being the first to bid across multiple games.
782 Bids can be 1, 2, or 3, or a player can pass. The highest bidder becomes the Landlord and receives
783 the three face-down cards, increasing their hand size to 20. The other two players, holding 17 cards
784 each, form a cooperative team. If no player bids, the game is reset. In this paper, we skip the bidding
785 phase and focus on the training of the card-playing phase.

786 **Card-Playing Phase.** Gameplay proceeds in counterclockwise order starting with the Landlord. The
787 game is played in rounds. In each round, the lead player can play any legal combination of cards,
788 such as a single, pair, triple, chain, bomb (four cards of the same rank), or rocket (a pair of jokers,
789 the highest combination). Subsequent players must either pass or play a combination of the same
790 type with a higher rank. Rockets beat any other combination, and bombs can beat any non-rocket
791 combination, including different hand types. Thus, the rank of the cards is crucial in DouDizhu, while
792 the suit is nearly irrelevant³.

793 One round ends when two consecutive players pass. The player who played the last valid hand then
794 starts the next round. The game continues until one player empties their hand, thereby winning the
795 game. If the Landlord plays all their cards first, the Landlord wins and gains a reward from both
796 Peasants. If either Peasant finishes first, both Peasants win and share the reward from the Landlord.
797 The scoring is determined by a base score, multiplied by a dynamic factor increased by each bomb
798 or rocket played. The game is a zero-sum game if we consider the two Peasants as a single player
799 against the Landlord.

800 **Game Complexity.** DouDizhu is a highly challenging domain for decision-making due to: (1)
801 Imperfect information: players cannot see others’ hands. (2) Large state space: approximately 10^{83}
802 unique states. (3) Massive and dynamic action space: up to 27,472 legal actions per turn depending
803 on the current hand (Zha et al., 2021a). (4) Asymmetric roles and incentives: the Landlord has more
804 cards and plays first, but faces two coordinated opponents.

805 Players must reason strategically based on limited observations and the history of plays. The Peasant
806 team must coordinate implicitly without communication to effectively challenge the Landlord,
807 combining elements of cooperation and adversarial play in a partially observable setting.

808
809 ³The suit is helpful for inferring whether the Landlord holds the specific bidding card, but a rational player
would typically play that suit first if they intend to play a card of the same type.

810 More thorough details such as card types and scoring rules can be found at pagat.com⁴.
 811

812 C EXTENDED RELATED WORK

813
 814 DouDizhu is a challenging three-player card game characterized by imperfect information and a mix
 815 of competition and collaboration. It has long been popular in China and has attracted increasing
 816 attention from the AI community in recent decades due to its strategic complexity. Early approaches
 817 based on rule-based systems (Zha et al., 2021a) and supervised learning (Li et al., 2019; 2020; Tan
 818 et al., 2021) achieved limited performance and have gradually been supplanted by deep reinforcement
 819 learning (RL) methods combined with self-play (Zhang et al., 2024) in recent years. These methods
 820 have shown significant improvements in performance and scalability, making them more suitable for
 821 complex imperfect-information games like DouDizhu.
 822

823 One research direction follows model-based RL with AlphaZero-style frameworks (Silver et al., 2016;
 824 2017). These methods typically employ Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári,
 825 2006; Lattimore & Szepesvári, 2020) to explore the game tree and make decisions based on the
 826 estimated value of each action. DeltaDou (Jiang et al., 2019) is the first AI agent to achieve top human-
 827 level performance in DouDizhu. It proposes Fictitious Play MCTS (FPMCTS), which performs
 828 search over imperfect-information trees using Bayesian inference for opponent modeling. To handle
 829 the game’s large action space, a pre-trained heuristic kicker network is used to prune low-probability
 830 actions. While effective, the method’s reliance on heuristic abstractions and the computational burden
 831 of search and inference make the training process extremely expensive—reportedly taking over
 832 two months—and potentially limit performance if the heuristics are suboptimal. These limitations
 833 are typical of many search-based methods, which suffer from high computational burden and the
 834 difficulty of estimating the hidden information (Whitehouse et al., 2011; Jiang et al., 2019; Zhang
 835 et al., 2021).
 836

837 A more recent and increasingly popular direction is model-free RL with self-play, which improves
 838 scalability by replacing explicit search with deep neural networks and sampling-based training (You
 839 et al., 2019; Luo et al., 2022; Yang et al., 2022; Zhao et al., 2022; Wang et al., 2022; Zhao et al., 2023;
 840 Yu et al., 2023; Luo & Tan, 2023; Luo et al., 2024; Lei & Lei, 2024). DouZero (Zha et al., 2021b) is
 841 the most representative work in this category. It adopts Deep Monte Carlo (DMC) estimation, with
 842 expressive Q-networks trained purely via self-play, and avoids any domain-specific knowledge. Its
 843 simplicity and efficiency enable large-scale training and lay the foundation for numerous follow-up
 844 methods. PerfectDou (Yang et al., 2022) builds on DouZero with a sample-efficient actor-critic
 845 framework. It adopts a “perfect training, imperfect execution” paradigm: the value network is
 846 trained using privileged (perfect) information, while the policy network operates only on partial
 847 information during execution. It also introduces a heuristic reward based on the minimum number
 848 of steps required to finish a game, serving as an estimate of proximity to victory. While this reward
 849 design accelerates early training, it can constrain final performance—a trade-off observed in prior
 850 work (Silver et al., 2017; Zha et al., 2021b), and cautioned against by the bitter lesson (Sutton, 2019).
 851

852 Besides PerfectDou, numerous enhancements to DouZero have been proposed. DouZero+ (Zhao
 853 et al., 2022) and Full DouZero+ (Zhao et al., 2023) integrate opponent modeling to infer the actions
 854 of other players, and introduce a coach network to select training games with well-matched initial
 855 hands while filtering out games that provide limited learning value. Full DouZero+ further extends
 856 this framework by modeling the bidding phase, training a dedicated bidding network via Monte Carlo
 857 simulation. WagerWin (Wang et al., 2022) decomposes the value function into winning probability,
 858 winning Q-value, and losing Q-value, to address the high variance and redundant loss terms in
 859 conventional Q-learning objectives. This distributional perspective also enables customized policy
 860 adaptation, allowing the agent to adjust its behavior toward specific preferences. NV-Dou (Yu et al.,
 861 2023) extends Neural Fictitious Self-Play (Heinrich & Silver, 2016) with noisy networks and Q-based
 862 policy gradients. Noisy networks combined with noisy buffer sampling enable Peasant players to
 863 select high-quality noise for discovering diverse strategies. For policy improvement, it integrates Q-
 864 based policy gradients (Mean Actor-Critic) with advantage learning and proximal policy optimization
 865 to stabilize training. MDou (Luo et al., 2022) introduces Minimum Split Pruning (MSP) to prune
 866 low-probability actions from the action space using heuristics. In addition, it uses a unified network
 867 across three positions, simplifying the architecture and enhancing generalization. RARSMSDou (Luo
 868 & Tan, 2023) combines PPO, DMC, and a reward shaping strategy based on the minimum number
 869

⁴<https://www.pagat.com/climbing/doudizhu.html>

864 of card splits to tackle sparse rewards and large action spaces. It further reduces complexity by
 865 abstracting actions (from 27,472 to 309) and enhances value estimation by using perfect information
 866 in the critic. OADMCDou (Luo et al., 2024) enhances training stability by combining Oracle Guiding
 867 with Adaptive Deep Monte Carlo (DMC). It begins with an oracle agent trained using full information,
 868 and gradually distills it into a standard agent with partial observability. To mitigate unstable policy
 869 updates during training, it employs gradient clipping and update magnitude constraints.

870 Overall, these works reflect a clear trend toward minimizing reliance on heuristics and human knowl-
 871 edge, instead leveraging self-play and scalable sampling-based training. This paradigm shift has
 872 substantially improved the efficiency and effectiveness of learning in complex imperfect-information
 873 games such as DouDizhu. However, one often overlooked aspect is that most of these methods
 874 focus primarily on optimizing reinforcement learning algorithms—such as improving sample effi-
 875 ciency—while paying limited attention to the game-theoretical foundations (Zhao et al., 2022; Wang
 876 et al., 2022; Yu et al., 2023; Luo et al., 2022; Luo & Tan, 2023; Luo et al., 2024). This is largely
 877 due to the empirical success of self-play. In contrast, This paper adopts a fundamentally different
 878 perspective by establishing a principled self-play framework with theoretical convergence guarantees
 879 alongside strong empirical performance.

880 D ANALYSIS OF GENERALIZED WEAKENED FICTITIOUS PLAY AND ITS 881 EQUIVALENT FORM

883 In Section 2, we briefly reviewed the game-theoretic concepts relevant to our work. In this section,
 884 we first provide detailed definitions omitted from the main text for brevity, making the paper self-
 885 contained. We then derive the primitive equivalent formulations of the GWFP introduced in Eq. (5).

886 D.1 GAME THEORY BACKGROUND AND ITS CONNECTIONS WITH REINFORCEMENT 887 LEARNING

888 Reinforcement learning (RL) typically models the environment as a Markov Decision Process (MDP),
 889 defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, \mathcal{R} is the reward
 890 function, \mathcal{P} is the transition probability function, and γ is the discount factor. A key assumption in
 891 this framework is the **Markov property**, which means that the future is independent of the past given
 892 the current state and action.

893 In contrast to the Markov property central to MDPs, the analysis of extensive-form games in game
 894 theory centers around the concept of an **information set**, denoted u^i for player i . An information
 895 set represents the collection of game states that are indistinguishable to the player based on their
 896 observations.

897 **On Strategy Representations and the Rationale for Kuhn’s Theorem.** Our work connects
 898 the classical game-theoretic algorithm of Fictitious Play (FP) with modern deep reinforcement
 899 learning (RL). This connection requires careful consideration of how strategies are represented, as the
 900 theoretical foundations of FP and the practical implementation of deep RL use different formalisms.

902 First, the classical theory of FP and its extension GWFP, which provide the convergence guarantees
 903 for our method, are defined over the space of mixed strategies. A **mixed strategy** is a probability
 904 distribution over all of a player’s possible deterministic plans (**pure strategies**). Second, in practice,
 905 deep RL agents like FPDou learn behavioral strategies. A **behavioral strategy** specifies action
 906 probabilities independently at each information set. This is the natural output of a policy network that
 907 processes local information. This creates an apparent mismatch: our algorithm is implemented with
 908 behavioral strategies, yet its theoretical justification stems from a framework for mixed strategies. To
 909 bridge this gap and ensure our method is theoretically sound, we rely on a cornerstone result from the
 910 study of extensive-form games: Kuhn’s Theorem (Theorem D.2).

911 The theorem’s validity hinges on the assumption of **perfect recall**. A player has perfect recall if they
 912 remember all their own past actions and observations—a condition we assume and approximate in
 913 our model by providing sufficient action history to the agent. For a game with perfect recall, Kuhn’s
 914 Theorem shows that any mixed strategy is **realization-equivalent** to a behavioral strategy. Realization-
 915 equivalence (Theorem D.1) means the two strategies are indistinguishable from an opponent’s
 916 perspective, as they induce the same distribution over game outcomes against the opponents.

917 The introduction of perfect recall, Kuhn’s Theorem, and realization-equivalence is the essential
 918 theoretical underpinning of our work. It is precisely what allows us to apply the powerful convergence

918 results of GWFP to our practical RL-based FPDou agent, formally justifying our use of a behavioral
 919 strategy implementation.
 920

921 **Definition D.1 (Realization-Equivalence).** Two strategies π^1 and π^2 of a player are realization-
 922 equivalent if for any fixed strategy profile of the other players both strategies, π^1 and π^2 , define the
 923 same probability distribution over the states of the game.

924 **Theorem D.2 (Kuhn’s Theorem (Kuhn, 1953)).** *For a player with perfect recall, any mixed strategy*
 925 *is realization-equivalent to a behavioral strategy, and vice versa.*
 926

927 D.2 DERIVATION OF THE PRIMITIVE EQUIVALENT FORMULATIONS OF GWFP 928

929 As discussed in Section 3.2, the formulation of GWFP given in Definition 3.1 involves two components.
 930 Starting from a randomly initialized π_0 : (1) each player i first computes an ϵ -best response
 931 $b_{\epsilon_t}^i(\pi_t^{-i})$ against π_t^{-i} ; (2) the average strategy π_{t+1}^i is then updated using a weighted combination of
 932 the current average strategy π_t^i and the ϵ -best response $b_{\epsilon_t}^i(\pi_t^{-i})$:
 933

$$934 \pi_{t+1}^i = (1 - \alpha_{t+1})\pi_t^i + \alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i}). \quad (8)$$

938 In large-scale games, applying this procedure requires maintaining and updating two separate strategies per player. When implementing these strategies with function approximation, the average strategy
 939 π_t^i is typically updated via supervised learning, while the best response $b_{\epsilon_t}^i(\pi_t^{-i})$ is learned through
 940 reinforcement learning (Heinrich et al., 2015; Heinrich & Silver, 2016). Both learning processes
 941 are resource-intensive, involving substantial data and computation. Moreover, the use of separate
 942 networks increases the number of parameters and the potential for learning errors.
 943

944 To reduce complexity and enable a more practical implementation, the two components can be unified
 945 into a single update rule using a primitive form of fictitious play. This is feasible because the average
 946 strategy π_t^i can be expanded as a weighted average of historical best responses. Specifically, we
 947 expanded Eq. (8) as an explicit average over the best response sequence:
 948

$$\begin{aligned} 949 \pi_{t+1}^i &= (1 - \alpha_{t+1})\pi_t^i + \alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i}) \\ 950 &= (1 - \alpha_{t+1}) \left((1 - \alpha_t)\pi_{t-1}^i + \alpha_t b_{\epsilon_{t-1}}^i(\pi_{t-1}^{-i}) \right) + \alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i}) \\ 951 &= (1 - \alpha_{t+1})(1 - \alpha_t)\pi_{t-1}^i + (1 - \alpha_{t+1})\alpha_t b_{\epsilon_{t-1}}^i(\pi_{t-1}^{-i}) + \alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i}) \\ 952 &= (1 - \alpha_{t+1})(1 - \alpha_t) \left((1 - \alpha_{t-1})\pi_{t-2}^i + \alpha_{t-1}b_{\epsilon_{t-2}}^i(\pi_{t-2}^{-i}) \right) \\ 953 &\quad + (1 - \alpha_{t+1})\alpha_t b_{\epsilon_{t-1}}^i(\pi_{t-1}^{-i}) + \alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i}) \\ 954 &= (1 - \alpha_{t+1})(1 - \alpha_t)(1 - \alpha_{t-1})\pi_{t-2}^i + (1 - \alpha_{t+1})(1 - \alpha_t)\alpha_{t-1}b_{\epsilon_{t-2}}^i(\pi_{t-2}^{-i}) \\ 955 &\quad + (1 - \alpha_{t+1})\alpha_t b_{\epsilon_{t-1}}^i(\pi_{t-1}^{-i}) + \alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i}) \\ 956 &= \dots \\ 957 &= \prod_{k=1}^{t+1} (1 - \alpha_k) \pi_0^i + \sum_{k=1}^{t+1} \left(\alpha_k \prod_{j=k+1}^{t+1} (1 - \alpha_j) b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right) \\ 958 &= \underbrace{\prod_{k=1}^{t+1} (1 - \alpha_k) \pi_0^i + \sum_{k=1}^t \left(\alpha_k \prod_{j=k+1}^{t+1} (1 - \alpha_j) b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right)}_{\text{Past } \epsilon\text{-Best Responses}} + \underbrace{\alpha_{t+1}b_{\epsilon_t}^i(\pi_t^{-i})}_{\text{New } \epsilon\text{-Best Response}} \end{aligned} \quad (9)$$

969 With $\alpha_t = 1/t$, we have
 970
 971

$$\begin{aligned}
\pi_{t+1}^i &= \prod_{k=1}^{t+1} \left(1 - \frac{1}{k}\right) \pi_0^i + \sum_{k=1}^{t+1} \left(\frac{1}{k} \prod_{j=k+1}^{t+1} \left(1 - \frac{1}{j}\right) b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right) \\
&= \prod_{k=1}^{t+1} \frac{k-1}{k} \pi_0^i + \sum_{k=1}^{t+1} \left(\frac{1}{k} \prod_{j=k+1}^{t+1} \frac{j-1}{j} b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right) \\
&= \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{t}{t+1} \pi_0^i + \sum_{k=1}^{t+1} \left(\frac{1}{k} \cdot \frac{k}{k+1} \cdot \frac{k+1}{k+2} \cdots \frac{t}{t+1} b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right) \quad (10) \\
&= \frac{1}{t+1} \pi_0^i + \sum_{k=1}^{t+1} \left(\frac{1}{t+1} b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right) \\
&= \underbrace{\frac{1}{t+1} \pi_0^i + \sum_{k=1}^t \left(\frac{1}{t+1} b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right)}_{\text{Past } \epsilon\text{-Best Responses}} + \underbrace{\frac{1}{t+1} b_{\epsilon_t}^i(\pi_t^{-i})}_{\text{New } \epsilon\text{-Best Response}}
\end{aligned}$$

990 Here, our goal is to express the right hand side in a form with consistent semantics, such that we only
991 need to maintain one network to learn π_{t+1}^i .

992 Since it is an average of ϵ -best responses, we can use experience replay to consolidate the two-step
993 process in Eq. (8) into a single step, rather than maintaining two separate networks for π_t^i and $b_{\epsilon_t}^i(\pi_t^{-i})$
994 as in Eq. (8). This approach is introduced in our FPDou implementation (see Section 3.3).
995

996 Currently, in Eqs. (9) and (10), the right-hand side—aside from π_0 —consists of a sequence of best
997 responses, thus retaining consistent semantics. For π_0^i , it is a randomly initialized policy whose
998 influence gradually fades as t increases and does not affect convergence, so we do not need to worry
999 about it. Moreover, there is a more reasonable explanation for π_0 : since no prior strategy exists
1000 before π_0^i , π_0^i can be viewed as an $\hat{\epsilon}$ -best response to an unknown opponent strategy, provided $\hat{\epsilon}$ is set
1001 sufficiently large. As specified in Definition 3.1, we only require $\epsilon_t \rightarrow 0$ as $t \rightarrow \infty$, so the initial
1002 value $\hat{\epsilon}$ does not matter. In this way, π_0 can be treated as an ϵ -best response, making all terms in the
1003 right-hand side semantically consistent (i.e., ϵ -best response).
1004

1004 Leveraging this consistency, we can consolidate the two-step process in Eq. (8) into a single step:
1005 each player uses one network π_t^i , eliminating the need to maintain two separate networks for π_t^i
1006 and $b_{\epsilon_t}^i(\pi_t^{-i})$. Specifically, we split the right-hand side into two terms: the first term is the weighted
1007 combination of past ϵ -best responses, $\frac{1}{t+1} \pi_0^i + \sum_{k=1}^t \left(\frac{1}{t+1} b_{\epsilon_{k-1}}^i(\pi_{k-1}^{-i}) \right)$; the second term is a new ϵ -
1008 best response, $\frac{1}{t+1} b_{\epsilon_t}^i(\pi_t^{-i})$. By using deep RL to train the new ϵ -best response while simultaneously
1009 using supervised learning to learn the weighted combination of past ϵ -best responses, we can directly
1010 approximate the next average strategy π_{t+1}^i . This formulation provides a practical implementation of
1011 GWFP for large-scale games, rooted in its theoretical framework.
1012

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 E IMPLEMENTATION DETAILS
1027
1028
1029
1030
1031
1032
10331034 E.1 PSEUDOCODE OF FPDou
1035**Algorithm 1** FPDou

```

1: Initialize actor networks  $f_{\theta_{\text{Landlord}}}, f_{\theta_{\text{Peasant}_1}}, f_{\theta_{\text{Peasant}_2}}$ ; learner networks  $f_{\bar{\theta}_{\text{Landlord}}}, f_{\bar{\theta}_{\text{Peasant}_1}}, f_{\bar{\theta}_{\text{Peasant}_2}}$ 
2: Initialize win-rate threshold  $\tau$ , replay buffer  $\mathcal{D}$ , off-policy data fraction  $\lambda = 0.5$ , batch size =  $B$ ,
   on-policy data queue  $\mathcal{Q}_{\text{on}}$  with capacity  $(1 - \lambda)B$ ,
   landlord_on_policy=True, peasants_on_policy=True
3: for iteration  $k = 0$  to  $K$  do
4:   landlord_win_count = 0
5:   for game  $n = 0$  to  $N$  do
6:     Initialize the environment  $s_0 \leftarrow Env$ 
   /* collect on-policy trajectories */
7:     while not terminate do
8:       Take actions following top-k@n strategy using actor networks  $f_{\theta_{\text{Landlord}}}, f_{\theta_{\text{Peasant}_1}}, f_{\theta_{\text{Peasant}_2}}$ 
9:     end while
10:    if Landlord won then
11:      landlord_win_count += 1
12:    end if
13:    Assign final game reward  $r_T$  to all state-action pairs  $\{(s_i, a_i, r_T, \text{position})\}_{i=0}^T$ , add
   them to  $\mathcal{Q}_{\text{on}}$ 
   /* Sample off-policy data and mix with on-policy data */
14:    if  $\mathcal{Q}_{\text{on}}$  is full then
15:      Sample off-policy data with size  $\lambda B$  from  $\mathcal{D}$ , form a batch  $\mathcal{B}$  with all data in  $\mathcal{Q}_{\text{on}}$ 
   /* update networks */
16:      Update  $f_{\theta_{\text{Landlord}}}$  following Eq. (6), update  $f_{\theta_{\text{Peasant}_1}}, f_{\theta_{\text{Peasant}_2}}$  following Eq. (7)
   /* synchronize parameters for on-policy learning */
17:      if landlord_on_policy=True then
18:         $\theta_{\text{Landlord}} \leftarrow \bar{\theta}_{\text{Landlord}}$ 
19:      end if
20:      if peasants_on_policy=True then
21:         $\theta_{\text{Peasant}_1} \leftarrow \bar{\theta}_{\text{Peasant}_1}, \theta_{\text{Peasant}_2} \leftarrow \bar{\theta}_{\text{Peasant}_2}$ 
22:      end if
   /* store trajectories to buffer after on-policy learning */
23:      Add all data from  $\mathcal{Q}_{\text{on}}$  to  $\mathcal{D}$ , clear  $\mathcal{Q}_{\text{on}}$ 
24:    end if
25:  end for
   /* determine on-policy learning for next iteration */
26:  if  $\text{landlord\_win\_count}/N \geq \tau$  then
27:    landlord_on_policy=False, peasants_on_policy=True
28:  else
29:    landlord_on_policy=True, peasants_on_policy=False
30:  end if
31: end for

```

1074
1075
1076
1077
1078
1079

1080

E.2 CARD REPRESENTATION

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5: The representation of action Pass.

Table 3: The meaning of each channel in the card representation of the (s, a) pair, Channel 0 represents the action a , while other Channels represent the state s . Each channel is encoded as a 4×15 one-hot matrix, and the same representation method is used for all players.

Channel	Feature
0	Card(s) to be played
1	The player’s current hand cards
2	Combined hand cards of the other two players
3	Same as Channel 2 ⁵
4	Cards played by the player
5	Cards played by the previous player
6	Cards played by the next player
7	The three bidding cards
8-68	Action history over the last 60 steps

⁵Channel 2 and 3 are identical because we cannot distinguish the other players’ hands. However, when we apply regularization for the Peasants, these channels will be separated, with each representing one of the other two players’ hands.

1134 E.3 NETWORK ARCHITECTURE
1135

1136 We maintain three networks for the three positions, following previous works (Zha et al., 2021b;
1137 Yang et al., 2022). Each network shares the same architecture: a distributional Q-network (Bellemare
1138 et al., 2017), implemented as a convolutional neural network (CNN) with skip connections (He et al.,
1139 2016). The input is a stack of the current state and a legal action, representing the (s, a) pair. The
1140 output is a distribution over Q-values for action a given state s . We use 8 bins to represent different
1141 outcomes: winning or losing with 0, 1, 2, or 3 or more bombs, where more bombs correspond to
1142 higher scores. Details of the network architecture are provided in Tables 4 and 5.

1143 Table 4: Structure of our Q-network.
1144

1145	Layer	Configuration
1146	Conv1	kernel_size=1, stride=1, padding=2, out_channels=64
1147	ResBlock 1-5	See Table 5
1148	Conv2	kernel_size=1, stride=1, out_channels=2
1149	BatchNorm	-
1150	Flatten	-
1151	MLP	feature_dim=304, action_dim=8
1152	Softmax	-

1153 Table 5: Structure of the ResBlock used in our Q-network.
1154

1155	Layer	Configuration	Activation
1156	Conv1	in_channels=64, kernel_size=3, stride=1, padding=1, bias=False, out_channels=64	None
1157	BatchNorm1	-	ReLU
1158	Conv2	in_channels=64, kernel_size=3, stride=1, padding=1, bias=False, out_channels=64	None
1159	BatchNorm2	-	None
1160	Shortcut	Identity or 1×1 conv (if shape mismatch)	-
1161	Add	-	ReLU

1188 E.4 HYPERPARAMETERS
1189

1190 Our experiments were conducted on a server equipped with two AMD EPYC 7313 CPUs (32 cores,
1191 32 threads) and six NVIDIA GPUs (one RTX A5000, two TITAN RTX, and three RTX 2080 Ti).
1192 One GPU was used for training, while the remaining five were allocated for simulation. The model
1193 was optimized using the AdamW optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2019), with
1194 a batch size of 2048 and a learning rate of 0.001. Training was performed over a period of one month.
1195 The full set of hyperparameters is listed in Table 6.

1196 Table 6: Hyperparameters used in FPDou.
1197

1198 Category	1199 Hyperparameter	1200 Value
1200 Network	1201 Input size	1202 $4 \times 15 \times 69$
	1203 Semantic meaning of input channels	1204 See Table 3
	1205 Network architecture	1206 See Tables 4 and 5
	1207 Output size	1208 8
1208 Exploration	1209 Method	1210 top-k@n (k=3,n=3)
	1211 Actions k	1212 3
	1213 Steps n	1214 3
1214 Training	1215 Batch size	1216 2048
	1217 Learning rate	1218 0.001
	1219 Optimizer	1220 AdamW
	1221 Peasants regularization parameter	1222 0.01
	1223 Fraction of off-policy data in each batch	1224 0.5
	1225 Buffer size	1226 100,000
	1227 Winning threshold	1228 0.5
	1229 Evaluation window size	1230 200
	1231 Actor GPU number	1232 5
	1233 Learner GPU number	1234 1
	1235 Number of actors per GPU	1236 2

1219 F APPROXIMATIONS OF FPDOU RELATIVE TO GWFP’S THEORETICAL
1220 CONDITIONS
1221

1222 Our FPDou method is rooted in the theory of GWFP for solving the complex DouDizhu game. While
1223 we strive to align FPDou with GWFP’s theoretical convergence conditions, practical constraints com-
1224 plicate this effort. These include the game’s inherent complexity and the use of neural networks for
1225 function approximation, leading to unavoidable gaps and necessitating mild simplifying assumptions.
1226 This section first details the convergence conditions of GWFP, then systematically discusses how
1227 FPDou is implemented to satisfy these conditions, along with the assumptions and approximations
1228 underlying our design.

1229 Per Definition 3.1, GWFP’s convergence relies on specific conditions for the step size α_t , step size
1230 summation $\sum_{t=1}^{\infty} \alpha_t$, best response margin ϵ_t , and perturbation term M_t . Additionally, since FPDou
1231 learns behavioral strategies rather than mixed strategies, it must satisfy the realization-equivalence
1232 condition defined in Definition D.1, a requirement for perfect recall. Collectively, the GWFP
1233 convergence conditions are:

- 1234 • $\alpha_t \rightarrow 0$ as $t \rightarrow \infty$
- 1235 • $\sum_{t=1}^{\infty} \alpha_t = \infty$ as $t \rightarrow \infty$
- 1236 • $\epsilon_t \rightarrow 0$ as $t \rightarrow \infty$
- 1237 • $\forall T > 0, \lim_{t \rightarrow \infty} \sup_k \left\{ \left\| \sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1} \right\| \text{ s.t. } \sum_{i=t}^{k-1} \alpha_{i+1} \leq T \right\} = 0.$
- 1238 • Perfect recall: each player remembers the full history $\{u_1^i, a_1^i, \dots, u_k^i\}$ leading to the current
1239 information set u_k^i .

1242 **Step Size α_t .** FPDou’s implementation adheres to the step size schedule defined in Eq. (10). With a
 1243 sufficiently large replay buffer, α_t can be approximately regarded as $1/t$. Under this approximation,
 1244 it naturally satisfies $\alpha_t \rightarrow 0$ as $t \rightarrow \infty$.

1245 **Step Size Summation $\sum_{t=1}^{\infty} \alpha_t$.** For $\alpha_t = 1/t$, the summation $\sum_{t=1}^{\infty} \alpha_t = \sum_{t=1}^{\infty} \frac{1}{t}$ (the harmonic
 1246 series) is known to diverge to infinity. This divergence can be rigorously verified via term grouping:
 1247

$$1249 \sum_{t=1}^{\infty} \frac{1}{t} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4} \right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \right) + \dots \quad (11)$$

1251 Each grouped term is lower-bounded by $\frac{1}{2}$ (e.g., $\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$), The summation thus reduces
 1252 to $1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$, which clearly diverges to infinity. This confirms FPDou satisfies GWFP’s
 1253 step size summation condition.

1255 **Best Response Margin ϵ_t .** In FPDou’s ϵ -best response learning loop, we use a win-rate threshold
 1256 $\tau = 0.5$ to determine whether the current training qualifies as an ϵ_t -best response policy. Early
 1257 in training, opponent policies are relatively weak, so achieving a 0.5 win rate corresponds to an
 1258 ϵ_t -best response with $\epsilon_t > 0$ (i.e., the policy is suboptimal but competitive). As training progresses,
 1259 all players improve. Attaining a win rate of 0.5 corresponds to a decreasing ϵ_t . To formalize the
 1260 convergence $\epsilon_t \rightarrow 0$, we introduce a mild, empirically motivated assumption: DouDizhu is a balanced
 1261 game, where a 0.5 win rate aligns with the performance of a Nash equilibrium policy. Under this
 1262 assumption, the monotonic decrease of ϵ_t implies $\epsilon_t \rightarrow 0$ as training converges.

1263 Noting that perfect game balance cannot be guaranteed in practice (given the unknown true Nash
 1264 equilibrium of DouDizhu), we conducted a supplementary ablation study using an adaptive win-rate
 1265 threshold for reference. Detailed results of this study are provided in Section G.5.

1267 **Perturbation Term M_t .** We want to prove that the perturbation condition required by GWFP is
 1268 satisfied. The condition is given by:

$$1270 \lim_{t \rightarrow \infty} \sup_k \left\{ \left\| \sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1} \right\| \text{ s.t. } \sum_{i=t}^{k-1} \alpha_{i+1} \leq T \right\} = 0,$$

1273 given $\alpha_t = 1/t$ and a sequence of perturbations $\{M_t\}$. To apply the GWFP framework to our method,
 1274 we define the perturbation term M_t as the neural network’s approximation error $Q - \hat{Q}$: the difference
 1275 between the true value (Q) and the predicted value (\hat{Q}). Empirically, as shown in Fig. 6, this term is
 1276 bounded and exhibits zero-mean stochastic oscillation. Based on this observation and the standard
 1277 context of stochastic training methods, we establish the following reasonable assumptions:

1. **Boundedness:** The sequence of perturbations $\{M_t\}$ is bounded. Fig. 6 shows that after an initial transient phase, the values remain within a fixed range. Thus, there exists a constant $C > 0$ such that $\|M_t\| \leq C$ for all t .
2. **Zero Mean:** The perturbations oscillate around zero, consistent with unbiased stochastic noise. We assume the perturbations have a zero mean: $\mathbb{E}[M_t] = 0$ for all t .
3. **Uncorrelation:** The noise generated by stochastic gradient descent at different iterations is typically assumed to be uncorrelated. Thus, we assume $\mathbb{E}[M_i M_j] = 0$ for all $i \neq j$.

1289 *Proof.* Let $S_{t,k}$ denote the partial sum of the perturbations:

$$1291 S_{t,k} = \sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1}$$

1295 Our goal is to show that $S_{t,k}$ converges to zero in a manner that satisfies the condition. We will prove
 1296 this by showing that $S_{t,k}$ converges in mean square to zero, which implies convergence in probability.

1296 First, let us compute the expectation of $S_{t,k}$. By the linearity of expectation and Assumption 2 (Zero
 1297 Mean):

$$\begin{aligned}\mathbb{E}[S_{t,k}] &= \mathbb{E}\left[\sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1}\right] \\ &= \sum_{i=t}^{k-1} \alpha_{i+1} \mathbb{E}[M_{i+1}] \\ &= \sum_{i=t}^{k-1} \alpha_{i+1} \cdot 0 = 0.\end{aligned}$$

1308 Next, we analyze the second moment, $\mathbb{E}[\|S_{t,k}\|^2]$. Since the mean is zero, this is equivalent to the
 1309 trace of the covariance matrix.

$$\begin{aligned}\mathbb{E}[\|S_{t,k}\|^2] &= \mathbb{E}\left[\left(\sum_{i=t}^{k-1} \alpha_{i+1} M_{i+1}\right) \left(\sum_{j=t}^{k-1} \alpha_{j+1} M_{j+1}\right)\right] \\ &= \mathbb{E}\left[\sum_{i=t}^{k-1} \sum_{j=t}^{k-1} \alpha_{i+1} \alpha_{j+1} M_{i+1} M_{j+1}\right] \\ &= \sum_{i=t}^{k-1} \sum_{j=t}^{k-1} \alpha_{i+1} \alpha_{j+1} \mathbb{E}[M_{i+1} M_{j+1}].\end{aligned}$$

1320 By Assumption 3 (Uncorrelation), the cross-terms where $i \neq j$ vanish. The sum simplifies to the
 1321 terms where $i = j$:

$$\begin{aligned}\mathbb{E}[\|S_{t,k}\|^2] &= \sum_{i=t}^{k-1} \alpha_{i+1}^2 \mathbb{E}[M_{i+1} M_{i+1}] \\ &= \sum_{i=t}^{k-1} \alpha_{i+1}^2 \mathbb{E}[\|M_{i+1}\|^2].\end{aligned}$$

1328 Using Assumption 1 (Boundedness), we know that $\|M_{i+1}\| \leq C$, which implies $\|M_{i+1}\|^2 \leq C^2$.
 1329 Therefore, $\mathbb{E}[\|M_{i+1}\|^2] \leq C^2$. We can now bound the expression:

$$\mathbb{E}[\|S_{t,k}\|^2] \leq \sum_{i=t}^{k-1} \alpha_{i+1}^2 C^2.$$

1333 Substituting $\alpha_t = 1/t$, we have $\alpha_{i+1} = 1/(i+1)$:

$$\mathbb{E}[\|S_{t,k}\|^2] \leq C^2 \sum_{i=t}^{k-1} \frac{1}{(i+1)^2}.$$

1337 To find an upper bound that is independent of k , we extend the sum to infinity:

$$\mathbb{E}[\|S_{t,k}\|^2] \leq C^2 \sum_{i=t}^{\infty} \frac{1}{(i+1)^2}.$$

1342 The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent p-series (with $p = 2 > 1$). A fundamental property of a
 1343 convergent series is that its tail must converge to zero. Therefore:

$$\lim_{t \rightarrow \infty} \sum_{i=t}^{\infty} \frac{1}{(i+1)^2} = 0.$$

1347 This implies that the upper bound on $\mathbb{E}[\|S_{t,k}\|^2]$ converges to zero as $t \rightarrow \infty$, uniformly for all k :

$$\lim_{t \rightarrow \infty} \sup_k \mathbb{E}[\|S_{t,k}\|^2] \leq \lim_{t \rightarrow \infty} C^2 \sum_{i=t}^{\infty} \frac{1}{(i+1)^2} = 0.$$

1350 Since $\mathbb{E}[\|S_{t,k}\|^2] \geq 0$, by the Squeeze Theorem, we have shown that $S_{t,k}$ converges in mean square
 1351 to zero:

$$\lim_{t \rightarrow \infty} \sup_k \mathbb{E}[\|S_{t,k}\|^2] = 0.$$

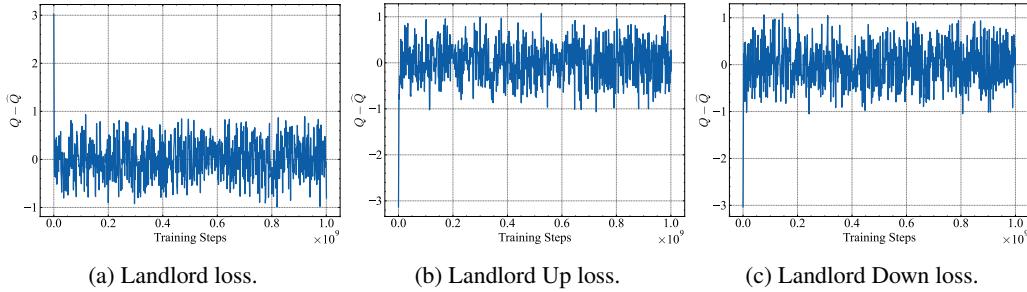
1354 Convergence in mean square implies convergence in probability. For any $\epsilon > 0$, by Chebyshev's
 1355 inequality:

$$P(\|S_{t,k}\| \geq \epsilon) \leq \frac{\mathbb{E}[\|S_{t,k}\|^2]}{\epsilon^2}.$$

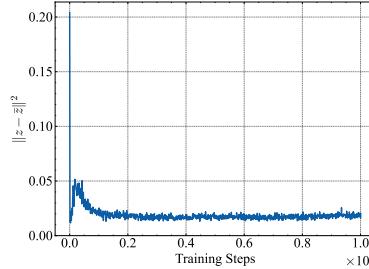
1358 Taking the limit as $t \rightarrow \infty$ and the supremum over k :

$$\lim_{t \rightarrow \infty} \sup_k P(\|S_{t,k}\| \geq \epsilon) \leq \lim_{t \rightarrow \infty} \sup_k \frac{\mathbb{E}[\|S_{t,k}\|^2]}{\epsilon^2} = 0.$$

1362 This confirms that $\|S_{t,k}\|$ converges to 0 in probability, which is sufficient to satisfy the GWFP
 1363 condition. Thus, the perturbation condition is met. \square



1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374 Figure 6: Empirical behavior of the perturbation term $M_t = Q - \hat{Q}$. After an initial phase, the perturbation
 1375 is bounded and exhibits zero-mean stochastic oscillations. This provides experimental validation for the core
 1376 assumptions regarding the perturbation term in our GWFP convergence analysis.
 1377



1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388 Figure 7: The L2 loss between latent representations from imperfect (z) and perfect (\bar{z}) information decreases
 1389 rapidly and keeps at a low value. This empirically validates our approach, confirming that the network
 1390 successfully learns to bridge the training-execution gap by aligning its internal representations.
 1391

1392 **Perfect Recall.** Perfect recall requires full history access, which is approximated in FPDou by
 1393 stacking the current hand information with the previous 60 actions in our representation. As shown
 1394 in Table 7, 99% of DouDizhu games are completed within 60 steps, ensuring this truncated history
 1395 captures nearly all relevant context for decision-making. This approximation is sufficiently accurate
 1396 to maintain realization equivalence in practice.

1397 From the above discussion, while FPDou is designed to align closely with GWFP theory, there are
 1398 still some unavoidable approximations arise from practical constraints. (1) Finite Replay Buffer:
 1399 GWFP theoretically requires an infinite buffer to store all training experience, which is infeasible.
 1400 Thus, FPDou instead uses a large buffer that our server can maintain, which suffices for stable training.
 1401 (2) Balanced Game Assumption: Without knowledge of DouDizhu's true Nash equilibrium, we
 1402 assume a 0.5 win rate approximates equilibrium performance. This may affect the final performance
 1403 as we cannot guarantee converge to a Nash equilibrium. But as we discussed, we can at least

1404 ensures ϵ_t decreases during the learning, and we got a strong empirical performance though with this
 1405 assumption. (3) Truncated History for Perfect Recall: Stacking 60 historical actions captures 99% of
 1406 game histories, but not all edge cases. This mild approximation can be refined by increasing the stack
 1407 length if computational resources are available.

1408
 1409
 1410 Overall, FPDou is intentionally designed to minimize deviations from GWFP’s theoretically rigorous
 1411 framework, with approximations limited to practical feasibility. Empirical results validate that
 1412 grounding algorithm design in GWFP theory yields significant performance advantages, supporting
 1413 the reasonableness of our approach and its approximations.

1417 G ADDITIONAL RESULTS

1418
 1419
 1420 Our method is grounded in the principles of Generalized Weakened Fictitious Play (GWFP) (Heinrich
 1421 et al., 2015), which provides convergence guarantees. Several parameters are chosen based on game
 1422 statistics to support the algorithm’s convergence. In this section, we first present key characteristics
 1423 of the game during training, such as game length and the distribution of game outcomes. We then
 1424 provide additional experimental results to demonstrate the performance of FPDou compared to
 1425 existing DouDizhu programs.

1429 G.1 GAME STATISTICS OBSERVED DURING TRAINING

1430
 1431 **Game Length.** We measure the game length percentiles over the first 1×10^9 environment steps. As
 1432 shown in Table 7, 99% of the games are shorter than 60 steps, with a median length of 33.96. This is
 1433 significantly shorter than other games such as Go (Silver et al., 2016) and Atari (Bellemare et al.,
 1434 2013), which can involve hundreds or even thousands of steps. Based on this observation, we stack
 1435 the last 60 actions in the state representation, using zero padding if necessary, to approximate perfect
 1436 recall.

1437
 1438
 1439 Table 7: Game length percentiles. 99% of the games are completed within 60 steps.

Percentile (%)	50	75	90	95	99
Game Length	33.96	41.13	47.97	51.96	60.12

1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448 **Distribution of Game Outcomes.** We analyze the distribution of game results over the first 1×10^9
 1449 environment steps. The scoring system in DouDizhu starts with a base score of 1, which is multiplied
 1450 by a dynamic factor that increases with each bomb (including rockets) played. For example, if one
 1451 bomb is played during a game, the final score is multiplied by 2; if two bombs are played, it is
 1452 multiplied by 3, and so on. There are no draws in DouDizhu, each game results in a clear win or loss.

1453
 1454
 1455 As shown in Fig. 8, most games end with 0 or 1 bomb, while outcomes involving three or more bombs
 1456 are rare, accounting for fewer than 0.5% of all games. Based on this observation, we categorize
 1457 outcomes into 8 bins: win or loss with 0, 1, 2, or 3 or more bombs. This binning allows us to capture
 the essential characteristics of the return distribution while maintaining a compact representation.

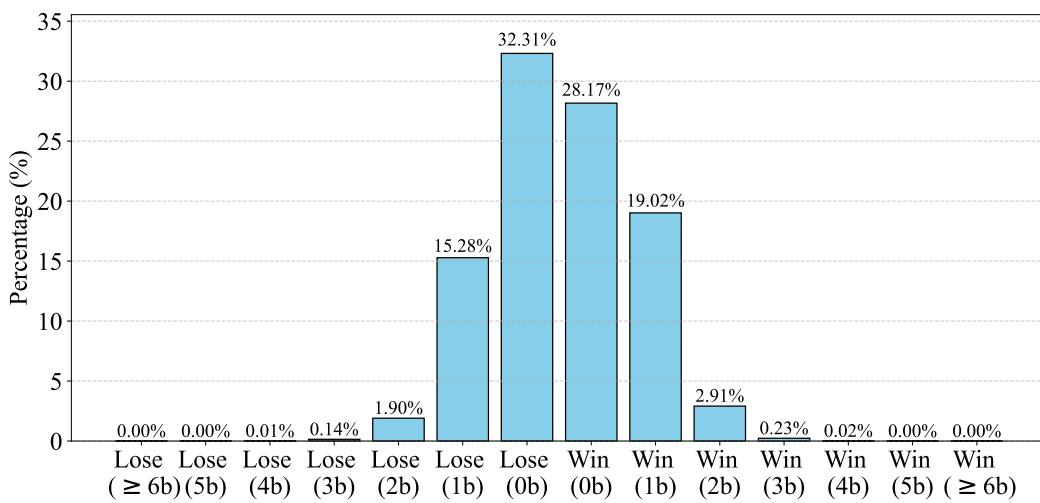


Figure 8: Distribution of game outcomes from the Landlord’s perspective. The x-axis indicates the number of bombs played, and the y-axis shows the proportion of games ending with that count. Most games conclude with 0 or 1 bomb, while outcomes with 3 or more bombs are rare, accounting for less than 0.5% of all games.

G.2 PERFORMANCE COMPARISON WITH EXISTING DOUDIZHU PROGRAMS

We report FPDou’s average performance in the main page. This section provides full results. Table 8 shows the unrounded final performance averaged over Landlord and Peasants. Tables 9 and 10 present separate WP and ADP results for each side. Figures 9 and 10 depict the win rate and score learning curves of FPDou versus baseline methods.

Table 8: Performance of FPDou against baselines over 10,000 decks (not rounded). A outperforms B if $WP > 0.5$ or $ADP > 0$ (in boldface). Methods are ranked based on ADP.

Rank	B		FPDou		PerfectDou		DouZero		DouZero (WP)		SL		RLCard		Random	
	A		WP	ADP	WP	ADP	WP	ADP	WP	ADP	WP	ADP	WP	ADP	WP	ADP
1	FPDou		-	-	0.5201	0.0997	0.5615	0.1974	0.5103	0.3334	0.6837	0.963	0.89395	2.5218	0.99335	3.1071
2	PerfectDou		0.4799	-0.0997	-	-	0.54275	0.1405	0.48935	0.2123	0.6692	1.0329	0.8898	2.4951	0.99275	3.0867
3	DouZero		0.4385	-0.1974	0.45725	-0.1405	-	-	0.4525	0.1192	0.6111	0.7739	0.8565	2.3774	0.98675	3.0432
4	DouZero (WP)		0.4897	-0.3334	0.51065	-0.2123	0.5475	-0.1192	-	-	0.6596	0.7147	0.88415	2.164	0.9881	2.7409
5	SL		0.3163	-0.9963	0.3308	-1.0329	0.3889	-0.7739	0.3404	-0.7147	-	-	0.80835	1.787	0.97385	2.6957
6	RLCard		0.10603	-2.5218	0.1102	-2.4951	0.1435	-2.3774	0.11585	-2.164	0.19165	-1.787	-	-	0.9419	2.5043
7	Random		0.00665	-3.1071	0.00725	-3.0867	0.01325	-3.0432	0.0119	-2.7409	0.02615	-2.6957	0.0581	-2.5043	-	-

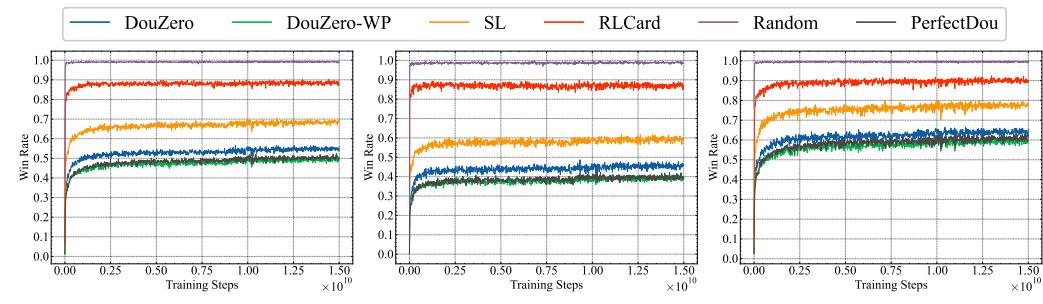
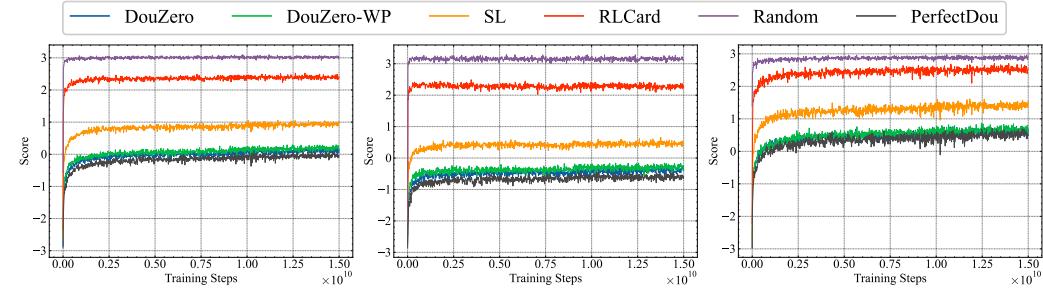
Table 9: WP performance of FPDou against baselines over 10,000 decks (not rounded). A outperforms B if $WP > 0.5$ (in boldface). Methods are ranked based on WP.

Rank	B		FPDou		DouZero (WP)		PerfectDou		DouZero		SL		RLCard		Random	
	A		L	P	L	P	L	P	L	P	L	P	L	P	L	P
1	FPDou		0.4062	0.5938	0.4202	0.6004	0.4199	0.6203	0.4859	0.6371	0.6018	0.7656	0.8809	0.907	0.991	0.9957
2	DouZero (WP)		0.3996	0.5798	0.4147	0.5853	0.4103	0.611	0.4698	0.6252	0.564	0.7552	0.8737	0.8946	0.9829	0.9933
3	PerfectDou		0.3797	0.5801	0.389	0.5897	0.3922	0.6078	0.4533	0.6322	0.57	0.7684	0.8695	0.9101	0.9882	0.9973
4	DouZero		0.3629	0.5141	0.3748	0.5302	0.3678	0.5467	0.4266	0.5734	0.5223	0.6999	0.8483	0.8647	0.9817	0.9918
5	SL		0.2344	0.3982	0.2448	0.436	0.2316	0.43	0.3001	0.4777	0.4066	0.5934	0.7645	0.8522	0.9552	0.9925
6	RLCard		0.093	0.1191	0.1054	0.1263	0.0899	0.1305	0.1353	0.1517	0.1478	0.2355	0.465	0.535	0.9299	0.9539
7	Random		0.0043	0.009	0.0067	0.0171	0.0027	0.0118	0.0082	0.0183	0.0075	0.0448	0.0461	0.0701	0.3593	0.6407

1504
1505
1506
1507
1508
1509
1510
1511

1512
1513
1514
1515
1516
1517Table 10: ADP performance of FPDou against baselines over 10,000 decks (not rounded). A outperforms B if $ADP > 0$ (in boldface).

Rank	A		FPDou		PerfectDou		DouZero		DouZero (WP)		SL		RLCard		Random	
	B	A	L	P	L	P	L	P	L	P	L	P	L	P	L	P
1	FPDou	-0.5254	0.5254	-0.453	0.6524	-0.2532	0.648	-0.1482	0.815	0.5458	1.4468	2.4084	2.6352	3.2358	2.9784	
2	PerfectDou	-0.6524	0.453	-0.5532	0.5532	-0.3476	0.6286	-0.2992	0.7238	0.5396	1.5262	2.3498	2.6404	3.251	2.9224	
3	DouZero	-0.648	0.2532	-0.6286	0.3476	-0.4294	0.4294	-0.2912	0.5296	0.3588	1.189	2.3222	2.4326	3.2562	2.8302	
4	DouZero (WP)	-0.815	0.1482	-0.7238	0.2992	-0.5296	0.2912	-0.4116	0.4116	0.2908	1.1386	2.1086	2.2194	2.9314	2.5504	
5	SL	-1.4468	-0.5458	-1.5262	-0.5396	-1.189	-0.3588	-1.1386	-0.2908	-0.3784	0.3784	1.6732	1.9008	2.9762	2.4152	
6	RLCard	-2.6352	-2.4084	-2.6404	-2.3498	-2.4326	-2.3222	-2.2194	-2.1086	-1.9008	-1.6732	-0.1772	0.1772	2.6864	2.3222	
7	Random	-2.9784	-3.2358	-2.9224	-3.251	-2.8302	-3.2562	-2.5504	-2.9314	-2.4152	-2.9762	-2.3222	-2.6864	-0.8398	0.8398	

(a) Average win rate (b) Landlord's winrate (c) Peasants' winrate
Figure 9: Win rate (WP) learning curves of FPDou against baseline methods.(a) Average score (b) Landlord's score (c) Peasants' score
Figure 10: Score (ADP) learning curves of FPDou against baseline methods.

1566

G.3 RESULTS ON THE BOTZONE PLATFORM

1567

Botzone⁶ is a universal online multi-agent game AI platform, designed to evaluate different implementations of game AI by applying them to agents (Bot) and compete with each other. The platform currently supports 33 distinct games, including DouDizhu (FightTheLandlord⁷). To further validate FPDou’s practical performance, we upload FPDou to botzone and compete with other bots. As of the experimental cutoff, Botzone hosts 452 independent DouDizhu Bots. As illustrated in Fig. 11, FPDou achieved the top rank among all these competing Bots.

1573

However, the platform’s constraints introduce instability to the ranking: first, the daily match volume is limited (with one game completed every 30 minutes), leading to insufficient statistical samples; second, its scoring rules diverge from the evaluation settings in our main paper. As a result, FPDou’s rank on Botzone fluctuates: it has maintained the first position for consecutive days (with a score of 1600–1650) but also oscillated to the 10–20th range (with a score of 1500–1550). To avoid presenting unrepresentative snapshot results, we do not include this platform-based evaluation in the main text. Instead, we provide it in the Appendix as supplementary evidence. This not only confirms FPDou’s capability to reach the top rank but also offers additional support for its strong practical performance.

1581

To further validate the performance of FPDou, we initiated competitions on Botzone against the top 30-ranked agents. FPDou competes with each agent for 512 decks, where each deck is played twice: method A first plays as Landlord and method B as Peasants, then they switch roles and replay the same deck. As shown in Table 11, FPDou achieves a Winning Percentage (WP) exceeding 0.5 against all opponents, indicating it outperforms all these top bots on the Botzone platform. Notably, FPDou defeats most of the top 30 agents by a substantial margin, with clear advantages ranging from over 55% WP to more than 70%. These results further confirm that FPDou reaches a new state-of-the-art among both open-source and closed-source DouDizhu bots. The agents closest to FPDou in performance are Douzero-ResNet (50.293%) and AI-Doudizhu (50.723%). Notably, our method uses a considerably smaller model while focusing on optimizing the game framework—an approach orthogonal to strategies like modifying RL techniques, scaling network parameters, or refining code with C++ for faster training. These directions could thus serve as promising future work to further enhance FPDou’s performance.

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

⁶<https://botzone.org.cn/>

⁷<https://botzone.org.cn/game/FightTheLandlord>

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

排名	Bot 名	作者	排名分	Bot 描述	最新版本号	操作
1	fpdou	fpdou	1654.50	fpdou	0	.py36
2	easydou	羊毛衫	1598.02	(不分花色) 练习时长七天了怎么还这么菜 https://...	3	.py36
3	test	luyd_cpp	1580.59	Douzero +	9	.py36
4	咕噜ddz	咕噜咕噜11	1569.92	冲	12	.py36
5	Dou1Dou	tb_lz	1565.69	Dou1Dou	0	.py36
6	doudoudou	tb_yy	1563.56	DouDuoDou	13	.py36
7	doudizhu	underway	1562.87	ai doudizhu	0	.py36
8	douzero_community	Vincentzyx	1555.04	基于Douzero, 更换了Resnet模型, 分布式训练	8	.py36
9	咕噜ddz	乐乐怡	1553.86	test	2	.py36
10	TestBot	RushCode	1536.98	testbot	7	.py36
11	Bot	xnujsj	1532.21	ASP-DouZero (Xiangnan University)	11	.py36
12	FTL_V1_0	HqYuan	1530.20	四个参数大象, 五个参数兔子	58	.cpp11
13	Sincerely	Sincerely	1524.58	纯规则	2	.cpp17
14	文天阳	逐梦逐梦逐梦演艺圈	1509.04	男主角 (听说积分赛成绩和夫梯呈反比, 留了不留了)	65	.cpp17
15	咕噜ddz	mmmmyy	1503.14	冲进前五	0	.py36
16	小打小闹	小步快跑	1503.77	Hello World	0	.py36

Figure 11: A snapshot of FPDou’s performance on Botzone platform. FPDou ranks first among 452 bots on the platform.

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
1675
1676
1677
1678
1679
1680
1681
1682

Table 11: Performance comparison of FPDou against the top 30 AI agents on the Botzone platform. FPDou achieves a Winning Percentage (WP) exceeding 0.5 against all opponents, indicating it outperforms these top bots and reaches a new state-of-the-art performance among both open-source and closed-source DouDizhu bots.

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Bot Name	Bot Description	Peasants WP(%)	Landlord WP(%)	Average WP(%)
douzero_community	Douzero-ResNet	61.523	39.062	50.293
easydou	AI-Doudizhu	62.031	39.414	50.723
dou		62.109	40.820	51.465
biubiubiu	DouZero	62.187	40.742	51.465
咕噜 ddz		64.844	39.258	52.051
doudoudou		61.914	42.578	52.246
Dou1Dou		60.938	44.727	52.832
TestBot		63.867	41.992	52.930
小打小闹		64.648	42.969	53.809
test	Douzero+	66.406	45.117	55.762
咕噜 ddz		66.016	46.875	56.445
luckinluck	Vanilla-DouZero	65.430	48.242	56.836
Bot	ASP-DouZero	66.211	48.828	57.520
三傻斗地主		71.875	48.438	60.156
ddz		67.578	56.055	61.816
ddz		67.773	59.766	63.770
ddz		67.773	62.891	65.332
这是真的 sample		75.391	60.547	67.969
反冲机		77.734	59.766	68.750
人工 ZZ		75.781	61.719	68.750
FTL_V1_0		73.438	65.039	69.238
nobody_knows_why		80.469	58.789	69.629
文天阳		79.492	61.133	70.312
testbot		79.297	61.328	70.312
下个 Bot 见		79.883	63.867	71.875
sample		82.227	61.914	72.070
写 bug 到凌晨		77.930	67.383	72.656
小 ** 熊		81.055	66.602	73.828
对三要不起		81.641	66.016	73.828
知世就是力量		79.688	69.336	74.512

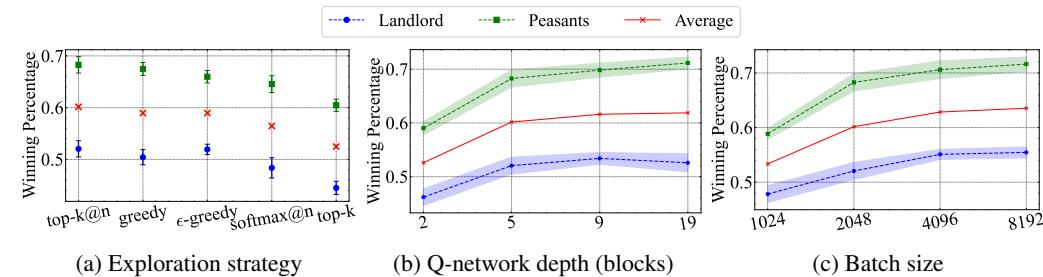
^aNotes: Vanilla-DouZero indicates the models from Zha et al. (2021b), while Douzero+ is sourced from Zhao et al. (2022). Douzero-ResNet^a and AI-Doudizhu^b are variants based on their respective official descriptions and publicly available implementations.

^a https://github.com/Vincentzyx/Douzero_Resnet

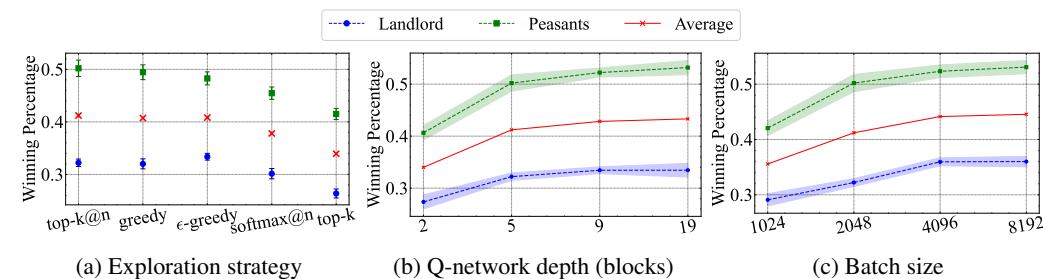
^b <https://github.com/MingshiYangUIUC/AI-Doudizhu>

1728
1729 G.4 MORE ABLATION STUDY RESULTS
1730

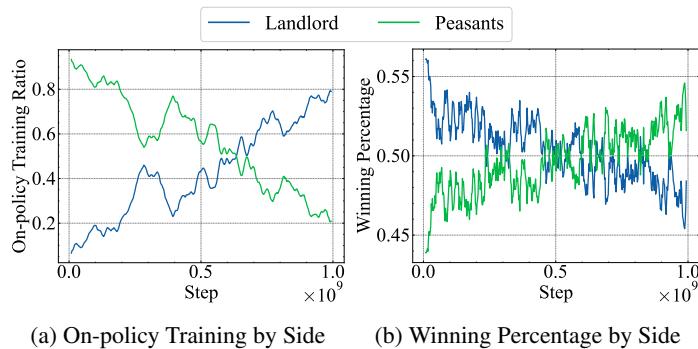
1731 We present additional ablation results beyond those in the main page. Specifically, we compare
1732 the impact of different exploration strategies, Q-network depths (number of residual blocks), and
1733 batch sizes, using both the SL model and PerfectDou as baselines. The results are shown in Fig. 12
1734 and Fig. 13. Consistent with the findings in the main paper, we observe that a greedy policy
1735 slightly outperforms ϵ -greedy, while top- k and softmax@ n strategies perform poorly, suggesting
1736 that excessive exploration is unnecessary. Additionally, larger models and batch sizes consistently
1737 lead to better performance. In addition, we provide a comparison of training allocation and winning
1738 percentages by side with smoothing for reference in Fig. 14.



1747 Figure 12: Winning percentage against SL model under different settings. (a) Greedy policy slightly outperforms
1748 (b,c) Larger models and batch sizes improve performance.
1749



1761 Figure 13: Winning percentage against PerfectDou under different settings. (a) Greedy policy slightly outperforms
1762 (b,c) Larger models and batch sizes improve performance.
1763



1777 Figure 14: More training is allocated to the Peasants at the beginning, then gradually shifts to the Landlord as
1778 the Peasants become stronger through cooperation.
1779
1780
1781

1782 **G.5 FPDou WITH ADAPTIVE THRESHOLD**
1783

1784 In the main text, we adopt a fixed threshold $\tau = 0.5$ to guide the ϵ_t -best response learning for both
1785 the Landlord and Peasants. This design relies on the assumption that DouDizhu is a balanced game.
1786 However, observations from our ablation experiments (see Fig. 3 (b,c) and Fig. 14) reveal a key
1787 phenomenon: strength shifts between the two sides over the course of training. Specifically, more
1788 on-policy training is initially allocated to the Peasants, then gradually shifts to the Landlord as the
1789 Peasants become stronger through cooperation.

1790 This shift reflects an underlying imbalance of DouDizhu. In the early training stages, the Landlord
1791 maintains a dominant advantage over the Peasants. As training progresses, the Peasants master
1792 effective cooperative strategies and eventually outperform the Landlord. Such dynamic imbalance
1793 indicates that the difficulty of achieving a 0.5 win rate differs between the Landlord and Peasants,
1794 implying the game may not be balanced and providing a rationale for introducing an adaptive
1795 threshold mechanism.

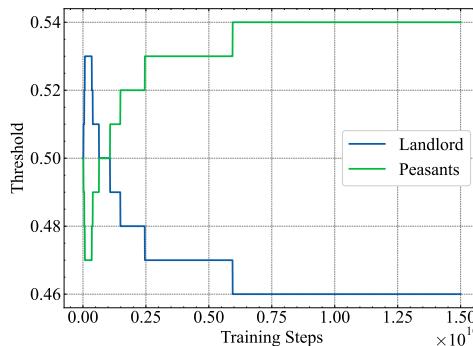
1796 **G.5.1 ADAPTIVE THRESHOLD**
1797

1798 We design an adaptive threshold to account for side-specific training difficulty, using on-policy
1799 training time as a proxy for this difficulty. The core intuition is as follows: if one side requires
1800 significantly more on-policy training time to approach the target win rate, it implies higher difficulty
1801 in reaching the predefined threshold for that side. While on-policy training time is not a perfect
1802 metric—factors like algorithmic differences (e.g., the Monte Carlo method employed for both roles
1803 may not be equally optimal for each) can affect training efficiency—it remains a practical and
1804 reasonable indicator of relative difficulty between the two sides.

1805 Specifically, the adaptive threshold update rule is implemented as follows: (1) Set the initial threshold
1806 for both the Landlord and Peasants to 0.5. (2) For each one-hour training window, record the
1807 on-policy training time for the Landlord (T_{Landlord}) and Peasants (T_{Peasants}). (3) If one side's on-
1808 policy training time is twice or more that of the other side, reduce its threshold by 0.01. For
1809 example: if $T_{\text{Landlord}} \geq 40$ minutes (i.e. $T_{\text{Peasants}} \leq 20$ minutes) in a training window, the Landlord's
1810 threshold is adjusted to $\tau_{\text{Landlord}} = 0.5 - 0.01 = 0.49$, while the Peasants' threshold is adjusted to
1811 $\tau_{\text{Peasants}} = 0.5 + 0.01 = 0.51$. In this case, the Landlord only needs to achieve a 0.49 win rate to
1812 qualify as an ϵ_t -best response, whereas the Peasants must meet the higher 0.51 threshold.

1813 **G.5.2 RESULTS**
1814

1815 We first present the threshold values during training in Fig. 15. For the Landlord, we observe that
1816 the threshold increases to 0.53 at the early stage of training and then drops to 0.46 afterward. This
1817 indicates that initially, the Landlord easily defeats the Peasants, leading to a higher threshold. As
1818 training progresses, the Peasants become stronger than the Landlord, causing the Landlord's threshold
1819 to decrease. This observation aligns with the results from our main experiment with a fixed threshold,
1820 where the Landlord is stronger at the beginning while the Peasants gain strength later, as shown in
1821 Figs. 3b, 3c and 14.



1822 Figure 15: The win rate threshold during training. For the Landlord, the threshold increases to 0.53
1823 briefly at the beginning, then decreases to 0.46.

1824 Next, from the learning curves in Figs. 16 and 17, we find patterns similar to those in Figs. 9 and 10.
1825 Both fixed and adaptive thresholds yield stable performance, with no sharp drops during training.

1836 Additionally, minor differences emerge due to the threshold mechanism: the adaptive threshold
 1837 results in a slightly lower Landlord win rate but a slightly higher Peasant win rate. The comparison
 1838 against SL provides a clear example: FPDou (fixed threshold) achieves an approximate 0.6 win rate
 1839 as the Landlord, while FPDou with adaptive threshold reaches around 0.59. In contrast, FPDou
 1840 (fixed threshold) has an approximate 0.77 win rate as the Peasants, compared to 0.78 for the adaptive-
 1841 threshold variant. These differences are minimal—especially when competing against strong methods
 1842 like DouZero and PerfectDou, where negligible performance gaps exist between the two variants.
 1843 Despite the slight differences, this still demonstrates that threshold settings impact performance,
 1844 which could be explored in future work.

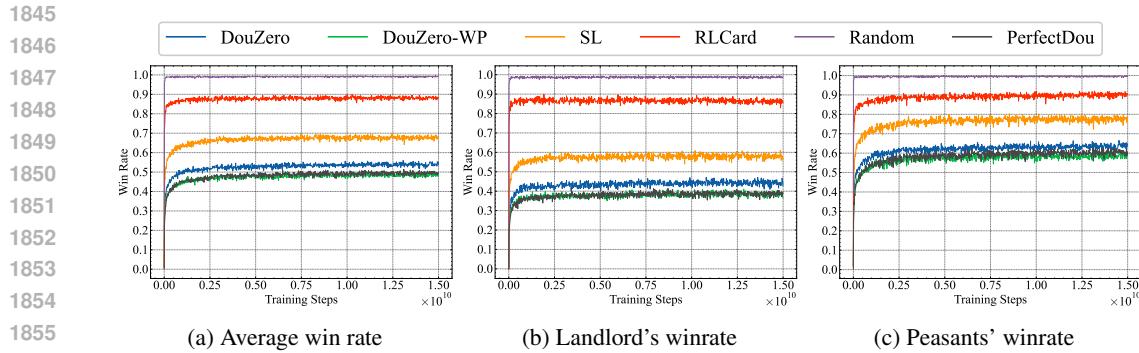


Figure 16: Win rate (WP) learning curves of FPDou (with adaptive threshold) against baseline methods.

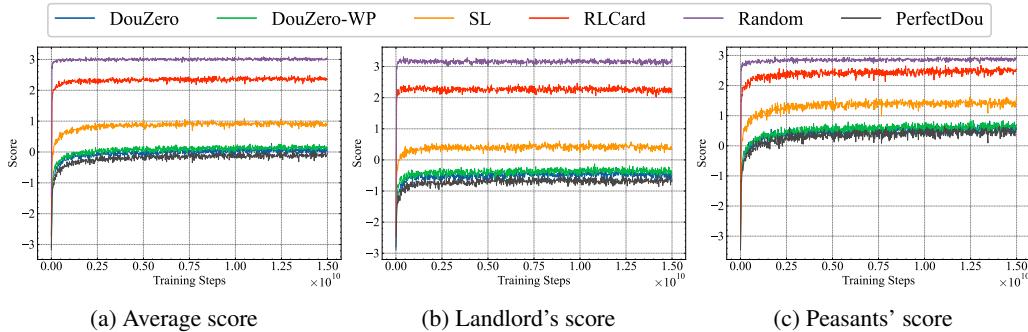


Figure 17: Score (ADP) learning curves of FPDou (with adaptive threshold) against baseline methods.