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Abstract

Biomedical pathways have been extensively
used to characterize the mechanism of com-
plex diseases. One essential step in biomedi-
cal pathway analysis is to curate the descrip-
tion of a pathway based on its graph struc-
ture and node features. Neural text genera-
tion could be a plausible technique to circum-
vent the tedious manual curation. In this pa-
per, we propose a new dataset Pathway2Text,
which contains 2,367 pairs of biomedical path-
ways and textual descriptions. All pathway
graphs are experimentally derived or manu-
ally curated. All textual descriptions are writ-
ten by domain experts. We form this prob-
lem as a Graph2Text task and propose a novel
graph-based text generation approach kNN-
Graph2Text, which explicitly exploited de-
scriptions of similar graphs to generate new de-
scriptions. We observed substantial improve-
ment of our method on both Graph2Text and
the reverse task of Text2Graph. We further
illustrated how our dataset can be used as a
novel benchmark for biomedical named en-
tity recognition. Collectively, we envision
our method will become an important bench-
mark for evaluating Graph2Text methods and
advance biomedical research for complex dis-
eases.1

1 Introduction

Many complex diseases, such as cancer and neu-
rodegenerative disorders, are driven by reactions
among a combination of genes and metabolites in-
stead of one single gene (Manolio et al., 2009).
These reactions, which are formally referred to as
pathways (Kanehisa et al., 2017; DS et al., 2020;
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1Our dataset is available at https://zenodo.org/r

ecord/6510039#.Ym9F15NBz0o. Our code is avail-
able at https://github.com/yjwtheonly/Pathwa
y2Text.

Gillespie et al., 2022), are represented as a hetero-
geneous graph (Figure 1). Each node in this graph
is a biomedical entity, such as gene, chemical or
metabolite. Each edge is a specific biomedical
reaction. Using natural language to describe this
pathway graph is of great importance for scientific
communication and further promotes applications
in complex disease research (Whirl-Carrillo et al.,
2012, 2021). To date, these descriptions are almost
entirely curated manually by domain experts, thus
substantially slowing down downstream biomedi-
cal applications (Naithani et al., 2019). Neural text
generation has shown promising results in many
applications (Bowman et al., 2016; Sutskever et al.,
2014; Song et al., 2020; Brown et al., 2020; Raf-
fel et al., 2020; Lewis et al., 2020). Among them,
Graph-to-Text (Graph2Text) generation, such as
AMR-to-Text (Song et al., 2018; Marcheggiani and
Perez-Beltrachini, 2018; Fan and Gardent, 2020),
and Knowledge-Graph-to-Text (Colas et al., 2021;
Wang et al., 2021), is most similar to pathway de-
scription generation. Therefore, we hypothesize
that neural text generation could also be a solu-
tion here. To fill in the gap, we first propose a
novel biomedical pathway description dataset Path-
way2Text, which contains 2,367 pairs of pathway
and description. Each description is written by
domain experts, describing the function and prop-
erty of this pathway. In contrast to many other
Graph2Text datasets (Banarescu et al., 2013; Co-
las et al., 2021) that use automatic approach to
extract the graph from the text, pathways in our
dataset are all experimentally measured or manu-
ally curated, presenting a high-quality structured
data corresponding to the textual description. To
the best of our knowledge, Pathway2Text is the
first large-scale dataset studying the problem of
biomedical pathway description generation.

One unique feature of our dataset is the rich tex-
tual information on each node in the graph. Specif-
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Figure 1: An example of a pathway and its description in our dataset. Each pathway is a heterogeneous graph
containing different node types and edge types. Each node has three features: textual label, textual description and
node type. For Graph2Text task, the input is the graph and the output is the graph description.

ically, each node is associated with a node type, a
concise textual label and a detailed textual descrip-
tion. In contrast, many other Graph2Text datasets
only have a short textual label or a fixed-size feature
vector on each node (Belz et al., 2011; Banarescu
et al., 2013; Gardent et al., 2017; Jin et al., 2020;
Wang et al., 2021). We found that conventional
graph neural network architectures were unable to
fully exploited these rich node features, resulting
in less accurate graph description generation. And
the advantages of exploiting similar input data have
been demonstrated in many related works (Baran
et al., 2019; Khandelwal et al., 2020; Wang et al.,
2022). We therefore propose kNN-Graph2Text,
which explicitly incorporates descriptions of simi-
lar graphs into the definition generation process. In
particular, our method first calculates a description-
guided graph embedding and then finds similar
graphs for a test graph based on these embeddings.
After that, the new description is generated by
jointly considering the description of neighbors
and the graph structure using a multi-head atten-
tion framework (Vaswani et al., 2017).

We evaluated kNN-Graph2Text on our dataset
and observed substantial improvement over conven-
tional graph neural network architectures as well
as methods that do not fully utilize the heteroge-
neous node features. We next demonstrated that
our dataset can be used to study the reverse task
of Text2Graph. In particular, we investigated how
graph description can enhance the performance
of link prediction and node classification, and ob-

tained accuracy of 0.781 in link prediction and
accuracy of 0.352 in node classification. Moreover,
our dataset can be used as a novel benchmark for
biomedical named entity recognition by extracting
the ground truth entity types according to the anno-
tated node types. Collectively, our dataset and our
method present the first study in automatic biomed-
ical pathway description generation. We envision
Pathway2Text to be an important benchmark for
general Graph2Text methods and facilitate down-
stream biomedical applications.

2 Pathway2Text Dataset
2.1 Data processing
Our dataset was synthesized from five biomedi-
cal databases: Reactome (Gillespie et al., 2022),
KEGG (Kanehisa et al., 2017), Pathbank (DS et al.,
2020), UniProt (Consortium, 2020) and ChEBI
(Hastings et al., 2015). We collected biomedical
pathways and their associated textual descriptions
from Reactome, KEGG, and Pathbank, and aligned
nodes in pathways to entities in UniProt and ChEBI
for retrieving missing node descriptions. Specifi-
cally, the raw data was processed as follows:

Data format definition. We firstly modified
SBGN (Le Novère et al., 2009) , a standard ex-
port format for biology graphical notation, to orga-
nize multiple components in pathway. We followed
most of the original definitions in SBGN (e.g., reac-
tion representing format), but we (1) omitted nodes
that are not involved in any reaction (e.g., Compart-
ment nodes), (2) reconstructed each Complex node



(a container for other nodes) into a tree structure,
by adding additional edges between nodes and their
container, (3) merged different nodes referring to
the same entity into a single node for each pathway,
and (4) rewrote the entire dataset into more read-
able JSON file (cf. Appendix B for more intuitive
explanation of our data format).

Format translation. Reactome and Pathbank
already provide SBGN files, making it straight-
forward to adapt pathways in both database into
our data format. But KEGG only provides KGML
(Kanehisa et al., 2017) file, a specific representa-
tion of KEGG pathways. So we applied additional
modifications to translate KGML file into our data
format: we (1) used Process node to represent a
reaction instead of directly adding edges between
substrates and products, (2) treated a Group of pro-
teins acting on the same reaction as a Complex
node, and (3) adjusted node types to match our
definition. We refer readers to Appendix A for an
illustration for these operations.

Node description gathering. Neither SBGN
nor KGML file contains detailed node descriptions.
SBGN file provides node label (a short text for
display), and KGML file provides a KEGG iden-
tifier for each node. (1) For Pathbank database,
each pathway is also recorded in PWML (DS et al.,
2020) format, which contains textual node labels
and descriptions. We therefore used node labels
given by SBGN file to retrieve node descriptions
from PWML file. (2) For Reactome database,
each pathway is also stored in BioPAX (Demir
et al., 2010) format. 49.2% nodes in BioPAX file
have long descriptions while most of the others
are only linked to identifiers in external biologi-
cal entity databases. Among these databases, the
Function attribute in UniProt and the Definition
attribute in ChEBI are appropriate to be utilized as
complements to node descriptions. So we aligned
each node in SBGN file to node in corresponding
BioPAX file using node label. And then extracted
node descriptions from the union of BioPAX file,
UniProt and ChEBI. (3) For KEGG database, each
KEGG identifier indicates particular information
(stored in a TXT file) of a specific entity. We parsed
this file to pick entity name, textual Comment and
external database identifiers. We used entity names
as node labels, used Comments as node descrip-
tions for entities having this attribute (3.7%), and
used identifiers of UniProt and ChEBI to retrieve
node descriptions for others.

2.2 Dataset description
After excluding duplicate pathways and pathways
that do not have textual description, we finally ob-
tained 2,367 pairs of pathway and description. An
example is shown in Figure 1. Each textual de-
scription is a few sentences describing functions
and structures of the pathway. The textual de-
scription has on average 129.5±101.4 words and
7.6±5.3 sentences. Each pathway can be viewed
as a heterogeneous graph that contains different
types of edges and nodes. There are 7 edge types
and 7 node types in the entire dataset, where each
pathway has on average 3.5±1.4 edge types and
4.5±1.4 node types. Each node type (e.g., chem-
ical) has a large number of specific classes (e.g.,
succinic acid). Each class is associated with a con-
cise textual label and a detailed textual description.
The average length of the textual description is
114.8 words. We refer to the class description as
the node description and the pathway description
as the graph description throughout the paper. Each
pathway has on average 61±52 nodes and 75±80
edges. In summary, there are four data fields for
each pathway description pair: graph description,
graph structure, node description and node label.
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Figure 2: Scatter plot showing the consistency between
graph-based representation similarity and description-
based representation similarity. Each dot is a pair of
graphs.

To examine the feasibility of conducting
Graph2Text and Text2Graph tasks using our
dataset, we examined the consistency between
graph similarity and description similarity (Figure
2). We used GAT (Veličković et al., 2018) to embed
each graph into a dense representation. We also
obtained a dense representation for each graph de-
scription using BioBERT (Lee et al., 2020). For ev-
ery two graphs, we calculated one similarity score
based on their graph-based representations and an-



other similarity score based on their description-
based representations. We observed a Pearson cor-
relation 0.35 between these two similarity scores,
reflecting a substantial consistency between these
two similarity metrics. This indicates that graphs
with similar structure tend to have similar textual
descriptions, suggesting the possibility to generate
textual description using the graph structure and
vice versa.

3 Task Description

We aim to generate the textual description for
a given biomedical pathway graph and gener-
ate the biomedical pathway graph from a given
textual description. Let D = {DG ,DS} =

{(Gi, Si)}Ni=1
dist∼ P(G,S) be a dataset of paired

pathway and its textual description. Each pathway
is a directed graph G = (V,E, F ), where V repre-
sents the set of nodes, E ⊆ V × V represents the
set of edges, and F represents node features. Since
each pathway is a heterogeneous graph, we refer to
pathway as graph in this paper.

One unique property of the graphs in our dataset
is the rich node features F = {g, t, d}. In partic-
ular, each node v is associated with three features
gv, tv, and dv. gv ∈ {0, 1}nc is a one-hot vector
representing the node type of v. gi

v = 1 if node v is
type i. tv ,

〈
t1v, t

2
v, . . . , t

|tv |
v

〉
is the textual label

of node v. dv ,
〈
d1v, d

2
v, . . . , d

|dv |
v

〉
is the textual

description of node v. tiv ∈ C and div ∈ C, where
C is the vocabulary. In practice, the textual label
is often a phrase and the textual definition is a few
sentences. As a result, |dv| is often much larger
than |tv|. Each edge is associated with an edge
type r ∈ R, where R is the set of edge types in the
dataset. Each graph description is a token sequence
defined as S ,

〈
S1, S2, . . . , S|S|

〉
, where Si ∈ C.

We use an inductive learning framework in
our experiment. The whole dataset D is ran-
domly divided into Dtrain = {(Gi, Si)}|Dtrain|

i=1

and Dtest = {(Gi, Si)}Ni=|Dtrain|+1. For each task,
we train our model on Dtrain and evaluate its per-
formance on Dtest. Graph G and textual descrip-
tion S are always observed for the training data.
We define three tasks based on the unobserved in-
formation in the test data as follows:
Graph2Text. The input of this task is a graph G.
All node features are observed on this graph. The
output is the description text S for this graph.
Text2Graph link prediction. This task aims to

Multi-head Attention
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Fix Graph
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Figure 3: Flow chart of our two-step approach kNN-
Graph2Text. In the first step, we learnt a representation
for each graph by projecting graphs to descriptions. In
the second step, we find similar graphs for a test graph
and jointly use descriptions of similar graphs and node
embeddings of the test graph to generate the final de-
scription.

predict missing links in a test graph. The inputs
are graph description S, all node features F and a
subset of edges {e} in the graph G. For a test edge
eu,v ∈ V × V − {e}, our goal is to classify eu,v
into a specific edge type r ∈ R.
Text2Graph node classification. This task aims
to classify each test node into a specific node type
in graph G. We split nodes in G into training nodes
and test nodes. For training nodes, we observed
all node features F , including textual label, textual
description and node type, whereas none of these
features is observed for the test node. We also
observed the graph description S for G. Instead of
predicting the node type, we aim at predicting the
specific textual label, which is a more challenging
task. We form this problem as a node classification
task instead of textual generation.

4 Methods
4.1 Graph2Text
The overall framework of our method is shown in
Figure 3. We propose a two-step approach. In
the first step, we embed each graph into a dense
representation through jointly considering its graph
structure and node features. In the second step,
we use the learnt graph embeddings to find sim-
ilar graphs for each test graph and then leverage
the description of these similar graphs to help the
generation.

4.1.1 Description guided graph embedding
One unique property of our dataset is the rich tex-
tual features on each node. We hypothesize that
unsupervised graph embedding methods might be
unable to fully exploit these textual features. There-
fore, we first use a supervised approach to obtain



graph embeddings. Since we don’t have any class
label for each graph, we treat the graph descrip-
tion as the pseudo label in the supervised learning
framework to embed graphs.

In particular, we learn an encoder Enc that
projects the graph G into a dense representation
hG, and then a decoder Dec that maps this repre-
sentation into the textual description S. The de-
coder will be discarded in the second step, while
the encoder will be used to obtain the representa-
tion of an input graph.

Our encoder could be any existing graph neu-
ral network architectures (Kipf and Welling, 2017;
Veličković et al., 2018; Xu et al., 2019). We first
use a pretrained language model BioBERT to en-
code the textual label tv and the description dv of
each node v into a dense vector tv and a dense
vector dv, and fuse them to get the initial node
embedding for node v:

h0
v = RELU([tv||dv]W), (1)

where W represents a trainable parameter matrix
and || is the concatenation operation.

We then propagate this embedding on the graph
using a chosen graph neural network architecture,
which learns representation of node v through it-
eratively updating it with neighbors’ information
hl
N (v) as:

hl
N (v) = AGG({(hl−1

u , eu,v)|u ∈ N (v)}),

hl
v = UPDATE(hl−1

v ,hl
N (v)),

(2)

where Nv denotes the set of neighbors for v. AGG
and UPDATE are the aggregation and the update
function of the specific graph neural network archi-
tecture. We studied the performance of using GIN,
GCN and GAT as the neural network architecture
in our experiments.

After L iterations, the final embedding hL
v can

be used to represent the local subgraph comprising
node v’s L-hop neighbors. Next, for each node, we
concatenate its node embeddings from all layers
to fuse the information from different ranges of
neighbors. We then calculate the graph-level rep-
resentation by applying a READOUT function to
the concatenated node embedding:

hv = [h1
v‖h2

v‖ · · · ‖hL
v ]W,

hG = READOUT({hv}v∈V ).
(3)

Our decoder is a Transformer based on the pre-
trained BioBERT. It generates textual description
conditioned on hG:

P (Ŝi|hG) = Dec(hG, S
1,...,i−1). (4)

Finally, the decoder Dec and the encoder Enc are
trained jointly using the following loss function:

L1 = − 1

|Dtrain|
∑

(G,S)∈Dtrain

∑
Si∈S

logP (Si|hG)

|S|
.

(5)

4.1.2 Exploiting descriptions of similar
graphs in generation

The above encoder-decoder framework could al-
ready be used to generate the description for a given
test graph. However, we observed that such gener-
ations were not of great quality in our experiment,
partially due to the poor utilization of the node
textual features. We thus propose to train a new
decoder by leveraging the descriptions of similar
graphs.

We first use hGi to find k similar graphs in the
training data:

disij = ‖hGi − hGj‖2F,
S̄i = ‖

Gj∈kNN(Gi)

(Sj),
(6)

where Sj is the description for k nearest graphs
measured by disij . We then embed neighbor’s de-
scription S̄i into a dense representation s̄i using
BioBERT:

〈s̄ji 〉 = BioBERT(S̄i)W,

s̄i = Maxpooling(〈s̄ji 〉).
(7)

Next, we use multi-head attention framework
to calculate a new dense representation va

s based
on description embedding s̄i and 〈s̄ji 〉, and a new
dense representation va

g based on graph embedding
hG and {hv}as:

sa(u,vi, V ) =
exp(Qa(u)TKa(vi))∑

vj∈V exp(Qa(u)TKa(vj))
,

Attentiona(u, V ) = LeakyReLU(
∑

vi∈V sa(u,vi, V )vi),

va
g = Attentiona(hG, {hv}),

va
s = Attentiona(s̄i, 〈s̄ji 〉),

(8)
where a ∈ {1, . . . , A} indicates the attention head
number. Qa is a projection function mapping a
vector to the query space, which is defined as
Qa(v) = tanh(vQa), where Qa represents a train-
able parameter matrix. Similarly, we useKa to map
a vector to the key space.

Finally, we concatenate the new graph embed-
ding va

g and new description embedding va
s , and

use a pretrained Transformer as the decoder to gen-



erate textual content:
V = [v1

g || · · · ||vA
g ||v1

s || · · · ||vA
s ],

P (Ŝi|V) = Dec(V, S1,...,i−1).
(9)

Since we didn’t use the position embedding in the
input of the Transformer encoder, it implicitly per-
forms cross attention between graph and descrip-
tion. The loss function is finally defined as:

L2 = − 1

|Dtrain|
∑

(D,S)∈Dtrain

∑
Si∈S

logP (Si|V)

|S|
.

(10)

4.2 Text2Graph

For Text2Graph, we studied link prediction and
node classification.

4.2.1 Link prediction
To predict the edge type between node u and node
v on graph G, we used the node embedding hu,
node embedding hv and the graph description S as
the input features. We first define the edge feature
wu,v and the graph description feature 〈sji 〉 as:

〈sji 〉 = BioBERT(Si)W,

wu,v = [hu||hv].
(11)

Then we use the same attention mechanism as in
Equation. 8 to obtain a new embedding h from
these two features and define the predicted distri-
bution P (r̂u,v|eu,v) for edge type r as:

h = Attention(wu,v, 〈sji 〉),
P (r̂u,v|S) = softmax(MLP([hu||hv||h])).

(12)

Here, MLP is a multi-layer perceptron. The final
training loss is defined as:

L3 = − 1

|Dtrain|
∑

(G,S)∈Dtrain

∑
eu,v

P (ru,v|S)

|{eu,v}|
.

(13)

4.2.2 Node classification
To classify a test node v, we applied a similar at-
tention mechanism on its node embedding hv and
graph description feature 〈sji 〉 as:

〈sji 〉 = BioBERT(Si)W,

h = Attention(hv, 〈sji 〉).
(14)

We then define the predicted label distribution and
loss function accordingly as:

P (t̂v|S) = softmax(MLP([hv||h])),

L4 = − 1

|Dtrain|
∑

(G,S)∈Dtrain

∑
v

P (tv|S)

|{v}|
. (15)

5 Results

5.1 Experimental setup
We exclude any pathway that is a subgraph of an-
other pathway in all experiments to avoid data leak-
age. For Graph2Text, we randomly split the graph
description pairs into 75% training pairs and 25%
test pairs. We used a fixed Transformer encoder
in BioBERT and initialized the GNN with xavier
initialization. We used a learning rate 5e-5. We
found that this method performed better than using
a fixed Transformer and warming GNN before the
training. We used GAT (Veličković et al., 2018),
GCN (Kipf and Welling, 2017) and GIN (Xu et al.,
2019) as different graph encoders. The hidden state
embedding dimension was set to 128 for GAT and
512 for others. The number of heads of GAT was
set as 4. AGG and UPDATE functions were imple-
mented according to the original papers. Global
mean pooling was used as the READOUT function.
Since Transformer can hardly generate more than
512 tokens, we calculated the loss functions and
evaluated the generation only on the first 3 sen-
tences, which have an average token length 69±23
(maximum token length is 471). However, the en-
tire text was used as the input in all tasks through
the attention mechanism, and we set the attention
head number A = 128. We set k to 1 in the kNN
framework. We focused on the 1,173 pathway from
Pathbank (DS et al., 2020) in our experiments.

For Text2Graph node classification, we ran-
domly split the graph and description pairs into
75% training pairs and 25% test pairs. We sam-
pled 10% nodes as the test node in each graph.
In Text2Graph link prediction task, we varied the
proportion of the test set (10%, 30%, 50%, 70%,
90%). We sampled 40% edges for each graph and
the same number of edges from the complementary
graph as the test edge. In link prediction and node
classification, we only used GAT since it obtained
the best performance in Graph2Text. We set the
learning rate to 5e-4. We used Adam optimizer for
all optimizations.

In Graph2Text task, we compared our meth-
ods to supervised graph neural network which
jointly trains a graph neural network and a trans-
former. We denote them as GNN (des.), GNN
(label),GNN (des. + label) and GNN(structure
only) based on the node features used. In partic-
ular, GNN (des.) uses textual description as node
feature. GNN (label) uses textual label as the node
feature. GNN (des. + label) uses both textual label
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Figure 4: Performance of our method on Graph2Text and Text2Graph link prediction. a, Bar plot comparing
our method and baselines using different graph neural network architectures on Graph2Text. b, Scatter plot com-
paring the F1 score of using the graph structure to the F1 score of without using the graph structure. Each dot is
one edge type. c, Scatter plot comparing the F1 score of using the graph description to the F1 score of without
using the graph description. Each dot is one edge type.

Method BLEU1 BLEU2 BLEU3 METEOR NIST ROUGE-L
GNN (structure only) 14.3 2.2 0.9 12.1 0.8 19.4

GNN (des.) 18.7 2.5 0.9 11.9 1.1 16.6
GNN (label) 21.4 4.2 1.3 13.2 1.2 17.1

GNN (des. + label) 27.1 11.9 10.8 20.5 1.9 23.9
kNN-Transformer 26.8 12.3 10.6 20.4 1.9 24.3

kNN-Graph2Text (Ours) 29.6 13.8 11.4 23.0 2.2 24.4

Table 1: Comparison on Graph2Text using different
metrics.

and description as the node feature. We also com-
pared to a kNN-Transformer model which trained
a transformer using descriptions of similar graphs
to the final description. Different GNN architec-
tures are used to identify nearest neighbors in kNN
based on the graph information.

5.2 Graph2Text

We sought to evaluate the performance of our
method on the task of Graph2Text (Figure 4a, Ta-
ble 1). Overall, we found that our method achieves
the best performance on all metrics (0.296 BLEU-
1 score, 0.230 METEOR, 2.2 NIST, and 0.244
ROGUE-L), demonstrating the effectiveness of
jointly modeling graph structure, node description
and node label. We first compared our method to
graph neural network, which performed the first
step of our framework and used concatenated node
embeddings instead of single graph embedding as
the input to Transformer. We observed substantial
improvement over it on all three kinds of graph
neural networks, indicating the importance of re-
training using descriptions of similar graphs. We
also observed that our method was better than kNN-
Transformer, reflecting how our description-guided
graph embeddings enhance the description genera-
tion.

To further understand the importance of each
type of node feature, we evaluate the variants that
only consider node description or node textual la-

bel (Figure 4a). We found that the performance of
both variants dropped substantially, demonstrating
the importance of both node textual label and node
description. We further observed that the improve-
ment of our method was consistent when using
other graph neural network architectures, including
GIN and GCN, demonstrating the robustness of our
method. When replacing GAT to a multi-layer per-
ception that cannot model the graph structure, the
BLEU score of our method dropped substantially
from 0.296 to 0.187, again confirming the necessity
of considering the graph structure in this task.

5.3 Text2Graph

We next investigated the performance on the task
of Text2Graph. Here, we studied two classic graph
prediction tasks: link prediction and node classi-
fication. We summarized the performance of link
prediction in Figure 5a. We obtained an average of
0.781 accuracy score across 8 different edge types,
demonstrating an accurate prediction of the graph
structure using the graph description. We further
examined the effect of using the graph description
in Figure 4c and observed that all 8 edge types
had better F1 score when the graph description was
used. We observed the same improvement of using
the graph description when evaluated using the ac-
curacy. We also performed the ablation study for
the graph structure and observed similar improve-
ment Figure 4b. These results collectively confirm
that our method can generate the graph structure
based on the graph description, offering biologists
novel insights in pathway analysis.

We then studied the performance of node classi-
fication. We considered three most frequent node
types in our dataset: macromolecule, multimer
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Figure 5: Performance on Text2Graph link prediction, node classification and named entity recognition. a,
Bar plot showing the ablation studies on using the graph description and using the graph structure on link prediction.
b, Box plot showing the comparison between using the graph description and without using the graph description
on node classification. c, Bar plot showing the performance of named entity recognition on chemical and protein
on our dataset.

and chemical. For each node type, we formed the
node classification task as a multi-class classifica-
tion problem, where each test node is classified
into a specific class defined by the textual label.
We noticed that each node type has a large num-
ber of classes. Therefore, we first evaluated two
naive baselines: random guess and majority vote.
Random guess obtained 0.0009 average accuracy,
while majority vote obtained 0.046 average accu-
racy, suggesting a challenging classification task.
Our method obtained a desirable classification per-
formance, which was substantially higher than the
performance of the variant that does not consider
the graph description (Figure 5b). The improve-
ment of using graph description on both node clas-
sification and link prediction further confirm that
our dataset could be a promising benchmark for
Text2Graph task.

6 Application to Named Entity
Recognition

Named entity recognition (NER) is essential in
detecting chemicals, genes, and diseases from
biomedical text (Leaman et al., 2016; Luo et al.,
2018; Kim et al., 2019; Yoon et al., 2019), and fur-
ther facilitating downstream bioNLP applications,
such as relation extraction(Xing et al., 2020). A ma-
jor bottleneck in NER is the lack of curated bench-
marks since such curation often requires substantial
domain expertise. Our dataset Path2wayText can
be used as a novel curated benchmark for NER.

Specifically, we used the graph description as the
sentences that one wants to perform NER. We then
obtained the ground truth entity type of phrases
in these sentences according to their curated node
types in the graph. Since the graphs, including all

node types, are curated by domain experts, such
node types can be used as the ground truth entity
types for NER. Here, we focused on two most fre-
quent entity types in our dataset: protein and chem-
ical. We noticed that some phrases in the graph
description sentences might also be a protein or
chemical, even though they were not curated in the
graph. We excluded such phrases in the evalua-
tion in order to maintain the quality of our NER
benchmark.

To this end, we obtained the graph-based cura-
tion of 8,779 protein entities and 1,621 chemical
entities, offering a good complementary to existing
biomedical NER datasets (Kim et al., 2003; Smith
et al., 2008; Doğan et al., 2014; Krallinger et al.,
2015; Li et al., 2016; Wei et al., 2018). To fur-
ther investigate the performance of our novel NER
datasets, we tested a few state-of-the-art biomedical
NER methods, including BERN (Kim et al., 2019),
CollaboNet (Yoon et al., 2019), Multi-BioNER
(Wang et al., 2019), and NeuroNER (Dernoncourt
et al., 2017). We observed that NeuroNER ob-
tained the best performance on protein and Multi-
BioNER achieved the best performance on Chem-
ical (Figure 5c). Moreover, existing approaches
only consider the graph description sentences when
labelling entity types. In addition to graph descrip-
tion, our dataset also contains the corresponding
graph structure, which has been shown to be crit-
ical in graph description generation in our experi-
ments. Therefore, we hypothesize that graph struc-
ture might be also helpful in NER, and envision
our dataset to be an important resource for bench-
marking graph-based NER methods (Radford et al.,
2015; Rijhwani et al., 2020; He et al., 2020; Nie
et al., 2021).



7 Related Work

Graph2Text, which aims at generating a textual de-
scription for a structured graph, has attracted atten-
tions in different applications. Existing Graph2Text
datasets aims to generate text from RDF data
(Gardent et al., 2017), knowledge graph (Koncel-
Kedziorski et al., 2019; Jin et al., 2020; Cheng et al.,
2020; Colas et al., 2021; Wang et al., 2021), street
view map (Schumann and Riezler, 2021), Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013; Marcheggiani and Perez-Beltrachini, 2018;
Song et al., 2018; Ribeiro et al., 2019; Zhu et al.,
2019; Hajdik et al., 2019; Damonte and Cohen,
2019; Mager et al., 2020; Zhang et al., 2020; Zhao
et al., 2020; Fan and Gardent, 2020; Wang et al.,
2020), terminology ontology (Liu et al., 2021) and
graph-transduction grammars (Belz et al., 2011;
Mille et al., 2019, 2020). Our dataset is the first
Graph2Text dataset that focuses on biomedical
pathway generation. In addition, our dataset has
more complicated node features than many exist-
ing Graph2Text datasets, where each node in our
dataset has a node type, a concise textual label and
a detailed textual description.

Text2Graph can be viewed as an information
extraction task, which aims at mining structured
knowledge from free text. The datasets that are
more relevant to our task could be generating a
knowledge graph from long document (Kertkeid-
kachorn and Ichise, 2017; Bosselut et al., 2019;
Kannan et al., 2020; Wu et al., 2020). Many of
these existing datasets use automatic annotation to
extract the graph information from corpus (Kertkei-
dkachorn and Ichise, 2017; Bosselut et al., 2019),
which might introduce bias from the extraction
method. In contrast, graphs in our dataset are ei-
ther experimentally derived or manually curated,
presenting a high-quality complementary to exist-
ing Text2Graph datasets.

8 Conclusion and Future work

We have presented a novel dataset Pathway2Text
for biomedical pathway description generation.
Our dataset contains 2,367 pairs of curated path-
way and its associated description. To generated
description for biomedical pathways, we have pro-
posed a kNN-Graph2Text approach, which utilizes
neighbor’s description to enhance the text gener-
ation. We have extensively evaluated our method
and observed substantial improvement in compar-
ison to conventional graph neural network archi-

tectures. Furthermore, we have investigated the
reverse task of Text2Graph and illustrated how our
dataset can serve as a novel benchmark for biomed-
ical NER.

In addition to Graph2Text, Text2Graph and NER,
our dataset can also be used to investigate other
important applications. For example, our dataset
can be used as a relation extraction benchmark
by regarding graph descriptions as sentences and
graph edge types as the ground truth relation type.
We can also use our dataset to study other graph-
based tasks, such as generating node description
given the graph structure and the graph description.
Another interesting application is to identify the
importance of each node in the graph, which has
important applications in recommender system and
social media. The order of mentions of each node
in the graph description can be used to evaluate the
node importance since the graph description often
starts from the most important node.

From a methodological perspective, we plan to
develop semi-supervised approaches to leverage
many other biomedical pathways that currently
do not have curated description. For example,
we can train a Graph Transformer (Cai and Lam,
2020) on these unlabelled pathways and then fine-
tune the model on pathways with graph descrip-
tion. We also want to explore other geometric em-
bedding methods, such as hyperbolic embedding
(Cvetkovski and Crovella, 2009) and spherical em-
bedding (Meng et al., 2019, 2020), since biomedi-
cal pathways often form a hierarchical structure.

More importantly, our dataset could also open
up new venues in biomedical research. Any com-
putational biology tools that utilize biomedical
pathways as features in their pipeline can exploit
the graph description as additional features. For
biomedical pathways that do not have the corre-
sponding description, one can use the description
generated by our kNN-Graph2Text as the feature.
We envision this will substantially advance a wide
range of biomedical research that involves path-
way analysis, and our dataset will introduce other
new text generation tools developed in the NLP
community to broader audience in biomedicine.
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Rui Alves, Isabel Segura-Bedmar, Paloma Martı́nez,
Julen Oyarzabal, and Alfonso Valencia. 2015. The
chemdner corpus of chemicals and drugs and its an-
notation principles. Journal of Cheminformatics,
7(1):S2.

Nicolas Le Novère, Michael Hucka, Huaiyu Mi, Stu-
art Moodie, Falk Schreiber, Anatoly Sorokin, Emek
Demir, Katja Wegner, Mirit I. Aladjem, Sarala M.
Wimalaratne, Frank T. Bergman, Ralph Gauges, Pe-
ter Ghazal, Hideya Kawaji, Lu Li, Yukiko Matsuoka,
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A KGML Translation
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Figure 6: An illustration of KGML translation men-
tioned in Section 2.1. The first and second operations
aim to unify the expression of reaction. The third op-
eration aims to eliminate inconsistencies between node
types. The Orthology nodes in KGML file are omitted
during this translation.

B Data Format

Our dataset is stored in a JSON file. And the hier-
archy structure is organized as follows:
{

Graph i d e n t i f i e r : {
”Name ” : ,
” G r a p h d e s c r i p t i o n ” : ,
” N o d e d i c t ” : {

Node i d e n t i f i e r : {
” t y p e ” : ,
” l a b e l ” : ,
” d e s c r i p t i o n ” : .

} ,
. . .

} ,
” A r c l i s t ” : [

{
” a r c s o u r s e ” : ,
” a r c t a r g e t ” : ,
” a r c t y p e ” : .

} ,
. . .

]
} ,
. . .

} .
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The node types include Submap, Macromolecule,
Process, Complex, Multimer, Simple Chemical and
Others. The Others is the union of several types
occurring only in a single database (e.g., Unspeci-
fied Entity, Association in Reactome and Transport
in Pathbank). Nodes in this type account for 7%
over the whole dataset. The edge types include
Catalysis, Consumption, Stimulation, Inhibition,
Production, Logic Arc and Belong To, where the
Belong To represents edges that were added for
Complex node reconstruction mentioned in Sec-
tion 2.1.


