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Abstract

We propose UAD, a method for vision-based end-to-end autonomous driving1

(E2EAD), achieving the best open-loop evaluation performance in nuScenes, mean-2

while showing robust closed-loop driving quality in CARLA. Our motivation stems3

from the observation that current E2EAD models still mimic the modular archi-4

tecture in typical driving stacks, with carefully designed supervised perception5

and prediction subtasks to provide environment information for oriented planning.6

Although achieving groundbreaking progress, such design has certain drawbacks:7

1) preceding subtasks require massive high-quality 3D annotations as supervision,8

posing a significant impediment to scaling the training data; 2) each submodule9

entails substantial computation overhead in both training and inference. To this end,10

we propose UAD, an E2EAD framework with an unsupervised1 proxy to address11

all these issues. Firstly, we design a novel Angular Perception Pretext to eliminate12

the annotation requirement. The pretext models the driving scene by predicting the13

angular-wise spatial objectness and temporal dynamics, without manual annota-14

tion. Secondly, a self-supervised training strategy, which learns the consistency of15

the predicted trajectories under different augment views, is proposed to enhance16

the planning robustness in steering scenarios. Our UAD achieves 38.7% relative17

improvements over UniAD on the average collision rate in nuScenes and surpasses18

VAD for 6.40 points on the driving score in CARLA’s Town05 Long benchmark.19

Moreover, the proposed method only consumes 44.3% training resources of UniAD20

and runs 3.4× faster in inference. Our innovative design not only for the first time21

demonstrates unarguable performance advantages over supervised counterparts,22

but also enjoys unprecedented efficiency in data, training, and inference.23

1 Introduction24

Recent decades have witnessed breakthrough achievements in autonomous driving. The end-to-25

end paradigm, which seeks to integrate perception, prediction, and planning tasks into a unified26

framework, stands as a representative branch [33, 1, 39, 3, 35, 21, 22]. The latest advances in end-to-27

end autonomous driving significantly piqued researchers’ interest [21, 22]. However, handcrafted and28

resource-intensive supervised sub-tasks for perception and prediction, which have previously proved29

their utility in environment modeling [35, 3, 20], continue to be indispensable, as shown in Fig. 1a.30

Then what insights have we gained from the recent advances? It has come to our attention that one of31

the most enlightening innovations lies in the Transformer-based pipeline, in which the queries act32

as a connective thread, seamlessly bridging various tasks. Besides, the capability for environment33

modeling has also seen a significant boost, primarily due to complicated interactions of supervised34

1Following [30, 4], here we consider the methods as “unsupervised” ones as long as no manual annotation is
used and required in the target task or domain.
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(a) (b)
Figure 1: (a) End-to-end autonomous driving paradigms. 1) The vanilla architecture that directly
predicts control command. 2) The modularized design that combines various preceding tasks. 3)
Our proposed framework with unsupervised pretext task. (b) Comparison of training cost, inference
speed and average L2 error between our method and [21, 22] on 8 NVIDIA Tesla A100 GPUs.

sub-tasks. However, every coin has two sides. In comparison to the vanilla design [33] (see Fig. 1a),35

modularized methods incur unavoidable computation and annotation overhead. As illustrated in36

Fig. 1b, the training of the recent method UniAD [21] takes 48 GPU days while running at only 2.137

frames per second (FPS). Moreover, modules in existing perception and prediction design require large38

quantities of high-quality annotated data. The financial overhead for human annotation significantly39

impedes the scalability of such modularized methods with supervised subtasks to leverage massive40

data. As proved by large foundation models [24, 31], scaling up the data volume is the key to bringing41

the model capabilities to the next level. Thus we ask ourselves the question: Is it viable to devise an42

efficient and robust E2EAD framework while alleviating the reliance on 3D annotation?43

In this work, we show the answer is affirmative by proposing an innovative Unsupervised pretext task44

for end-to-end Autonomous Driving (UAD), which seeks to efficiently model the environment. The45

pretext task consists of an angular-wise perception module to learn spatial information by predicting46

the objectness of each sector region in BEV space, and an angular-wise dreaming decoder to absorb47

temporal knowledge by predicting inaccessible future states. The introduced angular queries link48

the two modules as a whole pretext task to perceive the driving scene. Notably, our method shines49

by completely eliminating the annotation requirement for perception and prediction. Such data50

efficiency is not attainable for current methods with complex supervised modularization [21, 22]. The51

supervision for learning spatial objectness is obtained by projecting the 2D region of interests (ROIs)52

from an off-the-shelf open-set detector [28] to BEV space. While utilizing the publicly available open-53

set 2D detector pre-trained with manual annotation from other domains (e.g. COCO [27]), we avoid54

the need for any additional 3D labels within our paradigm and target domains (e.g. nuScenes [2] and55

CARLA [11]), thereby creating a pragmatically unsupervised setting [30]. Furthermore, we introduce56

a self-supervised direction-aware learning strategy to train the planning model. Specifically, the57

visual observations are augmented with different rotation angles, and the consistency loss is applied58

to the predictions for robust planning. Without bells and whistles, the proposed UAD outperforms59

UniAD for 0.13m in nuScenes Avg. L2 error, and surpasses VAD [22] for 9.92 points in CARLA60

route completion score. Such unprecedented performance gain is achieved with a 3.4× inference61

speed, a mere 44.3% training budget of UniAD, and zero annotations, as illustrated in Fig. 1b.62

In summary, our contributions are as follows: 1) We propose an unsupervised pretext task to discard63

the requirement of 3D manual annotation in end-to-end autonomous driving, potentially making64

it more feasible to scale the training data to billions level without any labeling overload; 2) We65

introduce a novel self-supervised direction-aware learning strategy to maximize the consistency of the66

predicted trajectories under different augment views, which enhances planning robustness in steering67

scenarios; 3) Our method shows superiority in both open- and closed-loop evaluation compared with68

other vision-based E2EAD methods, with much lower computation and annotation cost.69

2 Related Work70

2.1 End-to-End Autonomous Driving71

End-to-end autonomous driving can be dated back to 1988, when the ALVINN [33] proposed by72

Carnegie Mellon University could successfully navigate a vehicle over 400 meters. After that, to73
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Figure 2: The architecture of our UAD. The inference pipeline is marked by black arrows with blue
background, which plans ego trajectory based on the input multi-view images. The training pipeline
consists of Angular Perception Pretext (orange arrows with khaki background) and Direction-Aware
Planning (orange arrows with purple background). “F” in BEV feature indicates the driving direction.

improve the robustness of E2EAD, a series of modern approaches such as NEAT [6], P3 [35],74

MP3 [3], ST-P3 [20] introduce the design of more dedicated modularization, which integrate auxiliary75

information such as HD maps, and additional tasks like bird’s-eye view (BEV) segmentation. Most re-76

cently, embracing advanced architectures like Transfromer [37] and visual occupancy prediction [29],77

UniAD [21] and VAD [22] demonstrate impressive performance in open-loop evaluation. In this work,78

instead of integrating complex supervised modular sub-tasks, we innovatively propose another path79

proving that an efficient unsupervised pretext task without any human annotation like 3D bounding80

boxes and point cloud categories, can achieve even superior performance than recent state-of-the-arts.81

2.2 World Model82

In pursuit of understanding the dynamic changes in environments, researchers in the fields of gaming83

and robotics have proposed various world models [13, 14, 15, 16]. Recently, the autonomous driving84

community introduces world models for safer maneuvering [32, 18, 12, 38]. MILE [18] considers85

the environment as a high-level embedding and tends to predict its future state with historical86

observations. Drive-WM [38] proposes a framework to integrate world models with existing E2E87

methods to improve planning robustness. In this work, we propose an auto-regressive mechanism,88

tailored to our unsupervised pretext, to capture angular-wise temporal dynamics within each sector.89

3 Method90

3.1 Overview91

As illustrated in Fig. 2, our UAD framework consists of two essential components: 1) the Angular92

Perception Pretext, aims to liberate E2EAD from costly modularized tasks in an unsupervised fashion;93

2) the Direction-Aware Planning, learns self-supervised consistency of the augmented trajectories.94

Specifically, UAD first models the driving environment with the pretext. The spatial knowledge95

is acquired by estimating the objectness of each sector region within the BEV space. The angular96

queries, each responsible for a sector, are introduced to extract features and predict the objectness.97

The supervision label is generated by projecting the 2D regions of interests (ROIs) to the BEV space,98

which are predicted with an available open-set detector GroundingDINO [28]. This way not only99

eliminates the 3D annotation requirement, but also greatly reduces the training budget. Moreover, as100

driving is inherently a dynamic and continuous process, we thus propose an angular-wise dreaming101

decoder to encode the temporal knowledge. The dreaming decoder can be viewed as an augmented102

world model [13] capable of auto-regressively predicting the future states.103

Subsequently, direction-aware planning is introduced to train the planning module. The raw BEV104

feature is augmented with different rotation angles, yielding rotated BEV representations and ego105

trajectories. We apply self-supervised consistency loss to the predicted trajectories of each augmented106

view, which is expected to improve the robustness for directional change and input noises. The107

learning strategy can also be regarded as a novel data augmentation technique customized for end-to-108

end autonomous driving, which enhances the diversity of trajectory distribution.109
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Figure 3: (a) Label generation for angular perception pretext. (b) Illustration of dreaming decoder.

3.2 Angular Perception Pretext110

Spatial Representation Learning. Our model attempts to acquire spatial knowledge of the driving111

scene by predicting the objectness of each sector region within the BEV space. Specifically, taking112

multi-view images {Ii∈RHi×Wi×3} as input, the BEV encoder [25] first extracts visual information113

into the BEV feature Fb∈RHb×Wb×C . Then, Fb is partitioned into K sectors with a uniform angle θ114

centered around ego car. Each sector contains several feature points in BEV space. Denoting feature115

of a sector as f ∈RN×C , where N is the maximum number of feature points in all sectors, we derive116

angular BEV feature Fa∈RK×N×C . Zero-padding is applied on sectors with fewer than N points.117

Then why do we partition the rectangular BEV feature to angular-wise formatting? The underlying118

reason is that, in the absence of depth information, the region in BEV space corresponding to an ROI119

in 2D image is a sector. As illustrated in Fig. 3a, by projecting 3D sampling points to images and120

verifying their presence in 2D ROIs, a BEV object mask M∈RHb×Wb×1 is generated, representing121

the objectness in BEV space. Specifically, the sampling points falling within 2D ROIs are set to 1,122

while the others are 0. It is noticed that the positive sectors are irregularly and sparsely distributed in123

BEV space. To make the objectness label more compact, similar to the BEV feature partition, we124

uniformly divide M into K equal parts. The segments overlapped with positive sectors are assigned125

with 1, constituting the angular objectness label Yobj ∈RK×1. Thanks to the rapid development126

of open-set detection, it’s now convenient to obtain 2D ROIs for the input multi-view images by127

feeding the pre-defined prompts (e.g., vehicle, pedestrian, and barrier) to a 2D open-set detector like128

GroundingDINO [28]. Such design is the key in reducing annotation cost and scaling up the dataset.129

To predict the objectness score of each sector, we define angular queries Qa∈RK×C to summarize130

Fa. Each angular query qa∈R1×C in Qa will interact with corresponding f by cross attention [37],131

qa = CrossAttention(qa, f), (1)

Finally, we map Qa to the objectness scores Pa∈RK×1 with a linear layer, which is supervised by132

Yobj with binary cross-entropy loss (denoted as Lspat).133

Temporal Representation Learning. We propose to capture the temporal information of driving134

scenarios with the angular-wise dreaming decoder. As shown in Fig. 3b, the decoder auto-regressively135

learns transition dynamics of each sector in a similar way of world model [14]. Assuming the planning136

module predicts the trajectories of future T steps, the dreaming decoder accordingly comprises T137

layers, where each updates the input angular queries Qa and angular BEV feature Fa based on the138

learned temporal dynamics. At step t, the queries Qt−1
a first grasp environmental dynamics from the139

observation feature Ft
a with a gated recurrent unit (GRU) [7], which generates Qt

a (hidden state),140

Qt
a = GRU(Qt−1

a ,Ft
a), (2)

In previous world models, the hidden state Q is solely used for perceiving observed scenes. The141

GRU iteration thus ends at t with the final observation Ft
a. In our framework, Q is also used for142

predicting ego trajectories in the future. Yet, the future observation, e.g., Ft+1
a , is unavailable, as143

the world model [14] is designed for forecasting the future with only current observation. To obtain144

Qt+1
a , we first propose to update Ft

a to provide pseudo observations F̂t+1
a ,145

F̂t+1
a = CrossAttention(Ft

a, Q
t
a). (3)

Then Qt+1
a can be generated with Eq. 2 and inputs of F̂t+1

a and Qt
a.146

Following the loss design in world models [14, 15, 16], we respectively map Qt−1
a and Qt

a to distri-147

butions of {µt−1
a , σt−1

a ∈RK×C} and {µt
a, σ

t
a ∈ RK×C}, and then minimize their KL divergence.148
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For the prior distribution from Qt−1
a , it’s regarded as a prediction of the future dynamics without149

observation. In contrast, the posterior distribution from Qt
a represents the future dynamics with the150

observation Ft
a. The KL divergence between the two distributions measures the gap between the151

imagined future (prior) and the true future (posterior). We expect to enhance the capability of future152

prediction for long-term driving safety, which is realized by optimizing the dreaming loss Ldrm,153

Ldrm = KL({µt
a, σ

t
a}||{µt−1

a , σt−1
a }), (4)

3.3 Direction-Aware Planning154

Planning Head. The outputs of angular perception pretext contain a group of angular queries155

{Qt
a (t = 1, ..., T )}. For planning, we correspondingly initialize T ego queries {Qt

ego∈R1×C (t =156

1, ..., T )} to extract planning-relevant information and predict the ego trajectory of each future time157

step. The interaction between ego queries and angular queries is performed with cross attention,158

Qt
ego = CrossAttention(Qt

ego, Q
t
a). (5)

The output ego queries {Qt
ego} are then used to predict the ego trajectories of future T steps.159

Following previous works [21, 22], a high-level driving signal c (turn left, turn right or go straight) is160

provided as prior knowledge. The planning head takes the concatenated ego feature Fego∈RT×C161

from {Qt
ego} and the driving command c as inputs, and outputs the planning trajectory Ptraj∈RT×2,162

Ptraj = PlanHead(Fego, c), (6)
where the PlanHead is the same as UniAD [21]. We apply L1 loss to minimize the distance between163

the predicted ego trajectory Ptraj and the ground truth Gtraj, denoted as Limi. Notably, Gtraj is easy164

to obtain, and manual annotation is not required in practical scenarios.165

Directional Augmentation. Observed that the training data is predominated by the go straight166

scenarios, we propose a directional augmentation strategy to balance the distribution. As shown167

in Fig. 4, the BEV feature Fb is rotated with different angles r∈R= {90◦, 180◦, 270◦}, yielding168
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Figure 4: Illustration of direction-aware learning strategy.

the rotated representations {Fr
b}. The169

augmented features will also be used for170

the pretext and planning task, and super-171

vised by the aforementioned loss func-172

tions (e.g., Lspat). Notably, the BEV ob-173

ject mask M and the ground truth ego174

trajectory Gtraj are also rotated to pro-175

vide corresponding supervision labels.176

Furthermore, we propose an auxiliary task to enhance the steering capability. In specific, we predict177

the planning direction that the ego car intends to maneuver (i.e., left, straight or right) based on the178

ego query Qt
ego, which is mapped to the probabilities of three directions Pt

dir∈R1×3. The direction179

label Yt
dir is generated by comparing the x-axis value of ground truth Gt

traj(x) with the threshold180

δ. Specifically, Yt
dir is assigned to straight if −δ <Gt

traj(x)< δ, otherwise Yt
dir = left/right181

for Gt
traj(x)⩽−δ/Gt

traj(x)⩾ δ, respectively. We use the cross-entropy loss to minimize the gap182

between the direction prediction Pt
dir and the direction label Yt

dir, denoted as Ldir.183

Directional Consistency. Tailored to the introduced directional augmentation, we propose a direc-184

tional consistency loss to improve the augmented plan training in a self-supervised manner. It should185

be noticed that the augmented trajectory predictions Pt,r
traj incorporate the same scene information as186

the original one Pt,r=0
traj , i.e., BEV features with different rotation angles. Therefore, it’s reasonable187

to consider the consistency among the predictions and regulate the noises caused by the rotation. The188

planning head is expected to be more robust to directional change and input distractors. Specifically,189

Pt,r
traj are first rotated back to the original scene direction, then L1 loss is applied with Pt,r=0

traj ,190

Lcons =
1

T ·|R|
∑T

t=1

∑R
r ||Rot(Pt,r

traj)−Pt,r=0
traj ||1, (7)

where Rot is the inverse rotation.191

To summarize, the overall objective for our UAD contains spatial objectness loss, dreaming loss from192

the pretext, and imitation learning loss, direction loss, consistency loss from the planning task,193

L = ω1Lspat + ω2Ldrm + ω3Limi + ω4Ldir + ω5Lcons, (8)
where ω1, ω2, ω3, ω4, ω5 are the weight coefficients.194
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Table 1: Open-loop planning performance in nuScenes [2]. † indicates LiDAR-based method and ‡

denotes TemAvg evaluation protocol used in VAD and ST-P3 (see Eq. 9 for details). ⋄ means using
ego status in the planning module and calculating collision rates following BEV-Planner [26].

Method Tasks with 3D annotation L2 (m) ↓ Collision (%) ↓ Intersection (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. FPS

NMP† [39] Det & Motion - - 2.31 - - - 1.92 - - - - - -
SA-NMP† [39] Det & Motion - - 2.05 - - - 1.59 - - - - - -
FF† [19] Occ 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43 - - - - -
EO† [23] Occ 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33 - - - - -

ST-P3 [20] Det & Map 1.72 3.26 4.86 3.28 0.44 1.08 3.01 1.51 2.53 8.17 14.4 8.37 1.8
UniAD [21] Det&Track&Map&Motion&Occ 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 0.21 1.32 3.63 1.72 2.1
VAD-Tiny [22] Det & Map & Motion 0.60 1.23 2.06 1.30 0.33 1.33 2.21 1.29 0.94 3.22 7.65 3.94 17.6
VAD-Base [22] Det & Map & Motion 0.54 1.15 1.98 1.22 0.10 0.24 0.96 0.43 0.60 2.38 5.18 2.72 5.3
OccNet [36] Det & Map & Occ 1.29 2.13 2.99 2.14 0.21 0.59 1.37 0.72 - - - - 3.3
UAD-Tiny (Ours) None 0.47 0.99 1.71 1.06 0.08 0.39 0.90 0.46 0.24 1.15 3.12 1.50 18.9
UAD (Ours) None 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 0.13 0.88 2.66 1.22 7.2

ST-P3‡ [20] Det & Map 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 2.53 8.17 14.4 8.37 1.8
UniAD‡ [21] Det&Track&Map&Motion&Occ 0.44 0.67 0.96 0.69 0.04 0.08 0.23 0.12 0.21 1.32 3.63 1.72 2.1
VAD-Base‡ [22] Det & Map & Motion 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 0.60 2.38 5.18 2.72 5.3
Drive-WM‡ [38] Det & Map 0.43 0.77 1.20 0.80 0.10 0.21 0.48 0.26 - - - - -
UAD‡ (Ours) None 0.28 0.41 0.65 0.45 0.01 0.03 0.14 0.06 0.13 0.88 2.66 1.22 7.2

UniAD‡⋄ [21] Det&Track&Map&Motion&Occ 0.20 0.42 0.75 0.46 0.02 0.25 0.84 0.37 0.20 1.33 3.24 1.59 2.1
VAD-Base‡⋄ [22] Det & Map & Motion 0.17 0.34 0.60 0.37 0.04 0.27 0.67 0.33 0.21 2.13 5.06 2.47 5.3
BEV-Planner‡⋄ [26] None 0.16 0.32 0.57 0.35 0.00 0.29 0.73 0.34 0.35 2.62 6.51 3.16 -
UAD‡⋄ (Ours) None 0.13 0.28 0.48 0.30 0.00 0.12 0.55 0.22 0.10 0.80 2.48 1.13 7.2

4 Experiment195

4.1 Experimental Setup196

We conduct experiments in nuScenes [2] for open-loop evaluation, that contains 40,157 samples,197

of which 6,019 ones are used for evaluation. Following previous works [20, 21, 22], we adopt the198

metrics of L2 error (in meters) and collision rate (in percentage). Notably, the intersection rate with199

road boundary (in percentage), proposed in BEV-Planner [26], is also included for evaluation. For200

the closed-loop setting, we follow previous works [34, 20] to perform evaluation in the Town05 [34]201

benchmark of the CARLA simulator [11]. Route completion (in percentage) and driving score (in202

percentage) are used as the evaluation metrics. We adopt the query-based view transformer [25] to203

learn BEV features from multi-view images. The confidence threshold of the open-set 2D detector204

is set to 0.35 to filter unreliable predictions. The angle θ to partition the BEV space is set to 4◦205

(K=360◦/4◦), and the default threshold δ is 1.2m (see Sec. 3.3). The weight coefficients in Eq. 8 are206

set to 2.0, 0.1, 1.0, 2.0, 1.0. Our model is trained for 24 epochs on 8 NVIDIA Tesla A100 GPUs with207

a batch size of 1 per GPU. Other settings follow UniAD [21] unless otherwise specified.208

We observed that ST-P3 [20] and VAD [22] adopt different open-loop evaluation protocols (L2 error209

and collision rate) from UniAD in their official codes. We denote the setting in ST-P3 and VAD as210

TemAvg and the one in UniAD as NoAvg, respectively. In specific, the TemAvg protocol calculates211

metrics by averaging the performances from 0.5s to the corresponding timestamp. Taking the L2212

error at 2s as an example, the calculation in TemAvg is213

L2@2s = Avg(l20.5s, l21.0s, l21.5s, l22.0s), (9)

where Avg is the average operation and 0.5s is the time interval between two consecutive annotated214

frames in nuScenes [2]. For NoAvg protocol, L2@2s = l22.0s.215

4.2 Comparison with State-of-the-arts216

Open-loop Evaluation. Tab. 1 presents the performance comparison in terms of L2 error, collision217

rate, intersection rate with road boundary, and FPS. Since ST-P3 and VAD adopt different evaluation218

protocols from UniAD to compute L2 error and collision rate (see Sec. 4.1), we respectively calculate219

the results under different settings, i.e., NoAvg and TemAvg. As shown in Tab. 1, the proposed UAD220

achieves superior planning performance over UniAD and VAD on all metrics, while running faster.221

Notably, our UAD obtains 39.4% and 55.2% relative improvements on Collision@3s compared222

with UniAD and VAD under the NoAvg evaluation protocol (e.g., 39.4%=(0.71%-0.43%)/0.71%),223

demonstrating the longtime robustness of our method. Moreover, UAD runs at 7.2FPS, which is 3.4×224

and 1.4× faster than UniAD and VAD-Base, respectively, verifying the efficiency of our framework.225

Surprisingly, our tiny version, UAD-Tiny, which aligns the settings of backbone, image size, and BEV226
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Table 2: Closed-loop evaluation in the
CARLA simulator [11]. † denotes the
LiDAR-based method.

Method
Town05 Short Town05 Long

Driving
Score ↑ Route

Completion ↑ Driving
Score ↑ Route

Completion ↑

CILRS [8] 7.47 13.40 3.68 7.19
LBC [5] 30.97 55.01 7.05 32.09

Transfuser† [34] 54.52 78.41 33.15 56.36
ST-P3 [20] 55.14 86.74 11.45 83.15

VAD-Base [22] 64.29 87.26 30.31 75.20
UAD (Ours) 67.83 91.05 36.71 85.12

Table 3: Ablation on the loss functions. We evaluate the
influence of each designed module by applying corre-
sponding loss.

# Lspat Ldrm Ldir Lcons Limi
L2 (m) ↓ Collision (%) ↓

1s 2s 3s Avg. 1s 2s 3s Avg.

① - - - - ✓ 1.20 3.04 5.30 3.18 0.83 1.33 5.13 2.43
② ✓ - - - ✓ 0.44 0.93 1.64 1.00 0.30 0.56 1.28 0.71
③ - ✓ - - ✓ 0.51 1.12 1.97 1.20 0.71 1.13 2.71 1.52
④ - - ✓ - ✓ 0.83 1.57 2.40 1.60 0.79 1.29 3.89 1.99
⑤ - - - ✓ ✓ 0.59 1.30 2.34 1.41 0.76 1.25 3.47 1.83
⑥ ✓ ✓ ✓ ✓ ✓ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19

Table 4: Ablation on the dreaming decoder.

# Circular
Update

Dreaming
Loss

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① - - 0.98 1.73 2.74 1.82 0.43 0.85 1.71 1.00
② ✓ - 0.50 0.98 1.87 1.12 0.27 0.60 1.37 0.75
③ - ✓ 0.44 0.96 1.73 1.04 0.08 0.35 1.13 0.52
④ ✓ ✓ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19

Table 5: Ablation on direction-aware learning strategy.

# Directional
Augment

Directional
Consistency

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① - - 0.42 0.88 1.61 0.97 0.05 0.18 0.73 0.32
② ✓ - 0.41 0.83 1.53 0.92 0.05 0.23 0.68 0.32
③ ✓ ✓ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19

resolution in VAD-Tiny, runs at the fastest speed of 18.9FPS while clearly outperforming VAD-Tiny227

and even achieving comparable performance with VAD-Base. This again proves the superiority of228

our design. More detailed runtime comparisons and analyses are presented in the appendix. We adopt229

the NoAvg evaluation protocol in the following ablation experiments unless otherwise specified.230

Recent works discuss the effect of using ego status in the planning module [22, 26]. Following this231

trend, we also fairly compare the ego status equipped version of our model with these works. It shows232

that the superiority of our UAD is still preserved, which also achieves the best performance against233

the compared methods. Moreover, BEV-Planner [26] introduces a new metric named “interaction”234

for better evaluating the performance of E2EAD methods. As shown in Tab. 1, our model obtains235

the average interaction rate of 1.13%, obviously outperforming other methods. This again proves236

the effectiveness of our UAD. On the other hand, this demonstrates the importance of designing a237

suitable pretext for perceiving the environment. Only using ego status is not enough for safe driving.238

Closed-loop Evaluation. The simulation results in CARLA [11] are shown in Tab. 2. Our UAD239

achieves better performance compared with recent E2E planners ST-P3 [20] and VAD [22] in all240

scenarios, proving the effectiveness. Notably, on challenging Town05 Long benchmark, UAD greatly241

outperforms recent E2E method VAD by 6.40 points on the driving score and 9.92 points on route242

completion, respectively. This proves the reliability of our UAD for long-term autonomous driving.243

4.3 Component-wise Ablation244

Loss Functions. We first analyze the influence of different loss functions that correspond to the245

proposed pretext task and self-supervised trajectory learning strategy. The experiments are conducted246

on the validation split of the nuScenes [2], as shown in Tab. 3. The model with single imitation247

loss Limi is considered as the baseline (①). With the enhanced perception capability by the spatial248

objectness loss Lspat, the average L2 error and collision rate are clearly improved to 1.00m and 0.71%249

from 3.18m and 2.43%, respectively (② v.s. ①). The dreaming loss Ldrm, direction loss Ldir and250

consistency loss Lcons also respectively bring considerable gains on the average L2 error for 1.98m,251

1.58m, 1.77m over the baseline model (③,④,⑤ v.s. ①). The loss functions are finally combined to252

construct our UAD (⑥), which obtains the average L2 error of 0.90m and average collision rate of253

0.19%. The results demonstrate the effectiveness of each proposed component.254

Temporal Learning with Dreaming Decoder. The temporal learning with the proposed dreaming255

decoder is realized by Circular Update and Dreaming Loss. The circular update is in charge of both256

extracting information from observed scenes (Eq. 2) and generating pseudo observations to predict257

the ego trajectories of future frames (Eq. 3). We study the influence of each module in Tab. 4. Circular258

Update and Dreaming Loss respectively bring performance gains of 0.70m/0.78m on the average L2259

error (②,③v.s.①), proving the effectiveness of our designs. Applying both two modules (④) achieves260

the best performance, showing their complementarity for temporal representation learning.261

Direction Aware Learning Strategy. Directional Augmentation and Directional Consistency are the262

two core components of the proposed direction-aware learning strategy. We prove their effectiveness263

in Tab. 5. It shows that the Directional Augmentation improves the average L2 error for considerable264
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Table 7: Performances under different driving scenes. ∗ denotes not using direction-aware learning.

Method
Perf. go straight ↓

(5309 samples)
Perf. turn left ↓
(301 samples)

Perf. turn right ↓
(409 samples)

Perf. Overall ↓
(6019 samples)

Avg. L2 (m) Avg. Col. (%) Avg. L2 (m) Avg. Col. (%) Avg. L2 (m) Avg. Col. (%) Avg. L2 (m) Avg. Col. (%)

UniAD [21] 0.98 0.26 1.48 0.55 1.27 0.73 1.03 0.31
VAD-Base [22] 1.19 0.37 1.47 0.78 1.39 0.81 1.22 0.43
UAD∗ (Ours) 0.89 0.28 1.55 0.43 1.51 0.65 0.97 0.32
UAD (Ours) 0.84 0.17 1.39 0.22 1.16 0.33 0.90 0.19

0.05m (②v.s.①). One interesting observation is that applying the augmentation brings more gains265

for long-term planning than short-term ones, i.e., the L2 error of 1s/3s decreases for 0.01m/0.08m266

compared with ①, which proves the effectiveness of our augmentation on enhancing longer temporal267

information. The Directional Consistency further reduces the average collision rate for impressive268

0.13% (③v.s.②), which enhances the robustness for driving directional change.269

Angular Design. We further explore the influence of the proposed angular design by removing270

the angular partition and angular queries. Specifically, the BEV feature is directly fed into the271

dreaming decoder to predict pixel-wise objectness, which is supervised by the BEV object mask272

(see Fig. 2) with binary cross-entropy loss. Besides, the ego query directly interacts with the BEV273

feature by cross-attention to extract environmental information. The results are presented in Tab. 6.274

Table 6: Ablation on the angular design.

# Angular
Design

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① - 0.78 1.31 2.01 1.37 0.61 1.39 2.12 1.37
② ✓ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19

When discarding the angular design, the average L2 er-275

ror degrades for 0.47m, and the average collision rate276

consistently degrades for 1.18%. This demonstrates the277

effectiveness of our angular design in perceiving com-278

plex environments and planning robust driving routes.279

4.4 Further Analysis280

Planning Performance in Different Driving Scenes. The direction-aware learning strategy is281

designed to enhance the planning performance in scenarios of vehicle steering. We demonstrate the282

superiority of our proposed model by evaluating the metrics of different driving scenes in Tab. 7.283

According to the given driving command (i.e., go straight, turn left and turn right), we divide the284

6,019 validation samples in nuScenes [2] into three parts, which contain 5,309, 301 and 409 ones,285

respectively. Not surprisingly, all methods perform better under go straight scenes than the steering286

scenes, proving the necessity of augmenting the imbalanced training data for robust planning. When287

applying the proposed direction-aware learning strategy, our UAD achieves considerable gains on288

the average collision rate of turn left and turn right scenes (UAD v.s. UAD∗). Notably, our model289

outperforms UniAD and VAD by a large margin in steering scenes, proving its effectiveness.290

Visualization of Angular Perception and Planning. The angular perception pretext is designed291

to perceive the objects in each sector region. We show its capability by visualizing the predicted292

objectness in nuScenes [2] in Fig. 5a. For a better view, we transform the discrete objectness293

scores and ground truth to a pseudo-BEV mask. It shows that our model can successfully capture294

surrounding objects. Fig. 5a also shows the open-loop planning results of recent SOTA UniAD [21],295

VAD [22] and our UAD, proving the effectiveness of our method to plan a more reasonable ego296

trajectory. Fig. 5b compares the closed-loop driving routes between Transfuser [34], ST-P3 [20] and297

our UAD in CARLA [11]. Our method successfully notices the person and drives in a much safer298

manner, proving the reliability of our UAD in handling safe-critical issues under complex scenarios.299

Due to limited space, we present more analyses in the appendix, including 1) the influence of partition300

angle θ, 2) the influence of direction threshold δ, 3) different backbones and pre-trained weights, 4)301

replacing 2D ROIs from GroundingDINO with 2D GT boxes, 5) different settings of GroundingDINO302

to generate 2D ROIs, 6) the influence of pre-training to previous method UniAD and our UAD, 7)303

runtime analysis of each module in our UAD and modularized UniAD, 8) more visualizations, etc.304

4.5 Discussion305

Ego Status and Open-loop Planning Evaluation. As revealed by [26, 40], it’s not a challenge to306

acquire decent performance of L2 error and collision rate (the original metrics in nuScenes [2]) in307

the open-loop evaluation of nuScenes by using ego status in the planning module (see Tab. 1). The308

question is: is open-loop evaluation meaningless? Our answer is NO. Firstly, the inherent reason for309

the observation is that the simple cases of go straight dominate the nuScenes testing dataset. In these310
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(a) (b)
Figure 5: (a) Qualitative results in nuScenes. (b) Qualitative results in CARLA.

cases, even a linear extrapolation of motion being sufficient for planning is not surprising. However,311

as shown in Tab. 7, in more challenging cases like turn right and turn left, the open-loop metrics can312

still clearly indicate the difficulty of steering scenarios and the differences in methods, which is also313

proved in [26]. Therefore, open-loop evaluation is not meaningless, while the crux is the distribution314

of the testing data and the metrics. Secondly, the advantage of open-loop evaluation is its efficiency,315

which benefits the fast development of algorithms. This view is also revealed by a recent simulator316

design study [9], which tries to transform the closed-loop evaluation into an open-loop fashion.317

In our work, we thoroughly compare our model with other methods, which shows consistent improve-318

ments against previous works under various driving scenarios (straight or steering), different usage of319

ego status (w/. or w/o.), diverse evaluation metrics (L2 error, collision rate or intersection rate from320

[26]), and different evaluation types (open- or closed-loop). It thus again proves the importance of321

designing suitable pretext tasks for end-to-end autonomous driving.322

How to Guarantee Safety in Current Auto-Drive System? Safety is the first requirement of323

autonomous driving systems in practical products, especially for L4-level auto-vehicles. To guarantee324

safety, offline collision check with predicted 3D boxes is an inevitable post-process under current325

technological conditions. Then, a question naturally arises: how to safely apply our model to326

current auto-driving systems? Before answering this question, we reaffirm our claim that we believe327

discarding 3D labels is an efficient, attractive, and potential direction for E2EAD, but it doesn’t mean328

we refuse to use any 3D labels if the relatively cheap ones are available in practical product engineering.329

For instance, solely annotating bounding boxes without object identity for tracking is much cheaper330

than labeling other elements like HD-map, and point-cloud segmentation labels for occupancy.331

Therefore, we provide a degraded version of our method by arranging an additional 3D detection head.332

Table 8: Ablation on the 3D detection head.

# Detection
Head

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① - 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19
② ✓ 0.37 0.86 1.57 0.93 0.02 0.17 0.55 0.25

Then our model can seamlessly integrate into auto-333

drive products, and offline collision check is achiev-334

able. As shown in Tab. 8, integrating the 3D detection335

head doesn’t bring additional improvements, which336

again proves the design of our method has sufficiently337

encoded 3D information to the planning module.338

In a nutshell, 1) our work can easily integrate other 3D tasks if they are inevitable under current339

technical conditions; 2) the experiments again prove from the side that our spatial-temporal module340

has already encoded important 3D clues for planning; 3) we hope our frontier work can eliminate341

some inessential 3D sub-tasks for both research and engineer usage of E2EAD models. An era of342

cheap, laboratory-affordable but robust, practical E2EAD design will eventually come!343

5 Conclusion344

Our work seeks to liberate E2EAD from costly modularization and 3D manual annotation. With this345

goal, we propose the unsupervised pretext task to perceive the environment by predicting angular-346

wise objectness and future dynamics. To improve the robustness in steering scenarios, we introduce347

the direction-aware training strategy for planning. Experiments demonstrate the effectiveness and348

efficiency of our method. As discussed, although the ego trajectories are easily obtained, it is almost349

impossible to collect billion-level precisely annotated data with perception labels. This impedes the350

further development of end-to-end autonomous driving. We believe our work provides a potential351

solution to this barrier and may push performance to the next level when massive data are available.352
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A Appendix441

The appendix presents additional designing and explaining details of our Unpervised pretext task for442

end-to-end Autonomous Driving (UAD) in the manuscript.443

• Different Partition Angles444

We explore the influence of different partition angles in angular pretext to learn better445

spatio-temporal knowledge.446

• Different Direction Thresholds447

We explore the influence of different thresholds in direction prediction to enhance planning448

robustness in complex driving scenarios.449

• Different Backbones and Pre-trained Weights450

We compare the performance of different backbones and pre-trained weights on our method.451

• Objectness Label Generation with GT Boxes452

We compare the generated objectness label between using the pseudo ROIs from Ground-453

ingDINO [28] and ground-truth boxes on different backbones.454

• Settings for ROI Generation455

We ablate different settings for the open-set 2D detector GroundingDINO, which provides456

ROIs for the label generation of angular perception pretext.457

• Different Image Sizes and BEV Resolution458

We compare the performance with different input sizes of multi-view images and BEV459

resolutions.460

• Runtime Analysis461

We evaluate the runtime of each module of UAD and compare with modularized UniAD [21],462

which demonstrates the efficiency of our method.463

• Classification of Angular Perception464

We evaluate the objectness prediction in the angular perception pretext, which demonstrates465

the enhanced perception capability in complex driving scenarios.466

• Influence of Pre-training467

We evaluate the influence of pre-training by detailing the training losses and planning468

performances with different pre-trained weights.469

• More Visualizations470

We provide more visualizations for the predicted angular-wise objectness and planning re-471

sults in the open-loop evaluation of nuScenes [2] and closed-loop simulation of CARLA [11].472

A.1 Different Partition Angles473

The proposed angular perception pretext divides the BEV space into multiple sectors. We explore the474

influence of partition angle θ in Tab 9. Experimental results show that the L2 error and inference475

speed gradually increase with the partition angle. The model with partition angle of 1◦(①) achieves476

the best average L2 error of 0.85m. And the partition angle of 4◦ contributes to the best average477

collision rate of 0.19% (③). This reveals that a smaller partition angle helps learn more fine-grained478

environmental representations, eventually benefiting planning. In contrast, the model with a large479

partition angle sparsely perceives the scene. Despite reducing the computation cost, it will also480

degrade the safety of the end-to-end autonomous driving system.481

Table 9: Ablation on different partition angles
in the proposed angular pretext.

# Partition
Angle

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① 1◦ 0.35 0.78 1.42 0.85 0.01 0.28 0.68 0.32 5.0
② 2◦ 0.34 0.77 1.46 0.86 0.01 0.22 0.48 0.24 6.3
③ 4◦ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 7.2
④ 8◦ 0.38 0.85 1.55 0.93 0.01 0.18 0.55 0.25 7.7
⑤ 15◦ 0.47 0.94 1.69 1.03 0.03 0.20 0.60 0.28 8.1
⑥ 30◦ 0.48 1.00 1.75 1.08 0.05 0.28 0.63 0.32 8.4

Table 10: Ablation on different thresholds of direc-
tion prediction in the directional augmentation.

# Threshold
(m)

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① 0.5 0.35 0.79 1.43 0.86 0.03 0.18 0.71 0.31
② 0.8 0.35 0.77 1.46 0.86 0.01 0.12 0.68 0.27
③ 1.2 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19
④ 1.5 0.40 0.82 1.52 0.91 0.02 0.15 0.42 0.20
⑤ 2.0 0.38 0.85 1.55 0.93 0.01 0.08 0.48 0.19

12



Table 11: Ablation on different backbones and pre-trained weights.

# Backbone Pretrained
Weight

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① Res50 None 0.43 0.94 1.65 1.01 0.03 0.37 0.86 0.42 9.6
② ImageNet 0.41 0.90 1.66 0.99 0.03 0.32 0.80 0.38

③

Res101

None 0.40 0.87 1.59 0.95 0.02 0.23 0.59 0.28

7.2④ ImageNet 0.37 0.84 1.53 0.91 0.01 0.18 0.50 0.23
⑤ COCO 0.36 0.83 1.51 0.90 0.01 0.16 0.45 0.21
⑥ NuImages 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19

Table 12: Ablation on 2D object boxes in pretext label generation.

# Backbone 2D Object
Box

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① Res50 Pseudo 0.41 0.90 1.66 0.99 0.03 0.32 0.80 0.38 9.6
② GT 0.41 0.87 1.61 0.96 0.03 0.30 0.71 0.35

③ Res101 Pseudo 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 7.2
④ GT 0.37 0.79 1.45 0.84 0.01 0.13 0.39 0.18

A.2 Different Direction Thresholds482

The direction prediction that the ego car intends to maneuver (i.e., left, straight and right) is proposed483

to enhance the steering capability for autonomous driving. The label is generated with the threshold δ484

(see Eq. 7 in the manuscript), which determines the ground-truth direction of each waypoint in the485

expert trajectory. Here we explore the influence by ablating different thresholds, as shown in Tab. 10.486

Experimental results show that the L2 error gradually increases with the direction threshold. The487

model with δ of 0.5m (①) achieves the lowest L2 error of 0.86m. It reveals that a smaller threshold488

will force the planner to fit the expert navigation, leading to a closer distance between the predicted489

trajectory and the ground truth. In contrast, the collision rate benefits more from larger thresholds.490

The model with δ of 2.0m obtains the best collision rate at 2s of 0.08% (⑤), showing the effectiveness491

for robust planning. Notably, the threshold of 1.2m contributes to a great balance with the average L2492

error of 0.90m and average collision rate of 0.19%.493

A.3 Different Backbones and Pre-trained Weights494

As a common sense, pre-training the backbone network with fundamental tasks like image classi-495

fication on ImageNet [10] will benefit the sub-tasks. The previous method UniAD [21] uses the496

pre-trained weights of BEVFormer [25]. What surprised us is that when replacing the pre-trained497

weights with the one learned on ImageNet, the performance of UniAD dramatically degraded (see498

“Influence of Pre-training” for more details). This inspires us to explore the influence of backbone499

settings on our framework. As shown in Tab. 11, interestingly, even without any pre-training, our500

model still outperforms UniAD with pre-trained ResNet101 and VAD with pre-trained ResNet50.501

This verifies the effectiveness of our unsupervised pretext task on modeling the driving scenes. We502

also use publicly available pre-trained weights on detection datasets like COCO [27] and nuImages [2]503

to train our model, which shows better performance. These experimental results and observations504

demonstrate that a potentially promising topic is how to pre-train a model for end-to-end autonomous505

driving. We leave this to future research.506

A.4 Objectness Label Generation with GT Boxes507

As mentioned in the manuscript, the essence of generating the angular objectness label lies in the508

2D ROIs, which come from the open-set 2D detector GroundingDINO [28]. Here we explore the509

influence of using the ground-truth 2D boxes as ROIs, which provide more high-quality samples510

for the representation learning in the angular perception pretext. Tab. 12 shows that training with511

GT boxes achieves consistent performance gains on both ResNet50 [17] and ResNet101 [17] (②,④512

v.s. ①,③). This reveals that accurate annotation does help to learn better spatio-temporal knowledge513

and improve ego planning. Considering the cost in real-world deployment, training with accessible514
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Table 13: Ablation on the settings of ROI generation. The Conf. Thresh denotes the confidence
threshold in GroundingDINO [28] to filter unreliable predictions. vehicle,pedestrian,barrier represent
the used prompt words to obtain ROIs of corresponding classes. Rule Filter indicates filtering the
ROIs that are more than half of the length or width of the image.

# Conf.
Thresh

Prompt
Words

Rule
Filter

L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

① 0.35 {vehicle} - 0.48 0.98 1.75 1.07 0.08 0.38 0.80 0.42
② 0.35 {vehicle,pedestrian} - 0.47 0.94 1.69 1.03 0.04 0.27 0.71 0.34
③ 0.35 {vehicle,pedestrian,barrier} - 0.43 0.88 1.60 0.97 0.03 0.23 0.60 0.29
④ 0.35 {vehicle,pedestrian,barrier} ✓ 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19
⑤ 0.30 {vehicle,pedestrian,barrier} ✓ 0.39 0.82 1.45 0.89 0.01 0.21 0.51 0.24
⑥ 0.40 {vehicle,pedestrian,barrier} ✓ 0.46 0.90 1.57 0.98 0.01 0.13 0.37 0.17

Table 14: Comparison with different backbones, image sizes and BEV resolutions.

# Method Backbone Image
Size

BEV
Resolution

L2 (m) ↓ Collision (%) ↓ FPS1s 2s 3s Avg. 1s 2s 3s Avg.

① UniAD [21] R101 1600×900 200×200 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 2.1

② VAD-Tiny [22] R50 640×360 100×100 0.60 1.23 2.06 1.30 0.33 1.33 2.21 1.29 17.6
③ VAD-Base [22] R50 1280×720 200×200 0.54 1.15 1.98 1.22 0.10 0.24 0.96 0.43 5.3

④ UAD (Ours) R50 640×360 100×100 0.47 0.99 1.71 1.06 0.08 0.39 0.90 0.46 18.9
⑤ UAD (Ours) R50 1600×900 200×200 0.41 0.90 1.66 0.99 0.03 0.32 0.80 0.38 9.6
⑥ UAD (Ours) R101 1600×900 200×200 0.39 0.81 1.50 0.90 0.01 0.12 0.43 0.19 7.2

pseudo labels is a more efficient way compared with the manual annotation, which also shows515

comparable performance in autonomous driving (① v.s. ② and ③ v.s. ④).516

A.5 Settings for ROI Generation.517

The quality of learned spatio-temporal knowledge highly relies on the generated ROIs by the open-set518

2D detector GroundingDINO [28], which are then projected as the BEV objectness label for training519

the angular perception pretext. We explore the influence of generated ROIs with different settings,520

as shown in Tab. 13. We take the setting with the confidence score of 0.35, prompt word of vehicle521

and without the Rule Filter, as the baseline (①). By appending more prompt words (e.g., pedestrian,522

barrier), the planning performance gradually improves (③,② v.s.①), showing the enhanced perception523

capability with more diversified objects. Filtering the ROIs with overlarge size (i.e., Rule Filter)524

brings considerable gains for the average L2 error of 0.07m and average collision rate of 0.10%525

(④v.s.③). One interesting observation is that decreasing the confidence threshold would slightly526

improve the L2 error while causing higher collision rate (⑤v.s.④). In contrast, increasing the threshold527

obtains lower average collision rate of 0.17% and higher average L2 error of 0.98m. This reveals the528

importance of providing diversified ROIs for angular perception learning as well as ensuring high529

quality. The model with the confidence score of 0.35, all prompt words and Rule Filter achieves530

balanced performance with the average L2 error of 0.90m and average collision rate of 0.19%.531

A.6 Different Image Sizes and BEV Resolution532

For safe autonomous driving, increasing the input size of the multi-view images and the resolution533

of the built BEV representation is an effective way, which provide more detailed environmental534

information. While benefiting perception and planning, it inevitably brings heavy computation cost.535

We then ablate the image size and BEV resolution of our UAD to find a balanced version between536

performance and efficiency, as shown in Tab. 14. The results show that our UAD with ResNet-537

101 [17], image size of 1600×900, BEV resolution of 200×200, achieves the best performance538

compared with previous methods UniAD [21] and VAD-Base [22] while running faster with 7.2FPS539

(⑥). By replacing the backbone with ResNet-50, our UAD is more efficient with little performance540

degradation (⑤ v.s. ⑥). We further align the settings of VAD-Tiny, which has an inference speed541

of outstanding 17.6FPS (②), to explore the influence of much smaller input sizes. Tab. 14 shows542

that our UAD still achieves excellent performance even compared with VAD-Base of high-resolution543

inputs (④ v.s. ③). Notably, our UAD of this version has the fastest inference speed of 18.9FPS. This544
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Table 15: Module runtime comparison between
UniAD [21] and our UAD. The inference is
measured on an NVIDIA Tesla A100 GPU.

Model
Partition

UniAD UAD (Ours)

Module Latency
(ms)

Proportion
(%) Module Latency

(ms)
Proportion

(%)

Feature
Extraction

Backbone 38.1±0.5 8,2% Backbone 36.0±0.3 26.0%
BEV

Encoder 83.4±0.5 17.9% BEV
Encoder 81.5±0.4 58.9%

Det&Track 145.3±1.3 31.2%
Map 92.1±0.7 19.8%

Angular
Partition 1.1±0.1 0.8%

Motion 50.6±0.6 10.9%
Sub-
Task

Occupancy 45.9±0.4 9.9%
Dreaming
Decoder 18.2±0.2 13.2%

Prediction Planning
Head 9.7±0.3 2.1% Planning

Head 1.5±0.1 1.1%

Total - 465.1±4.3 100% - 138.3±1.1 100.0%

Figure 6: Visualization of the PR and ROC curves
for the angular-wise objectness prediction in differ-
ent driving scenes.

(a) (b)
Figure 7: Optimization of UniAD (a) and our UAD (b) with different pre-trained backbone weights.

again proves the effectiveness of our method in performing fine-grained perception, as well as the545

robustness to fit the inputs of different sizes.546

A.7 Runtime Analysis547

Tab. 15 compares the runtime of each module between the modularized method UniAD [21] and548

our UAD. As we adopt the Backbone and BEV Encoder from BEVFormer [25] that are the same in549

UniAD, the latency of feature extraction is similar with little difference due to different pre-processing.550

The modular sub-tasks in UniAD consume most of the runtime, i.e., significant 71.8% for Det&Track551

(31.2%), Map (19.8%), Motion (10.9%) and Occupancy (9.9%), respectively. In contrast, our UAD552

performs simple Angular Partition and Dreaming Decoder, which take only 14.0% (19.3ms) to model553

the complex environment. This demonstrates our insight that it’s a necessity to liberate end-to-end554

autonomous driving from costly modularization. The downstream Planning Head takes negligible555

1.5ms to plan the ego trajectory, compared with 9.7ms in UniAD. Finally, our UAD finishes the556

inference with a total runtime of 138.3ms, 3.4× faster than the 465.1ms of UniAD, showing the557

efficiency of our design.558

A.8 Classification of Angular Perception559

The proposed angular perception pretext learns spatio-temporal knowledge of the driving scene560

by predicting the objectness of each sector region, which is supervised by the generated binary561

angular-wise label. We show the perception ability by evaluating the classification metrics based on562

the validation split of the nuScenes [2] dataset. Fig. 6 draws the Precision-Recall (PR) curve and563

Receiver-Operating-Characteristic (ROC) curve in different driving scenes (i.e., turn left, go straight564

and turn right). In the PR curve, our UAD achieves balanced precision and recall scores in different565

driving scenes, showing the effectiveness of our pretext task to perceive the surrounding objects.566

Notably, the performance of go straight scenes is slightly better than the steering ones under all567

thresholds. This proves our insight to design tailored direction-aware learning strategy for improving568

the safety-critical turn left and turn right scenes. The ROC curve shows the robustness of our angular569

perception pretext to classify the objects from complex environmental observations.570
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Figure 8: Visualization of the angular perception.

Figure 9: Visualization of the planning results. The first two rows show the success of our method in
safe planning in complex scenarios, while the third row exhibits a failure case of our planner when no
temporal information could be acquired when t=0.

A.9 Influence of Pre-training571

Pre-training the backbone network with fundamental tasks is a commonly used metric to benefit572

representation learning. As mentioned in “Different Backbones and Pre-trained Weights” of Sec. 4.4573

in the manuscript, the performance of the previous SOTA method UniAD [21] dramatically degrades574

without the pre-trained weights from BEVFormer [25]. Here we further detail the influence by575

comparing the training losses and planning performances with different pre-trained weights in Fig. 7.576

Fig. 7a shows that the training losses increase by about 20 on average when replaced with the577

pre-trained weights from ImageNet [10]. Correspondingly, the average L2 error is significantly higher578

than the one with the pre-trained weights from BEVFormer. This reveals that UniAD heavily relies579

on the perceptive pre-training in BEVFormer to optimize modularized sub-tasks. In contrast, our580

UAD performs comparably even without any pre-training (see Fig. 7b), proving the effectiveness of581

our designs for robust optimization.582
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Figure 10: Visualization of angular perception and planning in Carla.

A.10 More Visualizations583

Open-loop Planning We provide more visualizations about the predicted angular-wise objectness584

and planning results on nuScenes [2]. Fig. 8 compares the discrete objectness scores and ground585

truth, proving the effectiveness of our angular perception pretext to perceive the objects in each sector586

region. The planning results of previous SOTA methods (i.e., UniAD [21] and VAD [22]) and our587

UAD are shown in Fig. 9. With the designed pretext and tailored training strategy, our method could588

plan a more reasonable ego trajectory under different driving scenarios, proving the effectiveness589

of our work. The third row shows the failure case of our planner. In this case, the ego car is given590

the “Turn Right” command when t = 0 (i.e., the first frame of the driving scenario), leading to591

ineffectiveness of our planner in learning helpful temporal information. A possible solution to deal592

with this is to apply an auxiliary trajectory prior for the first several frames, and we leave this to593

future work.594

Closed-loop Simulation Fig. 10 visualizes the predicted objectness and planning results in the595

Town05 Long benchmark of CARLA [11]. Following the setting of ST-P3 [20] in closed-loop evalua-596

tion, we collect visual observations from the cameras of “CAM_FRONT”, “CAM_FRONT_LEFT”,597

“CAM_FRONT_RIGHT” and “CAM_BACK”. It shows that the sector regions in which the surround-598

ing objects exist are successfully captured by our UAD, proving the effectiveness and robustness of599

our design. Notably, the missed objects by GroundingDINO [28], e.g., the black car in the camera of600

“CAM_FRONT_LEFT” at t = 145, are surprisingly perceived and marked in the corresponding sector.601

This demonstrates our method has the capability of learning perceptive knowledge in a data-driven602

manner, even with coarse supervision by the generated 2D pseudo boxes from GroundingDINO.603
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NeurIPS Paper Checklist604

1. Claims605

Question: Do the main claims made in the abstract and introduction accurately reflect the606

paper’s contributions and scope?607

Answer: [Yes]608

Justification: The main claims made in the abstract and introduction accurately reflect the609

paper’s contributions and scope, please see Sec. 4.610

Guidelines:611

• The answer NA means that the abstract and introduction do not include the claims612

made in the paper.613

• The abstract and/or introduction should clearly state the claims made, including the614

contributions made in the paper and important assumptions and limitations. A No or615

NA answer to this question will not be perceived well by the reviewers.616

• The claims made should match theoretical and experimental results, and reflect how617

much the results can be expected to generalize to other settings.618

• It is fine to include aspirational goals as motivation as long as it is clear that these goals619

are not attained by the paper.620

2. Limitations621

Question: Does the paper discuss the limitations of the work performed by the authors?622

Answer: [Yes]623

Justification: The limitations of the work are discussed in this paper, please see Sec. 4.5.624
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• The answer NA means that the paper has no limitation while the answer No means that626

the paper has limitations, but those are not discussed in the paper.627

• The authors are encouraged to create a separate "Limitations" section in their paper.628

• The paper should point out any strong assumptions and how robust the results are to629

violations of these assumptions (e.g., independence assumptions, noiseless settings,630

model well-specification, asymptotic approximations only holding locally). The authors631

should reflect on how these assumptions might be violated in practice and what the632

implications would be.633

• The authors should reflect on the scope of the claims made, e.g., if the approach was634

only tested on a few datasets or with a few runs. In general, empirical results often635

depend on implicit assumptions, which should be articulated.636

• The authors should reflect on the factors that influence the performance of the approach.637

For example, a facial recognition algorithm may perform poorly when image resolution638

is low or images are taken in low lighting. Or a speech-to-text system might not be639
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technical jargon.641

• The authors should discuss the computational efficiency of the proposed algorithms642

and how they scale with dataset size.643

• If applicable, the authors should discuss possible limitations of their approach to644

address problems of privacy and fairness.645

• While the authors might fear that complete honesty about limitations might be used by646

reviewers as grounds for rejection, a worse outcome might be that reviewers discover647

limitations that aren’t acknowledged in the paper. The authors should use their best648

judgment and recognize that individual actions in favor of transparency play an impor-649

tant role in developing norms that preserve the integrity of the community. Reviewers650

will be specifically instructed to not penalize honesty concerning limitations.651

3. Theory Assumptions and Proofs652

Question: For each theoretical result, does the paper provide the full set of assumptions and653

a complete (and correct) proof?654

Answer: [NA]655
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Justification: This paper does not include theoretical results.656

Guidelines:657

• The answer NA means that the paper does not include theoretical results.658

• All the theorems, formulas, and proofs in the paper should be numbered and cross-659

referenced.660

• All assumptions should be clearly stated or referenced in the statement of any theorems.661

• The proofs can either appear in the main paper or the supplemental material, but if662

they appear in the supplemental material, the authors are encouraged to provide a short663

proof sketch to provide intuition.664

• Inversely, any informal proof provided in the core of the paper should be complemented665

by formal proofs provided in appendix or supplemental material.666

• Theorems and Lemmas that the proof relies upon should be properly referenced.667

4. Experimental Result Reproducibility668

Question: Does the paper fully disclose all the information needed to reproduce the main ex-669

perimental results of the paper to the extent that it affects the main claims and/or conclusions670

of the paper (regardless of whether the code and data are provided or not)?671

Answer: [Yes]672

Justification: All the information needed to reproduce the main experimental results of the673

paper is disclosed, please see Sec. 4.1.674

Guidelines:675
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whether the code and data are provided or not.679

• If the contribution is a dataset and/or model, the authors should describe the steps taken680

to make their results reproducible or verifiable.681

• Depending on the contribution, reproducibility can be accomplished in various ways.682

For example, if the contribution is a novel architecture, describing the architecture fully683

might suffice, or if the contribution is a specific model and empirical evaluation, it may684

be necessary to either make it possible for others to replicate the model with the same685

dataset, or provide access to the model. In general. releasing code and data is often686

one good way to accomplish this, but reproducibility can also be provided via detailed687

instructions for how to replicate the results, access to a hosted model (e.g., in the case688

of a large language model), releasing of a model checkpoint, or other means that are689

appropriate to the research performed.690
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sions to provide some reasonable avenue for reproducibility, which may depend on the692

nature of the contribution. For example693

(a) If the contribution is primarily a new algorithm, the paper should make it clear how694

to reproduce that algorithm.695

(b) If the contribution is primarily a new model architecture, the paper should describe696

the architecture clearly and fully.697

(c) If the contribution is a new model (e.g., a large language model), then there should698

either be a way to access this model for reproducing the results or a way to reproduce699

the model (e.g., with an open-source dataset or instructions for how to construct700

the dataset).701

(d) We recognize that reproducibility may be tricky in some cases, in which case702

authors are welcome to describe the particular way they provide for reproducibility.703

In the case of closed-source models, it may be that access to the model is limited in704

some way (e.g., to registered users), but it should be possible for other researchers705

to have some path to reproducing or verifying the results.706

5. Open access to data and code707

Question: Does the paper provide open access to the data and code, with sufficient instruc-708

tions to faithfully reproduce the main experimental results, as described in supplemental709

material?710
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.726
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versions (if applicable).731
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• It should be clear whether the error bar is the standard deviation or the standard error763

of the mean.764
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• The conference expects that many papers will be foundational research and not tied814
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package should be provided. For popular datasets, paperswithcode.com/datasets861

has curated licenses for some datasets. Their licensing guide can help determine the862

license of a dataset.863

• For existing datasets that are re-packaged, both the original license and the license of864

the derived asset (if it has changed) should be provided.865
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• If this information is not available online, the authors are encouraged to reach out to866

the asset’s creators.867

13. New Assets868

Question: Are new assets introduced in the paper well documented and is the documentation869

provided alongside the assets?870

Answer: [NA]871

Justification: This paper does not release new assets.872

Guidelines:873

• The answer NA means that the paper does not release new assets.874

• Researchers should communicate the details of the dataset/code/model as part of their875

submissions via structured templates. This includes details about training, license,876

limitations, etc.877

• The paper should discuss whether and how consent was obtained from people whose878

asset is used.879

• At submission time, remember to anonymize your assets (if applicable). You can either880

create an anonymized URL or include an anonymized zip file.881

14. Crowdsourcing and Research with Human Subjects882

Question: For crowdsourcing experiments and research with human subjects, does the paper883

include the full text of instructions given to participants and screenshots, if applicable, as884

well as details about compensation (if any)?885

Answer: [NA]886

Justification: This paper does not involve crowdsourcing nor research with human subjects.887

Guidelines:888

• The answer NA means that the paper does not involve crowdsourcing nor research with889

human subjects.890

• Including this information in the supplemental material is fine, but if the main contribu-891

tion of the paper involves human subjects, then as much detail as possible should be892

included in the main paper.893

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,894

or other labor should be paid at least the minimum wage in the country of the data895

collector.896

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human897

Subjects898

Question: Does the paper describe potential risks incurred by study participants, whether899

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)900

approvals (or an equivalent approval/review based on the requirements of your country or901

institution) were obtained?902

Answer: [NA]903

Justification: This paper does not involve crowdsourcing nor research with human subjects.904

Guidelines:905

• The answer NA means that the paper does not involve crowdsourcing nor research with906

human subjects.907

• Depending on the country in which research is conducted, IRB approval (or equivalent)908

may be required for any human subjects research. If you obtained IRB approval, you909

should clearly state this in the paper.910

• We recognize that the procedures for this may vary significantly between institutions911

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the912

guidelines for their institution.913

• For initial submissions, do not include any information that would break anonymity (if914

applicable), such as the institution conducting the review.915
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