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Abstract

Learning representations of entity mentions is
a core component of modern entity linking sys-
tems for both candidate generation and making
linking predictions. In this paper1, we present
and empirically analyze a novel training ap-
proach for learning mention and entity repre-
sentations that is based on building minimum
spanning arborescences (i.e., directed spanning
trees) over mentions and entities across docu-
ments to explicitly model mention coreference
relationships. We demonstrate the efficacy of
our approach by showing significant improve-
ments in both candidate generation recall and
linking accuracy on the Zero-Shot Entity Link-
ing dataset and MedMentions, the largest pub-
licly available biomedical dataset. In addition,
we show that our improvements in candidate
generation yield higher quality re-ranking mod-
els downstream, setting a new SOTA result in
linking accuracy on MedMentions. Finally, we
demonstrate that our improved mention repre-
sentations are also effective for the discovery of
new entities via cross-document coreference.

1 Introduction

Natural language corpora, such as biomedical re-
search papers (Leaman and Lu, 2016), news articles
(Milne and Witten, 2008; Hoffart et al., 2011), and,
more generally, web page text (Gabrilovich et al.,
2013; Lazic et al., 2015a), often contain ambigu-
ous mentions of entities. Resolving this ambiguity
requires mentions to either be linked to a knowl-
edge base (KB) of entities or discovered as a new
KB concept if no suitable entry exists. Grounded
entity mentions are beneficial for tasks such as
question-answering (Das et al., 2019), semantic
search (Leaman and Lu, 2016), recommendation
ranking (Noia et al., 2016), and KB construction
(Ling et al., 2015). The task is made particularly
challenging in zero-shot settings, where not every

∗Now at Google.
1Code, datasets, and models are available at https://

github.com/dhdhagar/arboEL.

entity has labeled training data (Lin et al., 2017;
Logeswaran et al., 2019). In such settings, a com-
mon approach is to make use of entity descriptions,
types, and aliases to form entity representations,
which can then be used for making predictions.

Learned vector representations of entity men-
tions are an integral part of modern linking systems
(Gillick et al., 2019; Wu et al., 2020, inter alia).
These representations are used for (a) retrieving
a short-list of entity candidates for a mention to
use with a re-ranker (Wu et al., 2020), (b) making
linking predictions directly (Zhang et al., 2021; Liu
et al., 2020; Sung et al., 2020), and (c) performing
coreference by clustering mentions to form entities
(Logan IV et al., 2020).

In this work, we present a new objective and
training procedure for learning mention and entity
representations that explicitly model mention coref-
erence relationships. Our proposed method uses a
supervised clustering training objective based on
forming a directed minimum spanning tree, or ar-
borescence, over mentions and entities. We hypoth-
esize that such coreference links provide a useful
inductive bias because the two tasks are inherently
related (Angell et al., 2021; FitzGerald et al., 2021).
We thoroughly analyze the performance of the pro-
posed procedure in each of the aforementioned use
cases on MedMentions (Mohan and Li, 2019) and
ZeShEL (Logeswaran et al., 2019), two challeng-
ing datasets that require zero-shot generalization at
inference.

Retrieving Candidates We illustrate that our ap-
proach yields mention and entity representations
useful for candidate retrieval. We show improve-
ments over baselines that use similarly parameter-
ized models, achieving gains of at least 7.94 and
0.93 points in recall@64 over two standard dual-
encoder training procedures on MedMentions and
ZeShEL, respectively. We also consider the link-
ing capacity of our learned embeddings without
re-ranking and find that their performance (i.e re-
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call@1) indeed improves upon our baselines. Our
best performing models show gains of 13.61 &
15.46 points in linking accuracy on MedMentions
and 12.06 & 1.52 points on ZeShEL.

Linking Predictions We further consider the im-
provement in downstream training of full cross-
attention re-ranker models using higher quality can-
didates generated by our approach. We show con-
sistent gains in linking accuracy on MedMentions,
setting a new state-of-the-art with a 1.63 point gain
over the previous best model. We also note that
our proposed approach shows mixed results on
ZeShEL, with one variant outperforming all com-
pared models by at least 1.19 points, while the other
two underperform the baselines. We analyze this
behavior in a later section and discuss the charac-
teristics of the data distribution sufficient to make
our approach effective.

Cross-Document Coreference Finally, we illus-
trate that the learned representations can be used to
perform coreference of mentions across documents.
This indicates that our approach could be used to
discover entities in settings where there is limited
or no existing knowledge base of entities.

2 Arborescence-based Training for
Mention & Entity Representations

In this section, we describe our approach for con-
structing training objectives for dual-encoders that
model mention coreference relationships.

2.1 Problem Definition

Each document d of a corpus D contains a set of
entity mention spans Md = {md

1,m
d
2, . . . ,m

d
N}.

All mentions in the corpus are given by M =⋃
d∈D Md. Following (Logeswaran et al., 2019;

Angell et al., 2021), we assume that these mentions
are pre-identified spans of text.

Entity Linking Formally, we define the task of
entity linking as follows: given a knowledge base
of entities E and a set of mentions M, predict an
entity edi ∈ E for each mention md

i . We use e⋆di to
refer to the ground truth entity label for md

i .

Zero-Shot Linking The zero-shot task refers to
the setting where there are entities in the knowledge
base that do not have any labeled mentions in the
training data. Linking decisions must instead rely
on the provided information for entities, such as
descriptions, aliases, and/or entity types.

Coreference We also consider a setting in which
the KB of entities is not known in advance and
entities must be discovered. For this task, we map
every entity mention md

i to a cluster and assign a
coreference label cdi ∈ C that is independent of the
entity labels in the KB.

2.2 Coreference-based Similarity
In order to jointly train both the mention and entity
encoders, we define a similarity measure and an
analogous procedure for sampling positive training
examples that intersperses the selection of corefer-
ent mentions and gold entities based on a single-
linkage structure formed by the representations
generated by the model snapshot. We construct
k-nearest neighbor graphs over coreferent mention
and entity clusters, followed by the application of
a pruning algorithm to generate arborescence (di-
rected MST) structures rooted at entity nodes. The
resultant edges after pruning the graphs represent
the pairs of positive examples used for training.

Graph-based Dissimilarity Let G be a graph
with nodes V = M ∪ E and directed edges
E ⊂ V × V . Each edge (x, y) of the graph has
an associated weight wx,y. We define a dissimilar-
ity function f between two nodes u, v ∈ V to be
the weight of the minimax path between the nodes,
i.e.

f(u, v) =

{
min

p∈u⇝v
max

(x,y)∈p
wx,y, if connected(u, v)

∞ otherwise
(1)

where connected(u, v) is true if there exists a di-
rected path from node u to v inG, and u⇝ v is the
set of all paths between u and v. In words, the dis-
similarity between u and v is the minimum of the
largest edge weights in all paths between the two
nodes, and this is often referred to as the "bottle-
neck edge". This measure has the property of emit-
ting low dissimilarities between nodes even when
their direct edge weight wu,v is high by connecting
them through a chain of low-weight edges, provid-
ing an inductive bias well-suited for coreference,
i.e. not all pairs of points in a cluster are nearby
(Figure 1). This inductive bias is not achieved if we
sum edge weights and simply find the minimum
path.

Edge Weights With this definition of dissimilar-
ity, we now define how edge weights are calculated.
We use two models: a mention-pair affinity model,
ϕ : M × M → R, and a mention-entity affinity
model, ψ : E × M → R. An edge between two
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functional activity mode and is tightly 
linked with various cognitive functions.

…the instantaneous changes in 
metabolites as a function of the levels of 
enzymatic catalytic activities.

Here we investigate a novel strategy to 
normalize medial frontal brain activity 
by stimulating cerebellar projections.

In addition, deletion of the N-terminal 
24- or 37-amino acids led to significant 
reduction in thermostability but not the 
enzymatic activity.
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Figure 1: Arborescence-based Training Objective for Mention & Entity Representations. Shown above is
an illustrative example of our proposed training objective for a dual-encoder (EncM, EncE) on real mentions and
entities from the MedMentions dataset. Mentions are highlighted in context and entities from UMLS are represented
using grey boxes with the name and unique identifier. First, each mention and entity is encoded into a dense vector
representation ([########]) using the respective transformer encoder. Mention-mention and mention-entity pairs
are then selected using our arborescence-based procedure as described in §2.3. The embeddings of these pairs
are encouraged to be pulled closer together if both endpoints are contained in the pruned arborescence structure
(represented by the shaded regions), or encouraged to be pushed farther apart if the endpoints are sampled as hard
negatives.

mentions mi and mj has weight:

wmi,mj = −ϕ(mi,mj), (2)

and the weight of the edge from entity e to mi is:

we,mi = −ψ(e,mi) (3)

Each of ϕ(·, ·) and ψ(·, ·) are independently pa-
rameterized by dual-encoder transformer models
(Gillick et al., 2019; Humeau et al., 2019), one for
mentions (EncM), and one for entities (EncE). The
affinity models are simply the inner products of the
associated encoded representations:

ϕ(mi,mj) = EncM(mi)
TEncM(mj)

ψ(e,mi) = EncE(e)
TEncM(mi)

(4)

For the mention encoder, EncM, the transformer
input is the surrounding mention context with the
mention span marked by special tokens [START]
and [END]:

[CLS]cleft[START]mi[END]cright[SEP]

where cleft and cright are the left and right contexts
of the mention mi in the document. For the entity
encoder, EncE, the transformer takes as input the
title and description of the entity:

[CLS]etitle[TITLE]edesc[SEP]

In this input, edesc is the token sequence correspond-
ing to the description of the entity, which could
include natural language text related to the entity,
such as a "wiki" entry, a list of entity aliases, or
other available features useful in forming an entity
representation. We use a special token [TITLE]
to separate the title text from the description.

2.3 Training Procedure
We now define our approach for training the affin-
ity models, ϕ(·, ·) and ψ(·, ·), and their associated
encoders, EncM and EncE. Our objective is to opti-
mize the dissimilarity function f(·, ·) such that the
procedure infers a set of clusters that each contain
exactly one entity, and every mention is assigned to
the cluster containing its ground truth entity. We op-
timize f(·, ·) using mini-batch gradient descent by
sequentially building batches of mentions B ⊂ M
over the training data, where each mi ∈ B has its
gold entity defined by e⋆i . We then build a graph
GB with nodes consisting of (a) each mi ∈ B, (b)
each mention coreferent to mi ∈ B, and (c) the set
of gold entities for each mi ∈ B. For every mi, we
build a set of directed edges defined by

Emi =
{
(e⋆i ,mℓ)

∣∣∣mℓ ∈ Me⋆i

}
∪
{
(mℓ,mp)

∣∣∣mℓ,mp ∈ Me⋆i

} (5)



where Me⋆i
is the set of coreferent mentions with

e⋆i as the ground-truth entity. The complete set of
edges in graphGB for a mini-batchB is then given
by E(GB) =

⋃
mi∈B Emi . Observe that the resul-

tant edges ensure that each connected component
contains exactly one entity (namely, the gold entity
for the mentions in that connected component).

Forming Clusters for Positive Sampling The
graphGB is input to a constrained clustering proce-
dure that partitions a graph G into disjoint clusters
C = {C1, . . . , CM} such that each cluster contains
at most one entity. There are three constraints that
every C ∈ C must satisfy:

(i) |C ∩ E| ≤ 1,

(ii) ∀u, v ∈ C, connected(u, v) =⇒ f(u, v) ≤ λ,

(iii) ∀u, v ∈ C, connected(u, v) ∨ connected(v, u)

where λ is a hyperparameter representing the dis-
similarity threshold over which edges between
nodes are dropped. We set λ = ∞ during train-
ing. These constraints ensure that (i) there is at
most one entity in each cluster, (ii) if u is reachable
from v then every edge in the path from v to u has
a weight ≤ λ, and (iii) each node in the cluster has
a path connecting itself with every other node in
the cluster.

We solve this constrained clustering problem,
i.e., partition graph G, using a process similar
to Angell et al. (2021). Specifically, we first re-
move all edges in graph G with weight greater than
threshold λ. We then evaluate each edge (u, v) ∈ E
in descending order of dissimilarity and check if
its presence violates any of the three constraints
defined above, removing the edge from E if it does.
If not, we evaluate whether there is an entity in the
connected component of node u, i.e. |Cu ∩ E| = 1.
If |Cu ∩ E| = 1, we temporarily drop edge (u, v)
and check whether v can still be reached by an en-
tity node. If reachable, we permanently drop (u, v),
maintaining the validity of constraint (i) as well
as our minimax dissimilarity function f(·, ·). If an
entity cannot reach v, we retain edge (u, v), pre-
serving the connectivity of the cluster, and iterate
further. Our predicted clusters are the resultant con-
nected components in the partitioned graph G.

Using this procedure on each Emi to generate a
pruned set of edgesE⋆

mi
, we construct a partitioned

target graphG⋆
B = {E⋆

mi
|mi ∈ B}, which is used

to optimize the parametric encoder models. Note
that each mention node in a target edge set E⋆

mi

has only one incoming edge originating from either

an entity or a mention, and the selection of E⋆
mi

was done in a way to minimize the dissimilarity
function f(·, ·) between mentions and entities with
coreferent labels on the subgraph of the mini-batch.

For every cluster with an entity node, the edge
structure is a directed analogue of the minimum
spanning tree, where there exists a directed path
from the entity node to every other node in the
cluster. This structure is often referred to as the
minimum spanning arborescence, thus lending its
name to our method, i.e. ARBORESCENCE-based
linking.

Negative Sampling Akin to the graph embed-
ding objectives used by Nickel and Kiela (2018)
and others, we construct our objective by sampling
hard negative edges. For each mention mi ∈ B,
the set of negative edges N(mi) is the k/2 lowest-
weight incoming edges from E \ {e⋆i } and the k/2
lowest-weight incoming edges from M \ Me⋆i

,
where k is a tuned hyperparameter. In other words,
we sample negative mention and entity edges that
are most similar to the gold edge.

Loss Function We define Γ(mi) =
{u | (u,mi) ∈ E∗

mi
} ∪ {u | (u,mi) ∈ N(mi)} to

be the set of all neighbors with an outgoing edge to
mi in the training graph. Let Iu,mi be the indicator
variable such that Iu,mi = 1 if (u,mi) ∈ E∗

mi

and Iu,mi = 0 otherwise. Our loss function with
respect to each mention mi ∈ B is then defined as
follows:

L(mi) =
∑

u∈Γ(mi)

(
Iu,mi log(σu(wu,mi)) (6)

+ (1− Iu,mi) log(1− σu(wu,mi))
)
,

where σ(·) is the softmax function over all edges in
Γ(mi)× {mi}. The loss for the entire batch B is
the mean of losses over all mentions in B. Optimiz-
ing this loss function requires simultaneously in-
creasing the likelihood of the positive edges and de-
creasing the likelihood of the negative edges. This
objective and training routine are inspired by the
supervised single-linkage clustering proposed by
Yadav et al. (2019), but differs in the choice of loss
function and selection of negative examples. We
also experimented with the standard cross-entropy
formulation, but found its performance subpar.

3 Experiments

We are interested in investigating the following
empirical research questions:



MedMentions ZeShEL
Training Method Recall@ 1 2 4 8 16 32 64 1 2 4 8 16 32 64

IN-BATCH NEGATIVES 58.70 69.01 75.87 80.03 83.14 85.54 87.73 39.27 53.02 62.98 70.32 75.97 80.27 84.04
K-NN NEGATIVES 56.85 65.96 71.68 76.50 80.31 83.51 86.11 49.81 60.59 68.24 74.11 78.07 81.53 84.77
TF-IDF ‡ 50.8 63.8 73.4 79.2 82.3 84.6 85.3 - - - - - - -
IN-BATCH NEGATIVES ‡‡ - - - - - - - - - - - - - 82.06

ARBORESCENCE † 72.31 80.88 86.09 89.86 92.36 94.31 95.67 50.31 61.04 68.34 74.26 78.40 82.02 85.11
1-NN ARBORESCENCE † 71.99 80.78 86.10 89.61 91.92 93.75 95.23 51.33 62.00 69.03 74.67 78.86 81.97 85.13
1-RAND ARBORESCENCE † 71.27 80.17 85.44 89.09 91.65 93.34 94.88 50.86 62.09 69.36 75.05 78.78 82.50 85.70

Table 1: Dual-Encoder Retriever Results: Recall@k (†Proposed methods; ‡Angell et al. (2021); ‡‡Wu et al.
(2020))

MedMentions ZeShEL

|M|
Train 120K 49K
Dev 40K 10K
Test 40K 10K

|E|
Train 19K 26K
Dev 9K 7K
Test 8K 7K

|E \ ETrain|
Dev 4K 7K
Test 4K 7K

Table 2: Dataset Statistics. |M| is the number of men-
tions. |E| is the number of unique entities in the labeled
partition (not the total KB size). |E \ETrain| is the number
of zero-shot entities. The total KB size of MedMentions
and ZeShEL is 2.3M and 492K, respectively.

• Does our proposed approach improve the re-
call of candidate generators?

• Do improvements in candidate generation at
training lead to improvements in downstream
re-ranking models?

• Does our approach result in better learned
mention embeddings that can be used for
coreference or discovering entities when a KB
does not exist?

Experiment Details Our experiments are run on
top of BLINK (Wu et al., 2020), a PyTorch (Paszke
et al., 2019) implementation of dual- and cross-
encoder architectures for entity linking, with model
fine-tuning performed over only BERT-base, since
gains from pre-trained LM size are unrelated to our
approach. More details are provided in Appendix
§A.1.

3.1 Datasets

We run experiments on two entity linking datasets
that both require generalization to unseen entities
at test time. Each document in the datasets contain
a set of entity mention spans, which are pre-defined
using common mention-detection heuristics. KB

entities are composed of two metadata attributes
– an entity title and description, which are natural
language sequences of text. ZeShEL, additionally,
contains a fine-grained type specification, which
is needed due to the diverse disjoint domains con-
tained in the dataset. The statistics for both datasets
are reported in Table 2.

MedMentions (Mohan and Li, 2019) is a col-
lection of titles and abstractions of bio-medical re-
search papers. The KB that is used for this dataset
is the 2017AA full-version of UMLS. The vali-
dation and test sets contain both entities that are
present in the training set as well as entities that are
zero-shot (never seen at training time). We use the
author-recommended ST21pv subset.

ZeShEL (Logeswaran et al., 2019) is a collec-
tion of crowd-sourced wikis, which are divided into
train, validation, and test splits such that no Fan-
dom topic overlaps across the sets. In this way, all
entities that appear at validation and test time are
not seen during training.

3.2 Dual-Encoder Retrieval

In order to robustly evaluate the benefit of modeling
coreference relationships for learning representa-
tions, we construct three variants of our proposed
dual-encoder training objective, which jointly train
both the mention-mention similarity function ϕ(·, ·)
and the mention-entity similarity function ψ(·, ·).
We compare to baselines that only explicitly train
ψ(·, ·) and rely on the structure of ϕ(·, ·) sharing
representations with ψ(·, ·) to provide meaningful
mention-mention similarities. Our proposed objec-
tives differ in how the positive training pairs are
constructed, thus providing a way to analyze the
general idea of using coreference rather than any
one specific target structure for training. Our base-
lines are identical to each other except in how neg-
atives are sampled.



Accuracy Oracle
Re-ranker Candidate Retriever Overall Seen Unseen Self Union

K-NN NEGATIVES Dual (IN-BATCH NEGATIVES) 73.31 77.58 58.47 80.78 47.96
K-NN NEGATIVES Dual (K-NN NEGATIVES) 70.76 77.05 48.85 79.90 21.12
MST & K-NN (Angell et al., 2021) TF-IDF (Angell et al., 2021) 74.1 77.3 62.9 - -

K-NN NEGATIVES Dual (ARBORESCENCE) † 75.73 79.97 60.99 76.09 75.64
K-NN NEGATIVES Dual (1-NN ARBORESCENCE) † 74.73 78.91 60.19 75.48 74.71
K-NN NEGATIVES Dual (1-RAND ARBORESCENCE) † 74.89 79.39 59.22 75.75 74.95

Table 3: MedMentions: Cross-Encoder Linking Results: We report the re-ranker accuracy trained using the
candidates generated by each retriever variant. (†Proposed methods)

Arborescence In the first training variant, for
each mention query, we begin by constructing a
fully-connected graph of the ground truth coref-
erent mention cluster along with the gold entity.
We then apply the pruning procedure described in
the previous section to compute an arborescence
rooted at the entity node. From the resultant graph,
each pair of a mention and its incoming-edge node
(which can either be a coreferent mention or the
gold entity) is treated as a positive example for
training. Following previous work (Gillick et al.,
2019), we use hard negative mining with k = 10
negatives composed of equal number of mention
and entities.

1-NN Arborescence Instead of constructing a
fully-connected k-NN graph over the entire gold
cluster, in this variant we approximate the arbores-
cence structure by pruning a restricted graph of
only the gold entity, the query mention, and the
most similar within-cluster mention neighbor of
the query. We keep all other details of the training
procedure identical to the first variant.

1-Rand Arborescence A third training objec-
tive we explore modifies the initial k-NN graph
construction by restricting the nodes to the gold
entity, the query mention, and a random within-
cluster mention neighbor of the query, instead of
the nearest-neighbor.

Baselines We compare to two baselines follow-
ing previous work: (a) training ψ(·, ·) with random
negatives (IN-BATCH NEGATIVES) where each
gold entity for a mention in a training batch is
treated as a negative example for all other mentions
in the batch, and (b) training ψ(·, ·) with hard neg-
atives (K-NN NEGATIVES) similar to the negative
mining in our proposed methods albeit with only
mention-entity positive selection.

Results In Table 1, we report the test set re-
call@64 for each dual-encoder model, where the

prediction is evaluated as a hit if the gold entity
is retrieved in the top-64 candidates for a mention.
On each dataset, we additionally include the per-
formance of candidate generators used by previous
works that we compare to.

We find that models trained with explicit coref-
erence relationships outperform those that incorpo-
rate this relationship only indirectly. For recall@64,
our proposed methods improve over the baselines
by at least 7.94 percentage points on MedMentions
and 0.93 points on ZeShEL. Even at linking, or
recall@1, our proposed methods show similar im-
provements with gains of 13.61 and 1.52 points
over the next best baseline models. We perform a
more comprehensive analysis of the dual-encoder
linking performance and describe our inference
approach and results in Appendix §A.2 and §A.3.

We posit that much of the observed gains in
recall using our methods result from higher quality
mention embeddings generated due to a wide array
of surface forms available to mention queries at
training. Since each training example evaluates not
only the gold entity but also its coreferent mentions,
this leads to better generalization of representations.
We evaluate this improvement in representations in
the clustering / coreference setting in §3.5.

3.3 Cross-Encoder Re-ranking

To answer our second research question, we com-
pare five cross-attention models, which are trained
using entity candidates generated by the dual-
encoder variants discussed in the previous exper-
iment. Training and inference batches are con-
structed by concatenating each mention with an
entity candidate separated by a [SEP] token. Sim-
ilar to Wu et al. (2020), we use the top-64 retrieved
entities as hard negatives during training and as
linking candidates during inference.

Results We report the cross-encoder linking accu-
racy for MedMentions in Table 3. We additionally



Oracle
Self Union

Candidate Retriever Acc. Macro Acc. Macro Acc. Macro

Dual (IN-BATCH NEGATIVES) 61.27 60.93 64.96 67.81 62.91 66.13
Dual (K-NN NEGATIVES) 61.02 60.47 63.66 66.91 61.30 64.72
Dual (IN-BATCH NEGATIVES) (Wu et al., 2020) - 61.34 - - - -

Dual (ARBORESCENCE) † 60.72 60.36 62.64 65.90 61.04 64.39
Dual (1-NN ARBORESCENCE) † 60.47 60.48 63.20 66.70 61.03 64.77
Dual (1-RAND ARBORESCENCE) † 62.35 62.53 64.94 67.90 63.33 66.51

Table 4: ZeShEL: Cross-Encoder Linking Results: Unnormalized Accuracy. We report the accuracy of the
re-ranker trained using the candidates generated by each retriever. (†Proposed methods)

report the breakdown of accuracy on subsets of
test mentions for which the ground truth entities
were not evaluated ("unseen") during training, illus-
trating the zero-shot capability of the models. We
also include the current state-of-the-art results by
Angell et al. (2021), which uses an n-gram based
model for candidate generation and two cross-
encoder models, one each for mention-mention and
mention-entity scoring, for re-ranking. We observe
that each cross-encoder trained with candidates
generated by an arborescence-based model outper-
forms the baselines, including the current SOTA by
at least 0.63 points, and the best performing model
– ARBORESCENCE – achieves 1.63 point gains. We
note, however, that Angell et al. (2021) does bet-
ter on unseen entities by 1.91 points compared to
ARBORESCENCE, which might be a result of ben-
efiting from a reduced search scope owing to the
within-document nature of their TF-IDF retriever.

Table 4 contains linking results for ZeShEL,
where each reported model varies only in the
method used for retrieving the entity candidates,
while the cross-encoder re-ranker training method
is held constant (K-NN NEGATIVES with k = 64).
Since ZeShEL is completely zero-shot, we do not
include a seen-unseen analysis. We follow Wu
et al. (2020) and report the unnormalized accu-
racy, which is calculated as the percentage of suc-
cesses out of the total number of query mentions in
the test set, and the macro-averaged unnormalized
accuracy, which is a simple average of the unnor-
malized accuracies over the different "worlds", or
domains, in the test set. We find that the best per-
forming model is 1-RAND ARBORESCENCE, with
a 1.19 point difference in macro-averaged accuracy
over the next best model (Wu et al., 2020).

We also note that, unlike on MedMentions, not
all of our proposed models have higher accuracy
than the mention-entity baselines. Since a key mo-
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Figure 2: Coreference Distribution. We count the num-
ber of mentions in each coreference cluster in MedMen-
tions and ZeShEL. Clusters in ZeShEL are typically
very small (at most 3) compared to the MedMentions
clusters (up to 1256, 434, and 447 in train, validation,
and test, respectively).

tivation for the arborescence-based methods is
to explicitly model coreference relationships dur-
ing training, we expect performance gains to be
strongly correlated with the number of coreference
links present within the dataset. We analyze the
two datasets in terms of the number of mentions
for each KB entity, which can be thought of as how
large each cluster of coreferent mentions is. We
report a histogram distribution in Figure 2 and find
that the clusters in ZeShEL are typically very small
(at most 3), whereas in MedMentions, each cluster
has many more mentions with maximum sizes of
1256, 434, and 447 across the train, validation, and
test sets.

Finally, we also provide representative exam-
ples of predictions comparing the link predictions
by our best-performing ARBORESCENCE-based
method to the baseline of Angell et al. (2021) on
MedMentions and Wu et al. (2020) on ZeShEL in
Appendix Table 7 and Table 8, respectively.

3.4 Oracle Inference
In this setting, we isolate the re-ranking capabil-
ity of the cross-encoder from the quality of the
candidates retrieved at inference. This setting also



removes the upper-bound on re-ranking accuracy
by artificially injecting the ground-truth entity in
the top-64 candidates retrieved at inference for each
mention where retrieval failed. An additional set-
ting we explore holds this oracle candidate set con-
stant across each variant of the cross-encoder by
taking a union over all dual-encoder candidate sets
and then proceeding to inject the ground-truth. This
construction provides a way to disentangle the fac-
tor of candidate retrieval quality at inference, which
otherwise conflates the comparison of re-ranking
performance. We refer to these oracle settings as
SELF and UNION, respectively.

Results As seen in column Oracle of Table 3,
the baseline models show higher linking accuracy
than our proposed methods when the gold entity
is guaranteed to be present in the original candi-
date set. However, the performance of the base-
line models drops significantly (≥ 32 points) when
evaluated with the UNION candidate set, while the
arborescence-based models show a ± 0.9 point vari-
ation. We believe this discrepancy clearly high-
lights the poor quality of candidates retrieved by the
baseline models compared to our proposed meth-
ods. This also explains the inflation in accuracy
of the baselines on the SELF set due to the trivial
discrimination task presented to the cross-encoders.
We further point to linking performance on the
UNION set, which provides the more challenging
task of differentiating between higher quality can-
didates that are similar. We argue that the large per-
formance difference (≥ 26.75 points) is strongly
indicative of the greater linking capacity of our
proposed methods.

In Table 4, we report both the micro accuracy
and macro-averaged accuracy for the two oracle
sets. We observe that 1-RAND ARBO performs the
best on the UNION set, but is marginally outper-
formed by IN-BATCH on micro accuracy on the
SELF set by 0.02 points. In contrast to the fluctu-
ation on MedMentions, the relative uniformity in
results on the oracle candidate sets indicates that
the candidates generated by each model have simi-
lar quality.

3.5 Mention Coreference

Next, we evaluate the quality of the learned men-
tion representations for cross-document corefer-
ence using the entity labels of each mention as
its ground truth cluster assignment. To form clus-
ters, we build mention-only arborescences using
the clustering procedure described in §2.3, tuning

MedMentions ZeShEL
Setting ALL ALL/ UNSEEN ALL

UNSEEN ONLY

IN-BATCH NEGATIVES 0.37 0.71 0.71 0.31
K-NN NEGATIVES 0.26 0.73 0.80 0.29
ARBORESCENCE 0.51 0.83 0.85 0.34
1-NN ARBORESCENCE 0.47 0.75 0.83 0.34
1-RAND ARBORESCENCE 0.35 0.63 0.81 0.32

Table 5: Coreference Results. We report the Adjusted
Rand Index achieved by clustering (§2.3) the mention
embeddings produced by each model on the test set. We
evaluate on three settings: ALL (clustering & evaluating
on all mentions), ALL/UNSEEN (clustering all mentions,
evaluating on mentions with ground truth entity not
seen in training), UNSEEN ONLY (both clustering &
evaluating on mentions with ground truth entity not
seen in training).
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Figure 3: Linking Recall v/s Coreference Recall. We
compare the mention coreference recall@64 with the
entity linking recall@64 for each dual-encoder training
procedure on MedMentions and ZeShEL. There is a
positive correlation when comparing coreference-based
procedures with entity-only methods, which is stronger
on the highly-coreferent MedMentions dataset than on
ZeShEL.

the threshold value, λ, based on the validation data.
We report the Adjusted Rand Index (ARI) clus-
tering scores in Table 5 using each of our dual-
encoder representation learning objectives. For
both ZeShEL and MedMentions, we report ARI on
all the test mentions (denoted ALL). For MedMen-
tions, we report two additional settings: (a) ARI
when clustering mentions with ground truth entity
not seen at training (denoted UNSEEN ONLY), and
(b) clustering on all mentions but evaluating on the
UNSEEN ONLY set (denoted ALL/UNSEEN). The
results show that representations learned with the
ARBORESCENCE objective perform best on each
setting, aligning with the inductive bias of its train-
ing procedure and indicating its utility in a setting
where new entities must be discovered.



We further probe the inductive bias of the
arborescence-based training procedures by inspect-
ing whether improvements in entity linking recall
are accompanied by similar gains in mention coref-
erence performance. In Figure 3, we plot entity and
mention recall@64 for each training method on
the test set of the two datasets. Mention recall is
calculated by retrieving 64 nearest-neighbors for
each mention and counting the number of neigh-
bors that are coreferent as a proportion of the total
number of coreferent mentions limited to 64. En-
tity recall is calculated as defined in §3.2. We find
that entity recall indeed demonstrates a positive
correlation with mention recall on both datasets
when the proposed coreference-based training pro-
cedures are compared with entity-only methods.
We posit that this demonstrates the efficacy of us-
ing explicit mention coreference relationships to
learn representations for entity linking.

4 Related Work

Entity Linking Entity linking has been widely
studied (Milne and Witten, 2008; Cucerzan, 2007;
Lazic et al., 2015b; Gupta et al., 2017; Raiman
and Raiman, 2018; Kolitsas et al., 2018; Cao et al.,
2021, inter alia). Dutta and Weikum (2015) com-
bine clustering-based cross-document coreference
decisions and linking around sparse bag-of-word
representations not well suited for the embedding-
based representations used in this work. Other
works use global or collective models (Kulkarni
et al., 2009; Hoffart et al., 2011; Cheng and Roth,
2013; Ganea and Hofmann, 2017; Le and Titov,
2018, inter alia), which consider the compatibil-
ity of entity linking decisions made in the same
document(s) rather than making independent pre-
dictions. Zhang and Stratos (2021) use noise con-
trastive estimation to mine hard negatives for the
linking task.

Cross-document Coreference Several previous
works have developed models for the cross-
document coreference setting where no entity KB
is known in advance (Bagga and Baldwin, 1998;
Gooi and Allan, 2004; Singh et al., 2011; Barhom
et al., 2019; Cattan et al., 2020; Caciularu et al.,
2021; Ravenscroft et al., 2021; Logan IV et al.,
inter alia).

Alternatives to Cross-Encoders Our work
demonstrates how clustering-based training im-
proves dual- and cross-encoder models for link-
ing and discovery. If prediction efficiency, and

not training efficiency, was the only concern, one
could also use model distillation to improve dual-
encoder performance (Hinton et al., 2015; Izacard
and Grave, 2021, inter alia). We could also con-
sider models such as poly-encoders as alternatives
to dual-encoders (Humeau et al., 2020).

5 Conclusion

We present a novel approach for learning mention
and entity representations for use in entity linking
candidate generation and prediction, as well as in
the discovery of new entities. Our method uses an
objective that explicitly incorporates mention-to-
mention coreference relationships. We demonstrate
its empirical effectiveness through analysis on two
datasets — MedMentions and the Zero-Shot Entity
Linking dataset. As future work, we hope to further
analyze these objectives with the lens of efficiency,
distillation, and domain transfer.

6 Ethical Considerations

There are several ways in which entity linking /
resolution models could be biased and a potential
for those biases to have harmful downstream con-
sequences. There is already a large body of work
studying the biases in language models (such as
those used for fine-tuning in our work) and corefer-
ence models, most notably in understanding when
error rates in coreference differ across certain popu-
lations (e.g., genders, races, and other entity types,
more broadly, that display skewed distributions in
the data). For instance, if entity mentions are author
names on citation data and the entities are scien-
tific authors, aggregated statistics like h-index or
citation count could be biased if the models used
to disambiguate the author names are biased. If
entity linking and discovery systems are used to
build or populate knowledge bases, those systems
may propagate these biased predictions. This can
be particularly problematic if one used such a bi-
ased knowledge base to train future models, thus
perpetuating and amplifying the skew. Lastly, we
also note that entity linking and discovery are anal-
ogous to surveillance and tracking in computer vi-
sion, which should warrant substantial weight of
ethical considerations.
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A Appendix

A.1 Experiment Details
Each training procedure is run on a single machine
using 2 NVIDIA Quadro RTX 8000 GPUs. Our
dual-encoder models for ZeShEL and MedMen-
tions have 218M and 230M parameters, respec-
tively. Each variant is optimized using mini-batch
gradient descent using the Adam optimizer for 5
epochs using a mini-batch size of 128 to accumu-
late the gradients. Experiments with batch sizes <
128 performed poorly, possibly due to increased
fluctuation of gradients, and sizes > 128 were com-
putationally infeasible to run with our available
compute resources. For ZeShEL, the dual-encoder
models are trained using 192 warm-up steps and
learning rates of 1e-5, 3e-5, and 3e-5 for IN-BATCH,
K-NN, and ARBORESCENCE-based models, re-
spectively. For MedMentions, each model is trained
using 464 warm-up steps and a learning rate of 3e-5.
All cross-encoder models are trained with a mini-
batch size of 2, learning rate of 2e-5, and an addi-
tional linear layer. Our MedMentions and ZeShEL
cross-encoder models have 108M and 109M pa-
rameters, respectively. We use FAISS2 (Johnson
et al., 2017) for fast nearest-neighbor search dur-
ing graph construction at both training and infer-
ence. For MedMentions, the execution time was
70 mins to embed and index 2M entities and 120K
mentions, and 20 mins to perform exact nearest-
neighbor search for the 120K mentions.

A.2 Dual-Encoder Inference Procedure
Building the Graph The structure of the graph
G impacts the dissimilarity function by changing
the paths between pairs of nodes in addition to
changing which pairs of nodes are connected. We
advocate for a simple, deterministic approach to
construct this graph. For each mentionm, construct
Em by (a) adding edges from m’s k-nearest neigh-
bor mentions in M to m, and (b) adding an edge
from m’s nearest entity to m:

Em =

{
(u,m)

∣∣∣ u ∈ argmink
m′ ∈ M

wm′,m

∨ u = argmin
e ∈ E

we,m

} (7)

The complete collection of edges E in G is given
by E(G) =

⋃
m∈MEm. There are other ways that

one could conceivably pick the pairs of mentions to
2https://github.com/facebookresearch/

faiss

be connected in the graph. For example, one could
use the minimum spanning tree over the mentions.
This approach, however, has a few drawbacks: (a)
the directionality of nearest neighbor relationships
is ignored leading to noise in the graph, and (b)
the resultant graph includes edges that cross cluster
boundaries due to this approach forcing all pairs of
mentions to be connected, which is undesirable.

Forming Clusters & Making Predictions To
make linking decisions for each mention md

i , we
assign the ID of the entity present in the mention’s
cluster as the linking label (or NIL if there is no
entity in the cluster). Let C(md

i ) be the predicted
cluster of mention md

i , then:

edi =

{
C(md

i ) ∩ E , if |C(md
i ) ∩ E| = 1

NIL, otherwise
. (8)

Furthermore, the target clusters we aim to predict
in the entity discovery setting are exactly C.

A.3 Experiment: Dual-Encoder Linking
Each model is evaluated using three inference pro-
cedures. "Independent" refers to predictions made
using only mention-entity edges. This method was
used by Wu et al. (2020) to generate candidates for
a cross-encoder model trained on ZeShEL. "Clus-
tering (UNDIRECTED)" refers to a hierarchical ag-
glomerative clustering (HAC) procedure, following
previous work by Angell et al. (2021), which is
akin to the procedure for positive sampling used
for training our arborescence models but with no
edge directionality. "Clustering (DIRECTED)" adds
directed edges to the previous method. For each
model, we pick the best performing inference pro-
cedure on the validation set and report the test set
performance.

We report the linking accuracy in Table 6 and
leave out models from previous works since they
do not report linking metrics of their candidate gen-
erators. We specify the inference method used in
each case, chosen based on the validation set ac-
curacy of the models. Similar to our cross-encoder
results in Table 3, we also report the "seen" and
"unseen" performance on MedMentions.

A.4 Qualitative Results
In Table 7 and Table 8, we provide a set of represen-
tative examples that demonstrate the improvement
in entity linking that our proposed coreference-
based methodology empirically provides on Med-
Mentions and ZeShEL, respectively.

https://github.com/facebookresearch/faiss
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MedMentions ZeShEL
Training Inference Overall Seen Unseen Inference Overall

IN-BATCH NEGATIVES Clustering (UNDIRECTED) 59.11 61.88 49.45 Independent 39.27
K-NN NEGATIVES Independent 56.86 64.03 31.88 Independent 49.81

ARBORESCENCE † Clustering (DIRECTED) 72.19 77.48 53.79 Independent 50.31
1-NN ARBORESCENCE† Clustering (DIRECTED) 72.00 77.29 53.60 Clustering (DIRECTED) 51.09
1-RAND ARBORESCENCE† Clustering (DIRECTED) 71.33 77.02 51.51 Clustering (DIRECTED) 50.85

Table 6: Dual-Encoder Linking Results: Accuracy % (†Procedures incorporating explicit mention-to-mention
coreference relationships)

Mention [...] Mutations of critical amino acids affected either dsDNA recombination or both ssDNA and dsDNA
recombination indicating two separable functions , one of which is critical for dsDNA recombination
and the second for recombination per se [...]

Angell et al. (2021) DNA (C0012854): ( Chemical , DNA , Deoxyribonucleic Acid , substance : dna molecules ; dsDNA ;
Deoxyribonucleic acid ; dna / desoxyribonucleic acid ; DNA / desoxyribonucleic acid ; DNA molecule
; DNA - Deoxyribonucleic acid [...]

Ours DNA , Double - Stranded (C0311474): Chemical , substance : double stranded dna ; DNA , Double
Stranded ; Double - Stranded DNA ; ds dna ; deoxyribonucleic acid double strand [...]

Mention [...] mean dose , and maximum dose were significantly associated with parotid gland atrophy . Multi-
variate analysis indicated that only V5 was significantly associated with atrophy. Increasing V5 was a
significant risk factor for parotid gland atrophy after carbon ion radiotherapy [...]

Angell et al. (2021) Muscular Atrophy (C0026846): Biologic Function , Muscular , diagnosis , disorder , finding , physical
finding : atrophy ; muscle ; amyotrophy ; muscle atrophy was seen ; Wasting ; muscle ; Atrophies ,
Muscle ; Muscle thinning [...]

Ours Atrophy of parotid gland (C0341045): ( Biologic Function , disorder : atrophy ; parotid gland )

Mention [...] This study aimed to determine the methylation phenotype in colorectal cancer for identification of
predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non
- recurrent and five recurrent colorectal cancer patients using the Illumina Infinium HumanMethyla-
tion450 Beadchip assay [...]

Angell et al. (2021) Disease Response (C1704632): Finding : Response ; response

Ours Response to treatment (C0521982): Clinical Attribute , context - dependent category , finding , func-
tion , observable entity , situation : response to treatment ; response treatments ; Therapeutic response;
successful treatment [...]

Table 7: MedMentions: Improved Candidate Generation Yields Correct Entity Linking. Above are examples
of mentions where the TF-IDF candidate generation procedure from Angell et al. (2021) fails to retrieve the correct
entity, and thus their cross-encoder is not able to correctly link the mention. Our coreference-based dual-encoder is
able to retrieve the correct entity in the candidate set of 64 entities, and then the cross-encoder is able to link the
mention to the correct entity.



Mention [...] and as an experienced and esteemed paladin comes equipped with perhaps the best items of
any NPC; he has both an enchanted sword and plate mail that only he can use. As an inquisitor
paladin [...]

Wu et al. (2020) Sword (337BB2AE0D26B7EB): A sword is a melee weapon that in its simplest form consists of a
blade and a hilt. This definition includes those weapons that fit the archetype of blade [...]

Dual-Encoder (Ours) Warblade (weapon) (4390344C57F338AD): The warblade (also known as the noble warrior’s
blade, or ary’velahr’ke ym in elven), was one of three elfblades created in ancient Cormanthyr to
help the elves establish a ruling family [...]

Cross-Encoder (Ours) Hallowed Redeemer (32C8D16B4D6CF86C): The Hallowed Redeemer was a special two-
handed sword owned by the paladin Keldorn Firecam. History. He received [...]

Mention [...] Clemens was just telling the counselor about his disappointment as there were no cigars
stocked on the Enterprise-D. He was having a drink and chatting with a bartender in Ten Forward
when Montgomery Scott entered the bar and later drank "something green". Wallace worked in a
transporter room [...]

Wu et al. (2020) Green tea (5CCB83C71D089E29): Green tea was a type of tea made with tea leaves that had
undergone little oxidation. It was an exceptional source of antioxidants, alkaloids, and amino acids.
In 2151, sub-commander T’pol came to the mess hall late at night for a cup of hot green tea [...]

Dual-Encoder (Ours) Unnamed beverages ( 23rd century ) (2A887C680DA92880): The following is a list of unnamed
beverages consumed during the 23rd century. Green drink: In 2268, Montgomery Scott offered this
green drink to the Kelvan Tomar, which he claimed to have found on Ganymede. Unable to identify
it by name after examining it when Tomar asked, Scott simply replied, "It’s Yorktown drinks [...]

Cross-Encoder (Ours) Aldebaran whiskey (B70236171A1DE4E8): Aldebaran whiskey was a strong, green alcoholic
beverage, favored by Guinan, who kept a bottle behind the bar in Ten Forward. It was a gift from her
friend, Jean-Luc Picard. In 2369, Data served Montgomery Scott the drink of Aldebaran whiskey,
although he was unsure of its characteristics beyond its color [...]

Mention [...] displayed several weapons on a wall behind his desk in 2364. Among them were two phasers,
one a Starfleet Type 2 phaser. Phasers of this type remained in sporadic use into the 24th century;
Dirgo carried several 23rd-century Type 2 phasers aboard his shuttle in 2367. 24th century and
beyond. By the 2360s, the type 2 phaser had evolved past the pistol [...]

Wu et al. (2020) Space shuttle (01C23B9DFEB9BEEC): A space shuttle was a form of low-orbit spacecraft com-
monly launched from Earth during the 20th and 21st centuries. The term "space shuttle" remained
in use well into the 23rd century, when in 2285, Spock was alerted by a public announcement that
his space shuttle would be leaving in fifteen minutes [...]

Dual-Encoder (Ours) Galileo type shuttlecraft (38646166C184F9C3): The "Galileo"-type shuttlecraft was a shuttle-
craft type operated by Starfleet in the 23rd and 24th centuries. Physical arrangement. This type of
shuttlecraft had two nacelles, attached to the sides near the ventral hull with two pylons each, [...]

Cross-Encoder (Ours) Nenebek (00F7A1017770BA5D): The "Nenebek" (NAR-21166) was a "Nenebek"-type sublight
mining shuttle that was in service in the independent Pentarus system in the mid-24th century.
Constructed sometime in the mid-23rd century, this shuttle was used for ferrying people. "Nenebek"
was the property of Captain Dirgo who had logged almost 10,000 hours in this shuttle, [...]

Table 8: ZeShEL: Improved Detail in Linked Concept. Above are examples of mentions where we see a clear
trend of increasing detail in the linked concept leading finally to a correct link prediction when using the baseline
dual-encoder (Wu et al., 2020), our coreference-based dual-encoder, and our cross-encoder trained using candidates
generated by the coreference-based dual-encoder, respectively.
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