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ABSTRACT

We demonstrate that learning procedures that rely on aggregated labels, e.g., label
information distilled from noisy responses, enjoy robustness properties impossible
without data cleaning. This robustness appears in several ways. In the context of
risk consistency—when one takes the standard approach in machine learning of
minimizing a surrogate (typically convex) loss in place of a desired task loss (such
as the zero-one mis-classification error)—procedures using label aggregation obtain
stronger consistency guarantees than those even possible using raw labels. And
while classical statistical scenarios of fitting perfectly-specified models suggest
that incorporating all possible information—modeling uncertainty in labels—is
statistically efficient, consistency fails for “standard” approaches as soon as a loss to
be minimized is even slightly mis-specified. Yet procedures leveraging aggregated
information still converge to optimal classifiers, highlighting how incorporating
a fuller view of the data analysis pipeline, from collection to model-fitting to
prediction time, can yield a more robust methodology by refining noisy signals.

1 INTRODUCTION

Consider the data collection pipeline in a supervised learning problem. Naively, we say that we
collect pairs (Xi, Yi)

n
i=1 of features Xi and labels Yi, fit a model, and away we go Hastie et al. (2009).

But this belies the complexity of modern datasets Deng et al. (2009); Krizhevsky and Hinton (2009);
Russakovsky et al. (2015), which require substantial data cleaning, filtering, often crowdsourcing
multiple labels and then denoising them. The crowdsourcing community has intensively studied such
data cleaning, especially in the context of obtaining “gold standard” labels Dawid and Skene (1979);
Whitehill et al. (2009); Welinder et al. (2010); Vaughan (2018); Platanios et al. (2020). We take a
complementary view of this process, investigating the ways in which data aggregation fundamentally
and necessarily improves the consistency of models we fit.

In a sense, this paper argues that label cleaning, or aggregating labels together, provides robustness
that is impossible to achieve without aggregating labels. There are two faces to this robustness.
First, we improve consistency of estimation: when minimizing a surrogate loss (e.g., the multiclass
logistic loss) instead of a task loss (e.g., the zero-one error), procedures that use aggregated labels
can achieve consistent and optimal prediction in the limit when this is impossible without data
aggregation. Second, even in finite-dimensional statistical problems, this aggregation can provide
consistent classifiers when standard methods fail.

Important contributions to the theory of surrogate risk consistency trace to the 2000s Zhang (2004c);
Lugosi and Vayatis (2004); Steinwart (2007), with Bartlett, Jordan, and McAuliffe (2006) charac-
terizing when fitting a model using a convex surrogate is consistent for binary classification for the
zero-one error. Since this work, there has been an abundance of work on surrogate risk consistency,
including on multi-label classification Zhang (2004a); Tewari and Bartlett (2007); Gao and Zhou
(2011); Zhang and Agarwal (2020); Awasthi et al. (2021), ranking problems Duchi et al. (2010; 2012);
Pires et al. (2013), structured prediction Osokin et al. (2017); Cabannes et al. (2020); Nowak-Vila
et al. (2020), ordinal regression Pedregosa et al. (2017), and general theory Steinwart (2007). On
the one hand, these analyses, which consider the standard supervised learning scenario of data pairs
(X,Y ), enable us to fully exploit the entire statistical theory of empirical processes (van der Vaart
and Wellner, 1996; Bartlett et al., 2005; Koltchinskii, 2006; Bartlett et al., 2006). On the other, they
do not address the data aggregation machinery now common in modern dataset creation.

It is thus natural to ask about the interaction between consistency and data aggregation—to begin with,
do we need to aggregate at all? If we can achieve surrogate consistency without data aggregation,
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we should perhaps just rely on our mature theoretical understanding of processes with (X,Y ) pairs.
Going one step further, if we aggregate, does aggregation help consistency, and in what sense does it
help? These main questions motivate this paper.

To further underpin the importance of studying consistency and aggregated labels, we propose
concrete examples—in ranking and binary- and multiclass-classification with linear estimators—
where estimators using only pairs (X,Y ) necessarily fail, but label aggregation methods yield
consistency. We develop new notions and theory for surrogate consistency with data aggregation.
In fully nonparametric scenarios, we show how the number of samples aggregated combine with
noise conditions to improve consistency. Aggregation will also allow us to demonstrate surrogate
risk consistency under only weak conditions the surrogate loss; in the language of the field, losses
using aggregated labels admit (approximate) linear comparison inequalities. Additionally, in contrast
to conventional risk consistency theory, which requires taking a hypothesis class F consisting of
all measurable functions, we will show results in classification problems where aggregating labels
guarantees consistency even over restricted hypothesis classes, which may fail without aggregation.

2 PRELIMINARIES

We first review classical surrogate risk minimization. Let X be the input space and Y be the
output space, with data (Xi, Yi)

n
i=1 ∈ X × Y drawn i.i.d. P . Consider learning a scoring function

f : X → Rd that maps an input x ∈ X to a score s ∈ Rd for some d ≥ 1, where a decoder
d : Rd → Y determines the final prediction via ŷ = d ◦ f(x). Given a loss ℓ : Y × Y → R+ and
hypothesis class F , the goal is to minimize the task risk over f ∈ F

R(f) := EP [ℓ(d ◦ f(X), Y )] . (1)
For example, in binary classification, d = 1, d(s) = sgn(s), and ℓ(y, y′) = 1{yy′ ≤ 0}, yielding
R(f) = P(Y f(X) ≤ 0). The challenge of minimizing R(f) is that the task loss ℓ can be nonsmooth,
nonconvex, and—even more—uninformative: the loss landscape of the 0-1 loss is flat almost
everywhere. This makes even practical (e.g., first-order) optimization impossible. We will consider
a slightly more sophisticated version of the problem (1), where instead of the loss ℓ being defined
only in terms of the instantaneous label Y , we will allow it to depend on P (Y ∈ · | X), so that we
investigate

R(f) := EP [ℓ(d ◦ f(X), P (· | X))] , (2)
whose minimizers frequently coincide with the original problem (2), but which allows more sophisti-
cation. (For example, in multiclass classification, Y ∈ {1, . . . , k}, and taking ℓ(ŷ, P ) =

∑
y P (Y =

y)1{ŷ ̸= y}, the risk coincides with the standard 0-1 error rate.)

Instead of the task loss ℓ, we thus consider an easier to optimize surrogate φ : Rd × Y → R. Then
rather than attacking the risk (2) directly, we minimize surrogate risk

Rφ(f) := EP [φ(f(X), Y )] .

For this to be sensible, we must exhibit some type of consistency with the task problem (2). In this
paper, we particularly study in two scenarios, which we will make more formal:

(i) The “classical” case of Fisher consistency, where F contains all Borel functions;
(ii) Statistical scenarios in which the hypothesis class F is parametric but may be mis-specified.

Our main message is that label aggregation improves consistency in both scenarios, demonstrating
the robustness of label cleaning.

2.1 LABEL AGGREGATION

Instead of obtaining (Xi, Yi) pairs, consider the case that we replace the output Y with a more
abstract variable Z ∈ Z . For example, in the motivating scenario in the introduction in which we
collect multiple (say, m) noisy labels for each example X , we take Z = (Y1, . . . , Ym) ∈ Ym. For
an abstract “aggregation space” A, let A : Z → A be an aggregating function (e.g., majority vote),
and let φ : Rd ×A → R+ be a surrogate loss defined on this aggregation space. We then define the
aggregated surrogate risk

Rφ,A(f) := E [φ(f(X), A(Z))] , (3)
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asking when minimizing the surrogate problem (3) is sufficient to minimize the actual task risk (2).
Two concrete examples may make this clearer.

Example 1 (Majority vote): In the repeated sampling regime, data collection takes the form
Z = (Y1, · · · , Ym), Yi | X = x

iid∼ PY |X=x. Define Am(Z) to be the empirical minimizer

A(Z) = A({Y1, . . . , Ym}) = argmin
y∈Y

m∑
l=1

ℓ(y, Yl).

When ℓ(ŷ, y) = 1{y ̸= ŷ}, this corresponds exactly to majority vote; the more general form allows
more abstract procedures. ♢

We can also (roughly) capture K-nearest neighbor aggregation procedures:

Example 2 (K-nearest neighbors): Consider an abstract repeated sampling scenario in which an
example X comes with a label Y and an additional draw (Xi, Yi)

m
i=1

iid∼ P , where m is the number
of additional examples, so Z = (Y, (Xi, Yi)

m
i=1). Let dist : X × X → R+ be a distance metric

on X . Let {X(1), . . . , X(m)} order the input sample {Xi}mi=1 by distance, dist(X,X(1)) ≤ . . . ≤
dist(X,X(m)) (and let X(0) = X). For K ≥ 0, we can aggregate the K-nearest neighbors of X , for
example, by choosing

Am,K(Z) := argmin
y∈Y

K∑
l=0

ℓ(y, Y(l)).

In Appendix E, we leverage the results in the coming sections to move beyond this population-level
scenario to address aggregation from a single sample (Xi, Yi)

n
i=1. ♢

3 SURROGATE CONSISTENCY

The standard framework for surrogate consistency Steinwart (2007) assumes that F consists of all
Borel measurable functions f : X → Rd. Working in the abstract setting in the preliminaries, define
the conditional task risk R(s | x) and the conditional surrogate risk Rφ(s | x), s ∈ Rd by

R(s | x) := ℓ(d ◦ s, P (Y ∈ · | X = x)) and Rφ(s | x) := E [φ(s, Y ) | X = x] .

We then define the pointwise excess risks

δℓ(s, x) := R(s | x)− inf
s′∈Rd

R(s′ | x), δφ(s, x) := Rφ(s | x)− inf
s′∈Rd

Rφ(s
′ | x),

as well as the minimal risks R⋆ := inff∈F R(f) and R⋆
φ := inff∈F Rφ(f). We follow the stan-

dard Steinwart (2007); Bartlett et al. (2006); Zhang (2004c) that consistency requires at least (i)
Fisher consistency and, if possible, a stronger and quantitative (ii) uniform comparison inequality:
respectively, that for all data distributions P ,

(i) For any sequence of functions fn ∈ F , Rφ(fn) → R⋆
φ implies R(fn) → R⋆.

(ii) For a non-decreasing ψ : R+ → R+, ψ(R(f)−R⋆) ≤ Rφ(f)−R⋆
φ for all f ∈ F , where ψ

satisfies ψ(ϵ) > 0 for all ϵ > 0,

In the case of binary classification when φ is margin-based and convex, the two consistency notions
coincide (Bartlett et al., 2006). The stronger uniform guarantee (ii) need not always hold, the
calibration function ψ provides a canonical construction through the excess risk:

ψ(ϵ, x) := inf
s∈Rd

{δφ(s, x) | δℓ(s, x) ≥ ϵ} and ψ(ϵ) := inf
x∈X

ψ(ϵ, x).

Consistency and comparison inequalities follow from the calibration functions (see (Zhang, 2004c,
Prop. 25) and (Steinwart, 2007, Thm. 2.8 and Lemma 2.9)):
Corollary 3.1. The surrogate φ is Fisher consistent (i) for ℓ if and only if ψ(ϵ, x) > 0 for all x ∈ X
and ϵ > 0. Let ψ be the Fenchel biconjugate of ψ. Then ψ(ϵ) > 0 if and only if ψ(ϵ) > 0, and for all
measurable f ,

ψ(R(f)−R⋆) ≤ Rφ(f)−R⋆
φ.
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In the general risk minimization problem (2) we would like at least a Fisher-consistent (i) surrogate
for ℓ, so that minimizing Rφ(f) = E[φ(f(X), Y )] would imply minimizing R(f). Given such a
result, using only paired observations (X,Y ) rather than tuples (X,Y1, . . . , Ym), we could bring the
entire theory of empirical processes and related statistical tools (van der Vaart and Wellner, 1996;
Bartlett et al., 2005; Koltchinskii, 2006; Bartlett et al., 2006) to bear on the problem. Moreover,
data collection procedures would be simpler, necessitating only single pairs (X,Y ) for consistent
estimation. Unfortunately, such results are generally impossible, as we detail in the next extended
example, necessitating the necessity of a theory of aggregation that we pursue in Sec. 3.2.

3.1 FISHER CONSISTENCY FAILURE WITHOUT LABEL AGGREGATION: RANKING

Consider the problem of ranking k items using pairwise comparison data (Keener, 1993; Dwork
et al., 2001; Duchi et al., 2012; Negahban et al., 2016), where the space Y consists of all pairwise
comparisons of these items, Y = {(i, j) : i ̸= j, 1 ≤ i, j ≤ k}. The (population) rank aggregation
problem is, for each x, to transform the probabilities pij = P (Y = (i, j) | x) into a ranking of the k
items. While numerous possibilities exist for such aggregation, we consider a simple comparison-
based aggregation scheme (cf. Keener, 1993); similar negative results to the one we show below hold
for more sophisticated schemes. Define the normalized transition matrix Cx ∈ Rk×k

+ with entries
(Cx)ii = 0 and

(Cx)ij =
pij∑
l ̸=j plj

for i ̸= j,

where we let 0/0 = 1/(k − 1) so that Cx is stochastic, satisfying CT
x 1 = 1. We then rank the items

by the vector Cx1 ∈ Rk
+, which measures how often a given item is preferred to others. (One may

also take higher powers Cp
x1 or Perron vectors (Keener, 1993); similar results to ours below hold in

such cases.) Tacitly incorporating the decoding d into the task loss ℓ, we
ℓ(s, C) := max

i<j
1
{
(si − sj)(ei − ej)

TC1 ≤ 0, (ei − ej)
TC1 ̸= 0

}
,

which penalizes mis-ordered scores between s and C. The population task risk (2) is thus
R(f) := P (f(X) and CX1 order differently) (4)

Now consider a convex surrogate φ : Rk×Y → R. We restrict to s ∈ Rk for which sT1 = 0, a minor
restriction familiar from multiclass classification problems (Zhang, 2004b; Tewari and Bartlett, 2007),
which is natural as for decoding a ranking we require only the ordering of the si. Unfortunately, there
is no convex Fisher-consistent surrogate for the problem (4) (see Appendix C.1).
Proposition 1. Consider the ranking problem with task risk (4) over k ≥ 3 outcomes. If φ :
Rk × Y → R is convex in its first argument, it is not Fisher consistent.

Nonetheless, a reasonably straightforward argument yields consistency when we allow aggregation
methods as soon as m, the number of collected comparisons, satisfies m ≥ k. The idea is simple: we
regress predicted scores f(x) on frequencies of label orderings. We assume multiple independent pair-
wise comparisons Z = (Y1, . . . , Ym) conditioned on X , and letting mij =

∑
y∈Ym 1{y = (i, j)}

and mj =
∑k

i=1mij , we define the aggregation

A(Z) =

{
⋆, if mj = 0 for some j in [k],

(mi1

m1
+ mi2

m2
+ · · ·+ mik

mk
)i∈[k] otherwise, i.e. if mj > 0 for all j ∈ [k].

Regressing directly onA(Z) whenA(Z) ̸= ⋆ yields consistency, as the next proposition demonstrates
(see Appendix C.2 for a proof):
Proposition 2. Define φ(s, q) = ∥s− q∥22 for s, q ∈ Rk and φ(s, ⋆) = 0. Then if m ≥ k, φ is
Fisher consistent for the ranking risk (4).

3.2 LABEL AGGREGATION OBTAINS STRONGER SURROGATE CONSISTENCY

The extended ranking example suggests potential benefits of aggregating labels, and it is natural
to ask how aggregation interacts with surrogate consistency more generally. Thus, we present two
results here: one that performs an essentially basic extension of standard surrogate-risk consistency,
and the second that shows how aggregation-based methods can “upgrade” what might nominally be
inconsistent losses into consistent losses, as Proposition 2 suggests may be possbile.
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3.2.1 BASIC EXTENSIONS OF SURROGATE CONSISTENCY

We begin by making the more or less obvious generalization of calibration functions for standard
cases, extending the classical comparison inequalities in Corollary 3.1. For an arbitrary aggregation
method A : Z → A, define the conditional surrogate risk with data aggregation

Rφ,A(s | x) := E [φ(s,A(Z)) | X = x] .

As in the non-aggregated case, the pointwise excess risk
δφ,A(s, x) := Rφ,A(s | x)− inf

s∈Rd
Rφ,A(s | x)

then defines the pointwise and uniform calibration functions
ψA(ϵ, x) := inf

s∈Rd
{δφ,A(s, x) | δℓ(s, x) ≥ ϵ} and ψA(ϵ) := inf

s∈Rd
ψA(ϵ, x). (5)

A consistency result then follows, similar to Corollary 3.1, under appropriate measurability conditions
(we will leave these tacit as they are not central to our results). Then more or less as a corollary
of Steinwart (2007, Thm. 2.8), we have the following consistency result. (We include a proof for
completeness in Appendix D.1.)
Proposition 3. Assume there exists b : X → R+ with

∫
b(x)dP (x) < ∞ such that δℓ(f(x), x) ≤

b(x). The surrogate φ is Fisher consistent (i) for the task risk (2) if and only if ψA(ϵ, x) > 0 for all
x ∈ X and ϵ > 0. Additionally, if ψA = (ψA)

∗∗ is the Fenchel biconjugate of ψA, then
ψA(R(f)−R⋆) ≤ Rφ,A(f)−R⋆

φ,A.

The result captures the classical consistency guarantees—nothing particularly falls apart because of
aggregation—but it provides no specific guarantees of improved consistency. We turn to this now.

3.2.2 IDENTIFYING SURROGATES AND CONSISTENCY

We now turn under essentially minimal conditions on the surrogate, there is a generic aggregating
strategy that (asymptotically in the number of observations y) guarantees consistency for any task loss
that seeks to minimize ℓ(f(x), y), i.e., R(f) = E[ℓ(f(X), Y )]. We assume that card(Y) = k <∞,
and we impose a minimal identifiability assumption on the surrogate loss.
Definition 3.1 (Identifying surrogate). A surrogate φ : Rd ×A → R is (Cφ,1,Cφ,2)-identifying for
Y , 0 < Cφ,1 ≤ Cφ,2 < ∞ if there exist {ay}y∈Y ⊂ A and vectors {sy}y∈Y such that d(sy) = y
and for which for all y ̸= y′,

φ(sy, ay) + Cφ,1 ≤ inf
d◦s̸=y

φ(s, ay), (6a)

φ(sy, ay′)− Cφ,2 ≤ inf
s∈Rd

φ(s, ay′). (6b)

Inequality (6a) captures that for each class y ∈ Y , there exists a parameter ay ∈ A such that the
minimizer of φ(·, ay) identifies y. A finite Cφ,2 exists for (6b) if φ(·, a) has a finite lower bound.
Notably, Definition 3.1 does not require that φ(·, a) is convex or that it is consistent when A = Y
and Z = Y , i.e., without label aggregation.

Example 3: Consider the binary hinge loss φ(s, a) = max{1 − sa, 0} for A = Y = {±1}. For
y ∈ {−1, 1}, take ay = sy = y, so that φ(s1, a1) = φ(s−1, a−1) = 0, while infsa≤0 φ(s, a) = 1.
Similarly, φ(s1, a−1) = φ(s−1, a1) = 2, so the hinge loss is (1, 2)-identifying. ♢

Given an identifying surrogate with parameters {ay}y∈Y , we consider a naive aggregation strategy:
the generalized majority vote

Am(y1, . . . , ym) := aŷ for ŷ = argmin
y∈Y

m∑
i=1

ℓ(y, yi) (7)

(breaking ties arbitrarily). As m→ ∞, because Y is finite, whenever Yi are i.i.d. there necessarily
exists a (random) M <∞ such that m ≥M implies

argmin
y∈Y

{ m∑
i=1

ℓ(y, Yi)

}
⊂ y⋆(x) := argmin

y∈Y
E [ℓ(y, Y ) | X = x] .

From this, we expect that as m→ ∞, the surrogate φ(·, Am) ought to be consistent. In fact, we have
the following corollary of our coming results, guaranteeing (asymptotic) consistency:

5
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Corollary 3.2. Let m = m(n) → ∞ and φ be identifying (Def. 3.1). Then

Rφ,Am
(fn)−R⋆

φ,Am
→ 0 implies R(fn)−R⋆ → 0.

3.2.3 IDENTIFYING SURROGATES AND CONSISTENCY AMPLIFICATION

In cases with low noise in the labels, the aggregation strategy (7) allows an explicitly improved
comparison inequality ψ(R(f)−R⋆) ≤ Rφ(f)−R⋆, in that ψ is linear over some range of ϵ > 0—
and linear growth is the strongest comparison inequality possible Osokin et al. (2017); Nowak-Vila
et al. (2020). More generally, strict comparison inequalities, such as those present in Proposition 3,
can be too narrow, as it can still be practically convenient to adopt inconsistent surrogates (Liu, 2007;
Osokin et al., 2017; Nowak-Vila et al., 2020). Thus, we follow Osokin et al. (2017) to introduce
(ξ, ζ) consistency, which requires a comparison function ψ to grow linearly only for ϵ ≥ ξ, so that
the surrogate captures a sort of “good enough” risk.
Definition 3.2. The surrogate loss φ and aggregator A yield level-(ξ, ζ) consistency if there exists ψ
satisfying ψ(ϵ) ≥ ζϵ for ϵ ≥ ξ, and ψ(R(f)−R⋆) ≤ Rφ,A(f)−R⋆

φ,A.

In the following discussion, we show under minimal assumptions, label aggregation (7) can achieve
level-(om(1), ζ) consistency even if the surrogate is Fisher inconsistent.

We introduce a quantifiable noise condition, adapting the now classical Mammen-Tsybakov noise
conditions Mammen and Tsybakov (1999) (see also Bartlett et al. (2006)). Define

∆(x) := min
d(s)̸∈y⋆(x)

δℓ(s, x), (8)

the minimal excess conditional risk when making an incorrect prediction. In binary classification
problems with Y = {±1}, one obtains ∆(x) = |2P (Y = 1 | X = x) − 1|, and more generally,
we expect that consistent estimation should be harder when ∆(x) is closer to 0. We can define the
Mammen-Tsybakov conditions (where the constant CMT > 0 may change) as

P (d ◦ f ̸= d ◦ f⋆) ≤ CMT (R(f)−R⋆)
α for all measurable f, (Nα)

where we refer to condition (Nα) as having noise exponent α, and

P(∆(X) ≤ ϵ) ≤ (CMTϵ)
β for ϵ > 0. (Mβ)

Here, α ∈ [0, 1] and β ∈ [0,∞], so that conditions (Nα) and (Mβ) always trivially hold with
α = β = 0, moreover, as in the binary case (Bartlett et al., 2006, Thm. 3), they are equivalent via the
transformation β = α

1−α . (See Appendix D.2.) We shall also use a noise condition number

κ(x) :=
maxd(s)̸=y⋆(x) δℓ(s, x)

mind(s)̸=y⋆(x) δℓ(s, x)
, (9)

which connects the noise statistic ∆(x) and the pointwise excess risk via ∆(x) ≥ δℓ(s, x)/κ(x) for
all s such that d(s) ̸= y⋆(x), allowing more fine-grained analysis. In binary classification, we have
κ(x) = 1 so long as P(∆(X) > 0) = 1.

The noise statistic ∆(x) and condition number κ(x) will allow us to show how (generalized) majority
vote (7), when applied in the context of any identifiable surrogate (Definition 3.1), achieves level-(ξ, ζ)
consistency. Define the error function

em(t) := t

√
2

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)
, (10)

which roughly captures that if κ(x) = t, then majority vote Am is likely correct if m is large enough
that em(t) ≪ 1. We then have the following theorem, which provides a (near) linear calibration
function; we prove it in Appendix D.3.
Theorem 1. Let the surrogate loss φ be (Cφ,1,Cφ,2)-identifying with parameters {ay}y∈Y , and
Am be the majority vote aggregator (7). Assume the task loss satisfies 0 ≤ ℓ ≤ 1 and P satisfies
condition (Nα) with noise exponent α ∈ [0, 1]. Then for any M > 0 and f ∈ F such that
R(f)−R⋆ ≥ 2P(κ(X) > M) + (4CMTem(M))

1
1−α ,

R(f)−R⋆ ≤ 16

Cφ,1
·
(
Rφ,Am(f)−R⋆

φ,Am

)
.
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Said differently, under the conditions of the theorem, φ with aggregation provides level (ξ, ζ)
consistency (Def. 3.2) with ξ = 2P(κ(X) > M) + (4CMTem(M))

1
1−α and ζ =

Cφ,1

16 . Theorem 1
also provides an immediate proof of Corollary 3.2, that is, an asymptotic guarantee of consistency.
Indeed, define

ξm := inf
M

{
2P(κ(X) > M) + (4CMTem(M))

1
1−α

}
,

which satisfies ξm → 0 as m → ∞, because P(κ(X) > M) → 0 as M ↑ ∞ and for any fixed M ,
em(M) → 0 as m grows. Corollary 3.2 then follows trivially by taking α = 0.

Theorem 1 is a somewhat gross result, as the identifiability conditions in Def. 3.1 are so weak. With
a tighter connection between task loss ℓ and surrogate φ, for example, making the naive majority
vote (7) more likely to be correct (or at least correct enough for φ), we would expect stronger bounds.
We do not pursue this here.

To provide a somewhat more concrete bound, we optimize over M in Theorem 1, using the crued
bound κ(x) ≤ 1/∆(x) on the condition number. By taking M = 1 for card(Y) = k = 2 and
optimizing M for k ≥ 3, we may lower bound ξm,k in the level (ξm,k, ζ)-consistency (Def. 3.2) that
in Theorem 1 promises, setting

ξm,k :=


(

32C2
MT

m log
(

8(Cφ,1+Cφ,2)
Cφ,1

)) 1
2(1−α)

, if k = 2

4 ·
(

32C4
MT

m log
(

4k(Cφ,1+Cφ,2)
Cφ,1

)) α
2(1−α2)

, otherwise.

Making appropriate algebraic substitutions and manipulations (see Appendix D.4), we have the
following corollary.
Corollary 3.3. Under the conditions of Theorem 1, for any f such that R(f)−R⋆ ≥ ξm,k,

R(f)−R⋆ ≤ 16

Cφ,1
·
(
Rφ,Am

(f)−R⋆
φ,Am

)
.

The above corollary and Corollary 3.2 provide evidence for the robustness of label cleaning: with
minimal assumptions on the surrogate, data aggregation can still yield consistency. As the noise
exponent α approaches 1 in Corollary 3.3, the sample size m required for the comparison inequality
to hold for a fixed score function f shrinks. Notably, if α = 1, whenever

m ≥ 32max{C2
MT,C

4
MT} · log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)
= O(log k),

we have ξm,k = 0, yielding the uniform comparison inequality (ii) with linear comparison. The noise
level of the learning problem itself affects the aggregation level needed for consistency—an “easier”
problem requires less aggregation to achieve stronger consistency.

We collect several examples in Appendix A, of varying levels of concreteness, that allow us to
instatiate Theorem 1 and Corollary 3.3. Those examples are (i) binary classification with a nonsmooth
surrogate, (ii) bipartite matching and (iii) structured prediction.

4 ROBUSTNESS AND CONSISTENCY FOR MODELS

The previous section builds off of the now classical theory of surrogate risk consistency, which
assumes F to be the class of all measurable functions. The results there show that aggregation
can allow us to “upgrade” consistency so that even if a surrogate φ is inconsistent for paired (non-
aggregated) data (X,Y ), we can achieve level-(ξ, ζ) consistency (Def. 3.2) with sufficient aggregation.
Here, we take a different view of the problem of consistency, considering the consequences of
optimizing over a restricted (often parametric) hypothesis class F . Of course, in a well-specified
model, obtaining consistency with such a restricted hypothesis class is no issue, but it is unrealistic to
assume such a brittle condition. This gives rise to the long-standing challenge of quantifying surrogate
consistency when the hypothesis class contains only a subset of the measurable functions (Duchi
et al., 2016; Nguyen et al., 2009). We tackle some of the issues around this, showing that aggregating
labels allows consistent estimates in scenarios where consistency might otherwise fail. We identify
one such failure mode for binary classification in restricted class and show how aggregation can
generically achieve consistency. We postpone details to Proposition 5 and Theorem 3 in Appendix B.

7
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4.1 ON FINITE-DIMENSIONAL MULTICLASS CLASSIFICATION

The final technical content of this paper considers a multiclass scenario in which X = Rd, Y = [k],
and we use linear predictors, but where the predictive model may be mis-specified. We will show that
even when the problem is optimally predictable and the linear model is well-specified on all except
an ϵ-fraction of data, surrogate risks based only on (X,Y ) pairs are inconsistent; majority vote-based
methods, however, will recover the optimal linear predictor.

To set the stage, let Θ = [θ1 · · · θk−1] ∈ Rd×k−1, and let the labels follow a categorical distribution
Y | X = x ∼ Cat(pΘ(x)), where pΘ(x) ∈ Rk

+ satisfies 1⊤pΘ(x) = 1 and

pΘ(x) =

[
σ(⟨θ1, x⟩, · · · , ⟨θk−1, x⟩)

1− 1⊤σ(⟨θ1, x⟩, · · · , ⟨θk−1, x⟩)

]
for a link σ : Rk−1 → Rk−1

+ , 1⊤σ ≤ 1. We assume σ satisfies the consistency condition that for
t ∈ Rk−1, setting tk = 0 and σk(t) = 1− 1⊤σ(t),

ty = max
1≤i≤k

ti if and only if σy(t) = max
1≤i≤k

σi(t). (11)

One standard example is multiclass logistic regression, where σlr
i (t) =

eti

1+et1+···+etk−1
. Let the mul-

tilabeled dataset be {(Xi; (Y1i, · · · , Yim))}ni=1 with repeated sampling Yij | Xi
iid∼ Cat(pΘ⋆(Xi)),

and Y +
i = Am(Yi1, · · · , Yim) be the majority vote with ties broken arbitrarily. Then Y +

i |
Xi ∼ Cat(pΘ⋆,m(Xi)), where if ρm(t) denotes the distribution of majority vote on m items

with initial probabilities σ(t) ∈ Rk−1
+ , then pΘ,m(x) =

[
ρm(⟨θ1, x⟩, · · · , ⟨θk−1, x⟩)

1− 1⊤ρm(⟨θ1, x⟩, · · · , ⟨θk−1, x⟩)

]
.

It is evident that ρm satisfies link consistency (11). Consider fitting a logistic regression with loss
φ(Θ⊤x, y) = −⟨θy, x⟩ + log

(
1 +

∑k−1
i=1 exp(⟨θi, x⟩)

)
, with the convention that θk = 0, and let

Lm(Θ) = E[φ(Θ⊤X,Y +
m )] be the logistic loss with m-majority vote. Then

∇θiφ(Θ
⊤x, y) = −x(1{y = i} − σlr

i (Θ
⊤x)),

so that the Θm minimizing Lm satisfies

∇ΘLm(Θm) = E
[
X
(
σlr(Θ⊤

mX)− ρm(Θ⋆⊤X)
)⊤]

= 0.

Standard results in statistics guarantees both consistency and efficiency when the model is well-
specified without aggregation, and when m ≥ 1 and k = 2, Cheng et al. (2022, Prop. 3) show
there exists tm > 0 such that Θm = tmΘ⋆ if X ∼ N(0, Id) even with a mis-specified link. This
implies that in binary classification, even if the link function is incorrect, we can still achieve
consistent classification regardless of the aggregation level m, as the direction Θ⋆/ ∥Θ⋆∥2 determines
consistency. However, as soon as k ≥ 3 and the true link is slightly mis-specified, risk consistency
fails. Fixing a set Tϵ ⊂ Rk−1 with Lebesgue measure ϵ, consider

σϵ(t) = σlr(t)1{t ̸∈ Tϵ}+
1

k
1 · 1{t ∈ Tϵ} ,

which defines a distribution on Y ∈ {1, . . . , k} conditional on t ∈ Rk−1 that samples Y ∼ σlr(t)
if t ∈ Tϵ and uniformly otherwise. Clearly σϵ satisfies the link consistency condition (11) and is
optimally predictable (13). For ϵ > 0, define

Lm,ϵ(Θ) := E[Eσϵ [φ(Θ⊤X,Y +
m ) | X]]

to be the (population) logistic loss, based on m-majority vote, when Y | X = x ∼ σϵ(Θ⋆⊤x). Let
Θm(ϵ) = argminΘ Lm,ϵ(Θ). Evidently, Θ1(0) = Θ⋆; nonetheless, the next result shows that for
arbitrarily small ϵ > 0, consistency fails without aggregation. See its proof in Appendix G.1.
Proposition 4. Let k ≥ 3, Σ = I . Assume that for Z ∼ N(0, Ik−1), the linear mapping M 7→
DM := E[Z(∇σlr(Θ⋆⊤Z)MZ)⊤] is invertible. Then there exists ϵ0 > 0 such that for any ϵ ∈
(0, ϵ0), there is a set Tϵ with Lebesgue measure at most ϵ and for which

Θ1(ϵ)/ ∥Θ1(ϵ)∥ ̸= Θ⋆/ ∥Θ⋆∥ .

8
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Majority vote, however, can address this inconsistency as m → ∞ without any assumptions on
the true link σ except that it satisfies the consistency condition (11). Indeed, letting Lm,σ(Θ) =
E[Eσ[φ(Θ

⊤X,Y +
m ) | X]] and Θm = argminLm,σ(Θ), we have the following

Theorem 2. Let Θ⋆ have decomposition Θ⋆ = U⋆T ⋆, where U⋆ ∈ Rd×(k−1) is orthogonal and
T ⋆ ∈ R(k−1)×(k−1) is nonsingular. Then there exists Tm ∈ R(k−1)×(k−1) such that Θm = U⋆Tm
for every m, and as m→ ∞,

∥Tm∥ → ∞ and Tm/∥Tm∥ → T ⋆/∥T ⋆∥.

See Appendix G.2 for a proof.

Theorem 2 shows more evidence for the robustness properties of label aggregation, providing
asymptotic consistency even in mis-specified models so long as there is some link function describing
the relationship betweenX and Y . The robustness is striking when k ≥ 3: as Proposition 4 highlights,
methods without label aggregation are generally inconsistent.

5 DISCUSSION AND FUTURE WORK

The question of whether and how to clean data has animated much of the research discussion around
dataset collection. Cheng, Asi, and Duchi (2022) provide a discussion of these issues, highlighting
that there appears to be a phenomenon that using non-aggregated data—all available labels—leads
to better statistical efficiency when models have the power to fully represent all uncertainty, but
otherwise, data cleaning appears to be more robust. In a similar vein, Dorner and Hardt (2024)
argue that, in a validation setting of comparing binary classifiers, it is better to use more noisy labels
rather than cleaned variants. This paper contributes to this dialogue by providing evidence for both
fundamental limits to using un-cleaned, un-aggregated label information in supervised learning while
highlighting robustness improvements that come from label cleaning. Still, many questions remain.

Finite m results and fundamental limits. Many of the consistency results we present repose on
taking a limit asm, the number of labels aggregated, tends to infinity. While at some level, the purpose
of this paper is to highlight ways in which label aggregation can improve robustness, it is perhaps
unsatisfying to rely on this asymptotic setting. In the context of ranking (Sec. 3.1), we can provide
explicit consistency guarantees at a finite m, but developing this further provides one of the most
natural and (we believe) important avenues for future work. Providing a surrogate consistency theory
that depends both on the loss pairs (ℓ, φ) and the available label count m would be interesting; for
example, in the context of ranking in Sec. 3.1, if we wish to look at second or third-order comparisons
of items (e.g., powers Cp

x , as Keener (1993) suggests), do we require increasing label counts m?
Precisely delineating those problems that require label cleaning and aggregation from those that do
not represents a central challenge here.

Fundamental limits of the noise condition number. Our work relies on the noise condition
number (9), κ(X), to characterize comparison inequalities for multiclassification problems, hinting
at the difficulty beyond binary classification, where trivially κ(X) = 1. The condition number can
still be large even when the Mammen-Tsybakov noise level (Nα) is low—i.e. α ≈ 1—in cases
beyond binary classification. This is a consequence of the minimal assumptions on the surrogate in
our setting, and it would be beneficial to identify connections between the loss ℓ and surrogate φ
that more closely capture problem difficulty. A more precise delineation of fundamental limits by
constructing explicit failure modes will also yield more insights into fitting predictive models.

Behavior in mis-specified models. Our results on mis-specified models, especially those in Sec-
tion 4.1, require optimal predictability (13), that is, that a Bayes-optimal classifier lie in F . While
classical surrogate consistency results provably fail even in this case—and methods based on aggre-
gated labels can evidently succeed—moving beyond such restricted scenarios seems a fruitful and
interesting direction. Nguyen et al. (2009), followed by Duchi et al. (2016), identify one direction
here, showing that in binary and multiclass classification (respectively), jointly inferring a predictor
f and a data representation for x requires that surrogates φ take a particular form depending on
the task loss ℓ. These still repose on infinitely powerful decision rules f , however, so we need new
approaches.

9
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A SURROGATE CONSISTENCY EXAMPLES WITH MAJORITY VOTE

Throughout, we shall assume that P has a noise exponent α ∈ [0, 1], though this is no loss of
generality, as Condition (Nα) always holds with α = 0. We defer proofs for each result in this section
to Appendix D.5.

A.1 BINARY CLASSIFICATION WITH A NONSMOOTH SURROGATE

Consider the binary classification problem with a margin-based surrogate φ(f(x), y) = ϕ(yf(x)),
where ϕ is convex; Bartlett et al. (2006) show that φ is consistent if and only if ϕ′(0) < 0. Here,
we show a (somewhat trivial) example for the robustness data aggregation offers by demonstrating
that even if ϕ is inconsistent without aggregation, it can become so with it. Note, of course, that one
would never use such a surrogate, so one ought to think of this as a thought experiment. Assume that
the subgradient set ∂ϕ(0) ⊂ (−∞, 0) and ϕ is convex with limt→∞ ϕ(t) = 0.

Lemma A.1. For any δ > 0, φ is (Cφ,1,Cφ,2)-feasible with

Cφ,1 = ϕ(0)− ϕ(δ) > 0 and Cφ,2 = ϕ(−δ).

Corollary 3.3 thus applies with k = 2, so if f : X → R satisfies

R(f)−R⋆ ≥
(
32C2

MT

m
log

(
8(ϕ(−δ) + ϕ(0)− ϕ(δ))

ϕ(0)− ϕ(δ)

)) 1
2(1−α)

,

then

R(f)−R⋆ ≤ 16

ϕ(0)− ϕ(δ)
(Rφ,Am(f)−R⋆

φ,Am
).

A.2 BIPARTITE MATCHING

In general structured prediction problems (Nowozin and Lampert, 2011), an embedding map v :
Y → Rd encodes structural information about elements y ∈ Y , where Y is some “structured” space,
which is typically large. Using decoder d(s) = argmaxy∈Y⟨s, v(y)⟩, for a loss ℓ : Y × Y → R+

with ℓ(y, y) = 0, the maximum-margin surrogate (generalized hinge loss) (Taskar et al., 2003;
Tsochantaridis et al., 2004; Joachims, 2006) takes the form

φ(s, y) = max
ŷ∈Y

(ℓ(ŷ, y) + ⟨v(ŷ)− v(y), s⟩) . (12)

Notably, the loss (12) is typically inconsistent, except in certain low noise cases (Osokin et al., 2017;
Nowak-Vila et al., 2020).

Before discussing structured prediction broadly, we consider bipartite matching. A bipartite matching
consists of a graph G = (V,E) where the vertices V = V1 ∪ V2 partition into left and right sets
V1 = {1, . . . , N} and V2 = {N + 1, . . . , 2N}, while the N edges E each connect exactly one
(unique) node in V1 and V2. Letting Y be the collection of all bipartite matching between V1 and V2,
we evidently have k = card(Y) = N !. For any graph G, the embedding map

v(G) := (1{(u, v) ∈ E})u∈V1,v∈V2
∈ RN2

indexes edges, yielding d = N2. The task loss counts the number of mistaken edges,

ℓ(y1, y2) :=
1

2N
∥v(y1)− v(y2)∥1 =

1

2N
∥v(y1)− v(y2)∥22 .

In this case, the max-margin (structured hinge loss) surrogate (12) is identifying:

Lemma A.2. For the bipartite matching problem on 2N vertices, the structured hinge loss (12)
surrogate φ is (Cφ,1,Cφ,2)-identifying (Def. 3.1) with

Cφ,1 =
1

N
and Cφ,2 = 2.
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The important consequence of Lemma A.2 is that even when k = card(Y) = N !, aggregation-based
methods can yield consistency (via the structured hinge loss) once m, the number of aggregated
labels, exceeds O(N logN). As one specialization, substituting these constants into Corollary 3.3
for k ≥ 3, for all measurable f : X → Rd such that

R(f)−R⋆ ≥ 4 ·
(
32C4

MT

m
log (4k(2N + 1))

) α
2(1−α2)

,

one has

R(f)−R⋆ ≤ 16N(Rφ,An(f)−R⋆
φ,An

).

A.3 STRUCTURED PREDICTION

We return to the more general structured prediction setting, as at the beginning of the preceding
subsection. Suppose the decoder d can pick any class y ∈ Y , in that for each y ∈ Y , the collection

S(y) := {s : ⟨v(y), s⟩ > ⟨v(ŷ), s⟩, for ŷ ̸= y}

of selecting s is non-empty. For each y ∈ Y , define the identifiability gap

τ(y) := inf
s∈S(y)

max
y+,y− ̸=y

ℓ(y+, y)

⟨v(y)− v(y+), s⟩
· ⟨v(y)− v(y−), s⟩

ℓ(y−, y)
.

We have the following identifiability guarantee.
Lemma A.3. For the structured prediction problem, the max-margin (12) surrogate φ is (Cφ,1,Cφ,2)-
identifiable with

Cφ,1 = min
ŷ ̸=y

ℓ(ŷ, y), Cφ,2 = max
y∈Y

τ(y) + 1.

In particular, if v(y) ∈ {0, 1}d and ℓ(ŷ, y) = 1
2d ∥v(ŷ)− v(y)∥1, τ(y) = 1 for all y and Cφ,2 = 2.

Completing the example, as in the binary matching case, we see that nontrivial consistency guarantees
hold once m ≥ log card(Y). As 0 ≤ ℓ(·, ·) ≤ 1, Corollary 3.3 applies, which yields for all
measurable f : X → Rd that

R(f)−R⋆ ≥
(
32C4

MT

m
log

(
4|Y|

(
1 +

maxŷ∈Y τ(y) + 1

minŷ ̸=y ℓ(ŷ, y)

))) α
2(1−α2)

,

implies

R(f)−R⋆ ≤ 8

minŷ ̸=y ℓ(ŷ, y)
(Rφ,Am

(f)−R⋆
φ,Am

).

B CONSISTENCY AND AGGREGATION IN RESTRICTED HYPOTHESIS CLASS

B.1 CONSISTENCY FAILURE FOR BINARY CLASSIFICATION IN FINITE DIMENSIONS

To see how restricting the hypothesis class can change the problem substantially even in well-
understood cases, we consider binary classification. In this case, Y = {±1}, and we take the
zero-one error ℓ(d(s), y) = 1{ys ≤ 0}. We consider a margin-based surrogate φ(s, y) = ϕ(sy),
where ϕ : R → R+ is convex, and as we have discussed, φ achieves both Fisher (i) and uniform
consistency (ii) when F consists of all measurable functions if and only if ϕ′(0) < 0 Bartlett et al.
(2006).

Now we proceed to consider a restricted hypothesis class, showing in this simple setting that classical
consistency fails even when optimal classifiers lie in F , in particular, when P is optimally predictable
using F , meaning that

sgn(f(x)) = sgn(P(Y = 1 | X = x)− 1/2). (13)

Let X = Rd and take F = {fθ | fθ(x) = ⟨θ, x⟩}θ∈Rd to be the collection of linear functionals of x.
When P is optimally predictable from using F , there exists θ⋆ satisfying sgn(⟨θ⋆, x⟩) = sgn(P (Y =
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1 | x) − 1
2 ), and fθ⋆ minimizes R(f) across all measurable functions. In this case, we say that P

is optimally predictable along θ⋆. One might expect a margin-based surrogate φ achieving Fisher
consistency in the classical setup should still consistent. This fails. Even more, for any nonnegative
loss ϕ, there is a data distribution P on (X,Y ) such that θφ = argminθ EP [φ(fθ(X), Y )] is
essentially orthogonal to θ⋆:
Proposition 5. For any ϵ > 0 and nonzero vector θ⋆ ∈ Rd, there exists an (X,Y ) distribution P ,
optimally predictable along θ⋆, such that for all

θφ ∈ argmin
θ

Rφ(fθ) = argmin
θ

E [ϕ(fθ(X), Y )] ,

we have R(fθφ) > R(fθ⋆) and | cos∠(θφ, θ⋆)| = |⟨θφ, θ⋆⟩|/(∥θφ∥2 ∥θ
⋆∥2) ≤ ϵ.

We postpone the proof to Appendix F.1.

Data aggregation methods provide one way to circumvent the the inconsistency Proposition 5
highlights. To state the result, define the approximate minimizers

ϵ-argmin g = ϵ-argmin
θ

g(θ) :=
{
θ | g(θ) ≤ inf

θ
g(θ) + ϵ

}
.

Suppose the data collection consists of independent samples Z = (Y1, . . . , Ym) and we take Am(Z)
to be majority vote. For a sequence ϵm take

θm ∈ ϵm-argmin
θ

Rφ,Am
(fθ) = ϵm-argmin

θ
E [ϕ(Am(Y1, . . . , Ym)fθ(X))] .

Then as a corollary to the coming Theorem 3, fθm are asymptotically consistent when m→ ∞.
Corollary B.1. Let P be optimally predictable along θ⋆. Then if ϵm → 0 as m→ ∞, R(fθm) →
R(fθ⋆) and cos∠(θm, θ⋆) → 1.

So without aggregation, surrogate risk minimization is (by Proposition 5) essentially arbitrarily incor-
rect when restricting to the class of linear predictors, while with aggregation, we retain consistency.

B.2 AGGREGATION, CONSISTENCY, AND RESTRICTED HYPOTHESIS CLASSES

As Proposition 5 shows, surrogate risk consistency reposes quite fundamentally on F containing all
measurable functions. We now consider multiclass classification problems, where Y = {1, . . . , k},
and in which F forms a linear cone satisfying

f(x)T1 = 0 and tf ∈ F for t > 0 if f ∈ F .
We consider the zero-one loss ℓ(y, y′) = 1{y ̸= y′} and d(s) = argmaxy∈[k] sy, making the
restriction to predictors normalized to have f(x)T1 = 0 immaterial. Assume the surrogate φ :
Rk × [k] → R+ is Fisher-consistent (i) and satisfies the limiting loss condition

φ(s, y) → 0 if sy − sj → +∞ for all j ̸= y. (14)

Many familiar surrogate losses are Fisher consistent and satisfy (14), including the multiclass logistic
loss φ(s, y) = log(

∑k
j=1 e

sj−sy ) and any loss of the form

φ(s, y) =
∑
i̸=y

ϕ(sy − si)

for ϕ convex, non-increasing with ϕ′(0) < 0, and inft ϕ(t) = 0. Zhang (2004b, Thm. 5) shows
that any such loss is consistent over the class F = {f : X → Rk | 1T f = 0}. Clearly, the
margin-based binary setting in Sec. ?? falls into this scenario when we take f(x) = (g(x),−g(x))
for a measurable g. Additionally, in a parametric setting when X = Rd, if F consists of linear
functions f(x) = (⟨θ1, x⟩, . . . , ⟨θk, x⟩) with

∑k
i=1 θi = 0, then F is a (convex) cone.

Extending the definition (13) of optimal predictability in the obvious way, we shall say F can
optimally predict P if there exists f ∈ F , f : X → Rk, for which

argmax
y

fy(x) ∈ argmax
y

P (Y = y | X = x) for all x.

The next theorem shows if Z = Ym, we aggregate via majority vote Am, and there is a unique
y⋆(x) = argmaxy P (Y = y | x), then surrogate risk minimization is consistent whenever F can
optimally predict P .
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Theorem 3. Let F be a cone that optimally predicts P , and assume that the minimal excess risk (8)
satisfies P (∆(X) > 0) = 1. Let ϵm ≥ 0 satisfy ϵm → 0. Then for any sequence

fm ∈ ϵm-argmin
f∈F

Rφ,Am
(f) = ϵm-argmin

f∈F
E [φ(f(X), Am(Y1, . . . , Ym))] ,

we have R(fm) → R⋆.

See Appendix F.2 for a proof.

Theorem 3 shows that for a broad class of surrogate problems with a hypothesis class F that forms a
linear cone, we can achieve consistency asymptotically by aggregation as m→ ∞. In contrast, as
Proposition 5 shows, even in the “simple” case of binary classification, consistency may fail over
subclasses F , even when they include the optimal predictor, and the surrogate can be arbitrarily
uninformative.

C PROOFS RELATED TO THE RANKING EXAMPLES (SEC. 3.1)

C.1 PROOF OF PROPOSITION 1

The proof relies on a few notions of variational convergence of functions Rockafellar and Wets (1998),
which we review presently. Recall that for a sequence of sets An ⊂ Rk,

lim sup
n

An :=
{
x ∈ Rk | lim inf

n
dist(x,An) = 0

}
=
{
x | there are yn ∈ An s.t. yn(m) → x

}
and that for a function g, we define

ϵ-argmin g = {s | g(s) ≤ inf g + ϵ}

It will be important for us to discuss convergence of minimizers of convex functions, and to that
end, we state the following consequence of the results in Rockafellar and Wets (1998), where
R = R ∪ {+∞}.

Lemma C.1. Let gn : Rk → R be convex functions with pointwise limit g where g is coercive. Then
gn converges uniformly to g on compacta, g is convex, the gn are eventually coercive, and for any
sequence ϵn ↓ 0 (including those with ϵn = 0),

∅ ̸= lim sup
n

{ϵn-argmin gn} ⊂ argmin g.

Proof First, we observe that gn → g pointwise implies that gn → g uniformly on compacta, and g
is convex (see Hiriart-Urruty and Lemaréchal (1993, Thm. IV.3.15) and Rockafellar and Wets (1998,
Thm. 7.17)). This is then equivalent to epigraphical convergence of gn to g (Rockafellar and Wets,
1998, Thm. 7.17). Moreover, as gn → g uniformly on compacta, if xn → x then gn(xn) → g(x).
Thus, for any ϵn ↓ 0, if for a subsequence n(m) ⊂ N we have xn(m) ∈ ϵn(m)-argmin gn, and
xn(m) → x, we certainly have gn(m)(xn(m)) → g(x). Consequently (Rockafellar and Wets, 1998,
Prop. 7.30) we have

lim sup
n

{ϵn-argmin gn} ⊂ argmin g.

That the limit supremum is non-empty is then a consequence of (Rockafellar and Wets, 1998,
Thm. 7.33), as the convex functions gn must be coercive as they are convex and g is.

We now outline our approach and leverage a few consequences of Lemma C.1. Recall our restriction
of φ to the set sT1 = 0. For probabilities p = (pij)i,j≤k, define

Rφ(s | p) := EY∼p [φ(s, Y )] .

We argue that for appropriate p,Rφ is coercive, and then use Lemma C.1 to argue about the structure of
its minimizers. Assume for the sake of contradiction that φ is consistent. By considering a distribution
p supported only on the pair (i, j), appealing to standard results on surrogate risk consistency for
binary decision problems (Bartlett et al., 2006) shows that φ(s, (i, j)) → ∞ whenever (sj−si) → ∞.
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Now, consider any distribution p containing a cycle over all i ∈ {1, . . . , k}, meaning that there exists
a permutation π : [k] → [k] such that pπ(i),π(i+1) > 0 for all i (where π(k + 1) = π(1)). Then

Rφ(s | p) ≥ min
i∈[k]

pπ(i),π(i+1)φ(s, (π(i), π(i+ 1))),

and without loss of generality, we assume π(i) = i. If ∥s∥ → ∞ while 1T s = 0 (recall the
assumption in the proposition), it must be the case that maxi(si+1− si) → ∞, and so s 7→ Rφ(s | p)
is coercive whenever p contains a cycle and the minimizers of Rφ(· | p) exist.

With these preliminaries, we turn to the proposition proper. We construct a distribution p ∈ Rk×k
+

for which 0 must be a minimizer of Rφ(s | p), and use this to show that 0 minimizes Rφ(s | (i, j))
for each pair, yielding a contradiction to Fisher consistency. Consider a distribution p ∈ Rk×k

+

parameterized by q ∈ Rk
++, i.e., q > 0, satisfying 1T q = 1. Then define p to have entries

pij =


ql, if (i, j) = (l, l + 1),

qk = 1− q1 − · · · − qk−1 > 0, if (i, j) = (k, 1),

0, otherwise.
(15)

The corresponding normalized transition matrix C := C(q1, . . . , qk) then takes the form

Cij =

{
1, j = i+ 1 or (i, j) = (k, 1),

0, otherwise.

Evidently C1 = 1.

If φ is Fisher consistent, we claim that 0 must minimize the conditional surrogate risk

Rφ(s | p) = EY∼p [φ(s, Y )] =

k∑
l=1

qlφ(s, (l, l + 1)). (16)

To see this, fix an (arbitrary) permutation π. We tacitly construct a sequence p(n) → p with
p(n) ∈ Rk×k

+ , p(n)
T
1 = 1, for which the comparison matrix C(n) with non-diagonal entries

C
(n)
ij =

p
(n)
ij∑

l ̸=i p
(n)
lj

satisfies [C(n)1]π(i) > [C(n)1]π(i+1) for each i. (To perform this construction, take scalars v1 >
· · · > vk > 0, and add 1

nvi to each entry of row π(i) in p, so that if vπ−1 = (vπ−1(1), . . . , vπ−1(k)),
then p(n) = (p+ 1vTπ−1/n)/1T (p+ 1vTπ−1/n)1. Let n be large.)

The presumed Fisher consistency of φ means it must be the case that

s(n) ∈ argmin
s

Rφ(s | p(n)) satisfies s
(n)
π(i) > s

(π,n)
π(i+1) for each i.

Applying Lemma C.1 for each such sequence and permutation π, we see that the set of minimizers
argminsRφ(s | p) of the conditional risk (16) must, for each permutation π, include a vector
s = s(π) such that

sπ(1) ≥ sπ(2) ≥ · · · ≥ sπ(k). (17)

As argminsRφ(s | p) is a closed convex set, we now apply the following

Lemma C.2. Let S ⊂ {s ∈ Rk | sT1 = 0} be a convex set containing a vector of the form (17) for
each permutation π. Then 0 ∈ S.

Proof We proceed by induction on k ≥ 2. Certainly for k = 2, given vectors u = (s,−s) and
v = (−t, t) satisfying s ≥ 0 and t ≥ 0, we solve

λs+ (1− λ)t = 0 or λ =
t

s+ t
∈ [0, 1],

giving the base of the induction. Now suppose that the lemma holds for dimensions 2, . . . , k − 1; we
wish to show it holds for dimension k. Let I = {1, . . . , k − 1} be the first k − 1 indices, and for a
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vector v ∈ Rk let vI = (vi)i∈I . Consider any collection {v} ⊂ S covering the permutations (17);
take two subsets V1 and V2 of these consisting (respectively) of those v such that vk ≤ vj for all
j ≤ k− 1 and vk ≥ vj for all j ≤ k− 1. Then by the induction, there exist vi ∈ Conv(Vi), i = 1, 2
such that

v1 =

[
a1k−1

s

]
and v2 =

[
b1k−1

t

]
,

where a(k − 1) + s = 0 while s ≤ a and b(k − 1) + t = 0 while t > b. As s ≤ 0 and t > 0, so
setting λ = t

t−s gives λv1 + (1− λ)v2 = 0.

In particular, we have shown that 0 minimizes the surrogate risk (16), and for any vector q =
(q1, . . . , qk) > 0 defining p = p(q) and C in (15),

inf
s
Rφ(s | p) = Rφ(0 | p).

Notably, the minimizing vector 0 is independent of the parameters q1, . . . , qk defining p and C in (15).
For (i, j) ∈ Y , letDij = ∂φ(0, (i, j)) ⊂ Rk be the set of subgradients at 0, which is compact convex
and non-empty. Then by the first-order optimality condition for subgradients and construction (16) of
the conditional surrogate risk, there exist vectors gl ∈ Dl,l+1 satisfying

k−1∑
l=1

qlgl +

(
1−

k−1∑
l=1

ql

)
gk = 0 and so gk = −

∑k−1
l=1 qlgl

1−
∑k−1

l=1 ql
∈ Dk,1.

As the Dij are compact convex, by taking qk ↑ 1 and (q1, . . . , qk−1) → 0, we have

∥gk∥2 ≤
∑k−1

l=1 ql

1−
∑k−1

l=1 ql
max
i,j

sup
g∈Dij

∥g∥2 → 0.

As theDij are closed convex, we evidently have 0 ∈ Dk,1, while parallel calculation gives 0 ∈ Dl,l+1

for each l. A trivial modification to the construction (15) to apply to cycles other than (1, 2, . . . , k, 1)
then shows that 0 minimizes φ(·, (i, j)) for all pairs (i, j), violating Fisher consistency.

C.2 PROOF OF PROPOSITION 2

The proof relies on the fact when m ≥ k, the event of observing a comparisons (i, ji) for each
1 ≤ i ≤ k has nonzero probability. Conditional on this event, we can obtain an unbiased estimate of
Cx1. As φ(s, ⋆) = 0, it follows that

Rφ,A(s | x) = E
[
∥s−A(Z)∥22 1{A(Z) ̸= ⋆}

]
When m ≥ k, P(A(Z) ̸= ⋆) > 0, yielding per-x minimizer

s⋆ = argminRφ,A(s | x) = E

[(
mi1

m1
+ · · ·+ mik

mk

)
i∈[k]

| m1 > 0, . . . ,mk > 0

]
.

Conditioned on fixed positive values of m1, · · · ,mk,

(m1j , · · · ,mqj) ∼ Multinom

(
mj ;

p1j∑k
i=1 pij

, . . . ,
pkj∑k
i=1 plj

)
,

so E[mij/mj ] = pij/
∑k

l=1 plj = (Cx)ij . As s⋆ = Cx1 is unique, Fisher consistency follows.

D CONSISTENCY PROOFS

D.1 PROOF OF PROPOSITION 3

Our only real assumption is that (s, x) 7→ ℓ(s, P (· | x)) is jointly measurable in s and x. Fix a
function f . Then for any ϵ > 0,

Rφ,A(f)−R⋆
φ,A =

∫
X
δφ,A(f(x), x)dP (x) ≥

∫
δℓ(f(x),x)≥ϵ

ψA(ϵ, x)dP (x).
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Because ψA(ϵ, x) > 0 for each x, the measure defined by dν(x) = b(x)dP (x) is absolutely
continuous with respect to dµ(x) = ψA(ϵ, x)dP (x). That is, there exists δ > 0 such that ν(C) ≤ ϵ
for all C ⊂ X satisfying ν(C) ≤ δ. Assume now that Rφ,A(f) − R⋆

φ,A ≤ δ, so that the set
Xϵ := {x | δℓ(f(x), x) ≥ ϵ}, which is measurable by the joint measurability assumption, satisfies∫
Xϵ
b(x)dP (x) ≤ ϵ. We find

R(f)−R⋆ =

∫
δℓ(f(x),x)≥ϵ

δℓ(f, x)dP (x) +

∫
δℓ(f(x),x)<ϵ

δℓ(f(x), x)dP (x)

≤
∫
Xϵ

b(x)dP (x) + ϵ ≤ 2ϵ.

In particular, we have shown that Rφ,A(f)−R⋆
φ,A ≤ δ implies R(f)−R⋆ ≤ 2ϵ, which gives the

“hard” direction of Fisher consistency. The converse is trivial by considering a single x.

To see the comparison inequality, note that by definition of the calibration function,

ψA(δℓ(f(x), x)) ≤ ψA(δℓ(f(x), x)) ≤ δφ,A(f(x), x)

for all x ∈ X . The result follows by integrating on both sides w.r.t. PX and applying Jensen’s
inequality to ψA.

D.2 THE EQUIVALENCE OF THE MAMMEN-TSYBAKOV CONDITIONS (Nα) AND (Mβ)

We show the analogue of Bartlett et al. (2006, Thm. 3), essentially mimicking their proof, but
including it for completeness.
Lemma D.1. Let α ∈ [0, 1]. A distribution P satisfies condition (Nα) if and only if it satisfies
condition (Mβ) with β = α

α−1 , where the constant CMT may differ in the inequalities.

Proof Let condition (Nα) hold. We let c = CMT for shorthand and assume for notational simplicity
that y⋆(x) = argminy E[ℓ(y, Y ) | X = x] is a singleton. Choose a measurable function f such that

f(x) = y⋆(x), if ∆(x) > ϵ and δℓ(f(x), x) = ∆(x) if ∆(x) ≤ ϵ.

For all α ∈ [0, 1], as δℓ(f(x), x) = 0 if ∆(x) > ϵ,

ϵP(∆(X) ≤ ϵ) ≥ E[∆(X)1{∆(X) ≤ ϵ}] = E [δℓ(f(X), X)] = R(f)−R⋆

≥
(
1

c
P(d ◦ f ̸= d ◦ f⋆)

) 1
α

=

(
1

c
P(0 ≤ ∆(X) ≤ ϵ)

) 1
α

.

Rearranging terms we see for the constant c′ = c
1
α ,

P(0 ≤ ∆(X) ≤ ϵ) ≤ (c′ϵ)α/(1−α),

so condition (Mβ) holds with β = α
1−α . (The result is trivial when α = 1, as P(∆(X) ≤ ϵ) = 0.)

Now assume condition (Mβ) holds for a value 0 ≤ β < ∞, that is, P(∆(X) ≤ ϵ) ≤ (cϵ)β for all
ϵ > 0. Recall the definition (8) of ∆(x) = min{δℓ(s, x) | d(s) ̸∈ y⋆(x)}, so that

R(f)−R⋆ = E [1{d ◦ f(X) ̸= d ◦ f⋆(X)} δℓ(f(X), X)]

≥ E [1{d ◦ f(X) ̸= d ◦ f⋆(X)}∆(X)] ,

and again by Markov’s inequality for any ϵ ≥ 0,

E [1{d ◦ f(X) ̸= d ◦ f⋆(X)}∆(X)] ≥ ϵP(d ◦ f(X) ̸= d ◦ f⋆(X),∆(X) > ϵ)

≥ ϵ (P(d ◦ f ̸= d ◦ f⋆)− P(∆(X) ≤ ϵ)) (18)

≥ ϵP(d ◦ f ̸= d ◦ f⋆)− cβϵ1+β ,

where the last inequality applies condition (Mβ). Maximizing the right hand side, we set

ϵ =
1

c

(
P(d ◦ f ̸= d ◦ f⋆)

(1 + β)

) 1
β
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we obtain

R(f)−R⋆ ≥ 1

c

(
P(d ◦ f ̸= d ◦ f⋆)

(1 + β)

) 1
β

·
(
P(d ◦ f ̸= d ◦ f⋆)− P(d ◦ f ̸= d ◦ f⋆)

(1 + β)

)
=

β

c(1 + β)
1+β
β

· (P(d ◦ f ̸= d ◦ f⋆))
1+β
β .

Set c′ = (c/β)
β

1+β (1 + β), and recognize that log(1 + β)− β
1+β log β ≤ log 2 (so that c′ is indeed a

constant), so that condition (Nα) holds with α = β
1+β :

P(d ◦ f ̸= d ◦ f⋆) ≤ c′(R(f)−R⋆)
β

1+β .

When β = ∞, Condition (Mβ) implies P (∆(X) ≤ 1/c) = 0, so taking ϵ = 1/c in inequality (18)

R(f)−R⋆ ≥ ϵ (P(d ◦ f ̸= d ◦ f⋆)− P(0 ≤ ∆(X) ≤ ϵ)) =
1

c
P(d ◦ f ̸= d ◦ f⋆).

That is, condition (Nα) with α = 1 holds.

D.3 PROOF OF THEOREM 1

The proof contains two parts. In the first, we provide a lower bound for the calibration function
conditioning on X = x. We then use the pointwise calibration function to prove a linear comparison
inequality on the data space XM := {x ∈ X : κ(x) ≤ M} of points with low noise condition
number, and then conclude the proof via a coarse risk bound on X\XM .

Part 1: lower bounding the pointwise calibration function. Before using properties of majority
vote Am, we start by assuming a general aggregation method A : Z → {ay}y∈Y . To obtain the
desired comparison inequality connecting excess surrogate risk and task risk, we recall the pointwise
calibration function (5),

ψA(ϵ, x) := inf
s∈Rd

{δφ,A(s, x) : δℓ(s, x) ≥ ϵ} .

To lower bound ψA(ϵ, x), we need to lower bound δφ,A(s, x) provided that δℓ(s, x) ≥ ϵ. Because
δℓ(s, x) ≥ ϵ > 0, it must hold that d(s) ̸= y⋆, which makes the following general lower bound,
which applies for any aggregation method and identifiable loss, useful:
Lemma D.2. Let φ be (Cφ,1,Cφ,2)-identifable (Def. 3.1) with parameters {ay}y∈Y and assume that
d(s) ̸= y⋆. Then for any aggregation method A,

δφ,A(s, x) ≥ Cφ,1 − (Cφ,1 + Cφ,2)P(A(Z) ̸= ay⋆). (19)

Proof For the ground truth label y⋆ = y⋆(x), d(sy⋆) = y⋆ by Definition 3.1, and

Rφ,A(sy⋆ | x) ≥ inf
s
Rφ,A(s | x).

This allows us to bound the excess surrogate risk by

δφ,A(s, x) = Rφ,A(s | x)− inf
s
Rφ,A(s | x) ≥ Rφ,A(s | x)−Rφ,A(sy⋆ | x)

= P(A(Z) = ay⋆) (φ(s, ay⋆)− φ(sy⋆ , ay⋆)) +
∑
j ̸=y⋆

P(A(Z) = aj) (φ(s, aj)− φ(sy⋆ , aj)) .

Because by assumption d(s) ̸= y⋆, the (Cφ,1,Cφ,2)-identifiability of φ implies

φ(s, ay⋆)− φ(sy⋆ , ay⋆) ≥ inf
d◦s̸=y⋆

φ(s, ay⋆)− φ(sy⋆ , ay⋆) ≥ Cφ,1,

φ(s, aj)− φ(sy⋆ , aj) ≥ inf
s
φ(s, aj)− φ(sy⋆ , aj) ≥ −Cφ,2,

and therefore

δφ,A(s, x) ≥ P(A(Z) = ay⋆)Cφ,1 − (1− P(A(Z) = ay⋆))Cφ,2

= Cφ,1 − (Cφ,1 + Cφ,2)P(A(Z) ̸= ay⋆),
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which is the lower bound (19).

Equation (19) shows that to lower bound δφ,A(s, x) when d(s) ̸= y⋆, it is sufficient to show that
A(Z) = ay⋆ with high probability. For the majority vote (7), as the number of labelers m grow, the
probability that P(Am(Z) = ay⋆) → 1 by standard concentration once we recall the definition (8) of
the excess risk ∆(x) = mind(s)̸=y⋆(x) δℓ(s, x).

Lemma D.3. Let card(Y) = k. For all s ∈ Rd, x ∈ X such that δℓ(s, x) ≥ ϵ,

P(Am(Z) ̸= ay⋆) ≤ 2k exp
(
−m∆(x)2/2

)
.

Proof Applying Hoeffding’s inequality, simultaneously for each y ∈ Y ,∣∣∣∣∣ 1m
m∑
l=1

ℓ(y, Yl)− E[ℓ(y, Y ) | X = x]

∣∣∣∣∣ < ∆(x)

2

with probability at least 1 − 2k exp
(
−m∆(x)2/2

)
as ℓ ∈ [0, 1]. As δℓ(s, x) = E[ℓ(d(s), Y ) −

ℓ(y⋆, Y ) | X = x], we have for all y ̸= y⋆ that

1

m

m∑
l=1

ℓ(y⋆, Yl) <
1

m

m∑
l=1

ℓ(y, Yl).

Clearly the majority vote method Am(Z) = ay⋆ in this case.

We can then substitute Lemma D.3 into (19) and obtain a lower bound. To also incorporate the condi-
tion δℓ(s, x) ≥ ϵ, we recall the noise condition number (9), which guarantees ∆(x) ≥ δℓ(s, x)/κ(x)
for all s ∈ Rd. This implies

δφ,Am(s, x) ≥ Cφ,1 − 2k(Cφ,1 + Cφ,2)e
−m∆(x)2

2 ≥ Cφ,1 − 2k(Cφ,1 + Cφ,2)e
−mδℓ(s,x)2

2κ(x)2 ,

and thus

ψA(ϵ, x) ≥ Cφ,1 − 2k(Cφ,1 + Cφ,2)e
− mϵ2

2κ(x)2 .

Part 2: restricting to XM . Now it becomes clear why the error function em(t) takes the form in
Eq. (10), as whenever

ϵ ≥ em(κ(x)) =

√
2κ(x)2

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)
,

we must have

ψA(ϵ, x) ≥ Cφ,1 − 2k(Cφ,1 + Cφ,2)e
− log

(
4k(Cφ,1+Cφ,2)

Cφ,1

)
≥ Cφ,1/2,

which further implies a pointwise convex lower bound ψA(ϵ, x) ≥ Cφ,1(ϵ − em(κ(x)))+/2. Re-
stricting to x ∈ XM = {x ∈ X | κ(x) ≤M}, we clearly have

ψM
Am

(ϵ) :=
1

2
Cφ,1 [ϵ− em(M)]+ ≤ ψA(ϵ, x).

Now, we proceed with an argument similar to those Bartlett et al. (2006) use to provide fast rates of
convergence in binary classification using ψM

Am
(ϵ) and applying over a restricted data space XM .

Lemma D.4. LetM > 0 and for f ∈ F , defineD(f,M) := R(f)−R⋆−P(κ(X) > M). Whenever
D(f,M) ≥ 0,

CMTD(f,M)α · ψM
Am

(
D(f,M)1−α

2CMT

)
≤ Rφ,Am

(f)−R⋆
φ,Am

.
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Proof We begin with some generalities. By condition (Nα), for any function f and ϵ > 0,

E[1{d ◦ f(X) ̸= d ◦ f⋆(X), δℓ(f(X), X) < ϵ} δℓ(f(X), X)] ≤ CMTϵ · (R(f)−R⋆)α,

so that

R(f)−R⋆ = E [1{d ◦ f(X) ̸= y⋆(X)} δℓ(f(X), X)]

≤ CMTϵ · (R(f)−R⋆)α + E [1{δℓ(f(X), X) ≥ ϵ} δℓ(f(X), X)] . (20)

Consider the second term in the bound (20). For any convex function 0 ≤ ψ with ψ(0) = 0,
ϵ 7→ ψ(ϵ)/ϵ is non-decreasing on ϵ > 0 (cf. (Hiriart-Urruty and Lemaréchal, 1993, Ch. 1)). This
implies

ψ(ϵ)

ϵ
1{δℓ(f(x), x) ≥ ϵ} ≤ ψ(δℓ(f(x), x))

δℓ(f(x), x)
,

where we take 0/0 = 0, and so ψ(ϵ)δℓ(f(x), x)1{δℓ(f(x), x) ≥ ϵ} ≤ ϵ ·ψ(δℓ(f(x), x)). Leveraging
the calibration function (5), if ψ(ϵ) ≤ ψφ,Am

(ϵ), then we evidently have

ψ(ϵ)E [1{δℓ(f(X), X) ≥ ϵ} · δℓ(f(X), X)]

≤ ϵ · E [ψ(δℓ(f(X), X))] ≤ ϵ · E [δφ,Am(f(X), X)] = ϵ
(
Rφ,Am(f)−R⋆

φ,Am

)
. (21)

With these generalities in place, consider the function fM (x) = f(x)1{x ∈ XM} + f⋆(x)1{x ̸∈
XM}. Substituting this in inequality (20) yields

R(fM )−R⋆ ≤ CMTϵ · (R(fM )−R⋆)α + E[1
{
δℓ(f

M (X), X) ≥ ϵ
}
δℓ(f

M (X), X)]. (22)

for all ϵ > 0. Because the truncated calibration function ψM
Am

is convex, inequality (21) yields

ψM
Am

(ϵ)E[1
{
δℓ(f

M (X), X) ≥ ϵ
}
· δℓ(fM (X), X)] ≤ ϵ · E[ψM

Am
(δℓ(f

M (X), X))].

Because 0 ≤ ψM
Am

≤ ψAm
= ψ

∗∗
Am

, we evidently obtain

E
[
ψM
Am

(δℓ(f
M (X), X))

]
≤ Rφ,Am

(f)−R⋆
φ,Am

.

By inequality (22), we therefore have

R(fM )−R⋆

ϵ
− CMT

(
R(fM )−R⋆

)α ≤ 1

ϵ
E
[
1
{
δℓ(f

M (X), X) ≥ ϵ
}
δℓ(f

M (X), X)
]
,

and so multiplying by ψM
Am

(ϵ),

ψM
Am

(ϵ)

(
R(fM )−R⋆

ϵ
− CMT(R(f

M )−R⋆)α
)

≤
ψM
Am

(ϵ)

ϵ
E
[
1
{
δℓ(f

M (X), X) ≥ ϵ
}
· δℓ(fM (X), X)

]
≤ Rφ,Am(fM )−R⋆

φ,Am
. (23)

Finally, we use that ϵ was arbitrary. Taking ϵ = (R(fM )−R⋆)1−α/(2CMT) in inequality (23) gives
ψM
Am

(ϵ)CMT(R(f
M )−R⋆)α ≤ Rφ,Am

(fM )−R⋆
φ,Am

. Using that

D(f,M) := R(f)−R⋆ − P(κ(X) > M) ≤ R(fM )−R⋆

completes the proof of the lemma.

We have nearly completed the proof of Theorem 1. By the condition R(f) − R⋆ ≥ 2P(κ(X) >

M) + (4CMTem(M))
1

1−α we have D(f,M) ≥ (R(f)−R⋆)/2, while at the same time

D(f,M)1−α

2CMT
≥ 2em(M).

By convexity, ψM
Am

(ϵ)/ϵ is non-decreasing in ϵ, so we further have

CMTD(f,M)αψM
Am

(
D(f,M)1−α

2CMT

)
≥ CMTD(f,M)α · D(f,M)1−α

2CMT
·
ψM
Am

(2em(M))

2em(M)

=
1

2
D(f,M) · 1

4
Cφ,1 ≥ Cφ,1(R(f)−R⋆)

16
.

Substitute the above display into Lemma D.4.
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D.4 PROOF OF COROLLARY 3.3

Recall that k = card(Y) <∞. For the binary case that k = 2, we simply take M = 1 and as

4CMTem(1) =

(
32C2

MT

m
log

(
8(Cφ,1 + Cφ,2)

Cφ,1

)) 1
2(1−α)

= ξm,2,

Theorem 1 implies the conclusion.

For the general multiclass case, we can bound the tail probability by using κ(X) ≤ 1/∆(X) and
the low noise condition (Nα), as P(κ(X) > M) ≤ P(∆(X) ≤ 1/M) ≤ (CMT/M)

α
1−α . Therefore,

using Theorem 1, we only need to prove

inf
M

{2 · (CMT/M)
α

1−α + (4CMTem(M))
1

1−α } ≤ 4 ·
(
32C4

MT

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)) α
2(1−α2)

.

Indeed, we choose the M such that 2(CMT/M)
α

1−α = (4CMTem(M))
1

1−α , which, by substituting in
Eq. (10), is equivalent to

M− 1+α
1−α =

(
32

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)) 1
2(1−α)

· CMT

2
,

and thus we choose

M =

(
32

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

))− 1
2(1+α)

·
(
CMT

2

)− 1−α
1+α

.

With this choice

2 · (CMT/M)
α

1−α + (4CMTem(M))
1

1−α

= 2 · (4CMTem(M))
1

1−α

= 2 ·
(
32C2

MT

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)) 1
2(1−α)

·
(
32

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

))− 1
2(1+α)(1−α)

·
(
CMT

2

)− 1
1+α

= 21+
1

1+α ·
(
32

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)) 1
2(1−α)

·
(
32

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

))− 1
2(1+α)(1−α)

· C
1

1−α− 1
1+α

MT

≤ 4 ·
(
32

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)) α
2(1−α2)

· C
2α

1−α2

MT

= 4 ·
(
32C4

MT

m
log

(
4k(Cφ,1 + Cφ,2)

Cφ,1

)) α
2(1−α2)

= ξm,k.

D.5 PROOFS FOR THE IDENTIFIABLE SURROGATE LOSSES

D.5.1 PROOF OF LEMMA A.1

That ϕ(δ) < 0 is immediate because ϕ is non-increasing by assumption, and the monotonicity
properties of convex functions (Hiriart-Urruty and Lemaréchal, 1993, Ch. 1) guarantee it strictly
decreases near 0. For y ∈ {±1}, we take sy = δy and ay = y, and

φ(sy, ay) + Cφ,1 = ϕ(δ) + Cφ,1 = ϕ(0) = inf
d(s)̸=y

φ(s, ay)

φ(sy, a−y)− Cφ,2 ≤ ϕ(−δ)− Cφ,2 = 0 = inf
s∈R

φ(s, ay).

by direct evaluation.
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D.5.2 PROOF OF LEMMA A.2

For each y ∈ Y , we choose (sy, ay) = (v(y)/N, y). Observe that for each graph y ∈ Y ,

φ(sy, ay) = max
ŷ∈Y

(
1

2N
∥v(ŷ)− v(y)∥22 + ⟨v(ŷ)− v(y), v(y)/N⟩

)
= max

ŷ∈Y

(
1

2N
∥v(ŷ)∥22 −

1

2N
∥v(y)∥22

)
= 0,

where we use ∥v(y)∥22 = N for all y ∈ Y . If d(s) ̸= y, then there exists some y′ ̸= y ∈ Y such that

⟨v(y′)− v(y), s⟩ ≥ 0.

This implies

φ(s, ay) = φ(s, y) ≥
(

1

2N
∥v(y′)− v(y)∥1 + ⟨v(y′)− v(y), s⟩

)
≥ 1

2N
∥v(y′)− v(y)∥1 ≥ 1

N

because distinct bipartite matchings differ on at least two edges. This then implies condition (6a)
holds with Cφ,1 = 1/N . The second condition (6b) holds for Cφ,2 = 2 as

φ(sy′ , ay) = φ(v(y′)/N, y) = max
ŷ∈Y

(
1

2N
∥v(ŷ)− v(y)∥1 + ⟨v(ŷ)− v(y), v(y′)/N⟩

)
≤ 2

whenever vT1 = N .

D.5.3 PROOF OF LEMMA A.3

By definition of τ(y), for any ϵ > 0 and each y ∈ Y , we can take sy ∈ S(y) (by using homogeneity
and scaling) such that

max
ŷ ̸=y

ℓ(ŷ, y)/⟨v(y)− v(ŷ), sy⟩ = 1 and min
ŷ ̸=y

ℓ(ŷ, y)/⟨v(y)− v(ŷ), sy⟩ >
1

τ(y) + ϵ
. (24)

We take ay = y.

Controlling Cφ,1. Because by assumption maxŷ ̸=y ℓ(ŷ, y)/⟨v(y)− v(ŷ), s⟩ = 1,

φ(sy, y) = max
ŷ∈Y

(ℓ(ŷ, y) + ⟨v(ŷ)− v(y), sy⟩)+

= max
ŷ∈Y

{
⟨v(y)− v(ŷ), sy⟩ · (ℓ(ŷ, y)/⟨v(y)− v(ŷ), sy⟩ − 1)+

}
= 0.

For any s such that d(s) ̸= y, there must exist ŷ ̸= y such that ⟨v(y)− v(ŷ), s⟩ ≥ 0 and thus

φ(s, y) ≥ ℓ(ŷ, y) + ⟨v(y)− v(ŷ), s⟩ ≥ min
ŷ ̸=y

ℓ(ŷ, y) = min
ŷ ̸=y

ℓ(ŷ, y) + φ(sy, y).

Thus we can take Cφ,1 = minŷ ̸=y ℓ(ŷ, y).

Controlling Cφ,2. For any y′ ̸= y, the sy satisfying inequality (24) yields

⟨v(ŷ)− v(y), sy′⟩ = ⟨v(ŷ)− v(y′), sy′⟩+ ⟨v(y′)− v(y), sy′⟩ ≤ ⟨v(y′)− v(y), sy′⟩ − ℓ(ŷ, y′)

≤ (τ(y′) + ϵ) · ℓ(y, y′)− ℓ(ŷ, y′),

By the normalization 0 ≤ ℓ ≤ 1, we have

φ(sy′ , ay) = max
ŷ∈Y

(ℓ(ŷ, y) + ⟨v(ŷ)− v(y), sy′⟩)+

≤ max
ŷ∈Y

(ℓ(ŷ, y) + (τ(y′) + ϵ) · ℓ(y, y′))+ ≤ τ(y′) + 1 + ϵ .

As ϵ > 0 was arbitrary, we can take Cφ,2 = maxy∈Y τ(y) + 1.
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The special case of ℓ0 task loss. Finally we are left to show if v(y) ∈ {0, 1}d and ℓ(ŷ, y) =
1
2d ∥ŷ − y∥1, we have τ(y) = 1 for all y. This is trivial in this case, as we can take sy = 2v(y)− 1,
and for ŷ ̸= y,

⟨v(y)− v(ŷ), sy⟩ = ⟨v(y)− v(ŷ), 2v(y)− 1⟩ = ⟨v(y)− v(ŷ), 2v(y)⟩ − ∥v(y)∥22 + ∥v(ŷ)∥22
= ∥v(y)∥22 − 2⟨v(y), v(ŷ)⟩+ ∥v(ŷ)∥22
= ∥v(y)− v(ŷ)∥22 = ∥v(y)− v(ŷ)∥0 = 2dℓ(ŷ, y),

where we again use the fact that for 0-1 features, ∥v(y)− v(ŷ)∥22 = ∥v(y)− v(ŷ)∥1. We see that
ℓ(ŷ, y)/⟨v(y)− v(ŷ), sy⟩ is a constant and thus τ(y) = 1 for all y ∈ Y .

E K-NEAREST-NEIGHBORS AND GENERAL AGGREGATION METHODS

In this section, we adapt the results in Section 3.2 to demonstrate a consistency result for K-nearest-
neighbor methods using an analogue of majority vote labeling. We assume the surrogate φ is
(Cφ,1,Cφ,2)-identifiable (Def. 3.1) with parameters {ay}y∈Y and that k = card(Y) < ∞. Given
a sample (Xi, Yi)

n
i=1 and a point x ∈ X , sort the indices so that dist(X(1), x) ≤ dist(X(2), x) ≤

· · · dist(X(n), x) (and label Y(i)) similarly. Then the nearest-neighbor aggregator of a point x is

An,K(x) := aŷ, ŷ = argmin
y∈Y

K∑
i=1

ℓ(y, Y(i)), (25)

and we define the surrogate risk

Rφ,n,K(f) := E[φ(f(X), An,K(X))],

where An,K implicitly depends on an imagined sample (Xi, Yi)
n
i=1. We warn the reader that, at

some level, the surrogate consistency guarantee we provide will implicitly essentially show that
K-nearest-neighbors is consistent so long asK → ∞ whileK/n→ 0, a familiar result for multiclass
classification and regression problems Stone (1977); Devroye et al. (1996).

We will demonstrate the following theorem.
Theorem 4. Let the loss φ be identifiable (Definition 3.1), assume the excess risk (8) satisfies
P (∆(X) > 0) = 1. Let K = K(n) and n satisfy K/n→ 0 and K → ∞ as n→ ∞. Then for all
ϵ > 0, there exists N and δ > 0 such that for all n ≥ N ,

Rφ,n,K(f)−R⋆
φ,n,K ≤ δ implies R(f)−R⋆ ≤ ϵ

for all measurable f .

The theorem more or less follows from the following comparison inequality.

Lemma E.1. Let φ be (Cφ,1,Cφ,2)-identifiable, γ > 0 satisfy γ ≤ Cφ,1

2(Cφ,1+Cφ,2)
, and define the set

X γ
n,K := {x ∈ X | P(An,K(x) ̸= ay⋆(x)) ≤ γ}.

Then for all measurable f ,

R(f)−R⋆ ≤ 2

Cφ,1

(
Rφ,n,K(f)−R⋆

φ,n,K(f)
)
+ P(X ̸∈ X γ

n,K).

Proof For n,K ∈ N, define the pointwise risk gap

δφ,n,K(s, x) := E [φ(s,An,K(x))]− inf
s′

E [φ(s,An,K(x))] ,

where the expectation is over the nearest-neighbor aggregation (25), and for ϵ > 0 define the pointwise
calibration function

ψn,K(ϵ, x) := inf
s∈Rd

{δφ,n,K(s, x) | δℓ(s, x) ≥ ϵ} .

Because Lemma D.2 (in the proof of Theorem 1) holds for any aggregation method, we see that

ψn,K(ϵ, x) ≥ Cφ,1 − (Cφ,1 + Cφ,2)P(An,K(x) ̸= ay⋆(x))
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for all x ∈ X and ϵ > 0. Let X γ = X γ
n,K for shorthand. Then in particular, because γ > 0 is small

enough that (Cφ,1 +Cφ,2)γ < Cφ,1/2, we have ψn,K(ϵ, x) ≥ 1
2Cφ,1 for x ∈ X γ . As a consequence,

we can expand the risk

R(f)−R⋆ = E[δℓ(f(X), X)]

≤ E [δℓ(f(X), X)1{δℓ(f(X), X) ≥ ϵ}] + ϵ

≤ E [δℓ(f(X), X)1{δℓ(f(X), X) ≥ ϵ,X ∈ X γ}] + P(X ̸∈ X γ) + ϵ.

As we assume ℓ ≤ 1, we see that ψn,K(δℓ(f(x), x), x) ≥ 1
2Cφ,1 · δℓ(f(x), x) when δℓ(f(x), x) ≥ ϵ

and x ∈ X γ , giving the upper bound

R(f)−R⋆ ≤ 2

Cφ,1
E [ψn,K(δℓ(f(X), X))1{X ∈ X γ}] + P(X ̸∈ X γ) + ϵ

≤ 2

Cφ,1

(
Rφ,n,K(f)−R⋆

φ,n,K(f)
)
+ P(X ̸∈ X γ) + ϵ.

As ϵ > 0 was arbitrary we obtain the lemma.

By Lemma E.1, it is therefore sufficient to show that for any fixed γ > 0, P(X ̸∈ X γ
n,K) → 0. But

for this, we can simply rely on the results of Stone (1977): by his Theorems 1 and 2, because Y is
finite, K-nearest neighbors (when K = K(n) satisfies K → ∞ and K/n → 0) is consistent for
estimating the conditional distribution of P (Y = y | X = x). Because ∆(X) > 0 with probability
1, we see that P(An,K(x) ̸= ay⋆(x)) → 0 for all x except perhaps a null set, and so Stone’s results
imply P(X ̸∈ X γ

n,K) → 0.

F PROOFS ASSOCIATED WITH MODEL-BASED CONSISTENCY

F.1 PROOF OF PROPOSITION 5

We begin by considering the distribution Px1,x2
, whose X-marginal is supported only on two

data points {x1, x2} ⊂ X . The key idea is that by carefully choosing x1, x2 and the conditional
distribution of Y | X = x, the conditional surrogate losses

Rφ(t | xi) := E[φ(ftθ⋆(X), Y ) | X = xi] = E[ϕ(Y ⟨tθ⋆, X⟩) | X = xi], i = 1, 2,

attain their minima at distinct t, and if their is a θ ̸∈ span{θ⋆} for which E[φ(fθ(X), Y ) | X =
xi] = inft E[ϕ(Y t) | X = xi] for each i, then fθ would attain less surrogate risk than any point in
span{θ⋆}. To guarantee that R(θ) = P (Y ⟨X, θ⟩ ≤ 0) has a unique up to scaling—that only points
in span{θ⋆} minmize R—we perturb Px1,x2

slightly by defining P to have X-marginal

P (X ∈ ·) = 1− δ

2
[δx1 + δx2 ] + δN(0, Id),

where δx denotes a point mass at x and δ ≥ 0 is a value to be chosen.

The construction of Px1,x2
and P . Without loss of generality, we take θ⋆ = e1, the first canonical

basis vector. For a value β > 0 to be defined, define the Y conditional probability

ηβ(x) = P (Y = 1 | X = x) := min

{[
1

2
+ ⟨x, e1⟩ (β|⟨x, e2⟩|+ 1)

]
+

, 1

}
which projects 1

2+⟨x, e1⟩(β|⟨x, e2⟩|+1) onto [0, 1] and satisfies ηβ(x) < 1
2 if and only if ⟨x, e1⟩ < 0

and ηβ(x) > 1
2 if and only if ⟨x, e1⟩ > 0. With this construction, θ⋆ = e1 is evidently the unique

unit vector u ∈ Sd−1 satisfying sgn(⟨x, u⟩) = sgn(ηβ(x)− 1/2) for all x, so for any θ ̸∈ span{θ⋆},

R(fθ) > R(fθ⋆).

We can now provide the explicit construction of the distribution P . Assume we may take the two
points x1, x2 to satisfy ηβ(x1) = 2

3 and ηβ(x2) = 1
3 . Then defining

gϕ(t) =
2

3
ϕ(t) +

1

3
ϕ(−t),

26
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which is a coercive convex function (and so has a compact interval of minimizers), we write the
surrogate risk of a vector θ for Px1,x2

(recalling that P (Y = y | x) = ηβ(x)) as

EPx1,x2
[φ(fθ(X), Y )] =

1

2
gϕ(⟨θ, x1⟩) +

1

2
gϕ(−⟨θ, x2⟩).

By direct calculation, for any α > 1
2 and β > 0, the choices

x1 =
1

6
e1 and x2 = − 1

12α
e1 +

2α− 1

β
e2 (26)

guarantee ηβ(x1) = 2
3 and ηβ(x2) = 1

3 .

Minimizing surrogate risk along certain direction. We wish to show that the surrogate attains
its minimum along a direction u nearly perpendicular to span{θ⋆}. Let u ∈ Sd−1 have coordinates
uj = ⟨u, ej⟩. We shall prove the following lemma:
Lemma F.1. Let x1, x2 have definition (26), β > 0, and P be defined as above. Then θ⋆ = e1
yields R(fθ⋆) = R⋆ = inff R(f), and there is a constant Cϕ depending only on ϕ such that if
|u2| ≤ Cϕβ|u1|, then

inf
t
E[ϕ(Y t⟨u,X⟩)] > inf

θ
E[ϕ(Y ⟨θ,X⟩)].

We turn to the proof of the lemma. Using the choices (26) of x1 and x2 and defining s1 = ⟨u, x1⟩ =
1
6u1 and s2 = ⟨u, x2⟩ = u1

12α , it follows that for any t ∈ R,

EPx1,x2
[ϕ(Y ⟨tu,X⟩)] = 1

2

(
2

3
ϕ (ts1) +

1

3
ϕ (−ts1)

)
+

1

2

(
2

3
ϕ (ts2) +

1

3
ϕ (−ts2)

)
=

1

2
(gϕ(ts1) + gϕ(ts2)).

For w1, w2 ∈ R, define the parameterized function

hϕ(w1, w2) =
1

2
inf
t∈R

{gϕ(tw1) + gϕ(tw2)} ,

which corresponds to the minimal value of the risk t 7→ EPx1,x2
[ϕ(Y ⟨tθ,X⟩)] when w1 = ⟨θ, x1⟩

and w2 = ⟨θ, x2⟩ for some vector θ ∈ Rd. The convexity and coercivity of gϕ imply that hϕ(w1, w2)
is continuous on R2\ {0}, it is homogeneous in that hϕ(tw1, tw2) = hϕ(w1, w2) for all t ̸= 0, and
by construction,

inf
t∈R

EPx1,x2
[ϕ(Y ⟨tu,X⟩)] = hϕ(s1, s2).

Moreover, it is immediate that

g⋆ϕ := inf
t
gϕ(t) = inf

w2
1+w2

2=1
inf
t

1

2
{gϕ(tw1) + gϕ(tw2)} = inf

w2
1+w2

2=1
hϕ(w1, w2).

Let G = [a, b] = argmint gϕ(t), where we must have 0 < a ≤ b <∞ as ϕ′(0) < 0. Then we set the
value α := b

a ≥ 1 in the definition (26) of the points x1, x2. Let w2 <
1
αw1; then if w1 ∈ G, we must

have w2 <
b
α = a, and so w2 ̸∈ G, and so at least one of w1, w2 ̸∈ G. Enforcing the strict inequality

w2 <
1
αw1, we see that

Cϕ,α := inf
w2

1+w2
2=1,

w1≥0,w2≤ 3
4αw1

hϕ(w1, w2) > inf
w2

1+w2
2=1

hϕ(w1, w2) = g⋆ϕ.

Rewriting this in terms of the unit vector u we have been considering, whenever |u2| ≤ βu1

24α(2α−1) ,

s2 ≤ u1
12α

+
2α− 1

β
· βu1
24α(2α− 1)

≤ u1
8α

=
3

4α
s1,

and in this case

inf
t∈R

EPx1,x2
[ϕ(Y ⟨tu,X⟩)] = hϕ(s1, s2) ≥ inf

w2
1+w2

2=1,

w1≥0,w2≤ 3
4αw1

hϕ(w1, w2) = Cϕ,α > g⋆ϕ.
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Now we restruct u ∈ Sd−1 to the collection of vectors satisfying |u2| ≤ β
24α(2α−1) |u1|, and show that

if θ ∈ span{u}, the surrogate risk cannot attain its minimum. Indeed, recalling the construction (26),
the matrix [

1/6 −1/(12α)
0 (2α− 1)/β

]
is invertible and we can find a θ such that ⟨θ, x1⟩ = c, ⟨θ, x2⟩ = −c for some value c ∈ G =
argmin gϕ, implying

inf
t∈R

EP [ϕ(Y ⟨tu,X⟩)] ≥ (1− δ) inf
t∈R

EPx1,x2
[ϕ(Y ⟨tu,X⟩)] = (1− δ)Cϕ,α

inf
θ∈Rd

EP [ϕ(Y ⟨θ,X⟩)] ≤ EP

[
ϕ(Y ⟨θ,X⟩)

]
= (1− δ)g⋆ϕ + δEN(0,Id)

[
ϕ(Y ⟨θ,X⟩)

]
.

By taking δ sufficiently small and using Cϕ,α > g⋆ϕ, we conclude that Lemma F.1 holds with
Cϕ = 1

24α(2α−1) and recognizing that α > 1
2 was otherwise arbitrary.

Controlling the angle between θφ and θ⋆. By Lemma F.1, there exists a constant Cϕ such that for
any β > 0, we can construct a distribution P for which any minimizer θφ of the surrogate risk must
satisfy

|⟨θφ, e2⟩| ≥ Cϕβ · |⟨θφ, e1⟩| and |⟨θφ, e2⟩| > 0 .

Now we specify the parameter β, taking β = 1
Cϕ

√
1
ϵ2 − 1. Then evidently

⟨θφ, e2⟩2 ≥
(

1

ϵ2
− 1

)
· ⟨θφ, e1⟩2,

which combined with θ⋆ = e1 implies

|cos∠(θφ, θ⋆)| =
|⟨θφ, e1⟩|
∥θφ∥2

≤ |⟨θφ, e1⟩|√
|⟨θφ, e1⟩|2 + |⟨θφ, e2⟩|2

≤ 1√
1 + 1

ϵ2 − 1
= ϵ.

Because θφ ̸∈ span{θ⋆}, we see that R(fθφ) > R(fθ⋆) = inff R(f), completing the proof of
Proposition 5.

F.2 PROOF OF THEOREM 3

Let Pk = {p ∈ Rk
+ | ⟨1, p⟩ = 1} by the probability simplex in Rk. For p ∈ Pk, define the risk gaps

δφ(s, p) := Ep[φ(s, Y )]− inf
s
Ep[φ(s, Y )] and δℓ(s, p) := Ep[ℓ(d(s), Y )]− inf

s
Ep[ℓ(d(s), Y )]

and the gap functional
ψφ(ϵ, p) := inf

s
{δφ(s, p) | δℓ(s, p) ≥ ϵ} .

By the assumption that φ is consistent, it is immediate Steinwart (2007) that ψφ(ϵ, p) > 0 for all
p ∈ Pk and ϵ > 0. Moreover, consistency implies Zhang (2004b) that if p(1) ≥ p(2) ≥ · · · ≥ p(k)
denotes the order statistics of p ∈ Pk, when we define the subset

Pk,c := {p ∈ Pk | p(1) ≥ p(2) + c}
of well-separated distributions, then for all c > 0 we have the strict inequality

inf
p∈Pk,c

ψφ(ϵ, p) > 0 when ϵ > 0.

For m ∈ N, let Pm(· | x) denote the induced distribution on the majority vote Y +
m := Majority(Y m

1 )

for Yi
iid∼ P (Y ∈ · | X = x), so that if ∆(x) > 0 we see that Y +

m → y⋆(x) with probability 1. Then

δℓ(s, Pm(· | x)) = EPm
[1
{
d(s) ̸= Y +

m

}
| x]− (1− P (Y +

m = y⋆(x) | x))

=

{
0 if d(s) = y⋆(x)

P (Y +
m = y⋆(x) | x)− P (Y +

m = d(s) | x) otherwise.
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In particular, for P -almost-all x, we see that δℓ(s, Pm(· | x)) → 1{d(s) = y⋆(x)} as m→ ∞. Now,
fix c > 0 and define

ψφ(ϵ) := inf
p∈Pk,c

ψφ(ϵ, p) and ψφ(ϵ) := ψ
∗∗
φ (ϵ),

the convex conjugate of the gap functional on well-separated distributions. Then Zhang (2004b,
Prop. 25) shows that ψ

∗∗
φ (ϵ) > 0 whenever ψφ(ϵ) > 0.

We now consider the gaps in the surrogate risk Rφ,Am
(f)−R⋆

φ,Am
. Letting c > 0, define

Xc,m :=
{
x | Pm(Y +

m ∈ · | X = x) ∈ Pk,c

}
to be those x ∈ X for which the majority vote is likely correct. Then

Rφ,Am
(f)−R⋆

φ,Am

= E[δφ(f(X), Pm(· | X))]

≥ E[ψφ(δℓ(f(X), Pm(· | X)), Pm(· | X))]

≥ E
[
1{X ∈ Xc,m}ψφ(δℓ(f(X), Pm(· | X))) + 1{X ̸∈ Xc,m}ψφ(δℓ(f(X), Pm(· | X)))

]
≥ E [1{X ∈ Xc,m}ψφ(δℓ(f(X), Pm(· | X)))] .

Using Jensen’s inequality that for any convex h, random variable Z, and set A, E[1{Z ∈ A}h(Z)] =
E[h(Z) | Z ∈ A]P (Z ∈ A) ≥ h(E[Z | Z ∈ A])P (Z ∈ A), we therefore obtain that

Rφ,Am
(f)−R⋆

φ,Am
≥ ψφ (E [δℓ(f(X), Pm(· | X)) | X ∈ Xc,m])P (X ∈ Xc,m)

= ψφ

(
R(f)−R⋆ − E[δℓ(f(X), Pm(· | X))1{X ̸∈ Xc,m}]

P (X ∈ Xc,m)

)
P (X ∈ Xc,m)

≥ ψφ

(
[R(f)−R⋆ − P (X ̸∈ Xc,m)]+

P (X ∈ Xc,m)

)
P (X ∈ Xc,m). (27)

Let Rφ,∞(f) = E[φ(f(X), y⋆(X))] = limm→∞ E[φ(f(X), Y +
m )]. Then if f⋆ ∈ F is any function

with argmaxy f
⋆
y (x) = y⋆(x) (for P -almost all x), we evidently obtain

lim
t→∞

Rφ,∞(tf⋆) = 0

by dominated convergence, as by assumption (14) we have φ(tf⋆(x), y⋆(x)) → 0 as t → ∞ for
almost all x. Let ϵ > 0 be arbitrary and take any t < ∞ large enough that Rφ,∞(tf⋆) ≤ ϵ. Then
because Rφ,Am(tf⋆) → Rφ,∞ as m→ ∞, for the sequence fm ∈ ϵm-argminRφ,Am , we obtain

Rφ,Am(fm) ≤ Rφ,m(tf⋆) + ϵm → Rφ,∞(tf⋆) ≤ ϵ.

Substituting into inequality (27), we have

ϵ ≥ lim sup
m

Rφ,Am
−R⋆

φ,Am
≥ lim sup

m
ψφ

(
[R(fm)−R⋆ − P (X ̸∈ Xc,m)]+

P (X ̸∈ Xc,m)

)
P (X ∈ Xc,m).

Because P (X ̸∈ Xc,m) → 0 by assumption, if lim supmR(fm)−R⋆ = δ > 0, we would obtain

ϵ ≥ ψφ(δ).

But ψφ(δ) > 0 for δ > 0, and ϵ > 0 was arbitrary, so it must be that lim supmR(fm) = R⋆.

G PROOFS FOR MIS-SPECIFIED MODELS

G.1 PROOF OF PROPOSITION 4

We assume the result of Theorem 2, as its proof does not depend on the current proposition. To
simplify the proof and work with square matrices, we assume w.l.o.g. that Θ⋆ = U⋆T ⋆, where U⋆ ∈
Rd×(k−1) is orthogonal, and we may w.l.o.g. take T ⋆ to be diagonal, with T ⋆ = diag(t⋆1, . . . , t

⋆
k−1),

and let Θ1(ϵ) = U⋆T1(ϵ). It suffices to show that T1(ϵ)/ ∥T1(ϵ)∥ ̸= T ⋆/ ∥T ⋆∥. For simplicity, we
suppress the dependence on m = 1 and write T (ϵ) = T1(ϵ), Θ(ϵ) = Θ1(ϵ), and let Tij(ϵ) denote
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the entries of T (ϵ). As X ∼ N(0, Id), it follows that U⋆⊤X ∼ N(0, Ik−1), so that the stationary
conditions for Θ(ϵ) equivalently state that for Z ∼ N(0, Ik−1),

∇ΘL1,ϵ(Θ(ϵ)) = E
[
Z
(
σlr(T (ϵ)⊤Z)− σϵ(T ⋆⊤Z)

)⊤]
= 0d×(k−1).

Let T ⊂ Rk−1 be a set to be chosen, and write σ(t) = σlr(t)1{t ̸∈ T } + σuni · 1{t ∈ T }, where
σuni = 1

k1 denotes the uniform distribution. Then equivalently,

E
[
Z
(
σlr(T (ϵ)⊤Z)− σlr(T ⋆⊤Z)

)⊤]
+ E

[
Z
(
σlr(T ⋆⊤Z)− σuni

)⊤
1
{
T ⋆⊤Z ∈ T

}]
︸ ︷︷ ︸

=:A(T )

= 0.

For small ϵ > 0, we can always choose disjoint Tϵ and T−ϵ with P (T ⋆⊤Z ∈ Tϵ), P (T ⋆⊤Z ∈ T−ϵ) ≤
ϵ while the matrices A(Tϵ) and A(T−ϵ) belong to distinct rays, that is, are not positive multiples of
one another. Indeed, as the rank one matrix T ⋆⊤Z(σlr(T ⋆⊤Z)− σuni)⊤ is non-constant whenever
k ≥ 3, we can find a matrix Q ∈ R(k−1)×(k−1) such that the sets

T+ =
{
T ⋆⊤z | tr

(
Q⊤T ⋆⊤z(σlr(T ⋆⊤z)− σuni)⊤

)
> 0
}

T− =
{
T ⋆⊤z | tr

(
Q⊤T ⋆⊤z(σlr(T ⋆⊤z)− σuni)⊤

)
< 0
}

have positive Lebesgue measure. Then for any Tϵ ⊂ T+ and T−ϵ ⊂ T−, we must have
tr(Q⊤A(Tϵ)) > 0 and tr(Q⊤A(T−ϵ)) < 0, as desired, and we may take the sets T±ϵ to have
Lebesgue measure at most ϵ. By absolute continuity of Lebesgue integral, as ϵ → 0 it follows
A(Tϵ) → 0 and A(T−ϵ) → 0 uniformly with ϵ.

Now we are ready to prove the lemma. Consider the tilted gradient function

F (T,A) = E
[
Z
(
σlr(T⊤Z)− σlr(T ⋆⊤Z)

)⊤]
+A,

which satisfies F (T ⋆, 0) = 0, and for which the linear mapping

D(T ) = ∇TF (T, 0) : R(k−1)×(k−1) → R(k−1)×(k−1), D(T )[M ] := E[Z(∇σlr(T⊤Z)MZ)⊤]

is invertible at D(T ⋆). By construction of the matrices A±ϵ := A(T±ϵ), we also know that there
exist solutions T (±ϵ) satisfying F (T (ϵ), Aϵ) = 0 and F (T (−ϵ), A−ϵ) = 0. By the implicit function
theorem and that ∇AF (T,A) = Id, we thus obtain

T (ϵ) = T ⋆ −D(T ⋆)−1∇AF (T
⋆, 0)Aϵ +O(∥Aϵ∥2)

= T ⋆ −D(T ⋆)−1Aϵ +O(∥Aϵ∥2),

and similarly T (−ϵ) = T ⋆−D(T ⋆)−1A−ϵ+O(∥A−ϵ∥2). Without explicitly computing the Jacobian,
we may still conclude that at least one of T (ϵ) and T (−ϵ) cannot align with T ⋆, as T (ϵ)− T ⋆ and
T (ϵ)− T ⋆ belong to distinct rays.

G.2 PROOF OF THEOREM 2

We prove the theorem in two parts. In the first we verify the validity of the ansatz Θm = U⋆Tm, and
in the second we show the claimed asymptotics of Tm.

Part 1: Ansatz for the population loss. LetZ = U⋆⊤X ∼ N(0, U⋆⊤ΣU⋆), and letA ∈ Rd×(k−1)

satisfy

0 = Cov(X −AZ,Z) = ΣU⋆ −AU⋆⊤ΣU⋆,

i.e., A = ΣU⋆(U⋆⊤ΣU⋆)−1. Then X−AZ and Z are independent. Consider the lower dimensional
problem in Rk−1 with the covariates X replaced by Z and Θ⋆ replaced by T ⋆, with associated loss
(abusing notation)

Lm(T ) := E
[
− logPT (Y

+
m | Z)

]
= E

[
φ(T⊤Z, Y +

m )
]
,
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where Y +
m denotes majority vote and PT the logistic regression model. The loss Lm is still strictly

convex and coercive, so it has unique minimum Tm ∈ R(k−1)×(k−1) satisfying

∇ΘLm(Tm) = E
[
Z(σlr(T⊤

mZ)− ρm(T ⋆⊤Z))⊤
]
= 0,

where we recall the notation that ρm(v) = (P (Y +
m = 1), . . . , P (Y +

m = k)) when Yi
iid∼ Cat(v).

We demonstrate Θm = U⋆Tm minimizes Lm. Indeed,

∇ΘLm(Θm) = E
[
X
(
σlr(T⊤

mZ)− ρm(T ⋆⊤Z)
)⊤]

= AE
[
Z
(
σlr(T⊤

mZ)− ρm(T ⋆⊤Z)
)⊤]

︸ ︷︷ ︸
=0 by stationarity of Lm

+E
[
(X −AZ)

(
σlr(T⊤

mZ)− ρm(T ⋆⊤Z)
)⊤]

(⋆)
= E[X −AZ]︸ ︷︷ ︸

=0

·E[σlr(T⊤
mZ)− ρm(T ⋆⊤Z)]⊤ = 0,

where equality (⋆) uses the independence between X −AZ and Z.

Part 2: Asymptotics of Tm. We prove ∥Tm∥ → ∞ and Tm/∥Tm∥ − T ⋆/∥T ⋆∥ → 0.

Lemma G.1. Under the conditions of the theorem, Θm = argminΘ Lm(Θ) satisfies |||Θm|||op =

|||Tm|||op → ∞ and Lm(Θm) → 0.

Proof When |||T |||op ≤ r, for Θ = U⋆T and i, j ∈ [k] we have

|⟨θi − θj , x⟩| = |⟨U⋆T (ei − ej), x⟩| ≤ ∥ei − ej∥2 |||T |||op ∥x∥2 ≤
√
2r ∥x∥2

Therefore we have pointwise lower bound for the loss

φ(Θ⊤x, y) = log

( k∑
i=1

exp(⟨θi − θy, x⟩)
)

≥ log
(
1 + (k − 1) exp{−

√
2r ∥x∥2

)
> 0.

Letting g(r) := E[log(1 + (k − 1) exp(−
√
2r ∥X∥2))] > 0, which is a strictly decreasing function

of r, we see that for all m ∈ N and |||Θ|||op = |||T |||op ≤ r, Lm(Θ) ≥ g(r).

On the other hand, for a real number R > 0, consider ΘR := RΘ⋆/ |||Θ⋆|||op, whose columns
θ1, . . . , θk are scaled multiples of those of Θ⋆. It is clear from majority vote consistency that
ρm(ΘRx) → ey⋆(x) as m or R→ ∞, and so

Lm(ΘR) = E[φ(Θ⊤
RX,Y

+
m )]

−→
m↑∞

E

[
log

(
k∑

i=1

exp(⟨θi − θy⋆(X), X⟩)

)]

≤ E
[
log

(
1 + (k − 1) exp

(
−Rmin

i̸=j

∥∥θ⋆i − θ⋆j
∥∥
2
∥X∥2 / |||T

⋆|||op
))]

=: h(R).

We conclude that
lim sup

m
inf
Θ
Lm(Θ) ≤ h(R)

This implies for sufficiently largem, infΘ Lm(Θ) < 2h(R) and we must have ∥Θm∥ ≥ g−1(2h(R)).
As both g and h monotonically decrease to 0 on R+, we see that ∥Θm∥ → ∞. The unitary invariance
of |||·|||op gives that |||Θm|||op = |||Tm|||op, and that h(R) → 0 as R ↑ ∞ implies Lm(Θm) → 0.

We now demonstrate the asymptotic alignment Tm/∥Tm∥ − T ⋆/∥T ⋆∥ → 0. Define the mis-aligned
region

R(ϵ) := {T | ∥T/∥T∥ − T ⋆/∥T ⋆∥∥ ≥ ϵ} .
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Let Θ = U⋆T for some T ∈ R(ϵ), and define the set

X (T ) :=

{
x ∈ X | argmax

y
⟨θy, x⟩ ̸= argmax

y
⟨θ⋆y, x⟩

}
.

Then we have the lower bound

Lm(Θ) = E[φ(Θ⊤X,Y +
m )] ≥ E[φ(Θ⊤X,Y +

m )1{X ∈ X (T )}]

≥ E

e⊤y⋆(X)ρm(Θ⋆⊤X) log

(
1 +

∑
j ̸=y⋆(X)

exp(⟨θj − θy⋆(X), X⟩)
)
1{X ∈ X (T )}


≥ log 2 · E

[
e⊤y⋆(X)ρm(Θ⋆⊤X)1{X ∈ X (T )}

]
,

where we use that on the set x ∈ X (T ), at least one column θj satisfies ⟨θj − θy⋆(x), x⟩ ≥ 0. By
dominated convergence, as m→ ∞,

lim inf
m

Lm(Θ) ≥ log 2 · P (X ∈ X (T )).

Because X (T ) is a union of subspaces, T 7→ P (X ∈ X (T )) is continuous and homogeneous in ∥T∥,
so that infT∈R(ϵ) P (X ∈ X (T )) > 0.

We have thus shown that lim infm infΘ∈U⋆R(ϵ) Lm(Θ) > 0. However, Lemma G.1 shows that
∥Θm∥ → ∞ and Lm(Θm) → 0, so we must have Θm ̸∈ U⋆R(ϵ) for large m, and so Tm/ ∥Tm∥ →
T ⋆/ ∥T ⋆∥.
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