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ABSTRACT

Dialogue State Tracking (DST) is essential for task-oriented dialogue systems to
track user goals, but zero-shot adaptation to unseen domains poses significant
challenges. This paper proposes an innovative approach to enhance small LLMs
for zero-shot cross-domain DST using reinforcement learning (RL) with verifi-
able rewards. We introduce two novel techniques: a Dynamic Difficulty Sampling
Pipeline, which adaptively selects training examples to optimize learning effi-
ciency, and a Difficulty-Weighted Fuzzy Match Reward Function, which provides
granular feedback to address sparse rewards and prioritize difficult slots. Em-
ploying the Group Relative Policy Optimization (GRPO) algorithm, our method
boosts the reasoning capabilities of small LLMs, enabling robust generalization
to new domains without further training. Experiments on MultiWwOZ 2.1 and
2.4 show our approach achieves state-of-the-art performance among small models
and rivals larger ones, while being computationally efficient. This work demon-
strates the effect of RL-based post-training for compact LLMs, paving the way for
scalable, resource-efficient dialogue systems. Our code and model is available at
(https://anonymous.4open.science/r/DSTRL-769B).

1 INTRODUCTION

Dialogue State Tracking (DST) is the process of maintaining a structured representation of user
goals, often as slot-value pairs, to support effective dialogue management Budzianowski et al.
(2018). This paper investigates the application of reinforcement learning (RL) with verifiable re-
wards |Shao et al| (2024)) to small large language models (LLMs) specifically for zero-shot cross-
domain DST [Williams et al.| (2016), enabling the handling of unseen domains without additional
training. By leveraging RL, we aim to enhance the reasoning capabilities of small LLMs, improving
their ability to interpret and track user goals throughout a dialogue. These small LLMs are beneficed
for their efficiency and deployability in resource-constrained environments.

Traditionally DST research mostly focused on specialized architectures to capture dialogue con-
text Wu et al.| (2019b); Heck et al.| (2020); [Hosseini-Asl et al.| (2020); Jacqmin et al.| (2022), while
recent efforts have shifted toward leveraging LLMs with techniques like synthetic data generation
and knowledge distillation to develop small, efficient models [Dong et al.| (2024b)); [Finch & Choi
(2024); [Hu et al.| (2022); Wu et al.| (2023). Supervised fine-tuning (SFT) has been the dominant
approach, aligning predicted dialogue states with ground-truth annotations. While SFT has driven
significant progress, recent RL studies show LLMs can improve complex task performance via test-
time scaling OpenAl| (2024)); Muennighoff et al. (2025); |Snell et al.| (2024); Shao et al.| (2024).
Similarly, small LLMs works well in domains like mathematics and coding when optimized with
RL [Zeng et al. (2025); [Pan et al.| (2025). Despite these advances, the use of RL to tackle DST’s
unique challenges, particularly for small LLMs, remains largely unexplored.

Applying RL to DST introduces distinct challenges. First, DST datasets, such as MultiwWOZ |Eric
et al.| (2020), exhibit an imbalanced difficulty distribution ( i.e. with most dialogues being straight-
forward, a minority being complex due to multi-domain interactions, ambiguous inputs, or in-
tricate slot dependencies). This imbalance affect the ability of RL models to generalize across
varying dialogue complexities. Second, the standard DST evaluation metric, Joint Goal Accuracy
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(JGA)Budzianowski et al.|(2018]), enforces a strict requirement of exact slot-value predictions across
multiple turns, offering no partial credit. This results in sparse rewards, complicating RL training
especially for small LLMs with limited capacity to learn from infrequent feedback. We propose two
solutions to enhance RL-based DST for small LLMs:

Dynamic Difficulty Sampling A method that uses reward-driven Gaussian sampling to dynami-
cally select training data matching the model’s current ability, improving learning efficiency
by focusing on moderately challenging examples.

Weighted Fuzzy Match Reward Function A function that provides granular feedback by combin-
ing slot-level fuzzy matching with difficulty-based weighting. This grants partial rewards
for imperfect predictions, with greater emphasis on difficult slots.

In conclusion, our contributions are in three-fold:

1. We address the distinct challenges of applying verifiable RL to DST and propose an effec-
tive solution.

2. We introduce an RL pipeline tailored for zero-shot cross-domain DST, enhancing the
model’s reasoning capabilities in unfamiliar domains.

3. Our experiments demonstrate that the proposed solution achieves state-of-the-art perfor-
mance in small LLMs settings.

2 PRELIMINARY

2.1 DIALOGUE STATE TRACKING (DST)

DST maintains a structured representation of user goals in task-oriented dialogue systems, typ-
ically as slot-value pairs (e.g., restaurant name, cuisine type). At turn ¢ the dialogue state

by = {(s1,v1),(s2,v2),...,(Sk,vr)} where s; is slot and v; is value. The dialogue history is
hy = [uy,r1,u2,79,...,us, 7] With u; as the user’s utterance and r; as the system’s response at
turn ¢. The DST model, parameterized by 6, predicts the state::

bt = fe(ht)v

For LLMs with test-time scaling capabilities, the output includes both the predicted state and inter-
mediate reasoning:

{thznkt,i)t} = 0t = f@(ht)7

where o, is the complete output, and think, represents the reasoning content.

2.2 GROUP RELATIVE PoLICY OPTIMIZATION (GRPO)

GRPO |Shao et al.|(2024)) is an advanced reinforcement learning algorithm that enhances the reason-
ing capabilities of LLMs by evaluating groups of generated responses relative to one another. Its
efficiency, demonstrated in models like DeepSeek R1, stems from eliminating the need for a separate
value model, unlike Proximal Policy Optimization (PPO)|Schulman et al.|(2017).

In the context of DST, each dialogue turn is treated as a question-answer pair (h¢,b;), where h;
is the dialogue history and b; is the true dialogue state. The policy 7y, generates a group of G
candidate responses {(b;, think;)}S_,, or equivalently {0;}&,. A reward function evaluates each
predicted state, producing rewards {r; = reward(b;, b;)}<_, donate as {R;}¢_,. The advantage for
each response is computed relative to the group mean:

Aip =ri —mean({R;}$ )

Recent studies have identified limitations in standard GRPO |Liu et al.| (2025), including response-
level length bias, where longer responses may be favored, and question-level difficulty bias, where
performance varies with task complexity. Additionally, in our experiments, for small LLMs (j3B)
the KL divergence term in GRPO’s objective can limit exploration and optimization. To address
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Figure 1: Proposed three-stage RL framework for zero-shot cross-domain DST post-training, fea-
turing CoT distillation, difficulty evaluation, and RL optimization with GRPO.

these issues, we adopt a modified GRPO variant that removes these biases and omits the KL di-
vergence term, enhancing its suitability for small LLMs in DST tasks. The policy is updated by
maximizing the following objective:

G ol
1
Jorro(0) =E  (hp)~D, el Z Z Lis(0)|,

{0} ~moy, (1h) i=1 t=1

where L; ((9) is:
Li,t(e) = min (Ti,t(e)Ai,t, Clip(’l“iﬂg(e), 1-— €, 1+ 6)1211‘775) s

and
779(0i,t |h, 0i7<t>

TO1a (Oiﬂf |h7 Oi,<t) .

Ti,t (9) =

While DST and GRPO provide a foundational framework, applying RL to DST presents unique
challenges, including imbalanced difficulty distributions and sparse rewards. In the following sec-
tions, we address these challenges through a novel RL pipeline and innovative sampling and reward
strategies.

3 PROPOSED METHOD

3.1 A NOVEL FRAMEWORK FOR CROSS-DOMAIN DST POST-TRAINING

To address difficulty imbalance and improve generalization in zero-shot cross-domain DST, we pro-
pose a three-stage reinforcement learning (RL) pipeline to optimize small LLMs (;3B parameters),
as illustrated in Figure[I]

Stage 1: Chain-of-Thought (CoT) Generation and Distillation. First, we use a large LLM to
generate high-quality Chain-of-Thought (CoT) reasoning for a single domain. This reasoning is
then distilled into our small LLM via Supervised Fine-Tuning (SFT) to establish a strong reasoning
foundation, which small models struggle to develop from instructions alone.

Stage 2: Difficulty Evaluation and Data Preparation. Next, we evaluate the difficulty of the
multi-domain dataset to facilitate RL optimization. Using k-fold evaluation with a small SFT model,
we ensure a robust and unbiased assessment of dialogue difficulty across the dataset. Difficulty is
quantified as the per-turn Average Goal Accuracy (AGA) Rastogi et al.|(2020), the ratio of correctly
predicted slots to total slots. These difficulty annotations inform the Dynamic Difficulty Sampling
strategy (Section 3.2) and Weighted Fuzzy Match Reward Function (Section 3.3), addressing the
imbalanced difficulty distribution in datasets like MultiWOZ and enhancing the RL process.

Stage 3: Reinforcement Learning with GRPO Finally, we apply the modified GRPO algorithm
(Section 2.2) for RL across all known domains. Building on the difficulty annotations from Stage
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Figure 2: AGA distribution in MultiWOZ, showing difficulty imbalance

2 and overcoming the single-domain limitation of Stage 1. This RL phase enables the small LLM
to learn generalized patterns, significantly enhancing its zero-shot performance on unseen domains.
The result is an optimized DST system capable of handling new domains effectively.

3.2 DYNAMIC DIFFICULTY SAMPLING

In rule-based verifiable RL methods like GRPO, optimization relies on group-level advantages de-
rived from multiple generated responses. However, DST datasets with imbalanced difficulty distri-
butions skew uniform sampling towards easier examples with weaker optimization signals or less
benefit from overly difficult samples. We assess the degree pf difficulty using k-fold evaluation,
measuring per-turn AGA. Figure [2]illustrates this imbalance in the MultiWOZ dataset.

While static filtering of mid-difficulty samples can initially enhance optimization, as the model’s
proficiency evolves it introduces bias, since the filter doesn’t adapt to the model’s changing capabili-
ties. The proposed Dynamic Difficulty Sampling strategy adjusts to the model’s ability by selecting
samples via a Gaussian distribution centered on a target difficulty (x) with a range (o):

R Sy o C p)?
pl - W p 20_2 )

where d; is the sample’s difficulty. We adjust iz and o periodically based on the average reward,
shifting the focus to harder or easier samples as performance changes. To ensure multi-domain bal-
ance, we apply stratified sampling, maintaining proportional domain representation. This dynamic,
balanced approach enhances optimization for DST’s imbalance difficulty.

3.3 WEIGHTED FuzZy MATCH REWARD FUNCTION

In rule-based RL, reward functions guide models toward optimal performance. For DST, a conven-
tional rewards rely on exact matches between predicted state d and ground-truth state d, defined

as: )
A 1 ifd=d
R(d,d) =
(d d) {O otherwise

However, this approach is inadequate for DST tasks. Predicted states in DST comprise multiple
slot-value pairs, and partial correctness is common. The exact match reward function assigns a
positive reward only when all slot-value pairs are perfectly matched, thereby disregarding any par-
tial progress achieved by the model. Furthermore, this approach encounters difficulties with non-
categorical slots, which lack a predefined set of values and allow for open-ended responses. In
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Figure 3: Comparison of reward distributions for exact and fuzzy match functions

such cases, semantically equivalent but textually distinct expressions (e.g., ”Saint Thomas Hospi-
tal” versus ”St. Thomas Hospital”) are incorrectly penalized due to the requirement for exact string
matching. Additionally, slots vary in prediction difficulty, often due to factors such as ambiguity
or contextual dependency, yet the exact match reward function treats all slots uniformly, failing to
account for these differences.

Our Weighted Fuzzy Match Reward Function addresses these issues by refining the reward calcula-
tion in three ways:

* Fuzzy Matching for Partial Credit: We compute a fuzzy match ratio for each slot-value
pair. If it exceeds a threshold 7, a partial reward § < 1 is assigned, enhancing feedback
beyond binary matches.

* Difficulty-Based Slot Weighting: Leveraging the difficulty evaluation from pipeline Stage
2, we assign weights to each slot based on its error rate. Slots with higher difficulty receive
greater weights, directing the model’s attention to areas needing refinement and boosting
overall robustness.

* Per-turn Reward Aggregation: For each slot, we first calculate its individual reward:
a full reward of 1 for an exact match, a discounted reward of § if the fuzzy match ratio
meets or exceeds 7, or O otherwise. Next, each slot reward is multiplied by its difficulty
weight. These weighted rewards are then averaged across all slots in the turn to produce
a single turn-level reward. If not all slots achieve exact matches, we apply a discount
factor v < 1 to this average, balancing recognition of progress with the goal of achieving
complete accuracy.

Formally, the turn-level reward R, for slots s1, sa, .. ., Si is:

" 1 ifd=d
K P (% Zle w; 1"7) otherwise
where w; is the difficulty weight for slot s;, and 7; is:
1 if exact match

r; = ¢ 0 if fuzzy match ratio > 7
0 otherwise

As shown in Figure [3] this approach provides nuanced feedback, rewarding partial matches and
prioritizing difficult slots, enhancing DST performance in RL frameworks.
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4 EXPERIMENT

4.1 EVALUATION DATASET

We evaluate our approach on MultiWOZ 2.1 |[Eric et al.| (2020) and 2.4 |Ye et al.| (2022). We report
Joint Goal Accuracy (JGA) Budzianowski et al.| (2018), the exact match accuracy for all slot-value
pairs, and Average Goal Accuracy (AGA) Rastogi et al.| (2020), the accuracy of individual slot
predictions.

4.2 EVALUATION BASELINE

We follow the standard zero-shot cross-domain protocol, training on MultiWwOZ with one domain
held-out for testing. We benchmark against baselines grouped by parameter count:

¢ <1B: TRADE|Wu et al.|(2019a), TSDST |Lin et al.|(2021b), TransferQA |Lin et al.|(2021a),
Prompter|Aksu et al.|(2023), D3ST Zhao et al.|(2022), and CAPID |Dong et al.| (2024a).

* 1B-100B: DOT Finch & Choil (2024), SDT Gupta et al.| (2022), FNCTOD [Li et al.[ (2024),
and LDST [Feng et al.| (2023).

e >100B: IC-DSTHu et al.|(2022)), RefPyDST King & Flanigan|(2023), and ParsingDST |Wu
et al.|(2023). These models are typically closed-source and evaluated in a few-shot setting.

4.3 IMPLEMENTATION DETAILS

We use Qwen2.5-0.5B and Qwen2.5-3B |Yang et al.|(2024) as base models. For Chain-of-Thought
(CoT) distillation, QwQ-32B |QwenTeam| (2025)) generates 2,000 reasoning samples each for the
hotel and train domains, which are then distilled into the base models via Supervised Fine-Tuning
(SFT). We calculate initial difficulty scores using 2-fold validation on a fine-tuned Qwen2.5-0.5B.

For the Reinforcement Learning (RL) stage, we use Dynamic Difficulty Sampling with initial param-
eters 4 = 0.75 and 0 = 0.15, step sizes us = 0.05 and o, = 0.01, and minimums g, = 0.3 and
Omin = 0.05. Reward thresholds are set to 0.7 (0.5B model) and 0.75 (3B model), and fuzzy/partial
matching ratios are both 0.8. We use Llama-factory [Zheng et al.| (2024) for SFT and Verl |Sheng
et al.|(2024) for RL; see Appendix B for full hyperparameters.

4.4 EXPERIMENT RESULTS

Method Model Parms Attraction Hotel Restaurant Taxi Train Average
JGA/AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA

TRADE ELMo 93.6M 1997555 13.7/653 115/534 60.6/739 224/493 25.6/595
T5DST T5 60.5M 33.1/- 21.2/- 21.77/- 64.6/ - 354/- 35.2/-
TransterQA TS5 770M 312/60.6 22.7/778 263/81.7 61.9/865 36.7/87.2 35.8/78.8
Prompter PPTOD 60.5M 358/- 19.2/- 26.0/ - 66.3/ - 39.0/- 37.3/-
D3ST TS 220M 56.4/- 21.8/- 382/- 78.4/ - 37.71/- 46.5/-
CAPID TS 220+60.5M  409/69.0 31.1/72.6 31.6/69.1 654/838 343/659 40.7/72.1
CAPID TS 220+220M  333/644 435/833 37.1/752 87.1/920 495/734 50.1/77.7
Ours Qwen2.5 494M 65.4/81.9 54.2/90.1 52.7/854 84.1/949 485/834 61.0/87.1
DOT T5 11B 61.1/- 27.6/- 64.3/ - 469/ - 49.717- 49.9/-
DOT Llama2 13B 66.6/ - -/- 67.2/- 48.8/- 66.5/- 58.5/-
FNCTOD Llama2 13B 62.2/- 46.8 /- 60.3 /- 67.5/- 60.9/- 59.5/-
SDT TS 11B 744/ - 339/- 72.0/ - 86.4/- 62.9/- 65.9/-
LDST Llama2 7B 756/ - 63.3/- 73.7/ - 91.5/ - 75.07/- 758 /-
CAPID T5+Llama2 7B+220M  83.6/92.6 71.6/942 77.5/953 91.2/96.0 90.0/97.8 82.8/95.2
Ours Qwen2.5 3B 753/89.7 64.7/930 75.6/955 86.5/93.6 78.7/957 76.1/93.5
IC-DST Codex (100B 62.1/- 532/- 5497/ - 719/- 51.4/- 58.71/-
FNCTOD GPT-4 (100B 58.8/- 45.1/- 63.2/- 76.4/ - 69.5/- 62.6/-
RefPyDST  Codex (100B 62.1/- 56.6 /- 68.2/ - 719/ - 76.1/- 68.8 /-

Table 1: Evaluation Results on MultiwOZ 2.1 dataset

To evaluate our zero-shot cross-domain DST approach, we first address the choice of query strategy.
Prior methods use either per-domain or per-slot queries. While per-slot queries simplify the task and
improve accuracy (e.g., in LDST [Feng et al.|(2023)), DOT [Finch & Choi| (2024), and CAPID |Dong
et al.[(20244a))), they incur high computational costs. For instance, in a 12-turn hotel domain dialogue
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Method Model Parms Attraction Hotel Restaurant Taxi Train Average
JGA7AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA

CAPID TS5 220+460.5M  47.9/743 3877/77.1 2947679 733/832 479/744 4747764
CAPID T5 220+220M  22.8/593  313/79.0 39.1/78.7 89.3/93.8 56.7/769 47.9/71.5
Ours(SFT only) Qwen2.5 494M 24.9/60.1 284/675 31.5/737 632/76.7 354/741 36.7/70.4
Ours(SFT with CoT) Qwen2.5 494M 18.0/58.1  21.7/57.0 273/632 67.5/792 287/723 32.6/66.0
Ours Qwen2.5 494M 69.7/84.5 544/90.1 54.0/89.5 855/952 49.4/83.0 62.6/88.5
DOT T5 11B 68.1/- 32.0/- 72.3/- 50.6/- 55.8/- 55.71-
DOT Llama2 13B 76.8 /- 56.4/- 78.8/- 5471 - 76.1/ - 68.6/ -
CAPID TS5+Llama2 7B+220M  84.4/93.1 71.3/94.5 79.1/954 91.6/96.0 89.6/97.6 83.2/953
Ours Qwen2.5 3B 79.2/945 652/952 754/959 852/94.1 794/955 176.9/95.0
IC-DST Gpt Codex  ;100B 60.0/- 46.7/- 57.3/- 713/- 49.4/- 56.9/-
ParsingDST Gpt-3.5 (100B 65.6/- 46.8/- 67.7/- 80.6/ - 62.6/- 64.7/ -
RefPyDST Gpt Codex  ;100B 709/ - 51.2/- 65.6/- 67.1/- 69.2/ - 64.7 / -

Table 2: Evaluation Results on MultiwOZ 2.4 dataset

with 10 slots, per-slot queries require 60 queries versus 6 for per-domain. We adopt the per-domain
strategy for its efficiency, despite its complexity. More details are discussed in Appendix C.

Our results on MultiWOZ 2.1 and 2.4 are shown in Table [I] and Table Pl For models with fewer
than 1B parameters, our Qwen2.5-0.5B (494M) model achieves state-of-the-art performance, with
an average JGA of 61.0% on MultiwWOZ 2.1 (vs. CAPID’s 50.1%) and 62.6% on MultiWOZ 2.4 (vs.
CAPID’s 47.9%). This reflects superior accuracy and adaptability in lightweight settings. For the
1B to 100B range, our Qwen2.5-3B model scores 76.1% JGA on MultiWOZ 2.1 and 77.7% JGA on
MultiWOZ 2.4, closely rivaling CAPID’s 7B model, matching top baselines with half parameters.

We also compare our RL-based approach with SFT and CoT distillation on the Qwen2.5-0.5B
model. Table E] shows SFT alone achieves 36.7% JGA, and SFT with CoT only reaches 32.6%
JGA, both well below our RL method. CoT distillation particularly struggles in unknown domains,
highlighting small LLMs difficult to learn CoT from large LLMs. These results demonstrate that RL
with test-time scaling outperforms traditional methods, leveraging small LLMs’ reasoning potential
more effectively for cross-domain DST.

5 ABLATION STUDY

5.1 HANDING IMBALANCE DIFFICULTY AND SPARSE REWARD

JGA (per turn)

{ —e— Random Sampling

—m= - Moderate Difficulty Sampling
Dynamic Difficulty Sampling
Max (Random): 0.72
Max (Moderate): 0.72
Max (Dynamic): 0.74

% % %

0 50 100 150 200 250 300

Step

Figure 4: Comparison of Average convergence speed and JGA across different sampling strategies
on hotel and train domain

To assess the effectiveness of sampling strategies in RL-based DST post-training, we used the
Qwen2.5-0.5B model and the MultiWOZ 2.4 dataset. We conducted zero-shot testing, where the
model generalizes to unseen domains without prior training, on the hotel and train domains. For
evaluation, we used per-turn JGA, which measures the correctness of all slot-value predictions at
each dialogue turn.
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Reward Function JGA (turn level)  Steps
JGA (Exact Match) 0.45 500+
AGA (turn-level) 0.68 320
+ fuzzy matching 0.65 240
+ weighted slot 0.71 180
+ partial factor (ours) 0.74 200

Table 3: Comparison of different reward function, AGA refers to turn-level partial match
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Figure 5: Comparison of reasoning length and JGA between models with and without initial SFT.

We compared three sampling strategies: (1) random sampling (baseline), (2) static moderate diffi-
culty sampling (selecting 8,000 data points with difficulty scores between 0.1 and 0.8), and (3) our
proposed dynamic difficulty sampling. Figure [] shows that our dynamic method converged faster
(at 200 steps) and achieved higher JGA than the alternatives. Static sampling outperformed random
sampling, confirming the importance of addressing imbalanced difficulty in DST datasets. However,
it risked overfitting due to its fixed data pool, while our adaptive approach adjusted to the model’s
progress, proving more effective.

Next, we explored reward functions’ impact on RL-based DST performance, using the same model,
dataset, and dynamic sampling. Table [3] summarizes the results after a maximum of 500 train-
ing steps. Using JGA directly as the reward led to slow convergence, with gains continuing past
500 steps. Turn-level AGA, which rewards slot-level correctness, markedly improved performance.
Adding fuzzy matching—rewarding semantically similar predictions speed up convergence further.
Incorporating weighted slots (emphasizing harder slots) and partial credit (for partially correct pre-
dictions) resulted in the highest JGA of 0.74 at 200 steps. These enhancements, combined in our
Fuzzy Match Reward function, boost both efficiency and accuracy.

Our approach tackles the challenges of imbalanced difficulty and sparse rewards, enhancing zero-
shot cross-domain DST with small language models like Qwen2.5-0.5B.

5.2 DIRECT RL TRAINING WITHOUT SFT

We investigated whether small LLMs can effectively learn DST from direct RL without an initial
SFT stage, a known strategy for larger models|Shao et al.| (2024)). We applied RL directly to the base
Qwen2.5-0.5B and Qwen2.5-3B models within a one-shot in-context learning framework.
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Our results highlight significant limitations for this approach. The 0.5B model failed to learn, yield-
ing nonsensical outputs. The 3B model reached a JGA of 0.67 but remained well below the 0.79
JGA of its SFT-initialized counterpart. As illustrated in Figure[5] SFT-based models produce longer,
more accurate responses (avg. 420 tokens) compared to the limited reasoning of direct RL models
(avg. 120 tokens). These findings suggest that SFT is a crucial prerequisite for developing effective
DST reasoning in small LLMs.

6 RELATED WORK

6.1 ZERO-SHOT CROSS-DOMAIN DST

Traditionally, zero-shot cross-domain DST research focused on optimizing model architectures to
enable generalization across dialogue domains without domain-specific training Wu et al.| (2019a);
Lin et al.[(2021a); Wang et al.|(2021)). The emergence of LLMs has shifted the paradigm due to their
robust generalization capabilities. Recent studies have prioritized generating informative prompts
or synthetic data to enhance zero-shot cross-domain DST performance, typically through SFT in
an imitation learning framework. Hu et al.| (2022) explored in-context learning for few-shot DST,
which can be adapted to zero-shot settings by providing contextual examples. |Dong et al.| (2024al)
introduced context-aware auto-prompting and contrastive decoding to improve LLM performance
in cross-domain DST. [Finch & Choi| (2024) generated diverse synthetic data to make zero-shot
DST more adaptable, further leveraging SFT to align models with task requirements. However,
the application of RL to optimize test-time scaling and enhance reasoning during inference remain
largely unexplored in DST. Our work addresses this gap by investigating RL-driven optimization for
small LLMsS in zero-shot cross-domain DST, aiming to balance performance and practicality.

6.2 VERIFIABLE REINFORCEMENT LEARNING

Reinforcement Learning from Human Feedback (RLHF) |Ouyang et al.| (2022), particularly using
Proximal Policy Optimization (PPO) |Schulman et al.| (2017), has been shown to significantly im-
prove LLMs’ generalization and output quality. Building on this, OpenAl |OpenAl| (2024) demon-
strated that RL can enhance LLMs’ reasoning capabilities, implementing test-time scaling to pro-
duce more accurate responses. However, these methods require extensive human-annotated rea-
soning data, which is costly and difficult to obtain, limiting their scalability. To address this chal-
lenge, recent research has introduced rule-based verifiable RL approaches such as ReMax |Li et al.
(2023),RLOO|Ahmadian et al.|(2024)) and GRPO|Shao et al.| (2024 that reduce reliance on external
data. These methods enable base LLMs to self-generate high-quality reasoning tokens, supporting
accurate outputs. Despite their success, verifiable RL methods have rarely been applied to DST
tasks, particularly with small LLMs. Our study fills this gap by applying GRPO to optimize small
LLMs for zero-shot cross-domain DST, demonstrating a scalable and resource-efficient approach.

7 CONCLUSION

This study introduces an innovative verifiable RL-based approach to improve zero-shot cross-
domain DST using small LLMs. By implementing Dynamic Difficulty Sampling and Difficulty-
Weighted Fuzzy Match Reward Function, we tackle issues like imbalanced difficulty and sparse
rewards in DST datasets. Optimized with a modified GRPO algorithm, our method achieves top-tier
performance among models under 1 billion parameters, rivaling larger models on MultiWwOZ 2.1
and 2.4. These findings underscore the viability of small LLMs for efficient, scalable dialogue sys-
tems. This work bridges a gap in RL applications for DST and offers a pathway to resource-efficient
solutions, enhancing real-world deployment where computational limits are critical.
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A  ROLE OF LARGE LANGUAGE MODELS IN THIS STUDY

In this study, LLLMs were integral to both the technical implementation and the final manuscript
preparation. For software development, we leveraged an LLM as an intelligent assistant to aid
in coding and debugging. Furthermore, to enhance the clarity and quality of this publication, we
utilized the LLM to perform comprehensive grammatical checks and proofread the manuscript.
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B PROMPT TEMPLATE

In this section, we list the prompt we used in our proposed DST RL strategy.

Prompt for DST CoT distilling from large LLMs:

You are an expert in Dialogue State Tracking (DST). Your task is to generate chain of thought
for solving provided DST tasks.

## Instructions:

- Generate your chain of thought that helps to arrive at the provided dialogue state in target
domain.

- Pay more attention to the difficult and complex dialogue states, and less attention to the easy
ones.

- If the dialogue is not related to the target domain(the ground trues dialogue states are all
None), please indicate that in your CoT with short explaination.

- The length of CoT should be in 100 to 500 words.

## Input:

- Target Domain:

{domain}

- Dialogue:

{dialogue}

- Related Slots and explanations:

{slots}

- The ground trues dialogue states:

{dialogue _state }

## Output Format:

- Generate answer in jthink; tags. Example: jthink; Your CoT...j/think;

Now, analyze the given content and generate your chain of thought.

Prompt for small LLM generate both CoT and DST results:

For the given dialogue, generate step-by-step reasoning and determine the dialogue state for the
domain {domain}.

## Input:

- Target Domain:

{domain}

- Dialogue:

{dialogue}

- Related Slots and explanations:

{slots}

## Output Format:

Output your reasoning in jthink; tag and the dialogue state in janswer; tag using following
format:

jthink; your reasoning..j/think,

janswer/slotl:valuel,slot2:value2j/answery,

Now, analyze the given content and generate your step-by-step reasoning and determine the
dialogue state:

C DETAIL HYPERPARAMETER

In this appendix, we provide the detailed hyperparameter settings used in our experiments for both
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) tasks. All experiments were con-
ducted on a 4¥*H100 cluster.
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C.1 SUPERVISED FINE-TUNING (SFT)

For SFT tasks, we utilized the llama-factory tool as our fine-tuning framework. The hyperparameters
are listed in Table 4]

Table 4: Hyperparameters for SFT tasks

Hyperparameter Value

per_device_train_batch_size 1
gradient_accumulation_steps 10

learning_rate 1.0e-5
num_train_epochs 3.0
Ir_scheduler_type cosine
warmup_ratio 0.1

C.2 REINFORCEMENT LEARNING (RL)

For RL tasks, we utilized the verl framework with vLLM as the rollout tool. The hyperparameters
are listed in Table

Table 5: Hyperparameters for RL tasks

Hyperparameter Value

TRAIN_BATCH_SIZE 512
MAX_PROMPT_LENGTH 1280
MAX_RESPONSE_LENGTH 2048

LEARNING_RATE le-6
TEMPERATURE 1.0
ROLLOUT_N 5

For more details, please refer to our code.

D EFFICIENCY ANALYSIS OF PER-DOMAIN AND PER-SLOT QUERY
STRATEGIES

In this section, we evaluate the efficiency of per-domain and per-slot query strategies with respect
to computational resource utilization, focusing on token usage and the number of queries required.
As outlined in Section 4.4, the per-slot query strategy, while simplifying the problem and poten-
tially enhancing accuracy, introduces a substantial computational burden by necessitating individual
queries for each slot at every turn. To assess this trade-off quantitatively, we compare a representa-
tive per-slot query method, LDST, with our proposed per-domain query model, which is built upon
Qwen2.5-0.5B. Two variants of our model are examined: one employing SFT without CoT reason-
ing, and another incorporating RL post-training with CoT reasoning. The evaluation is conducted
using 100 randomly selected dialogues from the MultiWOZ?2.4 training set.

The efficiency metrics, including the average number of tokens used for prompts, responses, total
tokens, and the average number of queries per dialogue, are summarized in Table [6] below.

Table 6: Efficiency comparison of query strategies in terms of token usage and query count

Query type ~ Method Avg. Prompt Avg. Response  Avg. total Avg. #Query
Per Slot LDST 36657.5 852.5 37510 77.5
Per Domain  Ours (DST only) 3975.75 689.75 4665.5 7.75
Per Domain  Ours (CoT) 4247 3735.5 7982.5 7.75
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The results reveal a marked disparity in computational efficiency between the two strategies. The
per-slot query approach, exemplified by LDST, consumes an average of 37510 total tokens and
requires 77.5 queries per dialogue. In contrast, our per-domain query strategy without CoT reasoning
utilizes only 4665.5 total tokens and 7.75 queries, reflecting reductions of approximately 87.6% in
token usage and 90% in query count. Even when enhanced with CoT reasoning, which increases
token consumption due to the generation of reasoning steps, our per-domain model requires 7982.5
total tokens—still significantly lower than the per-slot strategy.

E EXAMPLE RESULT

In this section, we including some fail case from Qwen2.5-0.5B CoT DST model in hotel domain.
The incorrect reasoning will be marked as red.
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LLM hallucination on no existing slots

<think>The dialogue revolves around the user requesting a place to stay (hotel) in the north
side of town, specifically asking for a hotel with a star of 4, free parking, and free wifi. Let’s
break down the dialogue to identify the relevant slots for the hotel domain.

1. Initial Request for Hotel: The user transitions from requesting a train to requesting a
hotel. The key statement is: I would like a place to stay that is in the north side of town.
[SYSTEM]: I can certainly help you with that. There are many accommodations on the north
side of town. Do you have any preferences?” This explicitly sets the ‘hotel_area‘ to “north” and

the . The user specifies "north side of town,” which directly sets the

2. Hotel Domain Establishment: The user explicitly states: I would like a place with a
star of 4 that includes free parking and free wifi.” This directly sets the ‘hotel_stars‘ to 74”
and the ‘hotel_internet® to “’yes.” The mention of “free parking” and “free wifi” clearly sets
‘hotel_parking* and ‘hotel_internet® to ’yes.”

3. Hotel Domain Details: The user specifies "moderate hotel with free wifi and parking.” This
sets ‘hotel_parking* to ”yes” and ‘hotel_pricerange‘ to “moderate.” The mention of “moderate
hotel” indicates a moderate price range, which is captured in ‘hotel_pricerange. The phrase
“free wifi and parking” directly sets ‘hotel_internet‘ to ’yes” and ‘hotel_parking* to "yes.”

4. Hotel Domain Validation: The user’s request for a hotel is explicitly confirmed by the
system, and no new slots are added. The user’s focus on hotel details (e.g., area, price, parking)
is directly mapped to the corresponding slots. The absence of any other slots (e.g., date, number
of people, stay) is checked, and all these slots are correctly filled based on the dialogue.

5. Conclusion: The dialogue state correctly reflects the user’s explicit requirements for the
hotel domain, including the slot values specified by the user. No ambiguities arise. The user’s
request for a hotel is directly addressed, and all relevant slots are properly populated based on
the dialogue.</think>

<answer>hotel_area:north, hotel_book-day:NONE, hotel_book-
people:NONE, hotel_bookstay:NONE, hotel_internet:yes, ho-
tel_name:NONE, hotel_parking:yes, hotel_pricerange:moderate, hotel_stars:4,
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Misunderstanding on Yes, No and None option.

<think>The dialogue revolves around the user seeking a hotel in the centre of Cambridge for
a cheap price range. The target domain is hotel”, so we focus on the hotel-related slots.

1. Hotel Domain Analysis: The user’s query is strictly about a hotel, so the hotel-related slots
(hotel_name, hotel_parking, hotel book-day, hotel_book-people, hotel_book-stay, hotel area,
hotel_price, hotel_internet, hotel_star, hotel_type) are directly addressed. The user specifies
”Alexander Bed and Breakfast” as the hotel, so "hotel_name” is clearly ”Alexander Bed and
Breakfast”.

2. Hotel Book-Day: The user selects “Sunday” for the hotel stay, so “hotel_book-day” is
“sunday”.

3. Hotel Book-People: The user confirms 2 people” for the hotel, so hotel_book-people” is
”27.

4. Hotel Book-Stay: The user specifies 2 nights” for the hotel, so ’hotel_stay” is "2”.

5. Hotel Price Range: The user specifies “cheap price range” for the hotel, so ho-
tel_pricerange” is “cheap”.

6. Hotel Area: The user mentions “centre” for the hotel, so "hotel_area” is ”centre”.

7. Hotel Internet:

The user’s query is strictly about a hotel, and the dialogue is exclusively about hotel booking.
The hotel slot is clearly addressed by the user, and all other slots are directly derived from the
user’s explicit specification. The absence of any other mentions or requirements related to the
hotel (e.g., room type, schedule, or amenities) results in the dialogue state being straightfor-
ward. </think>

<answer>hotel_area:centre, hotel_book-day:sunday, hotel_book-people:2, hotel_book-stay:2,
hotel_internet:no, hotel_name:alexander bed and breakfast, hotel_parking:NONE, ho-
tel_pricerange:cheap, hotel_stars:NONE, hotel_type:NONE </answer>

LLM confused on hotel and guesthouse. the hotel is refer to domain hotel and also for a type
of hotel_type slot.

ithink; The dialogue revolves around the user seeking a cheap hotel. The target domain is
"hotel”, so we focus on the relevant slots.

1. **Hotel Domain Identification**: The user explicitly mentions “cheap guesthouse” and
“cheap hotel” as requirements. The system provides ”Alexander Bed and Breakfast” as the
hotel, and the user’s query is about a cheap hotel. The domain is “hotel”, so all slots related to
the hotel are addressed.

2. *#Slot Analysis**: - **Hotel Name**: The user specifies “Alexander Bed
and Breakfast” as the hotel. = This directly fills the ‘hotel_.name‘ slot. - **Ho-
tel Price Range**: The user specifies “cheap” for the hotel, so ‘hotel pricerange*
is “cheap”. - **Hotel Book-Day**: The user does not mention a specific day
for checking in. The guesthouse is booked for Friday, but the hotel is not speci-

The parking, restaurant,

**Qther Slots**:

or other details are not mentioned in the hotel context.
3. #¥*No Other Slots**: The user’s query is strictly about a hotel, and the system provides details
about the hotel. There is no mention of the hotel’s area, booking day, or other parameters.

The dialogue is strictly about the user seeking a cheap hotel, and the relevant slots are directly
addressed. There is no overlap with the guesthouse’s details, so all slots related to the hotel
are properly populated.i/think;janswer;hotel_area:NONE,hotel_book-day:NONE, hotel _book-
people:NONE ,hotel_book-stay:NONE,hotel_internet:NONE,hotel_name:NONE,hotel_parking:N
hotel_pricerange:cheap,hotel_stars:NONE,hotel_type:NONE;/answer;,

DNE,
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