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Abstract

We consider the problem of learning models for risk-sensitive reinforcement learn-
ing. We theoretically demonstrate that proper value equivalence, a method of
learning models which can be used to plan optimally in the risk-neutral setting, is
not sufficient to plan optimally in the risk-sensitive setting. We leverage distribu-
tional reinforcement learning to introduce two new notions of model equivalence,
one which is general and can be used to plan for any risk measure, but is intractable;
and a practical variation which allows one to choose which risk measures they may
plan optimally for. We demonstrate how our framework can be used to augment
any model-free risk-sensitive algorithm, and provide both tabular and large-scale
experiments to demonstrate its ability.

1 Introduction

Reinforcement learning is a general framework where agents learn to sequentially make decisions to
optimize an objective, such as the expected value of future rewards (risk-neutral objective) or the
conditional value at risk of future rewards (risk-sensitive objective). It is a popular belief that a truly
general agent must have a world model to plan with and limit the number of environment interactions
needed (Russell, 2010). One way this is achieved is through model-based reinforcement learning,
where an agent learns a model of the environment as well as its policy which it uses to act.

The classical approach to learning a model is to use maximum likelihood estimation (MLE) based on
data, which given a model class selects the model which is most likely to have produced the data seen.
If the model class is expressive enough, and there is enough data, we may expect a model learnt using
MLE to be useful for risk-sensitive planning. However, the success of this method relies on the model
being able to model everything about the environment, which is an unrealistic assumption in general.

As opposed to learning models which are accurate in modelling every aspect of the environment,
recent works have advocated for learning models with the decision problem in mind, known as
decision-aware model learning (Farahmand et al., 2017; Farahmand, 2018; D’Oro et al., 2020; Abachi
et al., 2020; Grimm et al., 2020, 2021). In particular, Farahmand et al. (2017) introduced value-aware
model learning, which uses a model loss that weighs model errors based on the effect the errors have
on potential value functions. This framework has since been iterated on and improved upon in later
works such as Farahmand (2018); Abachi et al. (2020); Voelcker et al. (2021). Complementarily,
Grimm et al. (2020) introduced the value equivalence principle, a framework of partitioning the
space of models based on the properties of the Bellman operators they induce. This framework has
been extended by Grimm et al. (2021), where the authors introduce a related partitioning, called
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proper value equivalence, based on which models induce the same value functions. They substantiate
this approach by demonstrating that any model in the same equivalence class as the true model is
sufficient for optimal planning.

While standard reinforcement learning maximizes the expected return achieved by an agent, this
may not suffice for many real-life applications. When environments are highly stochastic or where
safety is important, a trade-off between the expected return and its variability is often desired. This
concept is well-established in finance, and is the basis of modern portfolio theory (Markowitz, 1952).
Recently this approach has been used in reinforcement learning, and is referred to as risk-sensitive
reinforcement learning. In this setting, agents learn to maximise a risk measure of the return which is
possibly different from expectation (in the case it is expectation, it is referred to as risk-neutral), and
may penalize or reward risky behaviour (Howard & Matheson, 1972; Heger, 1994; Tamar et al., 2015,
2012; Chow et al., 2015; Tamar et al., 2016). In particular, Grimm et al. (2021, 2022) has explored
when optimal risk-neutral planning in an approximate model translates to optimal behaviour in the
true environment. However, it is not clear when this holds for risk-sensitive planning.

In this paper, we propose a framework that consolidates risk-sensitive reinforcement learning and
decision-aware model learning. Specifically, we address the following question: if we can perform
risk-sensitive planning in an approximate model, does it translate to risk-sensitive behaviour in the
true environment? To this end, our work provides the following contributions:

• We prove that proper value equivalence only suffices for optimal planning in the risk-neutral case,
and the performance of risk-sensitive planning decreases with risk-sensitivity (Section 3).

• We introduce the distribution equivalence principle, and show that this suffices for optimal
planning with respect to any risk measure (Section 4).

• We introduce an approximate version of distribution equivalence, which is applicable in practice,
that allows one to choose which risk measures they may plan optimally for (Section 5).

• We discuss how these methods may be learnt via losses, and how it can be combined with any
existing model-free algorithm (Section 6).

• We demonstrate our framework empirically in both tabular and continuous domains (Section 7).

Notation

We write P(Z) to represent the set of probability measures on a measurable set Z . For a probability
measure ν ∈ P(Z), we write X ∼ ν to denote a random variable X with law ν, meaning for
all measurable subsets A ⊆ Z , P(X ∈ A) = ν(A). For a probability measure ν ∈ P(Z)
and a measurable function f : Z → Y , the pushforward measure f#ν ∈ P(Y) is defined by
f#ν(Y ) = ν(f−1(Y )) for all measurable sets Y ⊆ Y . For arbitrary sets X and Y , we write Y X for
the space of functions from X to Y .

2 Background

We consider a Markov decision process (MDP) represented as a tuple (X ,A,P,R, γ) where X
is the state space, A is the action space, P : X × A → P(X ) is the transition kernel, R :
X × A → P(R) is the reward kernel, and γ ∈ [0, 1) is the discount factor. We define a policy to
be a map π : X → P(A), and write the set of all policies as Π. Given a policy π ∈ Π, we can
sample trajectories (Xt, At, Rt)t≥0, where for all t ≥ 0, At ∼ π(· |Xt), Rt ∼ R(Xt, At), and
Xt+1 ∼ P(Xt, At). For a trajectory from π beginning at X0 = x, we associate to it the return
random variable Gπ(x) =

∑
t≥0 γ

tRt. The expected return across all trajectories starting from a
state x is the value function V π(x) = Eπ[Gπ(x)]. The value function is the unique fixed point of the
Bellman operator Tπ : RX → RX , defined by

TπV (x) ≜ Eπ [R+ γV (X ′)] , (1)
where Eπ is written to indicate A ∼ π(· |x), R ∼ R(x,A), and X ′ ∼ P(x,A).

2.1 Model-based reinforcement learning and the value equivalence principle

Estimating (1) in the RL setting is not possible directly, as generally an agent does not have access to
R nor P , but only samples from them. There are two common approaches to address this: model-free
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methods estimate the expectations through the use of stochastic approximation or related methods
(Sutton, 1988), while model-based approaches learn an approximate model R̃, P̃ (Sutton, 1991).

We will refer to a tuple m̃ = (R̃, P̃) as a model, and write M for the set of all models. In turn, each
model m̃ induces an approximate MDP (X ,A, P̃, R̃, γ). For a policy π, we write Tπm̃ : RX → RX

for the Bellman operator in this approximate MDP, and we write V πm̃ for the unique fixed point of this
operator. We write m∗ = (R,P) for the true model, and keep Tπ = Tπm∗ . Throughout the paper, we
will write M ⊆ M to represent a set of models which we are considering.

Traditional methods of model-based reinforcement learning learn a model m̃ using task-agnostic meth-
ods such as maximum likelihood estimation (Sutton, 1991; Parr et al., 2008; Oh et al., 2015). More
recent approaches have focused on learning models which are accurate in aspects which are necessary
for decision making (Farahmand et al., 2017; Farahmand, 2018; Schrittwieser et al., 2020; Grimm
et al., 2020, 2021; Arumugam & Van Roy, 2022). Of importance to us is Grimm et al. (2021), which in-
troduced proper value equivalence, and defined the set M∞(Π) ≜ {m̃ ∈ M : V π = V πm̃, ∀π ∈ Π}.
They proved that any model m̃ ∈ M∞(Π) suffices for optimal planning, that is, a policy which is
optimal in m̃ is also optimal in the true environment, m∗.

2.2 Distributional reinforcement learning

Distributional reinforcement learning (Morimura et al., 2010; Bellemare et al., 2017, 2023) studies
the return Gπ as a random variable, rather than focusing only on its expectation. For x ∈ X , we
define the return distribution ηπ(x) as the law of the random variable Gπ(x). The return distribution
is the unique fixed point of the distributional Bellman operator T π : P(R)X → P(R)X given by

T πη(x) ≜ Eπ [(bR,γ)#η(X ′)] ,

where bR,γ : x 7→ R + γ x and Eπ is as in (1). As was the case in Section 2.1, any approximate
model m̃ induces a distributional Bellman operator T π

m̃ , and we write ηπm̃ for the unique fixed point
of this operator.

2.3 Risk-sensitive reinforcement learning

We define a risk measure to be a function ρ : Pρ(R) → [−∞,∞), where Pρ(R) ⊆ P(R) is its
domain.2. A classic example is ρ = E, which we refer to as the risk-neutral case. When ρ depends
on more than only the mean of a distribution, we refer to ρ as being risk-sensitive. The area of
risk-sensitive reinforcement learning is concerned with maximizing various risk measures of the
random return, rather than the expectation as done classically. We now present two examples of
commonly used risk measures.

Example 2.1. For λ > 0, the mean-variance risk criterion is given by ρλMV(µ) = EZ∼µ[Z] −
λVarZ∼µ(Z) (Markowitz, 1952; Tamar et al., 2012). This forms the basis of modern portfolio theory
(Elton & Gruber, 1997).

Example 2.2. The conditional value at risk at level τ ∈ [0, 1] is defined as

CVaRτ (µ) ≜
1

τ

∫ τ

0

F−1
µ (u) du,

where F−1
µ (u) = inf{z ∈ R : µ(−∞, z] ≥ u} is the quantile function of µ. If F−1

µ is a strictly
increasing function, we equivalently have

CVaRτ (µ) = E
Z∼µ

[
Z
∣∣Z ≤ F−1

µ (τ)
]
,

so that CVaRτ (µ) can be understood as the expectation of the lowest (100 · τ)% of samples from µ.

We say that a policy π∗
ρ is optimal with respect to ρ if

ρ (ηπ
∗
ρ (x)) = max

π∈Π
ρ (ηπ(x)), ∀x ∈ X .

2We use the definition of risk measure used by Bellemare et al. (2023). In earlier financial mathematics
literature such as Artzner et al. (1999), risk measures were defined as functions of random variables, rather
than probability measures. By defining the domain to be a subset of probability measures, we are implicitly
considering law-invariant risk measures (Kusuoka, 2001).
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Figure 1: An MDP with a single state and two actions (left), and a proper value equivalent model m̃
for it (right).

Since we define the space of policies as Π = P(A)X , we implicitly only considering the class of
stationary Markov policies (Puterman, 2014). For a general risk measure, an optimal policy in this
class may not exist (Bellemare et al., 2023). We discuss more general policies in Appendix D.

3 Limitations of value equivalence for risk-sensitive planning

Grimm et al. (2021) proved that any proper value equivalent model is sufficient for optimal risk-
neutral planning. In this section, we investigate whether this holds for risk-sensitive planning as well,
or is limited to the risk-neutral setting.

As an illustrative example, let us consider the MDP and approximate model m̃ in Figure 1. It is
straightforward to verify that m̃ is a proper value equivalent model for the true MDP, as the value
for any policy is 0 in both m̃ and the true environment. However, for a risk-sensitive agent m̃ is not
sufficient: the variability of return when choosing action b in m∗ is much higher than the variability
of return when choosing action b in m̃. Formally, let us fix γ = 1

2 , and let πb be the policy which
chooses action b with probability 1. Then ηπ

b

(x) = U([−2, 2]) (Bellemare et al., 2023, Example
2.10), while ηπ

b

m̃ (x) = δ0 (where δx refers to the Dirac distribution concentrated at x). This difference
prevents m̃ from planning optimally for risk-sensitive risk measures. For example, the optimal policy
with respect to ρλMV in m∗ is to choose a with probability 1, while in m̃ any policy is optimal. It is
straightforward to validate that similar phenomena happen for CVaRτ when τ < 1.

As demonstrated in the example above, proper value equivalence is not sufficient for planning with
respect to the risk measures introduced in Section 2.3. We now formalize this, and demonstrate
that the only risk measures which proper value equivalence can plan for exactly are those which are
functions of expectation.
Proposition 3.1. Let ρ be a risk measure such that for any MDP and any set M of models, a policy
optimal for ρ for any m̃ ∈ M∞(Π) is optimal in the true MDP. Then ρ must be risk-neutral, in the
sense that there exists an increasing function g : R → R such that ρ(ν) = g(EZ∼ν [Z]).

The previous proposition demonstrates that in general, the only risk measures we can plan for in a
proper value equivalent model are those which are transformations of the value function. However, it
does not address the question of how well proper value equivalent models can be used to plan with
respect to other risk measures.

To investigate this question, we turn our attention to a class of risk measures known as spectral risk
measures (Acerbi, 2002). Let φ : [0, 1] → R be a non-negative, non-increasing, right-continuous,
integrable function such that

∫ 1

0
φ(u) du = 1. Then the spectral risk measure corresponding to φ is

defined as

ρφ(ν) ≜
∫ 1

0

F−1
ν (u)φ(u)du,

where F−1
ν is as in Example 2.2. Spectral risk measures encompass many common risk measures, for

example choosing φ = 1[0,1] corresponds to expectation, while φ = 1
τ 1[0,τ ] corresponds to CVaRτ .

We say that a spectral risk measure ρ is (ε, δ)-strictly risk-sensitive if it corresponds to a function φ
such that φ(ε) ≤ δ. This implies that φ gives a weight of less than δ to the top ε quantiles, and so
intuitively a larger ε and smaller δ implies a more risk-sensitive risk measure.

With this definition, we now demonstrate that when using proper value equivalent models to plan for
strictly risk-sensitive spectral risk measures, there exists a tradeoff between the level of risk-sensitivity
and the performance achieved.
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Proposition 3.2. Let ρ be an (ε, δ)-strictly risk-sensitive spectral risk measure, and suppose that
rewards are almost surely bounded byRmax. Then there exists an MDP with a proper value equivalent
model m̃ with the following property: letting π∗

ρ be an optimal policy for ρ in the original MDP, and
π̃∗
ρ an optimal policy for ρ in m̃, we have

inf
x∈X

{
ρ
(
ηπ

∗
ρ (x)

)
− ρ

(
ηπ̃

∗
ρ (x)

)}
≥ Rmax

1− γ
ε(1− δ(1− ε)).

The fact that we take an infimum over X is important to note: there exists an MDP such that for
any state x, the performance gap due to planning in the proper value equivalent model is at least
Rmax
1−γ ε(1− δ(1− ε)).. This weakness motivates us to introduce a new notion of model equivalence.

4 The distribution equivalence principle

We now introduce a novel notion of equivalence on the space of models, which can be used for
risk-sensitive learning. Intuitively, proper value equivalence ensures matching of the means of the
approximate and true return distributions, which is why it can only produce optimal policies for
risk measures which depend on the mean. In order to plan for any risk measure, we leverage the
distributional perspective of RL, to partition models based on their entire return distribution.
Definition 4.1. Let Π ⊆ Π be a set of policies and D ⊆ P(R)X be a set of distribution functions.
We say that the space of distribution equivalent models with respect to Π and D is

Mdist(Π,D) ≜ {m̃ ∈ M : T πη = T π
m̃η, ∀π ∈ Π, η ∈ D} .

We can extend this concept to equivalence over multiple applications of the Bellman operator.
Following this, for k ∈ N we define the order k distribution-equivalence class as

Mk
dist(Π,D) ≜

{
m̃ ∈ M : (T π)kη = (T π

m̃)kη, ∀π ∈ Π,∀η ∈ D
}
.

Taking the limit as k → ∞, we retrieve the set of proper distribution equivalent models.
Definition 4.2. Let Π ⊆ Π be a set of policies. We define the set of proper distribution equivalent
models with respect to Π as

M∞
dist(Π) ≜ {m̃ ∈ M : ηπm̃ = ηπ, ∀π ∈ Π} .

As discussed in Section 3, models in M∞(Π) are sufficient for optimal planning with respect
to expectation, but generally not with respect to other risk measures. We now show that proper
distribution equivalence removes this problem: choosing a model in M∞

dist(Π) is sufficient for optimal
planning with respect to any risk measure.
Theorem 4.3. Let ρ be any risk measure. Then an optimal policy with respect to ρ in m̃ ∈ M∞

dist(Π)
is optimal with respect to ρ in m∗.

At this point, it appears that distribution equivalence addresses nearly all of the limitations of value
equivalence discussed in Section 3. However, the nature of distributions brings inherent challenges,
in particular they are infinite dimensional. As a result of this, for computational purposes one must
use a parametric family of distributions F ⊆ P(R) (Rowland et al., 2018; Dabney et al., 2018) to
represent return distributions. However, an additional challenge is that the distributional Bellman
operator may bring return distributions out of the parametric representation space: for a general
η ∈ FX , T πη ̸∈ FX . Hence, we also require a projection operator3 ΠF : P(R)X → FX , and in
practice we must use ΠFT πη. This also implies that it may not be feasible to learn a model m̃ in
Mk

dist(Π,D) or M∞
dist(Π): they rely on matching T πη or ηπ, while one would only have access to

ΠFT πη and ΠFη
π . We address this issue next, through the perspective of statistical functionals.

5 Statistical functional equivalence

Following the intractability of learning a distribution equivalent model in practice, we now study
model equivalence through the lens of statistical functionals, a framework introduced by Rowland

3Further details on the necessity of the projection operator and a discussion of various projections can be
found in Chapter 5 of Bellemare et al. (2023).
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et al. (2019) to describe a variety of distributional reinforcement learning algorithms. We begin with
a review of statistical functionals (Section 5.1), and then introduce statistical functional equivalence,
demonstrate its equivalence to projected distribution equivalence, and study which risk measures it
can plan optimally for (Section 5.2).

5.1 Background on statistical functionals

Definition 5.1. A statistical functional is a function ψ : Pψ(R) → R, where Pψ(R) ⊆ P(R) is its
domain. A sketch is a collection of statistical functionals, written as a mapping ψ : Pψ(R) → Rm,
where ψ = (ψ1, . . . , ψm), and Pψ(R) =

⋂m
i=1 Pψi(R).

Example 5.2. Suppose i > 0, and let Pi(R) be the set of probability measures with finite ith
moment. Moreover, let µi(ν) be the ith moment of a measure ν ∈ Pi(R). Then for m > 0, the m
moment sketch ψmµ : Pm(R) → Rm is defined by ψmµ (ν) = (µ1(ν), . . . , µm(ν)).

For a given sketch ψ, we define its image as Iψ = {ψ(ν) : ν ∈ Pψ(R)} ⊆ Rm. An imputation
strategy for a sketch ψ is a map ι : Iψ → Pψ(R), and can be thought of as an approximate inverse
(a true inverse may not exist as ψ is generally not injective). We say ι is exact for ψ if for any
(s1, . . . , sm) ∈ Iψ we have (s1, . . . , sm) = ψ(ι(s1, . . . , sm)). In general, an exact imputation
strategy always exists, however it may not be efficiently computable (Bellemare et al., 2023).

Example 5.3. Suppose ψ is a sketch given by ψ(ν) = (EZ∼ν [Z],VarZ∼ν [Z]), and ι is given by
ι(µ, σ2) = N (µ, σ2) (that is, the normal distribution with mean µ and variance σ2). One may verify
that ι is exact, since for any (µ, σ2) ∈ R2 = Iψ , we have ψ(ι(µ, σ2)) = (µ, σ2).

We now extend the notion of statistical functionals to return-distribution functions. For η ∈ Pψ(R)X
we write ψ(η) = (ψ(η(x)) : x ∈ X ). We say that a set Ω ⊆ P(R) is closed under T π if whenever
η ∈ ΩX , we have T πη ∈ ΩX . A sketch ψ is Bellman-closed (Rowland et al., 2019; Bellemare et al.,
2023) if whenever its domain is closed under T π, there exists an operator T π

ψ : IXψ → IXψ such that
for any η ∈ Pψ(R)X ,

ψ(T πη) = T π
ψ ψ(η).

We refer to T π
ψ as the Bellman operator for ψ. Similarly to Section 2.1, we denote T π

ψ,m̃ as the
Bellman operator for ψ in an approximate model m̃.

We will write sπψ = ψ(ηπ) as a shorthand, and refer to it as the return statistic for a policy π. If T π
ψ

exists, then sπψ is its fixed point: sπψ = T π
ψ s

π
ψ . For an approximate model m̃, we write sπψ,m̃ = ψ(ηπm̃).

We further have sπψ,m̃ = T π
ψ,m̃ s

π
ψ,m̃, that is, it is a fixed point of the Bellman operator T π

ψ,m̃.

The task of policy evaluation for a statistical functional ψ is that of computing the value sπψ . Statistical
functional dynamic programming (Bellemare et al., 2023) aims to do this by computing the iterates
sk+1 = ψ(T πι(sk)), with s0 ∈ IXψ initialized arbitrarily. If ι is exact and ψ is Bellman-closed, then
the updates satisfy sk = ψ(ηk), where η0 = ι(s0) and ηk+1 = T πηk. If ψ is a continuous sketch4,
then the iterates (sk)k≥0 converge to sπψ .

5.2 Statistical functional equivalence

We now introduce a notion of model equivalence through the lens of statistical functionals. Intuitively,
this allows us to interpolate between value equivalence and distribution equivalence, as we can choose
exactly which aspects of the return distributions we would like to capture.

Definition 5.4. Let ψ be a sketch, and ι be an imputation strategy for ψ. Let I ⊆ IXψ and Π ⊆ Π.
We define the class of ψ equivalent models with respect to Π and I as

Mψ(Π, I) ≜
{
m̃ ∈ M : ψ (T πι(s)) = ψ (T π

m̃ι(s)) ,∀π ∈ Π,∀s ∈ I
}
.

In the case that ψ is Bellman-closed and ι is exact, this set can be described in a form similar to that
of value equivalence and distribution equivalence.

4We define this notion in Appendix A.2.
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Proposition 5.5. If ψ is Bellman-closed and ι is exact, we have that
Mψ(Π, I) =

{
m̃ ∈ M : T π

ψ s = T π
ψ,m̃s, ∀π ∈ Π,∀s ∈ I

}
.

We can extend the above to k applications of the projected Bellman operator, and define the set of
order-k ψ equivalent models as

Mk
ψ(Π, I) ≜

{
m̃ ∈ M : (ψT πι)

k
s = (ψT π

m̃ι)
k
s,∀π ∈ Π,∀s ∈ I

}
,

where ψT πι : IXψ → IXψ is shorthand for s 7→ ψ(T πι(s)). As in Proposition 5.5, if ψ is Bellman-
closed and ι is exact, it holds that

Mk
ψ(Π, I) =

{
m̃ ∈ M : (T π

ψ )ks = (T π
ψ,m̃)ks, ∀π ∈ Π,∀s ∈ I

}
.

Following Section 4, we can consider the set of models which agree on return statistics, and have no
dependence on the set I. However, one difference in the case of statistical functionals is that it is
not true in general that this is equal to the limit of Mk

ψ(Π, I). Intuitively, this is for the same reason
that the iterates (sk)k≥0 of statistical functional dynamic programming do not always converge to sπψ
(Section 5.1). We first introduce the definition of proper statistical functional equivalence, and then
demonstrate when it is the limiting set in Proposition 5.7.
Definition 5.6. Let Π ⊆ Π be a set of policies, and ψ be a sketch. We define the class of proper
statistical functional equivalent models with respect to ψ and Π as

M∞
ψ (Π) ≜

{
m̃ ∈ M : sπψ,m̃ = sπψ, ∀π ∈ Π

}
.

Proposition 5.7. If ψ is both continuous and Bellman-closed and ι is exact, then5

lim
k→∞

Mk
ψ(Π, I) = M∞

ψ (Π), for any I ⊆ IXψ .

Remark 5.8. Value equivalence (Grimm et al., 2020, 2021) can be seen as a special case of statistical
functional equivalence, in the sense that if we choose ψ = E, then we have Mk

ψ(Π) = Mk(Π), for
any Π ⊆ Π and k ∈ [1,∞].

Connection to projected distribution equivalence

In Section 4, we remarked that distribution equivalence was difficult to achieve in practice, due to the
fact that the space P(R)X was infinite dimensional, and we generally rely on a parametric family
F . We now demonstrate that the statistical functional perspective provides us a way to address this.

Let ψ be a sketch and ι an imputation strategy. These induce the implied representation (Bellemare
et al., 2023) given by Fψ = {ι(s) : s ∈ Iψ}, and the projection operator ΠFψ

: Pψ(R) → Fψ

given by ΠFψ
= ι ◦ ψ. We now show that through this construction, we can relate statistical

functional model learning to projected distributional model learning with the projection ΠFψ
.

Proposition 5.9. Suppose ι is injective, Π ⊆ Π, I ⊆ IXψ , and let DI = {ι(s) : s ∈ I} ⊆ Pψ(R)X .
Then

Mψ(Π, I) =
{
m̃ ∈ M : ΠFψ

T πη = ΠFψ
T π
m̃η,∀π ∈ Π,∀η ∈ DI

}
,

and
M∞

ψ (Π) =

{
m̃ ∈ M : ΠFψ

ηπ = ΠFψ
ηπm̃, ∀π ∈ Π

}
.

Risk-sensitive learning

We now study which risk measures we can plan optimally for using a model in M∞
ψ (Π). Intuitively,

we will not be able to plan optimally for all risk measures (as was the case in Theorem 4.3), since
this set only requires models to match the aspects of the return distribution captured by ψ. Indeed,
we now show that the choice of ψ exactly determines which risk measures can be planned for.
Proposition 5.10. Let ρ be a risk measure and let ψ = (ψ1, . . . , ψm) be a sketch, and suppose that ρ
is in the span of ψ, in the sense that there exists α0, . . . αm ∈ R such that for all ν ∈ Pψ(R)∩Pρ(R),
ρ(ν) =

∑m
i=1 αiψi(ν) + α0. Then any optimal policy with respect to ρ in m̃ ∈ M∞

ψ (Π) is optimal
with respect to ρ in m∗.

5This is a set theoretic limit, and we review its definition in Definition C.1. Further details can be found in
many texts on analysis or probability, for example Resnick (1999).
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6 Learning statistical functional equivalent models

We now analyze how we may learn models in these classes in practice. As we have introduced a
number of concepts and spaces of models, we only discuss here the spaces of models that are used in
the empirical evaluation which follow, and we discuss the remainder of the spaces in Appendix B.

We focus on the case of learning a proper ψ-equivalent model. Such a model must satisfy sπψ =

(ψT π
m̃ι)

ksπψ for any policy π (Proposition B.1), so that we can construct a loss by measuring the
amount that this equality is violated by. However, the size of Π is exponential in |X |, so we can
approximate this by only measuring the amount of violation over a subset of policies Π ⊆ Π. We can
now formalize this concept as a loss.
Definition 6.1. Let ψ be a sketch, and ι an imputation strategy. We define the loss for learning a
proper-ψ equivalent model as

Lkψ,Π,∞(m̃) ≜
∑
π∈Π

∥∥∥sπψ − (ψT π
m̃ι)

k
sπψ

∥∥∥2
2
.

If ψ is Bellman-closed this can be written without the need for ι, by replacing ψT π
m̃ι with T π

ψ,m̃.

This loss is amenable to tabular environments, as it requires knowledge of sπψ, which can be learnt
approximately using statistical functional dynamic programming. Despite this, the above approach
can be further adapted to the deep RL setting, which we now discuss, and describe how our approach
can be combined with existing model-free risk-sensitive algorithms.

We will assume the existence of a model-free risk-sensitive algorithm which satisfies the following
properties: (i) it learns a policy π using a replay buffer D, and (ii) it learns an approximate statistical
functional function sπψ,ω (for example, any algorithm based upon C51 (Bellemare et al., 2017) or
QR-DQN (Dabney et al., 2018) satisfies these assumptions), where we write ω to refer to the set
of parameters it depends on, and to emphasize its difference with the true return statistic sπψ. We
will introduce a loss which learns an approximate model m̃, which can then be combined with the
replay buffer D to use both experienced transitions and modelled transitions to learn π, as was done
by e.g. Sutton (1991) or Janner et al. (2019). Following this, for a learnt model m̃ we introduce the
approximate loss

LD,ψ,ω(m̃) = E
(x,a,r,x′)∼D
x̃′∼m̃(·|x,a)

[
(sπψ,ω(x

′)− sπψ,ω(x̃
′))2

]
.

7 Empirical evaluation

We now empirically study our framework, and examine the phenomena discussed in the previous
sections. We focus on two sets of experiments: the first is in tabular settings where we use dynamic
programming methods to perform an analysis without the noise of gradient-based learning. The
second builds upon Lim & Malik (2022), where we augment their model-free algorithm with our
framework, and evaluate it on an option trading environment. We discuss training and environments
details in Appendix E, and provide additional results in Appendix A.3. We provide the code used to
run our experiments at github.com/tylerkastner/distribution-equivalence.

7.1 Experimental details

Tabular experiments

For each environment, we learn an MLE model, a proper value equivalent model using the method
introduced in Grimm et al. (2021), and a ψ2

µ equivalent model using Lkψ2
µ,Π,∞

, where ψmµ is the first
m moment functional (cf. Example 5.2), and Π is a set of 1000 randomly sampled policies. For each
model, we performed CVaR value iteration (Bellemare et al., 2023), and further performed CVaR
value iteration in the true model, to produce three policies. We repeat the learning of the models
across 20 independent seeds, and report the performance of the policies in Figure 2 (Left).

Option trading

Lim & Malik (2022) introduced a modification of QR-DQN which attempts to learn CVaR optimal
policies, that they evaluate on an option trading environment (Chow & Ghavamzadeh, 2014; Tamar

8

https://github.com/tylerkastner/distribution-equivalence


Figure 2: Left: CVaR(0.5) of returns obtained across the three tabular environments. We computed
the values across 1000 trajectories from each of the 20 learnt models. Error bars indicate 95%
confidence intervals. The orange bar for Frozen Lake appears missing because the value obtained
is 0. Right: CVaR of returns for the policies learnt in the option trading environment for various
CVaR levels after 10,000 environment interactions. Shaded regions indicate 95% confidence intervals
across 10 independent seeds.

Figure 3: CVaR of returns for policies learnt in the option trading environment using a ψ-equivalent
model and a MLE-based model as the number of distracting dimensions increases (left: 2 distracting
dimensions, right: 6 distracting dimensions).

et al., 2017). We augment their method using the method described in Section 6, and we learn optimal
policies for 10 CVaR levels between 0 and 1. We compare our adapted method to their original
method as well as their original method adapted with a PVE model (Grimm et al., 2021), and discuss
implementation details in Appendix E. In particular, we evaluate the models in a low-sample regime,
so the sample efficiency gains of using a model are apparent.

7.2 Discussion

In Figure 2 (Left), we can see that across all three tabular environments, planning in a proper statistical
functional equivalent model achieves stronger results over planning in a proper value equivalent
model. This provides an empirical demonstration of Proposition 3.2 and Proposition 5.10: proper
value equivalence is limited in its ability to plan risk-sensitively, while risk-sensitive planning in a
statistical functional equivalent model approximates risk-sensitive planning in the true environment.

In Figure 2 (Right), we can see that Lim & Malik (2022)’s algorithm augmented with a statistical
functional equivalent model achieved significantly improved performance for all CVaR levels below
τ ≈ 0.8. The fact that our augmentation improves upon the original method reflects the improved
sample efficiency which comes from using an approximate model for planning. This difference
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is more apparent for lower values of τ , which demonstrates the phenomenon that learning more
risk-sensitive policies are less sample efficient (Greenberg et al., 2022). On the other hand, the
method augmented with the PVE model could have the same sample efficiency gains from using
an approximate model (as it is trained on the same number of environment interactions), so the fact
that it is not performant for lower values of CVaR is a demonstration of Proposition 3.2: the more
risk-sensitive the risk measure being planned for, the more the performance is affected.

Compared to MLE-based methods, our approach focuses on learning the aspects of the environment
which are most relevant for risk-sensitive planning. This phenomenon is reflected in Figure 3, where
the performance gap between the MLE model and the ψ-equivalent model grows with the amount of
uninformative complexity in the environment.

8 Conclusion

In this work, we studied the intersection of model-based reinforcement learning and risk-sensitive
reinforcement learning. We demonstrated that value-equivalent approaches to model learning produce
policies which can only plan optimally for the risk-neutral setting, and in risk-sensitive settings
their performance degrades with the level of risk being planned for. Similarly, we argued that
MLE-based methods are insufficient for efficient risk-sensitive learning as they focus on all aspects
of the environment equally. We then introduced distributional model equivalence, and demonstrated
that distribution equivalent models can be used to plan for any risk measure, however they are
intractable to learn in practice. To account for this, we introduced statistical functional equivalence;
an equivalence which is parameterized by the choice of a statistical functional. We proved that the
choice of statistical functional exactly determines which risk measures can be planned for optimally,
and provided a loss with which these models can be learnt. We further described how our method
can be combined with any existing model-free risk-sensitive algorithm, and augmented a recent
model-free distributional risk-sensitive algorithm with our model. We supported our theory with
empirical results, which demonstrated our approach’s advantages over value-equivalence and MLE
based models over a range of environments..
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A Additional results

A.1 Additional properties of statistical functional equivalence

We begin by discussion some additional properties of statistical functional equivalence.

Proposition A.1. If the reward from a state is almost surely bounded, the m-moment functional ψmµ
is continuous on return distributions.

Proof. Let Rmax be the maximum absolute reward from a state, equivalently let us suppose the
support of R(·, ·) is a subset of [−Rmax, Rmax]. Then for any x ∈ X and any policy π we have that
the support of ηπ(x) is a subset of [−Rmax/(1− γ), Rmax/(1− γ)].

We now leverage a result of Billingsley (1986), which states that for any m > 0, if a sequence
of measures (νn)n≥0 ⊆ Pm(R) is uniformly integrable, then µm(νn) converges to µm(ν) in
R whenever (νn)n≥0 weakly converges to ν. Applying this in our setting, we first fix x ∈ X ,
then by the previous paragraph we have that the support of each ηn(x) is a subset of the interval
[−Rmax/(1− γ), Rmax/(1− γ)], which implies uniform integrability of (ηn(x))n≥0. Hence we have
that µm(ηn(x)) → µm(η), which gives convergence of ψmµ .

Example A.2. Let ψmµ be the sketch of the firstmmoments (Example 5.2). Then by Proposition 5.10,
whenever m ≥ 2 we have that any proper ψmµ equivalent model is sufficient for optimal planning
with respect to the mean-variance risk criterion ρλMV (Example 2.1).

We now demonstrate that the m-moment sketch ψmµ introduced in Example 5.2 suffices for risk-
sensitive learning with respect to a large collection of risk measures.

Proposition A.3. Suppose ψ = (ψ1, . . . , ψm) is a Bellman-closed sketch and for each i = 1, . . . ,m,
∃fi : R → R such that for each ν ∈ Pψ(R), ψi(ν) = EZ∼ν [fi(Z)]. Then any risk measure ρ which
can be planned for exactly using a proper ψ equivalent model can be planned for exactly using a
proper ψmµ equivalent model.

A.2 On the continuity of statistical functionals

We define a sketch ψ to be continuous if whenever a sequence (νn)n≥0 ⊆ Pψ(R) converges to
ν ∈ Pψ(R), we have that ψ(νn) converges to ψ(ν). We now formalize this notion. We will use
various quantities from topology, Munkres (2000) may be used a reference for further details.

We will write Cb(R) for the set of bounded continuous functions from R to R. We recall that a
sequence of measures (νn)n≥0 ⊆ P(R) converges weakly to ν ∈ P(R) if∫

fdνn →
∫
fdν,

for all f ∈ Cb(R). We refer to the topology induced by this convergence as the weak topology on
P(R) (to be precise, specifying convergence is sufficient to induce the entire topology since this
topology is metrizable).

With this definition, we endow P(R)X with the product topology generated by the weak topology
on P(R). Then by definition of the product topology, a sequence (ηn)n≥0 ⊆ P(R)X converges to
η ∈ P(R)X if and only if for each x ∈ X , (ηn(x))n≥0 converges weakly to η(x) (note this is weak
convergence in P(R)).
We can now define a sketch ψ : Pψ(R) → Rm to be (sequentially) continuous if whenever a
sequence (ηn)n≥0 ⊆ Pψ(R)X converges to η ∈ Pψ(R)X with the topology we defined above, we
have that ψ(ηn) converges to ψ(η) in the usual topology on Rm.

To see that this continuity of ψ implies convergence of the iterates (sk)k≥0 to sπψ , we can recall that
we had sk = ψ(ηk), where η0 = ι(s0) and ηk+1 = T πηk. The sequence (ηk)k≥0 converges to ηπ in
the weak product topology on P(R)X (Bellemare et al., 2023), which then immediately gives that if
ψ is continuous as above, ψ(ηk) → ψ(ηπ), and hence sk → sπψ .
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Figure 4: CVaR of returns for policies learnt using a ψ-equivalent model and a MLE-based model
as the number of distracting dimensions increases (left: Four Rooms, middle: Frozen Lake, right:
Windy Cliffs.

A.3 Additional empirical results

Similar to Figure 3, we performed an additional experiment in the tabular domains, where we limit
the model capacity by constraining the rank of transition matrix being estimated. In this regime, the
model should ideally use its limited capacity to model the aspects of the environment which are most
important for the decision problem. We report the results of this experiment in Figure 4.

B Learning statistical functional equivalent models

To learn a model m̃ ∈ Mk(Π, I), we can define the loss of a model as the total deviation from the
definition of Mk(Π, I). To this end, we define

Lk,pψ,Π,I(m̃) ≜
∑
π∈Π

∑
s∈I

∥∥∥(ψT πι)
k
s− (ψT π

m̃ι)
k
s
∥∥∥p
p
,

where for s = (s1, . . . , sm) ∈ Rm, ∥s∥pp =
∑m
i=1 |si|p. If the Bellman operator for ψ exists and is

readily available, we can alternatively define the loss working directly on statistics, without needing
to impute into distribution space:

Lk,pψ,Π,I(m̃) =
∑
π∈Π

∑
s∈I

∥∥(T π
ψ )ks− (T π

ψ,m̃)ks
∥∥p
p
.

To learn a proper value equivalent model, Grimm et al. (2021) leverages the fact that for any k ∈ N the
proper value equivalent class can be deconstructed into an intersection of one proper value equivalent
class per policy it matches over:

M∞(Π) =
⋂
π∈Π

Mk ({π}, {V π}) ,

so that minimizing
∣∣V π − (Tπm̃)kV π

∣∣ across all π ∈ Π is sufficient to learn a model in M∞(Π). We
now show that the same argument can be used to learn proper statistical functional equivalent models.
Proposition B.1. If ψ is both continuous and Bellman-closed and ι is exact, for any k ∈ N and
Π ⊆ Π, it holds that

M∞
ψ (Π) =

⋂
π∈Π

Mk
ψ

(
{π},

{
sπψ

})
.

With this in mind, we can now propose a loss for learning proper statistical functional equivalent
models.
Definition B.2. Let ψ be a sketch and ι an imputation strategy. We define the loss for learning a
proper ψ equivalent model as

Lk,pψ,Π,∞(m̃) ≜
∑
π∈Π

∥∥∥sπψ − (ψT π
m̃ι)

k
sπψ

∥∥∥p
p
.

If ψ is Bellman-closed this loss can be written in terms of its Bellman operator, given by

Lk,pψ,Π,∞(m̃) =
∑
π∈Π

∥∥sπψ − (T π
ψ,m̃)ksπψ

∥∥p
p
.
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C Proofs

C.1 Section 3 Proofs

Proposition 3.1. Let ρ be a risk measure such that for any MDP and any set M of models, a policy
optimal for ρ for any m̃ ∈ M∞(Π) is optimal in the true MDP. Then ρ must be risk-neutral, in the
sense that there exists an increasing function g : R → R such that ρ(ν) = g(EZ∼ν [Z]).

Proof. To begin, note that this condition implies that for probability measures ν1, ν2 with
EZ1∼ν1 [Z1] = EZ2∼ν2 [Z2], it must hold that ρ(ν1) = ρ(ν2). To see why, suppose this weren’t
the case. Then there exists a pair of probability measures ν1, ν2 ∈ P(R) such that EZ1∼ν1 [Z1] =
EZ2∼ν2 [Z2], and ρ(ν1) < ρ(ν2). Then let us construct an MDP M∗ where X = {x}, A = {a, b},
γ = 0, R(x, a) = ν1, R(x, b) = ν2 (P is defined implicitly since there is a single state). Moreover
let us define a second MDP M̃ defined by X = {x}, A = {a, b}, γ = 0, R(x, a) = EZ1∼ν1 [Z1],
R(x, a) = EZ2∼ν2 [Z2]. Then it is immediate to see that M∗ and M̃ are proper value equivalent,
however the policy πa defined by πa(a |x) = 1 is optimal in M̃ , but not in M∗, contradicting the
original statement.

This in turn implies that ρ(ν) = f(EZ∼ν [Z]) for some function f . It remains to show that f must
be increasing. To see this, suppose not: then there exists µ1, µ2 ∈ P(R) such that EZ1∼ν1 [Z1] >
EZ2∼ν2 [Z2] but ρ(ν1) < ρ(ν2). Then we can construct another pair of MDPs: M∗ is defined by
setting X = {x}, A = {a, b}, γ = 0, R(x, a) = ν1, R(x, b) = ν2, and M̃ is defined by X = {x},
A = {a, b}, γ = 0, R(x, a) = EZ1∼ν1 [Z1], R(x, a) = EZ2∼ν2 [Z2]. Then once again we can see
that M∗ and M̃ are proper value equivalent, but the the policy πa defined by πa(a |x) = 1 is optimal
in M̃ , but not in M∗, giving us our contradiction.

Hence we must have that ρ(ν) = f(EZ∼ν [Z]) for some increasing function f , as desired.

Proposition 3.2. Let ρ be an (ε, δ)-strictly risk-sensitive spectral risk measure, and suppose that
rewards are almost surely bounded byRmax. Then there exists an MDP with a proper value equivalent
model m̃ with the following property: letting π∗

ρ be an optimal policy for ρ in the original MDP, and
π̃∗
ρ an optimal policy for ρ in m̃, we have

inf
x∈X

{
ρ
(
ηπ

∗
ρ (x)

)
− ρ

(
ηπ̃

∗
ρ (x)

)}
≥ Rmax

1− γ
ε(1− δ(1− ε)).

Proof. Let φ be the function which ρ corresponds to (so that ρ(µ) =
∫ 1

0
F−1
µ (u)φ(u) du). As ρ is

strictly risk-sensitive, let ε, δ be such that φ(ε) ≤ δ. Next, note that since φ is constrained to be
positive, non-increasing, and integrating to 1, we have that∫ 1

0

F−1
µ (u)φ(u) du =

∫ 1−ε

0

F−1
µ (u)φ(u) du+

∫ 1

1−ε
F−1
µ (u)φ(u) du

≤ 1

1− ε

∫ 1

0

F−1
µ (u)1[0,1−ε] du+ δ

∫ 1

0

F−1
µ (u) du

=
1

1− ε

∫ 1−ε

0

F−1
µ (u) du+ δ

∫ 1

1−ε
F−1
µ (u) du.

Figure 5: An MDP m∗ (left) and a proper value equivalent model m̃ (right).

Let us now consider the MDPs m∗ and m̃ as given in Figure 5. Following Example 2.10 in Bellemare
et al. (2023), we have that ηπ

b

(x) = U([−2c, 2c]), so that F−1

ηπb (x)
(u) = 4cu− 2c. We can use this
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to calculate

ρ(ηπ
b

(x)) =

∫ 1

0

F−1
µ (u)φ(u) du

≤ 1

1− ε

∫ 1−ε

0

F−1

ηπb (x)
(u) du+ δ

∫ 1

1−ε
F−1

ηπb (x)
(u) du

=
1

1− ε

∫ 1−ε

0

(4cu− 2c) du+ δ

∫ 1

1−ε
(4cu− 2c) du

= −2cε(1− δ(1− ε)).

With this calculation done, we can remark that πa is optimal in m∗, as we have ρ(πa(x)) = 0.
Moreover, πb is an optimal policy in m̃, as ρ(πam̃(x)) = ρ(πbm̃(x)) = 0.

We can then see that
ρ(πa(x))− ρ(πb(x)) ≥ 2cε(1− δ(1− ε)),

which completes the proof.

C.2 Section 4 Proofs

Theorem 4.3. Let ρ be any risk measure. Then an optimal policy with respect to ρ in m̃ ∈ M∞
dist(Π)

is optimal with respect to ρ in m∗.

Proof. Let π∗
ρ be an optimal policy for ρ in m∗, and let π̃∗

ρ be an optimal policy for ρ in m̃. For
contradiction, suppose that π̃∗

ρ is not optimal in m∗. Then for all x ∈ X we have that

ρ(ηπ̃
∗
ρ (x)) ≤ ρ(ηπ

∗
ρ (x)),

and for at least one x ∈ X we have

ρ(ηπ̃
∗
ρ (x)) < ρ(ηπ

∗
ρ (x)).

Let us choose this x, and note that this implies

ρ
(
ηπ̃

∗
ρ (x)

)
< ρ

(
ηπ

∗
ρ (x)

)
⇐⇒ ρ

(
η
π̃∗
ρ

m̃ (x)
)
< ρ

(
η
π∗
ρ

m̃ (x)
)
,

since by assumption of m̃ ∈ M∞
dist(Π) we have that ηπ = ηπm̃ for any π ∈ Π. But this contradicts the

assumption that π̃∗
ρ was optimal for ρ in m̃, and we are complete.

C.3 Section 5 Proofs

Proposition 5.5. If ψ is Bellman-closed and ι is exact, we have that

Mψ(Π, I) =
{
m̃ ∈ M : T π

ψ s = T π
ψ,m̃s, ∀π ∈ Π,∀s ∈ I

}
.

Proof. Recall that

Mψ(Π, I) =
{
m̃ ∈ M : ψ (T πι(s)) = ψ (T π

m̃ι(s)) ∀π ∈ Π, s ∈ I
}
.

Note that ψ (T πι(s)) = T π
ψ ψ(ι(s)) since ψ is Bellman-closed, and since ι is exact we have that

ψ(ι(s)) = s. Combining these we have that ψ (T πι(s)) = T π
ψ s, which then gives us equality of the

sets as desired.

Definition C.1. Let (Ak)∞k=1 be a sequence of sets. Then we have

lim inf
k→∞

Ak =
⋃
k≥1

⋂
j≥k

Aj , and lim sup
k→∞

Ak =
⋂
k≥1

⋃
j≥k

Aj .

If both of these sets are equal, then we say that limk→∞Ak exists and is equal to that common set.
Proposition 5.7. If ψ is both continuous and Bellman-closed and ι is exact, then

lim
k→∞

Mk
ψ(Π, I) = M∞

ψ (Π), for any I ⊆ IXψ .
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Proof. We can begin by recalling that for k > 0,

Mk
ψ(Π, I) =

{
m̃ ∈ M : (ψT πι)

k
s = (ψT π

m̃ι)
k
s ∀π ∈ Π, s ∈ I

}
,

We can also note that if m̃ ∈ Mk
ψ(Π, I), then m̃ ∈ Mnk

ψ (Π, I) for n > 0, since if (ψT πι)
k
s =

(ψT π
m̃ι)

k
s, then by setting both sides to the power n we have that (ψT πι)

nk
s = (ψT π

m̃ι)
nk
s. This

implies that Mk
ψ(Π, I) ⊆ Mnk

ψ (Π, I). Since this is true for any n, we can set n→ ∞ to obtain

Mk
ψ(Π, I) ⊆

{
m̃ ∈ M : lim

n→∞
(ψT πι)

nk
s = lim

n→∞
(ψT π

m̃ι)
nk
s ∀π ∈ Π, s ∈ I

}
.

Since ι is exact and ψ is Bellman-closed, we have that for any n ≥ 0, (ψT πι)
nk
s = ψ((T π)nkι(s))

(Proposition 8.9 in Bellemare et al. (2023)). Since ψ is continuous, we have thatψ((T π)nkι(s)) → sπ

as n→ ∞ (justification for this can be found in Appendix A.2). We can then use this to rewrite the
above as

Mk
ψ(Π, I) ⊆

{
m̃ ∈ M : sπψ = sπψ,m̃ ∀π ∈ Π, s ∈ I

}
= M∞(Π).

This immediately gives us that ⋃
j≥k

Mj
ψ(Π, I) ⊆ M∞(Π).

Since this expression is independent of k, we can take the intersection over all k to see that

lim sup
k→∞

Mk
dist(Π) =

⋂
k≥1

⋃
j≥k

Mj
ψ(Π, I) ⊆ M∞(Π).

Moreover it is immediate to see that

M∞(Π) ⊆
⋂
k≥1

⋃
j≥k

Mj
ψ(Π, I),

which together gives us
lim sup
k→∞

Mk
dist(Π) = M∞

dist(Π).

We now focus on the limit inferior. We take k > 0, and see that⋂
j≥k

Mj
ψ(Π, I) =

{
m̃ ∈ M : (ψT πι)

j
s = (ψT π

m̃ι)
j
s ∀j ≥ k, π ∈ Π, s ∈ I

}
⊆

{
m̃ ∈ M : lim

j→∞
(ψT πι)

j
s = lim

j→∞
(ψT π

m̃ι)
j
s π ∈ Π, s ∈ I

}
.

As argued above for the limit superior, we have that limj→∞ ψ((T π)jι(s)) = sπψ . Using this fact in
the original expression above, we have{
m̃ ∈ M : lim

j→∞
(ψT πι)

j
s = lim

j→∞
(ψT π

m̃ι)
j
s π ∈ Π, s ∈ I

}
=

{
m̃ ∈ M : sπψ,m̃ = sπψ π ∈ Π, s ∈ I

}
.

Conversely, it is immediate to see that{
m̃ ∈ M : sπψ,m̃ = sπψ π ∈ Π, s ∈ I

}
⊆

{
m̃ ∈ M : (ψT πι)

j
s = (ψT π

m̃ι)
j
s ∀j ≥ k, π ∈ Π, s ∈ I

}
,

so that we can combine with our work above and conclude that⋂
j≥k

Mj
ψ(Π, I) ⊆

{
m̃ ∈ M : sπψ,m̃ = sπψ π ∈ Π, s ∈ I

}
= M∞

dist(Π).

Since this expression is independent of k, we can take the union over k to obtain

lim inf
k→∞

Mk
ψ(Π, I) =

⋃
k≥1

⋂
j≥k

Mj
ψ(Π, I) ⊆ M∞

dist(Π).

Moreover it is immediate to see that

M∞
dist(Π) ⊆

⋃
k≥1

⋂
j≥k

Mj
ψ(Π, I),
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which together give

lim inf
k→∞

Mk
ψ(Π, I) = M∞

dist(Π).

Since the limit inferior and limit superior are equal, we have the existence of the limit

lim
k→∞

Mk
ψ(Π, I) = M∞

dist(Π).

Proposition 5.9. Suppose ι is injective, Π ⊆ Π, I ⊆ IXψ , and let DI = {ι(s) : s ∈ I} ⊆ Pψ(R)X .
Then

Mψ(Π, I) =
{
m̃ ∈ M : ΠFψ

T πη = ΠFψ
T π
m̃η,∀π ∈ Π,∀η ∈ DI

}
,

and

M∞
ψ (Π) =

{
m̃ ∈ M : ΠFψ

ηπ = ΠFψ
ηπm̃, ∀π ∈ Π

}
.

Proof. We can write out

Mψ(Π, I) =
{
m̃ ∈ M : ψ (T πι(s)) = ψ (T π

m̃ι(s)) ∀π ∈ Π, s ∈ I
}

=

{
m̃ ∈ M : ψ (T πη) = ψ (T π

m̃η) ∀π ∈ Π, s ∈ D
}

=

{
m̃ ∈ M : ι(ψ (T πη)) = ι(ψ (T π

m̃η)) ∀π ∈ Π, s ∈ D
}

=

{
m̃ ∈ M : ΠFψ

T πη = ΠFψ
T π
m̃η ∀π ∈ Π, s ∈ D

}
,

where the second to last inequality follows from the injectivity of ι. Similarly we have that

M∞
ψ (Π, I) =

{
m̃ ∈ M : ψ (ηπ) = ψ (ηπm̃) ∀π ∈ Π

}
=

{
m̃ ∈ M : ι(ψ (ηπ)) = ψ (ι(ηπm̃)) ∀π ∈ Π

}
=

{
m̃ ∈ M : ΠFψ

ηπ = ΠFψ
ηπm̃ ∀π ∈ Π

}
,

where the second equality follows by injectivity of ι.

Proposition 5.10. Let ρ be a risk measure and let ψ = (ψ1, . . . , ψm) be a sketch, and suppose that ρ
is in the span of ψ, in the sense that there exists α0, . . . αm ∈ R such that for all ν ∈ Pψ(R)∩Pρ(R),
ρ(ν) =

∑m
i=1 αiψi(ν) + α0. Then any optimal policy with respect to ρ in m̃ ∈ M∞

ψ (Π) is optimal
with respect to ρ in m∗.

Proof. Let π∗
ρ be an optimal policy for ρ in m∗, and let π̃∗

ρ be an optimal policy for ρ in m̃. For
contradiction, suppose that π̃∗

ρ is not optimal in m∗. Then for all x ∈ X we have that

ρ(ηπ̃
∗
ρ (x)) ≤ ρ(ηπ

∗
ρ (x)),

and for at least one x ∈ X we have

ρ(ηπ̃
∗
ρ (x)) < ρ(ηπ

∗
ρ (x)).
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Let us choose this x, and note that this implies

ρ
(
ηπ̃

∗
ρ (x)

)
< ρ

(
ηπ

∗
ρ (x)

)
⇐⇒

m∑
i=1

αiψi

(
ηπ̃

∗
ρ (x)

)
<

m∑
i=1

αiψi

(
ηπ

∗
ρ (x)

)
⇐⇒

m∑
i=1

αiψi

(
η
π̃∗
ρ

m̃ (x)
)
<

m∑
i=1

αiψi

(
η
π∗
ρ

m̃ (x)
)

⇐⇒ ρ
(
η
π̃∗
ρ

m̃ (x)
)
< ρ

(
η
π∗
ρ

m̃ (x)
)
,

which contradicts the assumption that π̃∗
ρ was optimal for ρ in m̃.

C.4 Appendix Proofs

Proposition A.3. Suppose ψ = (ψ1, . . . , ψm) is a Bellman-closed sketch and for each i = 1, . . . ,m,
∃fi : R → R such that for each ν ∈ Pψ(R), ψi(ν) = EZ∼ν [fi(Z)]. Then any risk measure ρ which
can be planned for exactly using a proper ψ equivalent model can be planned for exactly using a
proper ψmµ equivalent model.

Proof. This proof relies on a theorem introduced by Rowland et al. (2019), which we restate here.

Theorem C.2 (Rowland et al. (2019)). Let ψ = (ψ1, . . . , ψm) be a Bellman closed sketch such that
for each i = 1, . . . ,m, there exist fi : R → R such that for all ν ∈ Pψ(R), ψi(ν) = EZ∼ν [fi(Z)].
Then there exists real numbers (bij)mi,j=1 such that for all ν ∈ Pψ(R),

ψi(ν) =

m∑
j=1

bijµj(ν) + bi0,

where µj is the jth moment functional (Example 5.2).

Next, let us suppose that ρ can be planned for optimally by any m̃ ∈ M∞
ψ (Π), then there must

exist (αi)mi=1 such that for all ν ∈ Pψ(R)
⋂

Pρ(R), ρ(ν) =
∑m
i=1 αiψi(ν). Using the coefficients

(bij)
m
i,j=1 introduced in the theorem statement above, we have that

ρ(ν) =

m∑
i=1

αi(ψi(ν)

=

m∑
i=1

αi

 m∑
j=1

bijµj(ν) + bi0


=

m∑
i=1

αi

m∑
j=1

bijµj(ν) +

m∑
i=1

αibi0

=

m∑
j=1

βjµj(ν) + β0,

where βj =
∑m
i=1 αibij for j = 0, . . . ,m. We can then apply Proposition 5.10, and we are complete.

Proposition B.1. If ψ is both continuous and Bellman-closed and ι is exact, for any k ∈ N and
Π ⊆ Π, it holds that

M∞
ψ (Π) =

⋂
π∈Π

Mk
ψ

(
{π},

{
sπψ

})
.
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Proof. We begin by rewriting the definition

M∞
ψ (Π) =

{
m̃ ∈ M : sπψ,m̃ = sπψ for all π ∈ Π

}
=

⋂
π∈Π

{
m̃ ∈ M : sπψ,m̃ = sπψ

}
=

⋂
π∈Π

M∞
ψ ({π}).

Next, note that for any π and any k ∈ N we have M∞
ψ ({π}) ⊆ Mk

ψ({π}, {sπψ}), since if sπψ = sπψ,m̃
we can write out

sπψ = sπψ,m̃

=⇒ (T π
ψ,m̃)ksπψ = (T π

ψ,m̃)ksπψ,m̃

=⇒ (T π
ψ,m̃)ksπψ = sπψ,m̃

=⇒ (T π
ψ,m̃)ksπψ = sπψ

=⇒ (T π
ψ,m̃)ksπψ = (T π

ψ )ksπψ,

and hence m̃ ∈ Mk
ψ({π}, {sπψ}). Conversely, if we let m̃ ∈ Mk

ψ({π}, {sπψ}), we can write out

(T π
ψ,m̃)ksπψ = (T π

ψ )ksπψ

=⇒ (T π
ψ,m̃)ksπψ = sπψ

=⇒ (T π
ψ,m̃)2ksπψ = (T π

ψ )ksπψ

=⇒ (T π
ψ,m̃)2ksπψ = sπψ,

which we can repeat n times to obtain (T π
ψ,m̃)nksπψ = sπψ. Sending n → ∞ and using the fact

that ψ is continuous gives us sπψ = limn→∞(T π
ψ,m̃)nksπψ = sπψ,m̃, which then gives us m̃ ∈

Mk
ψ({π}, {sπψ}).

D General classes of policies

In Section 2, we considered stationary Markov policies. One can further consider history-dependent
policies, which don’t have to be stationary nor Markov, but simply measurable with respect to the
filtration Ft given by Ft = σ

((∏t−1
i=0(X ×A)

)
×X

)
(where for a collection of sets A, σ(A) is

the σ-algebra generated by A). This is a much larger class of policies, and learning a policy in this
class is infeasible in general (Puterman, 2014).

In the risk-neutral setting, the difficulties associated with learning a history-dependent policies can be
avoided: for every history-dependent policy, there exists a Markov stationary policy which achieves
the same expected return. In particular, no history-dependent policy achieves a return higher than a
Markov stationary policy, and thus it suffices to solely consider learning a Markov stationary policy.

Unfortunately, such a result does not exist for the risk-sensitive setting: for a general risk measure,
there exists history-dependent policies which achieve a higher objective of return than all Markov
stationary policies. Moreover, a Markov stationary policy which is optimal as defined in Section 2
may not exist in general. Despite this negative result, the standard approach in practice is nonethe-
less to learn an approximately optimal Markov stationary policy (Bäuerle & Ott, 2011; Chow &
Ghavamzadeh, 2014; Lim & Malik, 2022), and this is the approach taken in this work as well.

Due to the fact that an optimal policy may not exist, Theorem 4.3 may seem to not generally apply, as
it only addresses the case when a Markov stationary optimal policy exists. We now present a weaker
version of this theorem, which addresses the case in which such an optimal policy does not exist.

To state the proposition, we first introduce the notion of policy domination. Suppose π1, π2 ∈ Π. We
say that π1 dominates π2 with respect to ρ if

ρ (ηπ1(x)) ≥ ρ (ηπ2(x)), ∀x ∈ X .
It is straightforward to see that policy domination provides a partial order over the set of Markov
stationary policies Π. With this in mind, we present the proposition.
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Proposition D.1. Let ρ be any risk measure, and let π1, π2 be policies such that π1 dominates π2
with respect to ρ in an approximate model m̃ ∈ M∞

dist(Π). Then π1 dominates π2 with respect to ρ
in m∗.

Proof. Let π1, π2 satisfy the statement of the proposition. For contradiction, suppose that π1 does
not dominate π2 in m∗. Then for all x ∈ X we have that

ρ(ηπ1(x)) ≤ ρ(ηπ2(x)),

and for at least one x ∈ X we have

ρ(ηπ1(x)) < ρ(ηπ2(x)).

Let us choose this x, and note that this implies

ρ(ηπ1(x)) < ρ(ηπ2(x))

⇐⇒ ρ (ηπ1

m̃ (x)) < ρ (ηπ2

m̃ (x)) ,

since by assumption of m̃ ∈ M∞
dist(Π) we have that ηπ = ηπm̃ for any π ∈ Π. But this contradicts the

assumption that π1 dominated π2 in m̃, and we are complete.

We note that this proposition should be interpreted as follows: suppose one learns an approximately
optimal policy in m̃ ∈ M∞

dist(Π), in the sense that it dominates a set of other candidate policies.
Then this policy will be approximately optimal in m∗, in the sense that it will still dominate this same
set of policies in m∗. We note that it is straightforward to adapt Proposition 5.10 in the same way.

E Empirical details

We begin with a detailed description of the environments used, followed by details on the compute
resources used.

E.1 Environment descriptions

E.1.1 Tabular environments

Four rooms

We adapt the stochastic four rooms domain used in Grimm et al. (2021) by making certain states risky.
In the original domain, an agent attempts to navigate from the start state (bottom left) to the goal state
(top right), by moving up, down, left, or right. At each step however, there is a 20% chance that the
agent slips and moves in a random direction, rather than the intended one. A reward of 1 is achieved
for reaching the goal state, and the reward is 0 elsewhere. We then select certain states to become
‘risky’ states. These states have the same transition dynamics, but modified reward: if they transition
in the intended direction they receive a small, positive reward, and if they transition in a random
direction they receive a large negative reward. The rewards are chosen so that the expected reward
from a state has a slightly positive expectation, so that risk-neutral policies would pass through the
state, but risk-averse ones would not.

Windy cliffs

We consider the stochastic adaptation of the cliff walk environment (Sutton & Barto, 2018) as
introduced in Bellemare et al. (2023). An agent must walk along a cliff to reach its goal, but at every
step, it has a 1/3 probability of moving in a random direction. A reward of −1 is obtained for falling
off the cliff, and a reward of 1 is obtained for reaching the goal state.

Frozen lake

We use the 8 by 8 frozen lake domain as specified in Brockman et al. (2016). There are four actions
corresponding to walking in each direction, however taking an action has a 1/3 probability of moving
in the intended direction, and a 1/3 probability of moving in each of the perpendicular directions.
The agent begins in the top left corner, and attempts to reach the goal at the bottom right corner, at
which point the agents receives a reward of 1 and the episode ends. Within the environment there are
various holes in the ice, entering a hole will provide a reward of -1 and the episode ends. Episodes
will also end after 200 timesteps. Following this, there are 3 possible returns for an episode: −1 for
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falling in a hole, 1 for reaching the goal, and 0 for reaching the 200 timesteps without reaching a hole
state or the goal.

E.1.2 Option trading environment

We use the option trading environment as implemented in Lim & Malik (2022). In particular, the
environment simulates the task of learning a policy of when to exercise American call options. The
state space is given as X = R2, where for a given X ∋ x = (p, t), p represents the price of the
underlying stock, and t represents the time until maturity. The two actions represent holding the stock
and executing, and at maturity all options are executed. The training data is generated by assuming
that stock prices follows geometric Brownian motion (Li et al., 2009). For evaluation, real stock
prices are used, using the data of 10 Dow instruments from 2016-2019.

E.2 Compute time and infrastructure

For the tabular experiments, each model took roughly 1 hour to train on a single CPU, for an
approximate total of 120 CPU hours for the tabular set of experiments. For the option trading
experiments, training a policy for a given CVaR level took roughly 40 minutes on a single Tesla P100
GPU on average, for an approximate total of 200 GPU hours for this set of experiments.

F Limitations and future work

While we introduced a novel framework and demonstrated strong theoretical and empirical results,
our work has limitations, which we now discuss and present as possible directions for future work.
The first is investigating how well the statistical functional ψ used can plan for general risk measures
not covered by Proposition 5.10, and deriving bounds on its performance. A second is that our theory
relies on the set M∞

dist(Π), while in practice we use M∞
dist(Π), where Π ⊆ Π is a uniformly random

subset. Investigating how this affects the theoretical results, along with investigating whether there is
a better way to choose the set Π, are interesting questions in this direction.
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