
ACCURATE COMPILER, OPTIMIZATION, AND ARCHITECTURE INDEPENDENT

FUNCTION IDENTIFICATION USING PROGRAM STATE TRANSFORMATIONS

Anonymous authors
Paper under double-blind review

Abstract
Patching vulnerabilities in third party libraries is critical for
maintaining security, yet such patches can take over 500 days
to be distributed on average. Manually creating binary patches
requires semantic analysis to identify the full set of functions
present in the library. Existing semantic binary analysis ap-
proaches do not scale, or are inaccurate. In this paper, we
introduce IOVec Function Identification (IOVFI), which as-
sesses similarity based on program state transformations,
which compilers largely guarantee even across compilation
environments and architectures. IOVFI executes functions
with initial predetermined program states, measures the re-
sulting program state changes, and uses the sets of input and
output state vectors as unique semantic fingerprints. Since
IOVFI relies on state vectors, and not code measurements,
it withstands broad changes in compiler, optimization, un-
derlying architecture, and even different implementations of
equivalent functionality. Crucially, IOVFI is the first approach
to support architecture independent classification.

Evaluating our IOVFI implementation as a semantic func-
tion identifier for coreutils-8.32, we achieve a high .779
average F-Score, indicating high precision and recall. When
identifying functions generated from differing compilation
environments, IOVFI achieves a 101% accuracy improvement
over the most-recent BinDiff 6, outperforms asm2vec in cross-
compilation environment accuracy, and, when compared to
dynamic frameworks, BLEX and IMF-SIM, IOVFI is 25%–
53% more accurate. Additionally, we show that IOVFI is
largely unaffected by code obfuscation by achieving similarly
high accuracy against obfuscated code. To demonstrate that
state transformations are capable of cross-ISA identification,
IOVFI achieves similarly high accuracy rates when identify-
ing AArch64 functions using unmodified x64 classification
vectors. We show that IOVFI scales to large binaries by eval-
uating semantic identification accuracy for three large and
commonly used libraries: libxml2, libpng, and libz. Fi-
nally, we perform a semantic history analysis of libpng and
libz on 14 different versions. We correctly identify libpng
versions distributed with the last five years of Ubuntu re-
leases.

1 Introduction

Semantic binary analysis—the act of determining a function’s
“purpose” within a binary—has applications in many research

and engineering areas, such as plagiarism detection [48], code
debloating [65], and malware analysis [8, 10, 34, 62]. Patch-
ing third party libraries [16, 23, 24, 49] requires determining
the unpatched library version, and the full set of included func-
tions, because developers will frequently distribute a custom-
tailored version of a third party library that utilizes a subset of
the possible functionality (e.g., only video decoding, and not
encoding). [3] showed the first requirement is feasible to sat-
isfy, but the second requirement is much less straightforward.
Without source or an exact knowledge of how the library was
generated, any user of a vulnerable library must either wait
for the developer to fix the library, which can take on average
over 500 days [3], or use semantic binary analysis to identify
and locate vulnerable functions.

While source-based semantic inference work exists [28,
35, 36, 39, 44], semantic binary analysis is a more difficult
problem [50] due to the lack of information at the binary
level. Manual semantic analysis does not scale to large bina-
ries, necessitating an automated solution. So far, automated
binary analysis [18, 25, 33, 67, 72, 75] measures binary code
properties (e.g., order and type of instructions [72], memory
locations accessed [25, 45], or control flow [58]), and approx-
imates semantic similarity of functions based on the similarity
of code. Although it is true that code similarity implies seman-
tic similarity, the converse is not true—machine code may
vary while still preserving semantics. We demonstrate that
program state modifications serve as a better, more stable
semantic function identifier. Program state change as a func-
tion identifier relies on the fact that semantic behavior is sta-
ble across compilations, environments, and implementations.
Thus, program state change provides an ideal fingerprint, as it
is impervious to compilation environment diversity or infor-
mation loss. Code measurement approaches are susceptible
to these complicating factors.

We present IOVec Function Identification (IOVFI), an ap-
proach to precise binary semantic analysis. Instead of relying
on fragile function code properties, IOVFI abstracts functions
into characteristic sets of inputs and corresponding program
state changes. The core idea of IOVFI is to observe and iden-
tify the behavior or character of functions instead of the
underlying code, and then use the observed behavior as a
unique function identifier. Our proof of concept IOVFI im-
plementation automatically discovers a subset of a function’s
unique set of valid input program states and corresponding
program state changes (referred to as Input/Output Vectors, or

2022

IOVecs). By observing data flow and program state transfor-
mations, IOVFI can classify functions, and, as a first-in-class
feature, the IOVecs can transfer to different architectures with
minimal effort.

We evaluate our prototype on accuracy amid varying com-
pilation environments, a task existing works find difficult yet
is crucial for binary patching and reverse engineering. We
measure accuracy by identifying functions in the coreutils-
8.32 application suite, and find that IOVFI achieves a high
.779 average accuracy across 8 different compilation environ-
ments. When identifying functions from differing compila-
tion environments, IOVFI is 101% more accurate than the
static BinDiff 6 [75] framework, and 25%–53% more accurate
than the dynamic BLEX [25] and IMF-SIM [72] frameworks.
IOVFI achieves similar results to asm2vec [22] when compi-
lation environments are similar, and significantly outperforms
it for differing compilation environments.

We further demonstrate the generality of IOVecs by achiev-
ing similar accuracy when analyzing obfuscated binaries and
AArch64 binaries using unmodified x64 IOVecs. We also
demonstrate that IOVFI scales to large binaries by analyz-
ing libxml2, libpng, and libz, which shows only a linear
growth in training time relative to the number of functions
in the binary. As an illustration of the utility of IOVFI, we
perform a semantic analysis of 8 different versions of libz,
and 6 different versions of libpng, and measure significant
semantic differences which correspond to major changes to
the underlying source. Finally, we use the libpng IOVecs
to identify the versions distributed over the past 5 years of
Ubuntu releases.

This paper provides the following contributions:

1. Design of IOVFI, a framework for semantic binary anal-
ysis that infers function semantics through program state
changes;

2. A practical implementation of IOVFI that leverages
coverage-guided, mutational greybox fuzzing to auto-
matically infer program states and input structure layouts
for functions;

3. We show the effectiveness of IOVFI through a thorough
evaluation on coreutils-8.32, obfuscated and cross-
architecture binaries using unmodified IOVecs, and large
shared libraries. We also perform a semantic analysis of
8 different versions of libz, and 6 different versions of
libpng, and use the libpng training data to identify 5
years of Ubuntu distributed versions.

2 Challenges and Assumptions

Here, we outline challenges for semantic function identifica-
tion, and our assumptions when designing IOVFI.

2.1 Semantic Function Analysis
Reverse engineering a binary is a tedious task. While initial
extraction of binary code and determining the size and loca-
tion of functions is non-trivial [4, 33, 40, 60, 61, 63], semantic
identification is the hardest, most time-consuming part of re-
verse engineering. The largest impediment to semantically
recognizing known functions is the large code diversity due
to different compilation environments. Here, we refer to the
compilation environment as the exact compiler and linker
brand and version, optimization level, compile- and link-time
flags, linker scripts, underlying source, and libraries used to
generate a binary. Compilers attempt to create efficient, opti-
mized code, and different compilers utilize different optimiza-
tion sets. While compilers preserve the high level semantics
expressed at the source level, the generated binary code is
highly variable. For example, an analysis we performed on
the strlen implementation in musl C library [53]—one of
the simplest non-trivial functions in the C library—showed
that simply changing the compiler could result in more than
a 70% change in the disassembly. Optimizations, like dead
code analysis and tail call insertions, also greatly affect the
generated machine code. Even worse, custom function im-
plementations (as opposed to the use of system-distributed
libraries) will likely produce significantly different binaries.

However, regardless of compilation environment, the pro-
gram state changes a function performs must remain stable
for a binary to exhibit correct behavior. Barring any bug in
the compiler implementation or inconsequential actions such
as dead stores, the same source code should produce the same
semantic behavior in the final application. If this was not the
case, binaries would exhibit different, and likely incorrect, be-
havior in different builds. Therefore, measuring program state
changes presents a viable method for semantic identification
that does not rely on fragile measurements of code.

2.2 Assumptions
In line with existing semantic analysis tools, when designing
IOVFI, we assumed the following:

1. Binary code is stripped, but not packed.

2. Binary code is generated from a high-level language
with functions, and function boundaries are known.

3. Functions make state changes that are externally visible.

4. The binary follows a discernible and consistent Applica-
tion Binary Interface (ABI).

5. Functions do not rely on undefined behavior.

When analyzing binaries, reverse engineers start with a
stripped binary from which they infer its behavior. The an-
alysts have no access to the underlying source, debugging

2

2022

information, symbol table, or any other human-identifiable
information. We assume the same setting for IOVFI. Seman-
tic analysis frameworks also make the assumption that all
code is unpacked, and that the binary was generated from a
high-level language with a notion of individual functions and
a known ABI. The latter assumption precludes applications
written wholly in assembly with no discernible functions,
and, while packed code is another serious challenge in binary
analysis [21, 40, 63], that topic is orthogonal to the analy-
sis that semantic analysis frameworks perform. Finally, as it
is rare in practice and most likely a bug, no code may rely
on undefined behavior to correctly function. The compiler is
free to use undefined behavior for optimization purposes, but
the original source should not rely on any specific compiler-
based optimization utilizing undefined behavior for proper
functionality. Note that functions which rely on randomness
(e.g., cryptographic functions) are still valid; semantic analy-
sis frameworks simply assume that function semantics do not
change with the compiler.

3 IOVFI Design

IOVFI is a function identification framework, which infers
program semantics by measuring the effects of execution. In-
stead of measuring code properties, it measures program state
changes that result from executing a function with a specific
initial program state. When a function executes, it does so
with registers set to specific values, and an address space in a
particular state, with virtual addresses mapped or unmapped
to the process’ address space, and mapped addresses holding
concrete values. We refer to the immediate register values and
address space state as the program state.

IOVFI performs its analysis by instantiating a specific
program state before function execution, and then measures
the program state post-execution. Measurable program state
changes are writes to locations pointed to by pointers, data
structures, and variables whose valid lifetimes do not end
when the function returns. These types of changes necessarily
must be made to registers or memory addresses outside the
function’s stack frame. This is because, once finished, any
change would be overwritten by later instructions, and thus the
program would have been more efficient had it not called the
function at all. Functions that make only ephemeral changes
are dead code, and the compiler will simply remove such code.
Additionally, depending on optimization level, some program
state operations, e.g., dead stores which write to addresses but
are never read, can be removed from the final binary. We do
not include such operations in the function’s set of program
state changes, but focus on persistent and externally measur-
able program state changes. We argue that most user space
functions conform to these standards, however, we discuss
the limitations these standards impose in § 6.

We also consider the immediate return value of a func-
tion to be a measurable program state change, but exclude

1 int my_div(int a, int b, int* c)
{ *c = a / b; return 0; }

Listing 1: An IOVec Motivating Example.

changes to general purpose registers (e.g., rbx on x64) and
state registers (e.g., rsp). They are excluded because, for
caller-saved general purpose registers, their values are imme-
diately irrelevant upon function return, and state registers have
no bearing on function semantics. Additionally, measurable
program state changes preclude modifications to kernel state
not reported to user space.

While executing, a valid program state for one function
might cause another function to fault, and the same function
can perform arbitrarily different actions based on the program
state upon invocation. Therefore, a function implicitly defines
the input program states it accepts—states where the function
can run and return without triggering a fatal fault—and the
corresponding output program states based upon these input
states. We call these accepting input and corresponding output
program states Input/Output Vectors, or IOVecs. A function
A is said to accept an IOVec I if A accepts the input program
state from I, and the resulting state from executing A matches
the expected program state from I. If either of these conditions
do not hold, then A rejects I. See § 3.3 for the discussion of
matching program states. Assuming functions make changes
to input program states which are measurable post-execution,
we can reframe semantic function identification. Precisely
identifying a function can be seen as identifying the complete
set of IOVecs which a function accepts. We call that set the
characteristic IOVec set (CIS).

Consider the toy example in Listing 1. An accepting input
program state is one that has the first argument set to any
integer, the second argument set to any integer except 0, and
the third argument set to any properly mapped memory ad-
dress. The memory location pointed to by c can initially have
any value. The corresponding output program state has the
return value set to 0, and the memory location pointed to by c
contains the value of a/b. An IOVec is a single concrete tuple
of accepting input state and corresponding output state, and
CISmy_div is the full set of IOVecs my_div accepts. Note that
only the first two arguments, the location pointed to by c, and
the return value, are relevant, and that neither the full address
space nor every register value are relevant.

Every function has a CIS, and we hypothesize that most
functions have a unique (non-empty) CIS. A set of functions
that share a CIS is called an equivalence class. For the sake of
brevity, unless otherwise noted, when we refer to a function,
we are actually referring to an equivalence class of functions
with equal functionality.

In the general case, a function’s CIS is unbounded. So for
practical reasons, we attempt to find a subset of a function’s
CIS, which we call the distinguishing characteristic IOVec

3

2022

set, or DCIS. A DCIS for function f , DCIS f , consists entirely
of IOVecs which f accepts, and only f accepts every member
of DCIS f . Another function, g, might accept a member of
DCIS f , but there is at least one IOVec I ∈ DCIS f which g
does not accept. IOVFI is used to identify a function foo in
a binary by providing foo with IOVecs I j ∈ DCIS f . If foo
accepts all I js, then we say that foo≡ f .

IOVFI needs an oracle to provide IOVecs in order to se-
mantically identify functions, but there is no definitive source
of IOVecs. Our prototype was designed to be one such oracle,
but other oracles can be devised. For example, IOVecs can
be derived from unit tests or inferred from a specification.
Symbolic execution [6, 11] or constraint tracking [59] could
similarly be leveraged to create IOVecs.

The number of IOVecs IOVFI needs in order to be precise
is highly dependent on the diversity and number of functions
analyzed. The minimal theoretical number is equal to the
number of functions being analyzed, because IOVFI needs
at least one accepting IOVec to identify and distinguish a
function. However, it is likely more IOVecs are needed to
precisely distinguish functions, but the use of differences in
semantic behavior for discrimination minimizes the number
of required IOVecs. We currently focus only on accepting
IOVecs for semantic identification, however using rejected
IOVecs also provides valuable feedback. For example, if a
function g rejects only 1 IOVec in DCIS f , this can be a signal
that g and f are semantically related.

IOVFI performs its analysis in two phases: a coalescing
phase and an identification phase. The coalescing phase,
which only needs to be run once, is where functions are clas-
sified by IOVec acceptances and rejections, and ordered into
a binary tree accordingly. The second phase is where un-
known functions are semantically identified by providing the
unknown functions with specific IOVecs from the binary tree,
and traversing the tree according to IOVec acceptance.

Coalescing Phase IOVFI starts its analysis by providing
every function in its training set with every IOVec the oracle
provides. This establishes a full ground truth of which IOVecs
are accepted and rejected, ensuring that proper ordering can be
achieved. Recall that an IOVec encodes both an input state and
expected output state. When an IOVec is given to a function
f , one of four results can occur:

1. The function receives a fatal signal (e.g., SIGSEGV), due
to an improper input program state.

2. The function does not return before a specified timeout.

3. The function returns, but the final program state differs
from the expected output program state.

4. The function returns, and the final program matches the
expected output program state.

IOVecs that satisfy the last result are added to DCIS f . As
future work, we want to incorporate rejected IOVecs into the
identification process, as rejected IOVecs classify the rejected
semantics of this function.

The result of the coalescing is a proposed DCIS for every
function in the training set, and the DCIS then fed to a de-
cision tree generator. We use a decision tree generator (as
opposed to another machine learning classifier) because, deci-
sion tree generators make classifications based on information
gain, which is ideal for IOVec acceptance and rejection. The
output decision tree contains IOVecs as interior nodes, and
functions at leaves, and can be used for semantically identi-
fying any number of functions later. As the tree is generated
using differences in semantic behavior, it only grows linearly
in the worst case. Every path from root to leaf encodes a
minimal DCIS needed to distinguish one function from every
other in the tree. If the same path in the decision tree maps
to more than one function, then a potential equivalence class
exists in the binary. The functions in the leaf are those for
which the generated DCIS is insufficient to fully distinguish
one function from another. This can be because the generated
IOVecs cover the functionality poorly, or the functions are
truly an equivalence class.

Identification Phase Figure 2 shows the overview of the
identification phase. To semantically identify functions, the
analyst provides IOVFI with an unknown binary and the gen-
erated decision tree from the coalescing phase. Starting from
the root of the decision tree, the IOVec is given to the un-
known function. If the IOVec is accepted, the true branch in
the decision tree is taken; otherwise, the false branch is taken.
The unknown function is then tested against another IOVec
depending on the path taken. When the path arrives at a leaf,
the unknown function is tested against one more IOVec from
the leaf function’s DCIS for confirmation. Again, if the IOVec
is accepted, then the function is given the label of the function
at the leaf. If the unknown function gets to a leaf and remains
unconfirmed, then the function is labeled as unknown.

The policy used for determining matching program states
must remain constant for both phases. For IOVFI, we have
implemented one such policy (see § 3.3), but others can be
devised. The program state matching policy should take into
consideration the memory model and features of the language
in which the functions are written.

3.1 IOVec Discovery
IOVFI requires an oracle to generate IOVecs. Our prototype
implements a coverage-guided mutational fuzzer [5, 13, 17,
30, 31, 32, 43, 47, 57, 66, 68, 73, 74] to infer IOVecs. Since
we have no information about an unknown function’s seman-
tic behavior, the ideas behind feedback-guided mutational
fuzzing are useful in discovering IOVecs. By rapidly feed-
ing a function random inputs, and measuring the program

4

2022

/lib/libc.so

bar.exe

/usr/bin/ld

Function Fuzzing
Module

/lib/libc.so
IOVecs

Function Fuzzing
Module

bar.exe
IOVecs

Function Fuzzing
Module

/usr/bin/ld
IOVecs

C
on

te
xt

 C
oa

le
sc

in
g

an
d

M
ap

pi
ng

Decision Tree Generation

Figure 1: IOVFI Ahead-of-Time Learning Phase.

0

51

6 7

Fu
nc

tio
n

Id
en

tif
ic

at
io

n

X.exe

Va
lg

rin
d

X.exe, func0, IOV0

IOV0 ✓

X.exe, func0, IOV6

IOV6 ✓

X.exe.func0 = foo
X.exe.func1 = bar
 ...

IOV5 ✗
X.exe, func0, IOV5

0 6foo

bar 0 5 7

baz 1

IOVec

Distinguishing IOVec Set

Figure 2: IOVFI Identification Phase. The ✓ and ✗ indicates that the IOVec was accepted and rejected respectively. Paths in the
tree leading to green leaves indicate semantic equivalency in the unknown binary X.exe to a previously analyzed function (foo,
bar, or baz), while paths leading to red leaves represent unseen/new behavior.

IOVec Data Use
Random seed Program state initialization
Pointer input arguments Program state initialization
Memory object information Program state initialization
Code coverage Fuzzer seed selection
Expected return value Program state comparison
Expected memory state byte values Program state comparison
Unique system calls Program state comparison
Originating architecture IOVec translation

Figure 3: Data stored in IOVecs.

state change post-execution, we can build a corpus of func-
tion identification data without any a priori knowledge. We
chose fuzzing as our exploration strategy because fuzzing is
optimized to maximize code coverage, leading to maximal
program state change coverage. We do not need full path
or code coverage to be accurate, only enough program state
change coverage (i.e., data-flow coverage) to differentiate se-
mantics. While limitations of fuzzing (e.g., passing complex
data checks [14]) may limit the quality of the IOVecs, we
observe that they are sufficient in practice. Our experimental
results reinforce our main claim that program state change
(however the IOVecs are generated) provides a more stable
semantic identification fingerprint than code measurements.

Figure 1 shows the overall design of the first phase of
IOVec discovery and coalescing. Our prototype supports an-

alyzing any executable code, including shared libraries, but
static libraries need to be included in either a shared library or
executable. IOVFI requires neither the source nor any debug
information; however, it does need boundary information of
each function in an executable, or the exported symbol names
in a shared library. Recent work shows that this information
can be recovered even for stripped binaries [4, 60].

For each Function Under Test (FUT), our prototype fuzzes
the input arguments and non-pointer memory object data if
any have been deduced, and then begins executing the FUT
with this randomized program state. If that program state is
accepted, then the newly discovered IOVec is returned, and
the resulting code coverage of the test is examined. If the
IOVec produced new coverage, it is added to the FUT’s DCIS,
otherwise, it is discarded. Either way, the IOVec in the FUT’s
DCIS that produced the most coverage (or a completely new,
randomized IOVec in case the DCIS is empty) is chosen as a
seed for additional fuzzing. This process continues until the
code coverage exceeds a user-defined threshold.

IOVFI stores the input program state and expected pro-
gram state in an IOVec. Storing the entire address space is
both a waste of storage and imprecise. Instead, IOVecs save
the data listed in Figure 3. Memory object information is
the coarse-grained input layout and global memory objects
inferred during the generation of the IOVec, and includes loca-
tion, size, and pointer sub-member offsets. While generating

5

2022

crash

Fix1 movq %rdi,-0x8(%rbp)
2 testb $7, %dil
3 je .LBB0_4
4 movq %rax,-0x8(%rbp)
5 .LBB0_2:
6 cmpb $0, (%rax)

Figure 4: Backwards taint analysis to infer pointer arguments.
Policy Instruction t Taint? u Taint? Taint Policy

1 t = u Yes No T(u); R(t)
2 t = u No Yes
3 t = u Yes Yes
4 t = t ◦u Any Any

Figure 5: Backwards Taint Propagation. t and u can be a
register or memory address. T(x) taints x and R(x) removes
taint from x. ◦ denotes any logic or arithmetic operator.

IOVecs, our implementation uses code coverage to select an
IOVec to mutate, so we include the instructions executed by
the FUT when provided with the IOVec.

3.2 Pointer Derivation
A major challenge to generating high-quality IOVecs is the
detection of pointers as input. As binaries contain no type
information, determining if an input argument is a pointer is
an ongoing research topic [51, 54]. Without recovering which
arguments are pointers, determining a DCIS is generally im-
possible, and only incomplete behavior will be captured.

A simple solution would replace an invalid address with
a valid address before an illegal dereference occurs. While
such a solution has been successfully used to solve other prob-
lems in binary analysis [37, 56], it would not work in IOVFI,
because the underlying problem—semantically, an input is
supposed to be a pointer when it is not—remains. IOVFI
relies on capturing program state changes that arise from ex-
ecuting a function with a specific input program state. By
replacing an illegal address in situ, the resulting output state
does not necessarily arise from actions performed given the
initial state, and an IOVec with an input state and an unrelated
output state would be generated.

Consider the code in Figure 4, which is adapted from the
strlen implementation in musl. The first pointer argument
(passed in using register rdi) is stored on the stack (line 1).
Later, that address is written to register rax (line 4), and then
is dereferenced and compared with the null terminator (line
6). Our fuzzing strategy is unlikely to supply a valid address
as input, and line 6 will cause a SIGSEGV signal to be issued.

The simple approach would replace the invalid address in
rax with a valid address. If the function later returns with no
other issue, then IOVFI would register strlen as accepting
the input program state with rdi set to a random (non-pointer)
value. This is incorrect, and during the identification phase, an
implementation of strlen in an unknown binary would not

accept the input program state. That strlen implementation
would then be marked with an incorrect label.

The solution we propose is a backwards taint analysis in-
spired by Wang et al. [72], and illustrated in Figure 4. While
generating IOVecs in its exploration phase, our prototype
records immediate register values before every instruction
executes, and, if a segmentation fault occurs (as in line 6 of
Figure 4), we get the register containing the faulty address,
which is the taint source. The saved register values are used
to propagate the taint back to a root sink. The taint prop-
agation policy is listed in Figure 5. Starting from the last
executed instruction, each instruction is parsed in reverse or-
der until all instructions are iterated through. The root sink is
the last tainted register or memory address after all instruc-
tions are processed. Our implementation utilizes the Valgrind
framework [54], and its architecture independent intermediate
representation, VEX. As VEX instructions represent a single
action, and we record all register values prior to executing a
single machine instruction, we are able to precisely determine
the root sink, and no false positives are possible.

After sink discovery, we search for previously allocated
memory objects, and update the allocated bounds accordingly
if an object is found. If no object is found near the faulting
address, then a new memory object is built by allocating a
fixed-size memory region, and records the current location
and size of the object. We use this information for inferring
new bounds and pointer sub-members if another segmenta-
tion fault occurs after execution restarts. Analysts can use
the bounds information for more sophisticated analysis after
decision tree generation. Once the object has been created or
updated, the location is written to the sink, and begins exe-
cuting the FUT from its beginning using the newly adjusted
program state.

The backwards taint analysis restarts with every segmenta-
tion fault until the FUT successfully returns. When the FUT
finally completes, we record the correctly initialized input pro-
gram state, the corresponding output program state, and the
coarse-grained object structure derived from the backwards
taint analysis. IOVFI only tracks which memory areas are
supposed to be pointers, and no other semantic meaning is
given to memory regions containing non-pointer data. Further
fuzzing iterations maintain the memory object structure, and
only the non-pointer memory areas are fuzzed.

3.3 Matching Program States

IOVFI uses matching program states to differentiate and clas-
sify functions’ semantics. Here, we present our definition of
matching states used to identify C functions.

Recall that our notion of input program state includes mem-
ory objects for both global data as well as input arguments.
Semantically similar functions modify memory objects in sim-
ilar ways (if at all), so we capture the resulting memory state
of allocated objects post-execution. Due to our fine-grained

6

2022

control over the memory state, any pointer value (either as
an input argument or as a structure sub-member) is the same
across executions. The allocated memory objects can be any
arbitrary data structure, containing a mix of pointer and non-
pointer data at various locations within the structure. Program
states match when non-pointer values in memory regions are
byte-wise the same, and any pointers to sub-objects are lo-
cated at the same offset from the object start. If there is a
single mismatch in memory objects between two program
states, then the states do not match.

Return values are also pertinent, but can be implementation
dependent. We recognize two types of return values: pointers
and non-pointers. Due to the lack of any type information in
binaries, precisely determining if a return value is a pointer is
challenging. We conservatively test if the return value maps
to a readable region in memory, and if it does, we designate
the return value as a pointer. If a return value is not readable
in memory, then we consider it a non-pointer, and can rep-
resent functions that perform raw computations (e.g., sin or
toupper), or adhere to a contract (e.g., strcmp which can
return any value < 0, = 0, or > 0).

Finally, because system calls provide services that cannot
be satisfied by user-space code and cannot be optimized out,
semantically equivalent functions must invoke the same set of
system calls. Order and number of system calls made, how-
ever, can differ among semantically equivalent functions (e.g.,
calling read(fd, 1) 4 times could be the same as calling
read(fd, 4) once). Therefore, we include the set of unique
system calls invoked while executing with the specific input
as part of the IOVec. Semantically equivalent functions must
invoke the same set of system calls, and can execute neither
more nor fewer unique system calls.

For two program states to match, the values contained in
return registers must match in the following ways. Return val-
ues must both be pointers or non-pointers. As we do not know
the size of the underlying memory region, we do not check the
underlying memory values if the return values are pointers;
we simply say the return values match. Without more sophisti-
cated analysis, this can be a source of inaccuracy. If the return
values are non-pointers, they must be equal, or both must be
positive or negative. If all input pointers (including pointers
to all sub-objects) match, the return values match, and the
same set of system calls are invoked, then the two program
states match. As we do not perform any static analysis, void
functions will also go through return value analysis, leading
to another potential source of imprecision.

4 Evaluation

Our evaluation focuses on 64-bit System-V Linux binaries
derived from C source code. We performed our evaluation
using an Intel Core i7-6700K CPU, with 32 GB of RAM,
running Ubuntu 16.04 LTS. We address the following research
questions (RQ):

1. How accurate and scalable is IOVFI in identifying func-
tions in binaries?

2. Is IOVFI truly resilient against compilation environment
diversity?

3. Do IOVecs generated by IOVFI apply to other architec-
tures?

4. Does IOVFI create meaningful equivalence classes?

Our results do in fact show that IOVFI is a feasible and
accurate semantic function identifier. Additionally, our re-
sults show that IOVFI is largely unaffected by compilation
environment changes, and that IOVFI can quickly identify
previously analyzed functions. We show that IOVecs truly pre-
serve semantics by achieving high accuracy when identifying
functions in both purposefully obfuscated and AArch64 bina-
ries. Finally, our large-scale real-world application evaluation
shows that IOVFI can scale to large, complex binaries.

4.1 Accuracy Experimental Setup
We selected coreutils-8.32 for evaluation because the
suite is a common evaluation metric in the literature, and
used by both BLEX and IMF-SIM for their evaluation. To
conduct our evaluation of IOVFI’s accuracy, we selected wc,
realpath, and uniq, which represent medium-sized appli-
cations using the default compilation environment. We com-
piled the set of applications using gcc 7.5.0 [69] and clang
6.0.0 [42], at O0–O3 optimization levels. We then generated
a decision tree (see § 3) for each application, for a total of
24 decision trees. The total amount of fuzzing time allocated
for generating IOVecs was limited to 5 hours, after which the
coalescing phase was allowed as much time as necessary. The
coverage threshold to stop fuzzing a function was set at 80%.
Only 19% of the classified functions hit that threshold during
the exploration phase, and the average per-function coverage
was 61%. While low coverage could miss important semantic
features, Jiang et al. [36] found that in practice most functions
are distinguishable using few executions. The accuracy in our
evaluation further backs up this finding.

Each tree was used to identify functions in du, dir, ls, ptx,
sort, true, logname, whoami, uname, and dirname, each
also compiled using gcc 7.5.0 and clang 6.0.0 at O0–O3
optimization levels, for a total of 80 binaries. These appli-
cations represent the 5 largest and smallest applications as
determined by the default coreutils compilation environ-
ment. We used a subset of coreutils applications because
an evaluation of one application requires 8 · 24 = 192 ex-
periments. Evaluating all 100+ applications would therefore
exceed 20,000 experiments. Given that the applications share
a lot of functionality, such an exhaustive evaluation is unnec-
essary. In order to establish ground truth, we compiled all
binaries with debug symbols enabled. However, IOVFI does

7

2022

Suite

D-Tree O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

LLVM .874 27 .829 49 .728 85 .691 66 .702 123 .667 98 .694 133 .743 139
O0

gcc .852 56 .851 24 .726 97 .685 67 .691 142 .655 131 .691 141 .736 201

LLVM .661 74 .692 82 .891 30 .636 66 .753 79 .690 73 .718 73 .671 110
O1

gcc .848 113 .811 91 .815 128 .852 34 .808 137 .782 104 .804 146 .854 146

LLVM .723 107 .744 121 .836 76 .736 89 .929 49 .789 107 .916 53 .752 91
O2

gcc .710 85 .757 117 .835 117 .718 74 .828 129 .892 49 .830 138 .799 68

LLVM .723 110 .742 120 .835 77 .735 93 .929 54 .798 122 .926 51 .760 99
O3

gcc .849 137 .830 173 .825 153 .819 128 .822 124 .848 78 .820 137 .932 53

Figure 6: Geometric mean F-Score (left) for coreutils-8.32 per decision tree compilation environment (rows) across evaluation
suite compilation environments (columns), and percent increase F-Score over BinDiff 6 (right).

not use them for its analyses, and they were only used for
determining accuracy after all analyses had completed. Unfor-
tunately, some functions call abort or otherwise forcibly exit
on invalid input, and thus our prototype in its current iteration
could not properly analyze those functions.

We report the geometric mean F-Score (harmonic mean of
precision and recall) across all compilation environments. In
order to determine the correctness of a label, we performed
a simple string comparison between the name of the FUT
and the functions in the assigned equivalence class. If any
matched, we record the function name as the assigned label,
otherwise we use the name of the first function in the equiva-
lence class as the assigned label. If a function is not matched
to an equivalence class, we label the function as “Unknown”.
We then search for the function name among all the classified
functions in the decision tree. The ground truth label is the
function name if it appears in the classified function list, or
“Unknown” otherwise. The classification labels and ground
truth labels are then given to the sklearn.metrics Python
module for F-Score calculation.

To evaluate against the most recent BinDiff 6 (released
in March 2020), we exported the needed input data using
Ghidra [1] for each binary in every compilation environment,
and performed pairwise analyses. The primary binaries were
the decision tree binaries, and the rest of the binaries were the
secondary binaries. Only the functions that our prototype clas-
sified were used for comparative accuracy measurements. We
measured accuracy via a string comparison between matched
function names, or with “Unknown” for secondary functions
that cannot be matched. The primary matched name was con-
sidered as ground truth for matched functions. For secondary
unmatched functions, the function name was used as ground
truth if it was present in the primary function list, while “Un-
known” was used otherwise. Unfortunately, BinDiff 6 only
provides one function name for matched functions, so no
further analysis could be performed.
asm2vec [22] is another state-of-the-art static similarity

framework that uses natural language processing to infer a
model of functions using known function disassembly as

training input. Function similarity is performed by computing
the cosine difference between two numerical vectors derived
from the trained model, where one vector represents a known
function, and one vector represents the FUT. The pair that
yields the highest cosine difference is assigned equivalence.
asm2vec will always return a similarity score (and a match),
even when presented with a function the model has not seen.
This feature presents a challenge in fairly evaluating IOVFI
against asm2vec, because IOVFI is capable of declaring the
untrained function as “Unknown,” while asm2vec can only
return a value between [−1,1]1.

To evaluate against asm2vec, we trained a separate model
using the binary tree binaries, and used each model, along
with the binary’s functions, to identify functions in the test set.
The function names of the top 2 results were compared with
the FUT name, and the FUT name was used as the label if
there was a match, or the top result label was used if there was
no match. We used the top 2 results to fairly compare against
the average equivalence class size that IOVFI differentiates
(see § 4.3). Unfortunately, due to the long evaluation time
needed for asm2vec (see the discussion in § 4), we could not
evaluate it using the full training and test binaries. Instead, our
asm2vec evaluation consists of the O0 and O3 clang and gcc
decision tree binaries, and true and logname as test binaries,
again only using the O0 and O3 versions. true and logname
were chosen as representative of the small and large binaries
in our evaluation set. We report the average F-Score asm2vec
achieves while varying the compilation environment, along
with the average true label cosine similarity, and the average
predicted label similarity. The high F-Score that asm2vec
achieves when the test and training binaries match compila-
tion environments shows that, while imperfect, this evaluation
is reasonable given how asm2vec produces results. Due to the
evaluation concerns with asm2vec, our evaluation focuses on
BinDiff 6, as that system provides a more fair apples-to-apples
comparison, despite its lower accuracy relative to asm2vec.

1Technically, 0 could be construed as “Unknown”, but utilizing it would
be challenging, as most functions have some similarity with each other on
the assembly level, and thus a 0 cosine similarity is rare.

8

2022

4.2 Accuracy Amid Environment Changes

Figure 6 shows the geometric mean F-Score IOVFI achieved
with decision trees from a specific compilation environment,
along with the percent increase over the geometric mean F-
Score achieved by BinDiff 6 with the same environment. Each
row reports the accuracy of all decision trees or primary appli-
cations from the specific compilation environment has when
used to identify functions in binaries generated with a specific
compilation environment (presented as the columns). The
diagonal numbers (in bold) are, therefore, the accuracy rates
when the decision trees or primary applications and evaluation
suite match in both compiler and optimization level. They are
unsurprisingly among the most accurate IOVFI and BinDiff 6
achieved, and represent the data most reported by related
work. BinDiff 6 achieved an overall .402 ± .111 accuracy and
standard deviation, and a diagonal accuracy of .642 ± .0387.
Overall, we achieve a .779 ± .0777 accuracy rate, while the
diagonal accuracy is .893 ± .0331, an improvement of 39%.

The off-diagonal numbers represent situations where train-
ing binaries differ from the evaluation binaries, and highlight
the limitations of BinDiff and the strengths of IOVFI. As a
static analysis framework, BinDiff performs its analysis using
various graph comparison and hashing heuristics. While static
analysis is significantly faster, those heuristics are based on
fragile properties, as instructions and control flows change
with compilation environments. Conversely, IOVFI relies on
program state changes, which compilers guarantee will be sta-
ble across compilation environments and, as we will demon-
strate, even across architectures. BinDiff 6 achieves an aver-
age off-diagonal F-Score of .380 ± .0726 while our prototype
achieves an off-diagonal .766 ± .0682 average F-Score, an
improvement of 101%.

The generally high F-Scores across compilation environ-
ments indicate that our accuracy largely comes from IOVFI’s
ability to identify functions it has classified, and not from
simply assigning an unknown classification to functions it has
not identified. These results show that IOVFI is accurate as a
semantic function identifier, as well as resilient to compilation
environments (RQ 1 and 2).

Figure 7 shows asm2vec accuracy and similarity scores.
We achieve similar F-Score values when the compilation envi-
ronments match those of the training binaries, however IOVFI
significantly outperforms asm2vec when the compilation en-
vironments differ. We attribute our use of F-Score as the
accuracy metric, and the tight restrictions on the predictions
that asm2vec produces for the difference between our results
and the existing literature. Restricting the results to the two
highest similarity functions, and incorporating both precision
and recall into the accuracy metric makes achieving high ac-
curacy a strictly more difficult task. The authors of asm2vec
show that their system exhibits a inverse relation between
precision and recall, which our results confirm. Conversely,
IOVFI achieves high precision and recall.

The middle and right values of Figure 7 list the average sim-
ilarity scores measured for the true labels and for those that
were picked as predictions respectively. In almost every case,
the label similarity score is higher than the actual similarity
score, indicating that incorrect functions are being measured
as more similar than the correct function. Furthermore, the
similarity scores measured for true labels from different com-
pilation environments are significantly lower that those from
matching compilation environments. For example, the true
similarity score when using an LLVM-O0 model to classify
LLVM-O0 binaries (0.973) is 45% higher than the scores mea-
sured while classifying gcc-O0 binaries (0.537). As asm2vec
claims, the further from 1.0 two vectors are, the less related
the corresponding functions are, and, therefore, it was un-
expected to measure such low (and even negative) average
similarity among different compilation environments. The
low similarity scores for the off-diagonal entries indicates
that asm2vec is not well suited to analysis of binaries across
varied compilation environments.

Additionally, we question the scalability of systems like
asm2vec as semantic identifiers for large amounts of trained
binaries. As noted earlier, our evaluation is only a subset of
the full BinDiff 6 evaluation because it could not complete in
reasonable time. The main cause of the long processing time
lies in the fact that the function vectors that asm2vec generate
are independent entities that cannot be sorted in a meaningful
way. Because of this independence, every unknown function
must be tested against every classified function in order to pro-
vide sound results. Conversely, IOVFI’s ability to sort IOVecs
into a binary tree creates an O(nlog(n)) vs. O(n2) classifi-
cation disparity that results in significantly reduced binary
classification time. We measured an average single vector pair
comparison time to be small, taking only 0.12±0.012 CPU
seconds on average across 3,223,276 vector comparisons,
which is inline with the published literature. However, when
all pairs of classified and unclassified functions must be com-
pared, the total aggregate time to classify an unknown binary
becomes large. IOVFI takes significantly longer to train, with
asm2vec taking only 4 CPU minutes to train a model from
one binary, versus hours for IOVFI. However, we emphasize
that the training only needs to be done once, and afterwards
classification with IOVFI is quick (see § 4.4).

Unfortunately, the two closest dynamic systems to IOVFI,
BLEX [25] and IMF-SIM [72], are not available publicly. The
BLEX authors supplied us their code, but it required signifi-
cant engineering to execute with currently distributed Python
modules. We invested two weeks of development and evalua-
tion time. The accuracy we measured was much lower than
the reported values, but this could be attributed to the required
engineering changes or changes in the imported modules. The
IMF-SIM authors remained unresponsive. We, therefore, base
our comparison with these dynamic works on the published
numbers, and call for open-sourcing of research prototypes.
The BLEX authors report an average accuracy of .50–.64

9

2022

Training

Test O0 O3
LLVM gcc LLVM gcc

LLVM .952 .973 .969 .224 .537 .642 .0379 .270 .497 .0199 .333 .548O0
gcc .296 .596 .704 .951 .966 .965 .0379 .291 .500 .0467 .479 .636
LLVM .0656 -.218 .535 .0370 .283 .586 .849 .955 .949 .159 .612 .626O3
gcc .0519 -.0407 .453 .0108 .295 .565 .220 .381 .511 .857 .920 .939

Figure 7: asm2vec F-Scores (left), average similarity of true labels (middle), and average similarity of predicted label (right).

across three compilers (they added Intel’s icc compiler) and
four optimization levels, and the IMF-SIM authors report an
average accuracy of .57–.66 across three compilers and three
optimization levels. Both systems attempt to build a clas-
sification vector from code measurements, and their lowest
accuracies come from labeling functions in binaries from
compilation environments different from their source mod-
els. IOVFI, in contrast, is accurate regardless of compilation
environment, as evidenced by the off-diagonal numbers in
Figure 6. With a geometric mean accuracy of .766, our results
show an average 25%–53% increase in accuracy in differing
compilation environments over these works. The inaccuracy
in BLEX and IMF-SIM arises from the fact that code mea-
surements are not a true reflection of function semantics, but
are instead one way to express function semantics from a
large and diverse space of possible semantic expressions. The
trained models they generate become inaccurate when pre-
sented differently optimized code, because they only capture
a small portion of the possible semantic expression space.
IOVFI achieves its accuracy by actually measuring a func-
tion’s semantics through program state change, and does not
approximate function semantics through code measurements.

Despite its higher accuracy, IOVFI does have inaccuracy.
We identify two major sources of inaccuracy: an overly strict
program state comparison, and kernel state dependence lead-
ing to low-quality IOVecs.

Strict State Comparison In § 3.3, we detailed our pol-
icy for comparing program states, which we use in lieu of
code measurements for determining semantic similarity. We
opted for a strict policy where both return values and allo-
cated memory areas must match exactly in order for an IOVec
to be accepted. However, at lower optimization levels, we
might capture dead stores that are optimized out at higher
optimization levels. For example, the c_isprint function,
which returns a single byte, contains an additional movzx
instruction in O0 not present in any later optimization level.
This instruction operates on the return register, which changes
the higher order bits, while higher optimization levels simply
write to the lowest byte in the return register without changing
any further bit value. The write to the higher order bits is a
dead store, since any caller will only ever read the lowest byte
of the return register. However, we capture this behavior in
an IOVec, and our strict return value comparison policy deter-
mines the return values to be different, leading to a mislabel.
This is not a fundamental flaw with IOVFI, but an artifact

O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

N 78 73 72 52 38 32 36 40
N 1.76 1.85 1.82 1.68 1.78 1.47 1.69 1.69

Figure 8: Geometric mean count of classified functions (N),
average number of functions per equivalence class (N) for
all coreutils-8.32 generated decision trees. The median
equivalence class size is 1.00 for all decision trees.

of our program state matching policy. A different policy that
more precisely compares program state could better account
for inconsequential program state changes.

Kernel State Dependence For simplicity, we designed
IOVFI to assume nothing when generating IOVecs, and it
always executes functions in isolation. However, there are
functions (e.g., close and munmap) that depend on the results
of previous functions in order for the input arguments to be
semantically correct. For instance, close requires that the
input integer be a valid open file descriptor (as obtained from
open), and any input that is not a valid file descriptor is se-
mantically incorrect. Because we do not perform any initial
setup to obtain semantically correct input values, any IOVec
generated for these functions only exercise the error checking
functionality, which is likely to be similar to many other func-
tions. This has two negative effects: unrelated functions get
grouped into an equivalence class, and unrelated FUTs can be
assigned to this equivalence class simply because they share
similar error handling behavior. This is, again, not a funda-
mental flaw in IOVFI, but instead is a result of our focus on
user-space functions. We expect that our accuracy would im-
prove significantly if we added some common environmental
activities (e.g., opening file descriptors or memory mapping
address spaces) to our IOVec design. We keep it as future
work to incorporate application specific environmental setup
to IOVFI.

4.3 Equivalence Class Distributions

Figure 8 shows the geometric mean number of classified
functions (N), and the average number of functions per equiv-
alence class (N). Ideally, N should be close to one, as most
functions provide unique and singular functionality, and thus
should be assigned as the sole member of an unique equiva-
lence class. However, with the existence of wrapper functions,

10

2022

1 2 3 4 5 6 7 8 9 10+

0

200

400

509

129

48 24 17 1 10 4 0 8

Figure 9: Distribution of all equivalence class sizes across all
decision trees in the coreutils-8.32 evaluation.

it is likely N will be higher. It nevertheless should be low,
because one could trivially get high accuracy by grouping all
functions into the same equivalence class. As Figure 8 shows,
we achieve a low N across our decision trees, which indicates
that our fuzzing strategy is a generally sound technique for
generating sufficiently distinctive IOVecs. Additionally, the
equivalence class size distributions in Figure 9 show that we
are creating hundreds of equivalence classes with one or two
functions per equivalence class, which provides evidence that
we satisfy RQ 4. We, therefore, claim that our accuracy comes
from IOVFI’s ability to distinguish function semantics, and
that our prototype does not simply group all functions into a
few equivalence classes.

There are equivalence classes containing a large (10+) num-
ber of functions. These are cases where our fuzzing strategy
was unable to trigger deep functionality, yet the classified func-
tions share a common failure mode (e.g., return −1 for invalid
input), or very similar functionality. For example, there is a
12 function sized equivalence class in the realpath clang-
O1 decision tree that contains 8 functions strcaseeq[0-7]
that perform the same action with increasingly fewer input
arguments. Improvements in related fuzzing work, especially
works that improve deep code coverage [13, 14], will directly
translate to an improvement of IOVec generation, and a reduc-
tion of the size of these equivalence classes.

4.4 Training and Labeling Time
IOVFI is scalable in both training time and storage require-
ments. On average, IOVFI takes 24.3 CPU hours to generate
a decision tree, which includes generating IOVecs and the
coalescing phase described in § 3. As stated before, however,
this analysis only needs to be done one time. Once the deci-
sion tree is generated, semantic analysis is very quick, taking,
on average, only 13.0 CPU minutes to classify a binary in the
evaluation set. Additionally, all operations in both of IOVFI’s
phases represent completely independent work loads, and as

such are embarrassingly parallel. Therefore, execution time
varies with the available hardware. Furthermore, the gener-
ated decision tree size is very small, with an geometric mean
size of 855.9 KB. So, while IOVecs have no upper bound in
their spatial size as they record the memory state of relevant
inputs and their sub-members, in practice they are small.

BLEX reports 1,368 CPU hours for training, and 30 CPU
minutes to classify a binary in coreutils. IMF-SIM takes
1,027 CPU hours for training, and 31 CPU minutes to classify
a coreutils binary. Due to significant hardware differences
between our respective experimental setups, and the lack of
available source code for the related work, we cannot make
any fair quantitative comparison. However, we believe that
we are faster at semantic queries as we organize past analysis
in a tree structure; BLEX and IMF-SIM, like asm2vec, must
compare the feature vector they record with every past fea-
ture vector. Neither works report spatial size of their feature
vectors, however BLEX and IMF-SIM restrict the number of
instructions executed, which caps the size of their respective
feature vectors.

5 Case Studies

We provide four case studies that demonstrate the effective-
ness of our approach.

5.1 Accuracy Against Obfuscated Code
Malware authors will often employ code obfuscation to im-
pede binary analysis [7, 9]. Code obfuscation attempts to
hide semantic meaning through code transformations, such
as adding unrelated control-flow or instruction substitution,
while still preserving the intended function semantics. Code-
based semantic analysis can be stymied when attempting to
identify purposefully obfuscated code, because the resulting
code is far from “normal,” and thus hard to correlate with
models derived from unobfuscated binaries. IOVFI, however,
relies on semantic (rather than code) measurements guaran-
teed to be preserved by code obfuscators. Therefore, IOVFI
should largely be unaffected by code obfuscation.

To test this hypothesis, we compiled our coreutils suite
(du, dir, ls, ptx, sort, true, logname, whoami, uname, and
dirname) using the LLVM-Obfuscator [38] at O2, enabling
separately the bogus control-flow (bcf), control-flow flattening
(fla), and instruction substitution (sub) obfuscations. Follow-
ing the experimental methodology of the IMF-SIM authors,
we used the O0 decision trees to measure semantic function
identification accuracy in each of the three respective obfus-
cated binaries, using the same accuracy measurement metric
described in § 4.1.

The results are listed in Figure 10. We match or exceed
the results achieved by IMF-SIM, with an average increase in
accuracy of 39.3%. Our accuracy against obfuscated binaries,
which closely matches our accuracy against unobfuscated

11

2022

IOVFI IMF-SIM % Difference
bcf 0.787 0.385 105
fla 0.772 0.576 34.1gc

c

sub 0.752 0.664 13.2
bcf 0.806 0.513 57.1
fla 0.795 0.649 22.5

LL
VM

sub 0.813 0.779 4.30

Figure 10: Obfuscated code accuracy comparison when bogus
control-flow (bcf), control-flow flattening (fla), or instruction
substitution (sub) is enabled for coreutils-8.32.

O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

1 .835 .805 .789 .840 .797 .803 .795 .860
2 .820 .803 .766 .794 .740 .761 .737 .842
3 .880 .866 .833 .791 .799 .849 .796 .877

Figure 11: F-Scores for identifying functions in coreutils-
gcc-O3 AArch64 binaries using decision trees generated from
x64 wc (1), realpath (2), and uniq (3).

binaries, provides evidence that IOVFI is unaffected by exist-
ing obfuscation techniques. Any inaccuracy when identifying
functions in obfuscated binaries comes from the same sources
as analyzing normal binaries, as discussed in § 4.2. Further-
more, these results also give evidence that RQ 2 is answered,
as not only are the binaries purposefully obfuscated, but are
also compiled using a much older version of LLVM than our
evaluation version.

5.2 AArch64 Evaluation

Function semantics are mainly determined by the high level
source code, and remain largely constant across architectures.
How the input state is established, and how the resulting pro-
gram state is determined post-execution will change with
architecture, but semantics do not. Therefore, an IOVec gen-
erated for one architecture is usable for another architecture,
as long as there is a suitable IOVec translation between the
two. In our implementation, we created a translation from
x64 IOVecs to AArch64 IOVecs.

We evaluated IOVFI’s cross-architecture accuracy by com-
piling the du and dirname (the largest and smallest binaries
in our evaluation suite) on a Raspberry Pi 3 Model B Rev 1.2
running Ubuntu 20.04 using the ARM gcc-9.3.0 compiler
at O3 optimization. We then used the unmodified decision
trees generated for the evaluation described in § 4.1 to iden-
tify functions in the ARM binaries. The results are presented
in Figure 11, with each column listing the accuracy achieved
using the x64 decision tree generated with the enumerated
compilation environment.

We achieve a mean F-Score of .811 across all the evaluated
binaries, similar to our native geometric mean of .779. As our
accuracy is largely unaffected by architecture, we strengthen
our claim that IOVFI captures function semantics, and provide

O0 O1 O2 O3
LLVM gcc LLVM gcc LLVM gcc LLVM gcc

A - .871 .717 .850 .759 .746 .765 .772
B - .781 .633 .695 .629 .642 .629 .639
C - .794 .699 .802 .701 .722 .700 .733

Figure 12: F-Scores identifying functions in libz (A),
libpng (B), and libxml2 (C) using a clang-O0 decision
tree. We did not evaluate against the clang-O0 binary.

libz libpng libxml2
N 126 390 2080
N 2.47 2.48 2.44
T 17.0 25.4 158

Figure 13: Decision tree (N), average equivalence class sizes
(N), and CPU hours needed to generate the decision tree (T).

evidence that we answer RQ 3. Additionally, we also provide
further evidence that we answer Research Question 1, as the
gcc version used for this evaluation differs from the version
used to generate the decision trees.

5.3 Large Shared Libraries
Here, we demonstrate the scalability of IOVFI to larger, more
complex binaries.

We chose zlib, libpng, and libxml2 as a set of shared
libraries that are ubiquitous and among the largest distributed
with Ubuntu. We compiled each library using gcc 7.5.0
and clang 6.0.0 at O0–O3 optimization levels, generated a
decision tree for the clang-O0 binary, and identified functions
in the remaining binaries. Due to the larger size of the binaries
involved, we allowed the fuzzing campaign to execute for 10
hours, and provided as much time as needed for coalescing.
In order to handle the significant increase in functions, we
used a machine with 45GB memory to generate the decision
tree for libxml2 (running Debian 9.3 on an Intel Xeon 3106).
The machine listed in § 4.1 was used for all other evaluation
tasks. The 50% increase in memory to process at least a 10x
increase function count is a reasonable cost, and does not
detract from our scalability claim.

Figure 12 and Figure 13 list the accuracy measured (using
the same accuracy metric at in § 4.1), along with the number
of functions classified (N), average number of functions per
equivalence class (N), and CPU time required to generate the
decision tree (T). Our prototype achieves similar F-Scores
as in our coreutils evaluation, while showing only a lin-
ear growth in T , demonstrating the accuracy and scalability
of our approach (RQ 1). However, the number of functions
per equivalence class is higher than our coreutils evalua-
tion. This is a consequence of our simplistic coverage-guided
fuzzer, as well as increased genuine similar functionality. For
example, there are functions in zlib (e.g., gzoffset and
gzoffset64) which only differ in the bit count of their input
arguments, but otherwise perform the same action. There are

12

2022

also a large group of functions which first perform a sanity
check on the input. The fuzzer did not create inputs to pass
these checks, and the functions are grouped into an equiv-
alence class. Although inferring valid input is an ongoing
research topic [13, 14, 57], both of these problems can be mit-
igated with a longer fuzzing campaign, a more sophisticated
fuzzer, or through symbolic execution.

5.4 Semantic Differences and Versioning

Semantic function identification is required for binary patch-
ing if the compilation environment that created the binary
is unknown. A binary might contain only a subset of the
functions available in the source code, and identifying the
full set of functions allows an engineer to generate a patch
for any vulnerable function. IOVFI, since it is unaffected by
compilation environment, is well suited to identify and locate
functions within a binary for patch generation.

To demonstrate IOVFI’s utility in binary patching, we an-
alyzed the latest 8 versions of the zlib compression library,
spanning 1.2.7 to 1.2.11, as well as 6 versions of libpng
identified in the LibRARIAN [3] Android app dataset. We
kept the default compilation environment (gcc O3) constant
across all versions, generated decision trees for each resulting
shared library, and then used each tree to identify functions in
every other version. As in the coreutils evaluation, if the
FUT name appeared in the assigned equivalence class, then
we considered the two versions of the FUT to be semantically
equivalent, and otherwise, the semantics differed. Addition-
ally, we manually verified a subset of mismatched functions
for code changes resulting in semantic differences.

The differences in function semantics as a proportion of
classified functions is listed in Figure 14, along with the num-
ber of additions and removals to source files between each
pairwise version as reported by git. While some versions
show sharp differences in semantics, (e.g., zlib v1.2.9+ is
significantly different from earlier versions), subtle semantic
differences are also distinguished. As IOVFI does not rely
on any information, besides function location within a binary,
and the majority of functions within both shared libraries
are not exported, we claim that IOVFI can uniquely identify
exported and non-exported functions.

Key benefits of IOVFI are low analysis time to construct the
dataset and very low matching time to query a function. The
full semantic difference analysis of all 56 zlib version pairs
took only 82 CPU minutes, while the 30 libpng comparisons
only took 54 CPU minutes. Other approaches must compare
each unknown function with every generated function model,
creating an O(log(n)) vs. O(n) search performance disparity
between IOVFI and the current state-of-the-art.

Figure 14 shows that binary versions often have measurable
semantic differences from each other, and thus those differ-
ences can serve as an identifying fingerprint for a particular
version. When analyzing the exported functions of a shared

library of an unknown version using decision trees generated
from known library versions, the decision tree that produces
the highest accuracy is likely to be the closest version to the
unknown binary. LibRARIAN [3] performs this task statically
(at a lost off precision), but IOVFI has the additional benefit
of identifying non-exported symbols.

To test IOVFI as a shared library version identifier, we
obtained the versions of libpng distributed for the past 5
years of Ubuntu releases, and analyzed each version with the
libpng decision trees generated for the semantic difference
evaluation. The decision tree with the highest accuracy was
chosen as the candidate version, and we declared a success-
ful match if that version is the closest to the actual version.
The library versions include 1.6.37-3build3, 1.6.37-3,
1.6.37-2, 1.6.37-1, 1.6.36-6, 1.6.34-2, 1.6.34-1, and
1.6.25-1. In all but the 1.6.25-1 trial, IOVFI determined
the correct version. For the unsuccessful trial, IOVFI selected
the 1.6.37 decision tree, instead of the correct 1.6.24 deci-
sion tree.

6 Discussion

Here we provide discussion on the limitations of IOVFI, and
on when a function is designated as unknown.

Limitations We have identified a few sets of functions that
IOVFI is unlikely to classify or identify correctly. These func-
tions are highly dependent upon the system environment and
execution context while generating IOVecs, as well as dur-
ing the identification phase. Functions like getcwd or ge-
tuid, which return the current working directory and the
user ID respectively, depend on the filesystem, current user,
and kernel state. As these factors differ between runs or are
non-deterministic, they violate our fundamental assumption—
semantically similar functions change their program state in
similar ways given a specific input program state. To address
this limitation, IOVFI could model the system state in addition
to the process state.

Another set of functions IOVFI struggles with depend on an
initial seed being set beforehand. Examples of these functions
include rand and time. As we execute functions without any
knowledge about their behavior, we cannot provide the seed
beforehand as it is difficult to distinguish a seed value from
other global variables. Even if we determine a location of
the seed, knowledge of proper API usage (e.g., calling srand
before rand) is needed to correctly use these functions. Dis-
cerning correct API usage is an active research area [2], and
improvements in this area will directly translate to improve-
ments in IOVFI.

Soundness of IOVFI When semantic equivalence is deter-
mined between two functions, that equivalence is only ex-
tended as far as the IOVecs tested along the decision tree path.

13

2022

1.6
.7

1.6
.8

1.6
.10

1.6
.17

1.6
.24

1.6
.37

1.6.37

1.6.24

1.6.17

1.6.10

1.6.8

1.6.7

(0, 0)

(0, 0) (5614, 2639)

(0, 0) (10477, 4153) (15743, 6434)

(0, 0) (3143, 2193) (13238, 5964) (18395, 8107)

(0, 0) (3427, 1350) (6278, 3251) (16326, 6975) (21434, 9069)

(0, 0) (483, 289) (3863, 1592) (6672, 3451) (16660, 7115) (21767, 9208)

libpng

1.2
.7

1.2
.7.

1
1.2

.7.
2

1.2
.7.

3
1.2

.8
1.2

.9
1.2

.10
1.2

.11

1.2.11

1.2.10

1.2.9

1.2.8

1.2.7.3

1.2.7.2

1.2.7.1

1.2.7

(0, 0)

(0, 0) (25, 31)

(0, 0) (50, 44) (72, 60)

(0, 0) (1644, 1007) (1657, 1014) (1663, 1014)

(0, 0) (97, 25) (1729, 1020) (1742, 1027) (1748, 1027)

(0, 0) (9, 9) (97, 25) (1729, 1020) (1742, 1027) (1748, 1027)

(0, 0) (17, 16) (17, 16) (105, 32) (1735, 1025) (1748, 1032) (1754, 1032)

(0, 0) (358, 218) (360, 219) (360, 219) (445, 232) (2041, 1191) (2050, 1194) (2056, 1194)

libz

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Percent difference 0.00 0.05 0.10 0.15 0.20 0.25

Percent difference

Figure 14: Semantic changes measured by function mismatches between IOVecs generated for a particular version (rows) and
other versions (columns). Labels indicate the number of line additions and removals in source files between versions.

It is possible that IOVFI establishes an incorrect semantic
equivalence between a previously analyzed function f, and a
new unseen function g, if 1) g accepts all of f’s IOVecs, plus
additional IOVecs; and 2) any additionally accepted IOVec is
not along the path to f in the decision tree. This means that
IOVFI is not a sound technique. However, as our equivalence
class distributions results show, in practice IOVFI is accu-
rate for most functions, even when functions are similar, as
with strcpy and strncpy. In real world code, most functions
have little overlapping functionality, which makes IOVFI a
practical tool for semantic identification. We leave it as future
work to incorporate code coverage into the semantic similarity
analysis, which could produce more accurate classifications
through the enforcement of a coverage policy as a condition
for semantic equivalence.

System Calls Currently, IOVFI only records which system
calls are made during the execution of a FUT, and no further
information is captured, and no further modeling is performed.
This design choice is purposefully incomplete to avoid ex-
pensive operating system state replication. Most functions
make no system calls; less than 3% of functions in libxml2
call read, write, open, close, or their FILE* equivalents,
for example. Of the functions that do make a system call, we
assumed that they ignore the exact state of the operating sys-
tem, and rely solely on the result of the system call. Our high
accuracy justifies this assumption, and while state modeling
could improve coverage, we believe that only marginal gains
would result.

Unknown Functions If a function is encountered that ac-
cepts no known DCIS, IOVFI will mark this function as
unknown. When a function is marked as unknown, it can
mean one of two things depending on the number of accepted
IOVecs. If the unknown function never accepts an IOVec, then
it implements wholly unknown functionality, and should be
a main focus for analysts. Otherwise, if the function accepts
some IOVecs, then it shares some functionality with the func-

tions whose DCIS includes the accepted IOVecs. The utility
analysts might gain from this information varies with the
number of IOVecs accepted. Many IOVecs rejected with a few
IOVec acceptances is likely a common failure mode present in
many functions, e.g., returning −1 on invalid input. If many
IOVecs in a DCIS are accepted, then the unknown function is
likely similar to the corresponding function, indicating, e.g.,
a different version.

7 Future Work

IOVFI utilizes a mutational fuzzer to generate a function’s
DCIS. By incorporating more sophisticated fuzzing and bi-
nary instrumentation techniques [15, 71], it is possible to
generate a DCIS that provides close to 100% edge or code
coverage of a function. Later, if that function is identified in a
new binary, then any deviation in code coverage when given
the full coverage DCIS would indicate the presence or lack
of functionality in the FUT. This could be helpful in exploit
generation, or code version identification [10].

A challenging aspect of reverse engineering is the detec-
tion of cryptographic functions in a binary. They are dif-
ficult to identify, because they are often implemented us-
ing architecture-specific assembly for optimization purposes,
make extensive use of randomness, and rely heavily on cor-
rect state and input. These are situations for which IOVFI
is particularly well-suited, and it would be worthwhile to in-
vestigate how far we can advance automated analysis on this
most difficult class of functions. IOVecs, as an extension of
the captured state, could record the random values returned
by RNGs. In the coalescing and identification phases, calls to
RNGs could be intercepted, and the recorded random value
could be returned.

14

2022

8 Related Work

Similarity analysis is an active area of research [12, 19, 20,
22, 26, 27, 29, 41, 46, 52, 64, 70]. Jiang et al. [36] first pro-
posed using randomized testing in function similarity analysis,
drawing inspiration from polynomial identity testing. Their
EqMiner system, which requires source code, finds syntac-
tically different yet semantically similar code fragments in
large (100+ MLOC) code bases. A direct comparison between
IOVFI and EqMiner is unfortunately challenging. Besides re-
quiring source, which IOVFI does not use, the correctness met-
rics and similarity assertions used between the two systems
are different. For example, EqMiner will declare two func-
tions similar if they add two integers, irrespective of whether
the integers are part of a struct or raw data types. IOVFI will
mark the two functions as different, because of the different
semantic uses in the whole binary. EqMiner defines similarity
orthogonally to the data format while IOVFI uses IOVecs
as the fundamental distinguishing factor. Both answers are
correct for their respective use cases, but are incompatible
when trying to evaluate one system over the other.

Current state-of-the-art binary analysis tools all rely on
code measurements. BLEX [25] extracts feature vectors of
function code, such as values read and written to the stack and
heap, by guaranteeing that every instruction is executed. The
authors also implemented a search engine with their system
similar to IOVFI. Wang, et al. [72] perform code similarity
analysis using a system called IMF-SIM. IMF-SIM uses an in-
memory fuzzer to measure the same metrics as BLEX, instead
of forcing execution to start at unexecuted instructions. As
stated in our evaluation, these works still struggle with differ-
ing compilation environments, while IOVFI has consistently
high accuracy irrespective of compilation environment. Both
works focus on measuring code properties, which change with
different compilation environments. IOVFI, in contrast, uses
IOVecs, which are independent of code, and encodes differing
semantics in a binary decision tree.

Pewny, et al. [58] compute a signature of a bug, and search
for that signature in other (possibly different ISA) binaries.
The signature involves computing inputs and corresponding
outputs to basic blocks in functions’ CFGs through dynamic
instrumentation similar to IOVFI. While the authors admit
that semantic function identification is not their expected use
case, their system can be used as such by supplying a function
as the “bug.” This work relies on the structure of the CFGs of
both the application’s functions and the code being searched
for, which can significantly change with software version or
obfuscation. IOVFI is resilient to such differences as long as
the function’s semantics remain the same. Unfortunately, we
were also unable to obtain source code or detailed results for
comparison.

DyCLINK [70] use dynamic analysis to compute a depen-
dency graph between instructions executed during developer
supplied unit tests. Code similarity is determined by comput-

ing an isomorphism between sub graphs, using edit distance
between PageRank [55] vectors. DyCLINK targets Java ap-
plications so we cannot compare our prototype against it.
DyCLINK considers methods as similar if they share any
sufficiently similar behavior for a given input, an event much
more prevalent in C binaries than Java binaries. Many dis-
similar C functions behave similarly when handling errors
(i.e., returning −1 on invalid input), while Java often favors
raising different exceptions based on the error condition. We,
therefore, believe that the common error handling technique
in C would significantly affect DyCLINK’s precision. IOVFI
is able to distinguish between functions with similar func-
tionality, because the decision tree, which encodes semantic
similarity, is generated using differences in behavior.

Due to the diverse toolchains and architectures used and
its closed source nature, binary analysis is particularly well
suited to firmware. David et al. [20], created a static analysis
tool to find CVEs in firmwares, and discovered hundreds of
vulnerabilities. Feng et al. [27], took inspiration from image
search research to find bugs in Internet of Things devices by
converting CFGs into numerical vectors for similarity analy-
sis.

9 Conclusion

We introduce IOVFI, a binary analysis framework that is ar-
chitecture and compilation environment agnostic. Instead of
measuring code properties, IOVFI abstracts functions into
sets of input and output program states, information guar-
anteed to be stable across compilation environments. Our
proof-of-concept implementation has a high .779 accuracy
when identifying functions in binaries generated from various
configurations, remains highly accurate even against purpose-
fully obfuscated code, scales to large binaries, and generalizes
to other architectures with minimal effort. It will be released
as open source upon acceptance.

References

[1] National Security Agency. Ghidra, 2019.

[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and
Charles Sutton. Learning natural coding conventions. In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 281–293. ACM, 2014.

[3] S. Almanee, A. Unal, M. Payer, and J. Garcia. Too quiet
in the library: An empirical study of security updates in
android apps’ native code. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE),
pages 1347–1359, Los Alamitos, CA, USA, may 2021.
IEEE Computer Society.

15

2022

[4] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-agnostic function detection in binaries. In
2017 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 177–189. IEEE, 2017.

[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. 2019.

[6] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha,
and David Brumley. Enhancing symbolic execution with
veritesting. In Proceedings of the 36th International
Conference on Software Engineering, pages 1083–1094,
2014.

[7] Sebastian Banescu, Christian Collberg, Vijay Ganesh,
Zack Newsham, and Alexander Pretschner. Code ob-
fuscation against symbolic execution attacks. In Pro-
ceedings of the 32nd Annual Conference on Computer
Security Applications, pages 189–200. ACM, 2016.

[8] Ulrich Bayer, Paolo Milani Comparetti, Clemens
Hlauschek, Christopher Kruegel, and Engin Kirda. Scal-
able, behavior-based malware clustering. In NDSS, vol-
ume 9, pages 8–11. Citeseer, 2009.

[9] Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz. Syntia: Synthesizing the seman-
tics of obfuscated code. In 26th USENIX Security
Symposium (USENIX Security 17), pages 643–659,
Vancouver, BC, August 2017. USENIX Association.

[10] David Brumley, Pongsin Poosankam, Dawn Song, and
Jiang Zheng. Automatic patch-based exploit generation
is possible: Techniques and implications. In Proceed-
ings of the 2008 IEEE Symposium on Security and Pri-
vacy, SP ’08, pages 143–157, Washington, DC, USA,
2008. IEEE Computer Society.

[11] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[12] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu,
Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan.
Bingo: Cross-architecture cross-os binary search. In
Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing, FSE 2016, pages 678–689, New York, NY, USA,
2016. ACM.

[13] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[14] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:
Fuzzing deeply nested branches. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 499–513, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[15] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert
Bos, and Cristiano Giuffrida. Stackarmor: Comprehen-
sive protection from stack-based memory error vulnera-
bilities for binaries. In NDSS. Citeseer, 2015.

[16] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive android kernel
live patching. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 1253–1270, 2017.

[17] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: Interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, pages 2123–2138, New York, NY, USA, 2017.
ACM.

[18] Yaniv David, Nimrod Partush, and Eran Yahav. Statis-
tical similarity of binaries. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, pages 266–280,
New York, NY, USA, 2016. ACM.

[19] Yaniv David, Nimrod Partush, and Eran Yahav. Simi-
larity of binaries through re-optimization. In ACM SIG-
PLAN Notices, volume 52, pages 79–94. ACM, 2017.

[20] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup:
Precise static detection of common vulnerabilities in
firmware. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
392–404. ACM, 2018.

[21] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke
Lee. Ether: Malware analysis via hardware virtualiza-
tion extensions. In Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS
’08, pages 51–62, New York, NY, USA, 2008. ACM.

[22] S. H. H. Ding, B. C. M. Fung, and P. Charland. Asm2vec:
Boosting static representation robustness for binary
clone search against code obfuscation and compiler op-
timization. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 472–489, 2019.

[23] Ruian Duan, A. Bijlani, Yang Ji, Omar Alrawi, Yiyuan
Xiong, Moses Ike, Brendan Saltaformaggio, and W. Lee.
Automating patching of vulnerable open-source soft-
ware versions in application binaries. In NDSS, 2019.

16

2022

[24] Gregory J. Duck, Xiang Gao, and Abhik Roychoud-
hury. Binary rewriting without control flow recovery.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2020, page 151–163, New York, NY, USA, 2020.
Association for Computing Machinery.

[25] Manuel Egele, Maverick Woo, Peter Chapman, and
David Brumley. Blanket execution: Dynamic similar-
ity testing for program binaries and components. In
23rd USENIX Security Symposium (USENIX Security
14), pages 303–317, San Diego, CA, 2014. USENIX
Association.

[26] Sebastian Eschweiler, Khaled Yakdan, and Elmar
Gerhards-Padilla. discovre: Efficient cross-architecture
identification of bugs in binary code. 02 2016.

[27] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable graph-based bug
search for firmware images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 480–491, New York,
NY, USA, 2016. ACM.

[28] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable
detection of semantic clones. In Proceedings of the
30th International Conference on Software Engineering,
ICSE ’08, pages 321–330, New York, NY, USA, 2008.
ACM.

[29] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang
Sun. Vulseeker: A semantic learning based vulnerabil-
ity seeker for cross-platform binary. In Proceedings of
the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2018, pages 896–899,
New York, NY, USA, 2018. ACM.

[30] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages
206–215, New York, NY, USA, 2008. ACM.

[31] Google. honggfuzz, 2018.

[32] Gustavo Grieco, Martí n Ceresa, and Pablo Buiras.
Quickfuzz: An automatic random fuzzer for common
file formats. In Proceedings of the 9th International
Symposium on Haskell, Haskell 2016, pages 13–20, New
York, NY, USA, 2016. ACM.

[33] SA HexRays. Interactive disassembler, 2019.

[34] Jiyong Jang, Maverick Woo, and David Brumley. To-
wards automatic software lineage inference. In Pre-
sented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 81–96, Washington, D.C.,
2013. USENIX .

[35] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the
29th International Conference on Software Engineering,
ICSE ’07, pages 96–105, Washington, DC, USA, 2007.
IEEE Computer Society.

[36] Lingxiao Jiang and Zhendong Su. Automatic mining
of functionally equivalent code fragments via random
testing. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA
’09, pages 81–92, New York, NY, USA, 2009. ACM.

[37] Ryan Johnson and Angelos Stavrou. Forced-path execu-
tion for android applications on x86 platforms. In 2013
IEEE Seventh International Conference on Software Se-
curity and Reliability Companion, pages 188–197. IEEE,
2013.

[38] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator- LLVM – software protection
for the masses. In Brecht Wyseur, editor, Proceedings of
the IEEE/ACM 1st International Workshop on Software
Protection, SPRO’15 , Firenze, Italy, May 19th, 2015,
pages 3–9. IEEE, 2015.

[39] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone de-
tection system for large scale source code. IEEE Trans.
Softw. Eng., 28(7):654–670, July 2002.

[40] Min Gyung Kang, Pongsin Poosankam, and Heng Yin.
Renovo: A hidden code extractor for packed executables.
In Proceedings of the 2007 ACM Workshop on Recur-
ring Malcode, WORM ’07, pages 46–53, New York, NY,
USA, 2007. ACM.

[41] Ulf Karg é n and Nahid Shahmehri. Towards robust
instruction-level trace alignment of binary code. In
Proceedings of the 32Nd IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2017,
pages 342–352, Piscataway, NJ, USA, 2017. IEEE Press.

[42] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, Washington, DC,
USA, 2004. IEEE Computer Society.

[43] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep
compiler bugs via guided stochastic program mutation.
In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015,
pages 386–399, New York, NY, USA, 2015. ACM.

17

2022

[44] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. Cp-miner: A tool for finding copy-paste and
related bugs in operating system code.

[45] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li,
Feng Li, Aihua Piao, and Wei Zou. α diff: Cross-
version binary code similarity detection with dnn. In
Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2018,
pages 667–678, New York, NY, USA, 2018. ACM.

[46] Han Liu, Zhiqiang Yang, Chao Liu, Yu Jiang, Wenqi
Zhao, and Jiaguang Sun. Eclone: Detect semantic clones
in ethereum via symbolic transaction sketch. In Proceed-
ings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2018, pages 900–903, New York, NY, USA, 2018. ACM.

[47] LLVM. libfuzzer, 2019.

[48] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. Semantics-based obfuscation-resilient bi-
nary code similarity comparison with applications to
software and algorithm plagiarism detection. IEEE
Trans. Softw. Eng., 43(12):1157–1177, December 2017.

[49] Dennis Mantz, Jiska Classen, Matthias Schulz, and
Matthias Hollick. Internalblue-bluetooth binary patch-
ing and experimentation framework. In Proceedings
of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, pages 79–90, 2019.

[50] Xiaozhu Meng and Barton P Miller. Binary code is not
easy. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, pages 24–35.
ACM, 2016.

[51] Reed Milewicz, Rajesh Vanka, James Tuck, Daniel Quin-
lan, and Peter Pirkelbauer. Runtime checking c pro-
grams. In Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, pages 2107–2114. ACM,
2015.

[52] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao
Wu. Binsim: Trace-based semantic binary diffing via
system call sliced segment equivalence checking. In
26th USENIX Security Symposium (USENIX Security
17), pages 253–270, Vancouver, BC, 2017. USENIX
Association.

[53] musl libc. musl libc, 2019.

[54] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. SIGPLAN Not., 42(6):89–100, June 2007.

[55] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-
WP-1999-0120.

[56] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu,
Zhiqiang Lin, and Zhendong Su. X-force: force-
executing binary programs for security applications. In
23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 14), pages 829–844, 2014.

[57] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 697–
710. IEEE, 2018.

[58] Jannik Pewny, Behrad Garmany, Robert Gawlik, Chris-
tian Rossow, and Thorsten Holz. Cross-architecture bug
search in binary executables. In 2015 IEEE Symposium
on Security and Privacy, pages 709–724. IEEE, 2015.

[59] Sebastian Poeplau and Aurélien Francillon. Symbolic
execution with symcc: Don’t interpret, compile! In 29th
USENIX Security Symposium (USENIX Security 20),
pages 181–198. USENIX Association, August 2020.

[60] Rui Qiao and R Sekar. Function interface analysis:
A principled approach for function recognition in cots
binaries. In Dependable Systems and Networks (DSN),
2017 47th Annual IEEE/IFIP International Conference
on, pages 201–212. IEEE, 2017.

[61] radare. radare, 2019.

[62] Thomas Rid and Ben Buchanan. Attributing cyber at-
tacks. Journal of Strategic Studies, 38(1-2):4–37, 2015.

[63] Paul Royal, Mitch Halpin, David Dagon, Robert Ed-
monds, and Wenke Lee. Polyunpack: Automating the
hidden-code extraction of unpack-executing malware.
In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual, pages 289–300. IEEE, 2006.

[64] Andreas Saebjornsen. Detecting fine-grained similarity
in binaries. University of California, Davis, 2014.

[65] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas,
Daniel Quinlan, and Zhendong Su. Detecting code
clones in binary executables. In Proceedings of the
Eighteenth International Symposium on Software Test-
ing and Analysis, ISSTA ’09, pages 117–128, New York,
NY, USA, 2009. ACM.

[66] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In
26th USENIX Security Symposium (USENIX Security

18

2022

17), pages 167–182, Vancouver, BC, 2017. USENIX
Association.

[67] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 138–157. IEEE,
2016.

[68] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. Periscope: An effective probing and fuzzing
framework for the hardware-os boundary. In 2019
Network and Distributed Systems Security Symposium
(NDSS), pages 1–15. Internet Society, 2019.

[69] Richard M. Stallman and GCC DeveloperCommunity.
Using The Gnu Compiler Collection: A Gnu Manual
For Gcc Version 4.3.3. CreateSpace, Paramount, CA,
2009.

[70] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha
Sethumadhavan, Gail Kaiser, and Tony Jebara. Code
relatives: Detecting similarly behaving software. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE 2016, pages 702–714, New York, NY, USA, 2016.
ACM.

[71] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Ar-
avind Machiry, John Grosen, Paul Grosen, Christopher
Kruegel, and Giovanni Vigna. Ramblr: Making reassem-
bly great again. In Proceedings of the 24th Annual Sym-
posium on Network and Distributed System Security
(NDSS’17), 2017.

[72] Shuai Wang and Dinghao Wu. In-memory fuzzing
for binary code similarity analysis. In Proceedings of
the 32Nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, pages 319–330,
Piscataway, NJ, USA, 2017. IEEE Press.

[73] W. Xu, H. Moon, S. Kashyap, P. Tseng, and T. Kim.
Fuzzing file systems via two-dimensional input space
exploration. In 2019 2019 IEEE Symposium on Security
and Privacy (SP), volume 00, pages 577–593, 2017.

[74] Michal Zalewski. American fuzzy lop, 2015.

[75] zynamics. Bindiff, 2020.

19

	Introduction
	Challenges and Assumptions
	Semantic Function Analysis
	Assumptions

	IOVFI Design
	IOVec Discovery
	Pointer Derivation
	Matching Program States

	Evaluation
	Accuracy Experimental Setup
	Accuracy Amid Environment Changes
	Equivalence Class Distributions
	Training and Labeling Time

	Case Studies
	Accuracy Against Obfuscated Code
	AArch64 Evaluation
	Large Shared Libraries
	Semantic Differences and Versioning

	Discussion
	Future Work
	Related Work
	Conclusion

