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ABSTRACT

Symmetric Positive Definite (SPD) matric has been proven to be an effective fea-
ture descriptor in the realm of artificial intelligence, as it can encode spatiotem-
poral statistical information of data on a curved Riemannian manifold, i.e., SPD
manifold. Although existing Riemannian neural networks have demonstrated su-
periority in many scientific fields, the inherent reliance on labels within super-
vised learning renders them susceptible to label errors. Besides, it is insufficient
to depend solely on labels to learn effective feature distributions in some com-
plicated data scenarios. Drawing inspiration from the considerable achievements
of contrastive learning (CL) across diverse tasks, we extend the conventional CL
paradigm to the context of SPD manifolds, which we denote SymCL, paving the
way for a novel approach in SPD matrix-based visual classification. Furthermore,
we inject a Riemannian triplet loss-based Riemannian metric learning (RML) into
the designed SPD manifold CL framework for the sake of improving the discrim-
ination of the learned geometric representations. Extensive experimental results
on four datasets verify the effectiveness of the proposed algorithm.

1 INTRODUCTION

In the field of pattern recognition and computer vision, deep learning technique has achieved sig-
nificant progress in extracting powerful feature representations. These techniques are particularly
adept at handling complex data structures, which is crucial for extending their application to special-
ized domains such as geometric data analysis. Especially in processing Symmetric Positive Definite
(SPD) manifold data, deep learning models have made considerable progress.

However, the inherent difficulty in processing and classifying these matrices, which are essentially
SPD, is that they cannot be regarded as Euclidean data points. This is because the topology formed
by a group of SPD matrices of the same dimensionality is not a vector space, but a curved Rie-
mannian manifold, i.e., SPD manifold Arsigny et al. (2007). Therefore, it is inappropriate to di-
rectly compute SPD data points in Euclidean space. To address this limitation, Pennec et al. (2006)
and Arsigny et al. (2007) employ Riemannian metrics to characterize the Riemannian geometric
of Symmetric Positive Definite matrices (SPD), including Log-Euclidean Metrics (LEM) Arsigny
et al. (2007) and Affine-Invariant Riemannian Metrics (AIRM) Pennec et al. (2006). These Rie-
mannian metrics allow for the extension of Euclidean tools to the SPD manifolds. Specifically, this
involves mapping the SPD manifold-valued data points into a flat space via tangent approximation
Tosato et al. (2010); Sanin et al. (2013) and Tuzel et al. (2008), then embedding it in a Reproducing
Kernel Hilbert Space (RKHS) that incorporates Riemannian kernel functions Harandi & Salzmann
(2015); Wang et al. (2012; 2022a; 2015) and Harandi et al. (2012). Unfortunately, both of these
methods primarily operate in Euclidean space for representation learning and classification, which
inevitably distorts the geometric structure of the original data manifold. To counter this challenge,
recent SPD matrix discriminant analysis methods have recently been proposed for geometry-aware
feature transformation. Gao et al. (2019); Huang et al. (2015); Zhou et al. (2017); Nguyen & Yang
(2023) and Chen et al. (2023). The core of these methods is to generate a low-dimensional feature
manifold with high discriminability by simultaneously learning an embedding mapping and a sim-
ilarity metric on the original SPD manifold. As a result, the resulting feature space can faithfully
reflect the geometric structure of the input SPD data points.
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Figure 1: An overview of our proposed contrastive learning framework. Both the upper and lower
branches of the framework are the same three-layer SPD network, consisting of a stack of BiMap and
ReEig layers, followed by the LogEig layer for the embedding of manifold features into an Euclidean
space. The upper branch processes anchor samples and positive samples, while the lower branch
processes anchor samples and negative samples. Following feature extraction via the designed SPD
contrastive network, we simultaneously calculate the contrastive loss and an additional RML loss,
which is integrated at the end of the third BiMap layer, jointly supervising network training.

Although the aforementioned classification methods based on SPD manifold learning have achieved
fruitful results, the inherent supervised learning paradigm makes the feature learning process over-
reliance on semantic labels. The ablation study in the following section demonstrates that erroneous
labels involved in the training process can have a negative impact on the final classification per-
formance. In such a circumstance, how to empower the learning system to capture the intrinsic
data structures and patterns without relying on the semantic labels is of great significance to the
Riemannian manifold-based visual classification.

Contrastive learning (CL), a powerful self-supervised learning approach, has made significant
progress in computer vision and natural language processing. Compared to traditional supervised
learning paradigm, CL can analyze the intrinsic data distributions by measuring the similarity of a
pair of samples in the metric subspace without requiring additional annotation information.He et al.
(2020); Chen et al. (2020). Moreover, the study in He et al. (2020) demonstrates that features gen-
erated by CL are generally more roust and effective, and can be easily transferred to other tasks.
Therefore, we generalize the potential and efficiency of CL to the scenario of SPD manifolds.

In this paper, the proposed SPD manifold-based CL framework mainly contains three parts, which
are the Riemannian data augmentation(RDA), SPD encoder, and Riemannian triplet loss, respec-
tively. It’s well known that data augmentation (DA) is a crucial part of contrastive learning. How-
ever, due to the unique geometric structure of SPD matrices, traditional DA methods for Euclidean
space (such as rotation, color change, crop) are no longer applicable. Therefore, using the proper-
ties of SPD matrix and the corresponding Riemannian operator, we design several DA methods for
the proposed SymCL. We use SPDNet Huang & Van Gool (2017) as the encoder, and constructing
positive and negative sample pairs within each batch to train SymCL. Specifically, in each batch, we
randomly select one sample as the anchor point and generate a positive sample through DA, with the
remaining samples serving as negatives. Then these samples are feed into the encoder for feature
transformation mapping, utilizing the commonly used contrastive loss, infoNCE He et al. (2020),
as the supervisor of the proposed model. Furthermore, we design a Riemannian triplet loss (based
on Wang et al. (2022b)) for the sake of encoding and analyzing the geometric distribution of the
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input data, explicitly. Besides, it is trained in conjunction with the infoNCE loss, forming a dynamic
complementary relationship in feature representation learning.

In summary, the main contributions of this paper contain the following four aspects:

• Generalizing the Euclidean CL paradigm to the SPD manifolds. We explore the fea-
sibility of self-supervised CL mechanism on the Riemannian manifold, opening up a new
paradigm for SPD matrix learning.

• A novel Riemannian triplet loss. We introduce a Riemannian triplet loss to the proposed
SymCL. This module can explicitly inject the encoding and learning of data distribution
into the network training process, being potentially to induce more effective features.

• Designing four Riemannian data augmentation methods. We explore and demonstrate
the feasibility of proxy in the context of Riemannian manifolds, and propose four Rieman-
nian data augumentation schemes, facilitating the research of Riemannian CL.

• Empirical validation on four benchmarking datasets. Extensive experimental results
obtained on four benchmarking datasets demonstrate the effectiveness of our method.

2 RELATED WORK

2.1 SPD MATRIX LEARNING

Traditional geometry-aware Riemannian learning techniques have made significant progress in pro-
cessing and classifying visual data based on SPD matrices. However, their inherent shallow linear
embedding mechanism proves inadequate for extracting fine-grained geometric features, particularly
in complicated visual scenarios. Taking inspiration from the benefits of convolutional neural net-
works (ConvNet), the work studied in Huang & Van Gool (2017) creates an end-to-end Riemannian
neural network that specializes in nonlinear learning of SPD matrices. Diverging from ConvNets
He et al. (2016); Simonyan & Zisserman (2014) in feature learning and parameter optimization, this
network takes structured SPD matrices as inputs, requiring each layer to maintain the Riemannian
geometry of the data manifold. Therefore, the optimization of parameters also needs to be performed
on the Riemannian manifold to ensure that the output is an SPD matrix.

2.2 CONTRASTIVE LEARNING

Contrastive learning can be tracked back to Hadsell et al. (2006). In this method, representations
are learned by contrasting positive pairs against negative pairs. Inspired by this ideology, the work
studied in Dosovitskiy et al. (2014) suggests treating each instance as a class, represented by a
feature vector in a parametric form. Subsequently, another study work Wu et al. (2018) suggests to
utilize a memory bank to store instance class representation vectors, this approach has adopted and
extended in several recent papers Zhuang et al. (2019); Tian et al. (2020); He et al. (2020); Misra
& Maaten (2020). Other works explore the utilization of in-batch samples for negative sampling
instead of a memory bank Doersch & Zisserman (2017); Ye et al. (2019); Ji et al. (2019).

A common way to define a loss function is to measure the difference between a model’s prediction
and a fixed target. Contrastive loss, as described in Hadsell et al. (2006), quantifies the similarities
between pairs of samples in a representation space. Unlike methods where inputs are matched
against fixed targets, contrastive loss allows the target to dynamically vary during training and can
be defined based on the learned representations Hadsell et al. (2006).

3 METHOD

Numerous experimental studies have shown that compared to Riemannian shallow learning tech-
niques, Riemannian deep learning is capable of extracting more effective geometric features for
improved visual classification. To the best of our knowledge, a majority of existing algorithms
for learning SPD matrices are based on the supervised learning paradigm, which may impact their
generalization ability. For instance, in complex data scenarios, there usually exist a wide range of
intra-class diversity and inter-class ambiguity, rendering the traditional discrimination analysis ap-
proach that explicitly relies on label information fail to capture more realistic data distribution. Our
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experimental findings indicate that the incorrect semantic labels can have a negative impact on the
classification results. The issue of how to liberate models from reliance on the label semantics is a
critical challenge that needs to be solved urgently in the domain of Riemannian manifold-based vi-
sual classification. In this article, we designed a self-supervised CL paradigm on the SPD manifold
to open a new direction for the learning of SPD matrices.

3.1 PRELIMINARY

A family of d-by-d SPD matrices is a commutative Lie group, with a manifold structure denoted as
Sd
++. More formally:

Sd
++ := {X ∈ Rd×d : X = XT , νTXν > 0,∀ν ∈ Rd \ {0d}}. (1)

Therefore, the concepts of differential geometry, such as geodesic, can be utilized to address Sd
++.

Moreover, any bi-invariant metric ⟨, ⟩ on the Lie group of SPD matrices corresponds to an Euclidean
metric in the SPD matrix logarithmic domain, i.e., the tangent space at identity matrix TIS

d
++

(Please refer to the appendix A.1 for details.), it is also called the Log-Euclidean Metric (LEM),
which can be formulated as:

DLEM (Xi, Xj) = ∥ log(Xj)− log(Xi)∥F . (2)

The LEM works directly in the logarithmic domain of SPD matrices, offering higher computational
efficiency. Therefore, we choose it as the distance metric in this paper.

3.2 PROXY - DATA AUGMENTATION

One of the core parts in CL is the DA mechanism. SimCLR Chen et al. (2020) has extensively
researched DA strategies within traditional CL. However, the unique geometric structure of SPD
matrices determines that the aforementioned methods for Euclidean space (such as images rotation,
cropping, changing color, Gaussian blur, etc.) are no longer applicable. Therefore, we propose sev-
eral DA methods on the SPD manifolds for the sake of synthesizing new data points to increase the
sample diversity while preserving the underlying Riemannian geometry of the input data manifold.
Given a SPD matrix X ∈ Rd×d, we can have the following:

• Random Perturbation (RP): This method enhances data by directly imposing random
perturbation on the SPD matrices. The specific operation can be expressed as:

X ′ = X +∆X, (3)

where ∆X represents the perturbation matrix of positive definiteness, X ′ is the transformed
matrix. We randomly generate a SPD matrix ∆X with each entry has a sufficient small
value, and add it to the original matrix X to realize random perturbation.

• Tangent Perturbation (TP): This method exploits the diffeomorphism between the tan-
gent space at the identity matrix and the space of SPD matrices. Specifically, the data is first
mapped to the tangent space using the logarithm map, then a small perturbation is added to
the tangent space. Finally, the transformed data is mapped back to the SPD manifold via
the exponential map. The specific operation of TP can be formulated as:

X ′ = ExpI(LogI(X) + ∆S), (4)

where X ′ is the transformed matrix, I is the identity matrix, and ∆S is the added symmetric
perturbation matrix.

• Matrix Scaling (MS): This method perturbs each SPD matrix by scaling its elements,
given by:

X ′ = kX, (5)

where X ′ means the scaled SPD matrix, and k is a constant greater than zero.
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• Pre-SPD Perturbation Enhancement (Pre-SPE): Pre-SPD perturbation involves adding
perturbations to the feature matrix before modeling it onto the SPD manifold. The specific
operation can be expressed as:

X ′ = fMTS(M +∆R), (6)

where M is the feature matrix generated from the original data sequence (image set, video
clip, etc), ∆R is a random perturbation matrix, and fMTS(·) is a function that models the
input matrix onto the SPD manifold, which is actually the covariance representation.

Table 1: RDA comparison on the MDSD dataset.

RDA Methods Accuracy (%)

RP 28.21
TP 37.17
MS 35.89

Pre-SPE 30.77

To show the effects of the proposed RDA strate-
gies, we take the MDSD dataset as an exam-
ple to explore the impact of the various DA on
the classification performance of the proposed
model. Table 1 provides the accuracy of the lin-
ear evaluation under different RDA strategies.
It can be found that prominent augmentation
strategy is Tangent Perturbation. We speculate
that, adding perturbations in the tangent space
can better simulate the actual data variations of
the manifold. This type of disturbance intro-
duces new information while effectively preserving the data’s core structure and characteristics,
which helps enhance the model’s generalization ability. Meanwhile, We speculate that random per-
turbation method will lead to suboptimal results, because this method ignores the non-Euclidean
property of the data. While this method can preserve symmetric positive definiteness, a smaller
perturbation directly into the manifold space will disrupt the data structure. Conversely, the way of
adding a smaller perturbation in the tangent space does not destroy the structural information of the
input data. The data may deviate from the original geodesic to some extent, but the main geometric
structure infomation is preserved. In all subsequent experiments, we chose the TP strategy.

3.3 THE BASIC LAYERS OF SPD NEURAL NETWORK

BiMap Layer: This layer can be thought of as a variation of the standard dense layer, wherein the
input SPD matrices are compressed into lower-dimensional ones using a bilinear mapping function
fb, expressed as: Xk = f

(k)
b (Wk, Xk−1) = W⊤

k Xk−1Wk, where Wk ∈ Rdk×dk−1(dk < dk−1) is
the transformation matrix to be learned. To ensure that Xk lies in another SPD manifold Sdk

++, Wk

needs to be column full-rank. In addition, it is necessary to impose semi-orthogonality constraint on
Wk, which results in a compact Stiefel manifold St(dk, dk−1) for the weight space Arsigny et al.
(2007). By optimizing Wk over this manifold, it becomes possible to yield optimal solutions.

ReEig Layer: This layer is likened to the ReLU layer in traditional ConvNets, with the aim of
introducing non-linearity into SPDNet to enhance its discriminatory power, while also serving
the role of eigenvalue regularization. Specifically, this layer involves using a nonlinear rectifica-
tion function fr to adjust the small positive eigenvalues of each input SPD matrix, given below:
Xk = f

(k)
r (Xk−1) = Uk−1 max(ϵI,Σk−1)U

⊤
k−1, where ϵ is a small activation threshold, and

Xk−1 = Uk−1Σk−1U
⊤
k−1 refers to the eigenvalue decomposition. The ReEig operation can pro-

tect the matrices from degeneration, as is evident.

LogEig Layer: This layer is designed to enable the Euclidean learning methods to be applica-
ble to the generated manifold-valued features. It is implemented by imposing Riemannian com-
putation on the input SPD matrices using the logarithmic mapping function fl, formulated as:
Xk = f

(k)
l (Xk−1) = Uk−1 log(Σk−1)U

⊤
k−1. Here, Xk−1 = Uk−1Σk−1U

⊤
k−1 refers to the eigen-

value decomposition, and log(Σk−1) denotes the logarithm operation applied to each diagonal el-
ement of Σk−1. Through this operation, traditional fully connected (FC) layers and cross-entropy
loss can be introduced into the obtained flat space for visual classification.
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3.4 CONTRASTIVE LEARNING AND INFONCE LOSS

The core idea of the InfoNCE loss function He et al. (2020) is to learn effective data representations
by pulling positive sample pairs (similar or related pairs) closer and pushing negative sample pairs
(dissimilar or unrelated pairs) farther apart.

• Throughout the training process, an anchor sample, a positive sample (similar or related to
the anchor sample), and multiple negative samples (dissimilar or unrelated to the anchor
sample) are selected.

• The encoder (SPDNet) is utilized to embed the anchor sample, positive sample, and neg-
atives into a discriminative metric subspace anchor sample, the positive sample, and the
negative samples.

• Dot product or cosine similarity is used to compute the similarity of anchor-positive sample
pair and anchor-negative sample pairs, respectively.

• The goal of the InfoNCE loss is to maximize the similarity of the anchor-positive sample
pair while minimizing the similarity of the anchor-negative sample pairs.

More specifically, InfoNCE Loss can be defined as:

LInfoNCE = − log
exp (sim (x, x+) /τ)∑K
k=1 exp (sim (x, xk) /τ)

, (7)

where x represents the anchor sample, and x+ represents the positive sample. We use xk (k = 1 →
K) to denote in the set composed by all x+ and x−, the logarithm of positive samples is 1 and the
logarithm of negative samples is N. The sim(x, y) represents the cosine similarity between samples
x and y, τ is the Temperature Parameter, used to control the scaling of the similarity score and the
sensitivity of the loss function.

3.5 RIEMANNIAN METRIC LEARNING

In SPD manifold neural networks, most architectures utilize only a single cross-entropy loss to
supervise the entire network, overlooking the specific data distribution characteristics within and
between classes during the process of learning the SPD matrix. As a consequence, the variability in-
formation conveyed by the inputs can not be encoded explicitly during training, making the resulting
lower-dimensional geometric representations may not be powerful enough for improving classifica-
tion. Inspired by the merits of metric learning Wang et al. (2022b), we propose a Riemannian metric
learning (RML) module to improve the discriminability of the suggested model by explicitly encod-
ing and learning the intrinsic data distributions of the input geometric features, formulated as:

L =
1

NA

∑
i,j∈A

max
(
DWk

lem

(
Xi,0

k ,Xj,+
k

)
, ξA

)
(8)

− 1

NB

∑
i,j∈B

max
(
ξB −DWk

lem

(
Xi,o

k ,Xj,−
k

)
, 0
)
,

where (Xi,0
k ,Xj,+

k ,Xj,−
k ) is a triplet. The method of constructing triplets in this paper involves

randomly selecting a sample as Xi,o
k , within a batch, and obtaining a positive sample through RDA

represented by Xj,+
k . The remaining samples in the batch are designated as the negative samples,

signified as Xj,−
k . From Eq. (12) , it can be expected that the Riemannian distance of the positive

sample pair (Xi,o
k ,Xj,+

k ) is smaller than a manifold margin ξA, while the Riemannian distance of

the negative sample pair (Xi,o
k ,Xj,−

k ) is larger than ξB. The specific form of DWk

lem

(
Xi,0

k ,Ω
)

is
given below:

DWk

lem (Xi,0
k ,Ω) =

∥∥∥W⊤
k log(Xi,o

k )Wk −W⊤
k log(Ω)Wk

∥∥2
F
, (9)
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Table 2: Accuracy(%) of different algorithms on the Virus, MDSD, YTC and AFEW datasets.

Method Virus MDSD YTC AFEW

SPDML-AIM Harandi et al. (2017) 40.68 30.04 64.66 26.72
SPDML-Stein Harandi et al. (2017) 42.00 27.69 61.57 24.55
GrNet Huang et al. (2018) 39.33 31.32 70.68 34.23
SPDNet Huang & Van Gool (2017) 53.33 32.05 67.38 34.23
SPDNetBN Brooks et al. (2019) 36.67 35.89 67.37 36.20
MRMML Wang et al. (2022a) 56.67 36.67 73.82 35.71
GEPML Wang et al. (2022d) N/A 35.33 73.45 33.78
SymNet Wang et al. (2022c) 71.53 35.58 71.46 31.89
GDLNet Wang et al. (2024) 60.00 36.67 71.63 33.42

SymCL (Ours) 56.67 37.17 74.82 33.42

where Ω denotes Xj,+
k or Xj,−

k . In this paper, the proposed RML module is trained in conjunction
with the previously mentioned InfoNCE loss.

3.6 PRETRAINING

In this paper, we first use the proposed contrastive learning method to pre-train a SPD encoder.
Then, a fully connected (FC) layer is appended to the tail of the trained SPD encoder for down-
stream tasks. We use the proxy mechanism described in the previous proxy section to construct
positive and negative sample pairs, and pre-train the entire network with both InfoNCE Loss and
RML (Riemannian triplet loss). We know that in the realm of traditional, contrastive learning the
encoders are typically pre-trained in a self-supervised manner using the ImageNet dataset, followed
by supervised fine-tuning on the corresponding dataset for downstream tasks. However, in the con-
text of Riemannian networks, we lack a universal large-scale dataset similar to ImageNet, making it
impractical to conduct general pre-training. Moreover, the eigenvalue operation involved in SPDNet
primarily relies on the CPU and cannot be accelerated by GPU, making the computation very time-
consuming. Even though it is feasible to model ImageNet on the SPD manifold for training, the
large-scale dataset necessitates a deeper network. Riemannian neural network models suffer from
the degradation of structural information during the multi-level transmission of data. Simply stack-
ing more layers to increase the network depth in shallow Riemannian networks does not alleviate
this problem. This paper only discusses the feasibility and effectiveness of the proposed Riemannian
CL on the SPD manifolds. To the best of our knowledge, this is the first work on the extension of
CL to the scenario of Riemannian manifolds.

4 EXPERIMENT

In this section, we evaluate the effectiveness of the proposed method on different visual classification
tasks, namely the video-based emotion recognition using the AFEW dataset, the dynamic scene
classification using the MDSD dataset, the YTC dataset and the cell identification task using the
Virus dataset.

4.1 DATASET DETAILS

In all the following experiments, we set up as follows: 1) when modeling the original data onto
the SPD manifold, the regularization parameter ε is set to 1e-5. 2) Our designed network model
consists of three building blocks, each block comprising a BiMap layer and a ReEig layer. We set
the dimensions of the weight matrices in the model to 400 × 200, 200 × 100 and 100 × 50. 3) For
both of pre-training and downstream fine-tuning, we use the Adam optimizer for parameter updates.
Please refer to the appendix A.2 for a detailed description of each dataset and specific settings.
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4.2 RESULTS

Referring to the classification results in Table 2, some interesting experimental findings can be
drawn. Firstly, SymCL achieves higher recognition accuracy on both YTC and MDSD datasets com-
pared to SPDNet trained under the supervised learning paradigm, indicating that applying the CL
paradigm to the training process of manifold networks helps enhance the discriminative capability
of the learned features. Moreover, the classification performance of the AFEW dataset is not as good
as SPDNet. The main reason lies in the fact that AFEW has significant intra-class variability and
inter-class similarity. To achieve high recognition accuracy, the model needs to capture key facial
expression changes without being distracted by background and appearance information. However,
in this study, positive and negative samples are constructed using Riemannian data augmentation,
which may result in the similarity between positive samples being primarily reflected in appearance
and background information rather than expressions, thereby affecting the model’s discriminative
learning ability. According to the experimental results reported in Table 2, we can observe that on
the Virus dataset, SymNet outperforms our method. This is mainly because the Virus is a small
scale dataset, which has been verified to be more suitable for the lightweight SymNet. Additionally,
each image on the Virus dataset has an irregular appearance, which causes subspace-based methods
to lose some useful information during representation learning. On the AFEW dataset, SPDNetBN
achieved the highest accuracy. We know that in standard deep neural networks, batch normalization
improves training stability and accelerates convergence by normalizing activations. This concept is
applied to SPDNet in the form of Riemannian Batch Normalization (RBN), resulting in SPDNetBN.
This method not only normalizes data in a way that respects the manifold’s geometric, but also
centralizes and biases SPD matrices using parallel transport and the Riemannian barycenter. This
allows SPDNetBN to demonstrate superior classification performance.

Secondly, it can be intuitively observed that SymCL surpasses most of the comparative algorithms
(all of them are supervised) on the four used datasets. This is invaluable for self-supervised learning.
This validates that the proposed self-supervised contrastive learning mechanism on the Riemannian
manifold enables the SPD encoder to capture and learn more authentic data structures. Moreover,
the introduced RML module, by explicitly encoding the intra-class and inter-class distribution of
the data, helps in training a more discriminative Riemannian network embedding. In this context, a
more suitable classification hypersphere can be obtained, which enhances classification accuracy.

4.3 ABLATION EXPERIMENTS

4.3.1 ABLATION STUDY ON THE ROBUSTNESS OF THE SYMCL

Table 3: Accuracy(%) of SPDNet and SymCL un-
der different error rate on the MDSD dataset.

Error (%) SPDNet SymCL

3 23.08 28.21
5 20.51 25.64
10 15.38 20.51

The various experimental results mentioned
above indicate that the SymCL proposed in this
paper has certain advantages in improving the
accuracy of image set classification compared
to some representative methods. To further as-
sess the robustness of the models trained using
CL, this section conducts experiments on the
MDSD dataset. To investigate the impact of er-
roneous labels on the model accuracy, Specif-
ically, we first randomly mislabel the data ac-
cording to a certain proportion, then separately
evaluate the classification performance of the supervised learning SPDNet (SPDNet-SL) and
SymCL under these conditions. From Table 3, several interesting experimental observations can
be found. Firstly, after mislabeling 3%, 5%, and 10% of the labels, the accuracy of SPDNet dropped
from 32.05% (before mislabeling) to 23.08%, 20.51%, and 15.38%, respectively. This demonstrates
that supervised learning methods are very sensitive to errors in the labels. According to the SymCL
classification results listed in Table 3, we can observe that, at the same error rate, the classification ac-
curacy of SymCL is significantly higher than that of SPDNet on the MDSD dataset. Upon analysis,
we speculate that in the SymCL algorithm, the mislabeled labels primarily affect the classifier train-
ing phase during linear evaluation. However, the erroneous labels do not impact the self-supervised
pre-training phase, the model has already learned effective data representations in this phase. There-
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Figure 2: (a) Accuracy comparison of three methods: supervised learning SPDNet (SPDNet), su-
pervised learning SPDNet with RML (SPDNet R) and contrastive learning SPDNet (SymCL). (b)
Accuracy comparison of two methods: SymCL and SymCL with RML (SymCL R).

Table 4: Accuracy comparison (%) on the Virus, MDSD, YTC, and AFEW datasets.

Methods Virus MDSD YTC AFEW

SPDNet 50.00 32.05 65.96 34.23
SPDNet-RML 53.33 33.33 69.86 35.31
SymCL 55.33 35.63 72.34 32.88
SymCL-RML 56.67 37.17 74.82 33.42

fore, under identical circumstances, the erroneous labels have relatively less impact on the accuracy
of SymCL. The above experimental results demonstrate the robustness of self-supervised CL.

4.3.2 ABLATION STUDY OF RIEMANNIAN METRIC LEARNING MODULE

In this part, we conduct experiments on the AFEW, MDSD, Virus, and YTC datasets to study the
impact of the RML module on the classification performance of the proposed method. The ex-
perimental results under different conditions are shown in Table 4. In this table, SPDNet-RML
represents the integration of the RML module into the tail of the last BiMap layer in the network.
Placing the RML after the previous two set of SPD blocks (BiMap + ReEig) can provide a more ef-
fective structured representation of the original data with richer semantic information, thereby better
training the entire network together with the cross-entropy loss. The first and second rows in Table 4
list the classification performance of the original SPDNet and SPDNet with the RML module under
a supervised paradigm. We choose the YTC dataset to plot model accuracy. Figure 2a contrasts the
accuracy of SPDNet, SPDNet-RML and SymCL, Figure 2b contrasts the performance of SymCL
and SymCL with RML module (SymCL-RML). The third and fourth rows in Table 4 compare the
performance of the pre-trained models with and without using the RML under a self-supervised CL
paradigm. It can be noted that the inclusion of RML can enhance the classification performance
of the network regardless of whether it is trained using the supervised or self-supervised paradigm.
Furthermore, we can find that regardless of the presence of the RML module, models pre-trained
using CL show higher accuracy in downstream tasks on all the used datasets, except the AFEW
dataset. We speculate that the original supervised learning-based method (SPDNet) tends to be eas-
ily affected by label noise. On the contrary, our proposed SymCL is based on the intrinsic geometric
distribution of the data, and learns more discriminative information with the help of metric learning
mechanism, thereby improving the model performance, qualifying it to produce new feature man-
ifolds with improved discriminability. Overall speaking, the InfoNCE loss explicitly utilizes the
self-supervised signal information and implicitly utilizes the data distribution; in contrast, RML ex-
plicitly leverages the data distribution distribution while implicitly leverages the label information,
forming a dynamic complementary relationship with the InfoNCE loss.

9
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5 CONCLUSION

In this paper, we extend the traditional contrastive learning paradigm to the Riemannian manifolds,
paving the way for self-supervised learning in non-Euclidean spaces. For the proposed method, we
design a novel proxy mechanism for constructing positive and negative samples, and propose four
different DA methods tailored for Riemannian manifolds. Furthermore, we introduce a RML module
and integrate it with InfoNCE loss to facilitate training an improved network embedding. The effec-
tiveness of the proposed method is investigated through evaluations on four benchmarking datasets,
with additional ablation studies underscoring the contribution of each individual component.
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A APPENDIX

A.1 DERIVATION OF LEM FORMULA

A family of d-by-d SPD matrices is a commutative Lie group, with a manifold structure denoted as
Sd
++. More formally:

Sd
++ := {X ∈ Rd×d : X = XT , νTXν > 0,∀ν ∈ Rd \ {0d}}. (10)

Therefore, the concepts of differential geometry, such as geodesic, can be utilized to address Sd
++.

Moreover, any bi-invariant metric ⟨, ⟩ on the Lie group of SPD matrices corresponds to an Euclidean
metric in the SPD matrix logarithmic domain, i.e., the tangent space at identity matrix TIS

d
++, it is

also called the Log-Euclidean Metric.

Specifically, for any two tangent elements Ti, Tj , their scalar product in TXSd
++ is given by:

⟨Ti, Tj⟩X = ⟨DX log .Ti, DX log .Tj⟩, (11)

where DX log .T signifies the directional derivative of the matrix logarithm at X along T . The
logarithmic mapping with respect to the Riemannian metric is defined by the matrix logarithms:

logXi
(Xj) = D log(Xi) exp .(log(Xj)− log(Xi)). (12)

On the basis of the differentiation of log ◦ exp = I , we can obtain Dlogexp
= (DX log .)−1. Simi-

larly, the matrix exponential mapping can be expressed as:

expXi
(Tj) = exp(log(Xi) +DXi

log .Tj). (13)

Combining Eq. (2), Eq. (3), and Eq. (4), the LEM can be formulated as:

DLEM (Xi, Xj) = ∥ log(Xj)− log(Xi)∥F . (14)

It can be found that compared to the Affine-Invariant Riemannian Metric (AIRM), the Log-
Euclidean Metric (LEM) works directly in the logarithmic domain of SPD matrices, offering higher
computational efficiency.

A.2 DATASETS DESCRIPTION AND SETTING

A.2.1 YTC DATASET

This dataset was collected from the YouTube website, containing a total of 1,910 video clips, be-
longing to 47 different categories. Each video clip consists of hundreds of facial images, and there
exists a considerable variability within the same category in terms of expression, illumination, ob-
structions, resolution, and posture, making classification on this dataset quite challenging. For pre-
training, we set the batch size and learning rate to 64 and 6e-4 respectively on the YTC dataset. For
downstream fine-tuning, we set the learning rate to 1e-3.

A.2.2 VIRUS DATASET

This dataset was collected using Transmission Electron Microscopy (TEM) technology and contains
1500 TEM images belonging to 15 different virus categories. This dataset exhibits a wide range of
intra- and inter-class variations, primarily lying in two aspects: 1) The shapes of the viruses vary
from polygons to icosahedrons; 2) The diameters of the viruses range from 25 nanometers to 270
nanometers. These make cell identification on this dataset quite difficult. For pre-training, we set
the batch size and learning rate to 32 and 3e-4 respectively on the YTC dataset. For downstream
fine-tuning, we set the learning rate to 1e-3.
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Table 5: Accuracy comparison (%) on the Virus, MDSD, YTC, and AFEW datasets.

Methods Virus MDSD YTC AFEW

SPDNet 50.00 32.05 65.96 34.23
SymCL (TP) 55.33 35.63 72.34 32.88
SymCL (DT) 53.33 35.63 71.28 33.42

A.2.3 MDSD DATASET

This dataset includes 13 different dynamic scene categories, each category makes up of 10 video
clips. As this dataset is collected in real-world scenario with significant variability in appearance,
resolution, and physical form. it is quite challenging for scene classification. For pre-training, we
set the batch size and learning rate to 32 and 3e-4 respectively on the YTC dataset. For downstream
fine-tuning, we set the learning rate to 1e-3.

A.2.4 AFEW DATASET

This dataset contains 1,345 video clips belonging to 7 types of facial expressions. Since these video
sequences are collected from movies, featuring content scenes close to the real-world scenario,
A notable characteristic of this dataset is that it poses a large intra-class diversity and inter-class
ambiguity. For pre-training, we set the batch size and learning rate to 32 and 3e-4 respectively on
the YTC dataset. For downstream fine-tuning, we set the learning rate to 1e-3.

A.3 NEW DATA AUGMENTATION METHODS
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Figure 3: The red line indicates SymCL with DT
data augmentation strategy, the cyan line indicates
SymCL with TP data augmentation strategy, the
purple line indicates SPDNet.

In this study, we propose a novel data augmen-
tation strategy aimed at enhancing the general-
ization ability of encoder models (for reader’s
reference only). The specific approach is as
follows: a dropout layer is introduced at the
final stage of the encoder to increase random-
ness during the model training process. In each
batch, one sample is randomly selected for two
forward passes, generating two different ten-
sors. These two tensors are treated as a posi-
tive sample pair for training the model to rec-
ognize similar features. Meanwhile, the other
samples in the batch are considered negative
sample pairs, helping to strengthen the model’s
ability to distinguish between different features
(This strategy is hereinafter referred to as DT:
dropout twice.). This strategy effectively im-
proves the model’s performance and robustness
in complex environments by introducing pos-
itive and negative sample contrasts within the
same sample. Since the proposed data augmen-
tation strategy was not implemented at the Riemannian manifold level, this paper will not discuss it
in detail in the main text. The corresponding technical details and implementation will be described
thoroughly in the appendix. Additionally, because the construction of positive and negative sam-
ples is positioned at the end of the encoder, the RML module located on the last BiMap layer will
no longer be activated. Therefore, we will only compare the effects of the new data augmentation
strategy with the Tangent Perturbation (TP) strategy discussed in the main text under the same ex-
perimental conditions in SymCL (without RML module). The experimental results under different
data augmentation strategies are shown in Table 5. We selected the AFEW dataset to plot the con-
vergence curve; please refer to Figure 3. We can observe that on some datasets (such as AFEW),
the linear evaluation accuracy of the DT data augmentation strategy is higher than that of TP. The
main reason is that, positive and negative samples are constructed using Riemannian (TP) data aug-
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mentation, which may result in the similarity between positive samples being primarily reflected
in appearance and background information rather than expressions, thereby affecting the model’s
discriminative learning ability. In summary, although the DT strategy may be more suitable for the
AFEW dataset, the overall performance indicates that the DT strategy does not achieve the optimal
solution across all classification tasks.
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