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Abstract
Meta-learning is a paradigm whereby an agent is
trained with the specific goal of fast adaptation.
With promising recent results, it is an effective
way to use prior knowledge for future learning.
However, most of the prominent successes focus
entirely on adapting to similar tasks, from a uni-
modal distribution. This drastically differs from
the real world, where problems may be more di-
verse. In this paper we address this issue, and
provide a simple approach to solve it, which we
call Taming the Herd. The Herd refers to a pop-
ulation of agents, each specializing on a subset
(or mode) of the task distribution. At test time,
we automatically allocate the appropriate member
of the Herd and thus perform comparably with
an oracle trained solely on those tasks. We apply
our approach to both MAML and PEARL, and
demonstrate its efficacy on a simple yet challeng-
ing multi-modal task distribution.

1. Introduction
In recent times there has been great excitement in the field
of meta-learning, where agents are trained with the goal
of adapting to new tasks. This approach resonates with
many since it offers the promise of agents which can learn
something more fundamental than just an individual task.
Our focus is on meta-reinforcement-learning, where agents
can quickly learn new RL tasks.

Model-agnostic meta-learning (MAML, (Finn et al., 2017))
is a popular approach, which seeks to learn a set of parame-
ters which can successfully adapt to a new task in just a few
steps. Its simplicity and effectiveness make it a canonical
algorithm in the space, inspiring a series of follow-up work.
One crucial limitation of MAML is its requirement to train
on unimodal task distributions. This means that in reality, it
can only adapt to a few very similar tasks. Thus far, existing
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approaches to improve MAML have focused on improving
efficiency (Rakelly et al., 2019; Behl et al., 2019), while
continuing to focus on the unimodal distributions.

In this paper we take the first step towards moving to more
challenging task distributions. We use task embeddings to
learn clusters of similar tasks, in an unsupervised manner,
and train a population of meta-learners, each specialized to
one of the learned task clusters. At test time we use a probe
policy to assign the new task to the closest member of the
learned cluster population, which can then rapidly adapt in
the remaining test steps. We call our approach: Taming the
Herd and depict it in Figure 1.

Our contributions are twofold: first we propose a variety
of task embeddings to meaningfully measure similarity be-
tween tasks for the purpose of meta-learning. Second, we
introduce a way to leverage the task geometry induced
by these embeddings to improve existing meta-learning
algorithms such as MAML (Finn et al., 2017) and PEARL
(Rakelly et al., 2019). We show that by incorporating these
insights, both MAML and PEARL can deal with multi-
modal task distributions, where they would otherwise fail.

The paper is organized as follows. We begin with related
work, and required notation in Section 3. Next we introduce
our algorithm, before demonstrating the efficacy of our
approach on a challenging multi-modal task.

2. Related Work
Meta-learning as a concept has been around for decades
(Schmidhuber, 1987; Naik and Mammone, 1992). How-
ever, with the introduction of model-agnostic meta-learning
(MAML (Finn et al., 2017)), it has experienced a surge of
interest. MAML seeks to learn a set of weights which are
amenable to fast adaptation, by backpropagating through
the update step. This has led to a series of follow up works
(Antoniou et al., 2019; Behl et al., 2019; Rajeswaran et al.,
2019), all of which assume access to a distribution of related
tasks. We will introduce MAML more formally in Sec: 3.

More recently, a series of works have considering alternative
ways to explicitly decouple the task inference module, from
the learned shared representation that allows the agent to
generalize across tasks. One existing approach is to explic-
itly allocate a subset, or a low dimensional representation
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Figure 1. Pictrogram of our proposed divide and conquer of the task space approach

of the parameters to be updated during the adaptation phase
such as (Zintgraf et al., 2019; Rusu et al., 2019). A compet-
ing approach, and one we explore further in this work is to
learn a task embedding aimed at inferring the nature of the
task at hand and produce a policy conditioned on this infor-
mation (Rakelly et al., 2019; Zintgraf et al., 2020). Despite
these advances, these approaches fail to deal with multi-
modal task distributions. We show that with our approach,
PEARL can perform well in this setting.

Our work is connected to Task2Vec (Achille et al., 2019) in
that we also embed tasks. While their work selects the best
classifier on a given task we do not stop at this point but use
the identified closest ensemble member for meta-testing.

In addition, a recent paper suggested MAML’s success is par-
tially due to effective feature learning (Raghu et al., 2020).
The performance gap for a single MAML suggests these
features may not generalize across multiple modes of a task
distribution. Beyond meta-learning, multi-modal task distri-
butions arise in model-based RL (Kaushik et al., 2020) or
natural language processing (Vu et al., 2020).

3. Background
3.1. Reinforcement Learning

A Markov Decision Process (MDP, (Bellman, 1957)) is
a tuple (S,A,P,R). Here S and A stand for the sets of
states and actions respectively, such that for st, st+1 ∈ S
and at ∈ A: P(st+1|st, at) is the probability that the sys-
tem/agent transitions from st to st+1 given action at and
R(at, st, st+1) is a reward obtained by an agent transition-
ing from st to st+1 via at.

A policy πθ : S → A is a (possibly randomized) map-
ping (parameterized by θ ∈ Rd, e.g. weight of the neu-
ral network) from S to A. Policy learning is the task of
optimizing parameters θ of πθ such that an agent apply-
ing it in the environment given by a fixed MDP maxi-
mizes total (expected/discounted) reward over given horizon
H . In this paper we consider MDPs with finite horizons.
We denote the trajectory of a policy as τ , defined as the
sequence of states and actions taken during an episode,
τ = {s0, a0, r0, . . . sH , aH , rH}.

3.2. Meta-Learning

When moving to meta-RL, we first define a task distri-
bution p(T ). Here each task is an MDP as described.
We denote Ti as a task sampled from p(T ), such that
Ti = {p(s0),Pi(st+1|st, at),Ri(at, st, st+1)}. As such,
the loss function for a given task is generally of the follow-
ing form:

LTi = Eτ∼πθ [R(τ)]

Meta-learning considers the problem of fast adaptation. In
MAML this means that we no longer consider a loss func-
tion with respect to the parameters θ, but those θ′i, where:

θ′i ← θ − α∇θLTi(θ)

for some learning rate α. Thus, the meta-RL loss function
is as follows:

L(θ) =
∑
Ti∼T

LTi(θ′i)

in other words, we consider the loss on each task after taking
one gradient step on the task. In practice, we also consider
increasing beyond a single gradient step. Note the crucial
component here, that the tasks Ti are sampled iid from p(T ).
This means that all existing approaches can only work when
trained and tested on similar tasks, reducing the ability to
learn multiple different tasks, as present in the real world.

4. Taming the Herd
We now present our method: Taming the Herd. We begin
by training a single meta-learning policy across all tasks.
This policy is referred to as the probe policy, πθprobe

. We
then use this policy to gain experience from each task, used
to form a task embedding, which we denote φ(Ti). Once
we have the embeddings (we use φ(T ) to refer to the em-
beddings for all tasks), we cluster the tasks into K clusters
CK , which we refer to as Cluster. We typically used hier-
archical clustering for our experiments, but other methods
could be considered. Once we have the K clusters, we
train a population of K meta-learning policies {θk}k∈K on
each cluster of tasks in Ck. We refer to this procedure as
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MetaLearn, and this could be any meta-learning algorithm,
but in practice we apply our approach to MAML (Finn et al.,
2017) and PEARL (Rakelly et al., 2019). The full meta-train
procedure is shown in Algorithm 1.

Algorithm 1 Meta-Train
Initialize: Train task distribution p(Ttrain), parameters θ.
1. Train Probing Policy:θprobe
2. Embed Training Tasks: φ(T ) = {φ(Ti)}Ti∼T
3. Cluster Tasks: CK = Cluster(φ(T )).
4. Train Herd: θi = MetaLearn(Ci)

At test time, we first use the probe policy to gather sufficient
experience (typically one episode). We then use this data
to match the task with the corresponding cluster. At this
point, we can use the remaining meta-test gradient steps to
update the corresponding member of the population on the
task. The full meta-test procedure is shown in Algorithm 2.

Algorithm 2 Meta-Test
Input: Test task distribution p(Ttest), clisters CK ,
corresponding policies {θi}Ki=1

1. Embed Test Task: Generate one rollout with
φθprobe

, and let φ(Ti) be its embedding.
2. Assign to Task Cluster: Select Ci =
argmini d(ci, φ(Ti)) where ci is the centroid of the
ith cluster. We now use the corresponding policy θi
3. Meta-Test: MetaTest(θi, Ttest).

When applied to MAML we refer to our method as a Herd of
MAMLs (HoM), while for PEARL, we introduce a String
of PEARLs (SoP). Next we go into more detail on each
component of our method.

4.1. Probe policies

A crucial part of the algorithm is the choice of the probe pol-
icy πθprobe

. We wish to obtain task embeddings by rolling
out πθprobe

, such that modes of tasks are clustered together.
That means a) very similar tasks should be clustered together
and b) if there is a task B such that success on A is only
possible if jointly trained with B, φA and φB are also close
together. It is important that the probe policy can quickly
learn behaviors which can then be used to distinguish be-
tween tasks. We focus on a simple multi-task probe policy
principle any multi-task method, and use the baseline single
version of the MAML or PEARL algorithm, but other multi-
task methods could be considered (Teh et al., 2017). We
empirically found randomly initialized policy-networks to
be insufficient. The design of specific acquisition functions
for task inference is left to exciting future work.

4.2. Task Embeddings

Depending on the choice of πθprobe
there are a multitude

of options to find an embedding φ of task Ti. We propose
several here, with discovery of others left to future work.
For Taming the Herd, we embed each transition individually
and average the transition embeddings along a trajectory
to get a trajectory embedding. We propose the following
approaches to embed {st, at, rt, st+1}:

1. The Fisher information matrix (FIM, defined in the
Appendix Sec. A) can be seen as the curvature of
the parameter-space. Thus we consider a reward
weighted FIM embedding:

φ(T ) = rt
[
∇θ log πθ(ãt|st)∇θ log πθ(ãt|st)T

]
,

where ãt ∼ πθ(·|st), as we want the Fisher and not the
empirical Fisher.

2. a reward weighted state-next-state embedding as
product of reward and the outer product of concate-
nated state - next state tuples:

φ(T ) = rt [st, st+1] [st, st+1]
T

3. When using a PEARL as probe policy a particular
natural choice of task-embedding is the inferred latent
context of the exploration trajectories of task Ti

4. A reward weighted gradient embedding is:

φ(T ) = rt∇θπθ(at|st)

We found empirically that normalizing the rewards across
the observed trajectories of each task works best, thus we
use rt = rt/maxt rt. We focus on the reward weighted
FIM embedding for our experiments, and plot obtained task
embeddings in the appendix.

4.3. Number of clusters

One of the key choices of our algorithm is the number
of clusters K we assign the tasks to. Given N tasks any
number in the range [1, N ] is a candidate. Choosing K = 1
recovers the basic case to train one meta-learner on all test
tasks, allowing for positive transfer between all tasks but
at the expensive of possibly one task hindering the others.
Choosing K = N is the other extreme, here one meta-
learner is trained for each task, allowing for no knowledge
transfer between the tasks. While this might be optimal
for very different tasks, most real world tasks share some
common struture where the seperate training prevents the
exchange of information. The goal of the task embeddings
presented in 4.2 is to embed tasks in a way such that similar
tasks are close to each other.
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5. Experiments
The primary goal of our experiments it to evaluate whether
our approach to meta-learning can improve performance on
multi-modal task distributions. This differs from existing
works, which only consider variations of the same task.

We create a multi-modal distribution by tak-
ing the union of two common meta-RL prob-
lems: {Cheetah:Forward,Cheetah:Backward} and
{Walker:Forward,Walker:Backward}. These two sets
of tasks correspond to different agents (a Cheetah and a
Walker), which get a positive reward walking in different
directions (forward or backward). We call this set of tasks
ML2. We focus our investigation on two questions:

1. Is it beneficial to train a population of meta-learners
instead of a single one?

2. Are the task embeddings from Section 4.2 suitable
proxies to the task-assignment-oracle?

Our implementation is based on (garage contributors, 2019).
We use the default the default hyperparamaters for MAML,
and the default for PEARL from the original paper (Rakelly
et al., 2019). We include these in the Appendix.

(a) MAML (b) PEARL

Figure 2. Comparison of our approach (orange) vs. an individual
meta-learner (blue) and the oracle which is aware of the task distribu-
tion (black, dotted). Curves show the mean ± 1 std.

To ensure a fair comparison of the single meta-learner and
the herd we make sure that the single meta-learner has at
least as many environment steps at test and train time as
all the ensemble members together. We now describe the
training protocol in detail for MAML on ML2. At train time
the probe-policy is trained for x episodes for a total of y steps
per task. Subsequently each member of the herd is trained
on z samples form task i, meaning the single meta-learner is
trained on i×N total environment interactions. This means
the evaluation protocol differs. If fewer environment steps
than the total number of probe-policy training steps have
been taken, we are still in the single task case. At test time
the single meta-learner uses l exploration trajectories to do
one-shot learning on top of it. The herd approach can use

only l − 2 adaptation trajectories as we dedicate a sample-
budget of two trajectories to embed the test-task with the
probe-policy. For PEARL we embed the task at test-time
with only one trajectory and use 1 exploration trajectory.

We show the training curved in Fig. 2, where we see that in
both cases, our approach achieves dramatically better perfor-
mance than the baseline of a single agent. In Table 1 & 2 we
show the median best performance achieved for the MAML
and PEARL experiments respectively. For MAML, we see
that a single MAML outperforms on the HalfCheetah task,
but it is significantly worse on Walker. Interestingly, we
see larger gains for PEARL than MAML.

Table 1. ML2 performance breakdown for the MAML setting. We
show the median of the best reward achieved for each of 10 seeds.

Oracle Single HoM

HalfCheetah 221.6 236.6 221.2
Walker 298.5 229.7 298.5

Table 2. ML2 performance breakdown for the PEARL setting. We
show the median of the best reward achieved for each of 10 seeds.

Oracle Single SoP

HalfCheetah 1004.5 447.7 1004.5
Walker 414.9 507.6 414.9

6. Discussion
We presented Taming the Herd, a new approach for multi-
modal meta-learning using a population of agents. Our re-
sults show significant promise, dramatically outperforming
the baseline of a single agent, for two different popular meta-
learning algorithms, MAML and PEARL. We believe our
approach achieves positive forward and backward transfer.
For forward transfer, the results in this work demonstrate
the performance in few shot learning. However, potentially
more interesting is the concept of backward transfer. We
believe adding more tasks may improve the meta learned
representations for the corresponding clusters.

We believe our method could be made more efficient by uti-
lizing the trajectories obtained by the probe policy not only
for task-inference but also for meta training. Advances in
this could be applied also to PEARL which does also only
task-inference at test-time without adapting the learner’s
parameters. We can also consider measuring distances be-
tween probabilistic embeddings, for example using Wasser-
stein Distances (Pacchiano et al., 2020).

We could consider training the probe policy in a way to
maximize information about the task, such that it explicitly
seeks to discover its’ mode. Measures employing active
learning have recently achieved success in RL (Ball et al.,
2020; Pathak et al., 2019), and may be useful here.
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A. Additional Definitions
A.1. Fisher Information Matrix

The Fisher information matrix (FIM) is defined as:

F = E
x∼p(x),y∼pw(y|x)

[
∇w log pw(y|x)∇w log pw(y|x)T

]

which is the expected covariance of the gradients of the log-likelihoods w.r.t the model parameters. The information content
of each weight of a neural network can be computed by the divergence of the original and a perturbed output distribution
for w

′
= w + δw in second order approximation as: Ex∼pKL(pw′ (y|x); pw(y|x)) = δwḞ δw + o(δw2). The FIM can be

seen as the curvature of the model in the parameter-space.

B. Implementation Details
We used hyperparameters from open source repos. For MAML we used garage (garage contributors, 2019) and for PEARL
we used the author’s implementation (Rakelly et al., 2019). For completeness we list these below.

B.1. Hyperparameters MAML + TRPO

Table 3. Hyperparameters used for MAML + TRPO.
parameter value

rollouts per task 10
max path length 100

discount 0.99
gae lambda 1

inner lr 0.1
num gradupdates 1

epochs 40
n exploration traj (ensemble) 8

n exploration traj (single maml) 10
policy hidden sizes (64, 64)

policy hidden nonlinearity torch.tanh
policy output nonlinearity None

value hidden sizes [32, 32]
value hidden nonlinearity torch.tanh
value output nonlinearity None)

inner lr Default(1e-2)
outer lr 1e-3

ax kl step 0.01
center adv True

positive adv False
policy ent coeff 0.0

use softplus entropy False
stop entropy gradient False

entropy method noentropy



Taming the Herd: Multi-Modal Meta-Learning with a Population of Agents

Table 4. Hyperparameters used for PEARL.
parameter value

latent size 5
encoder hidden size 200

net size 300
meta batch size 4

num steps per epoch 2000
num initial steps 2000
num tasks sample 10
num steps prior 1000

num extra rl steps posterior 1000
batch size 256

embedding batch size 256
embedding mini batch size 256

max path length 200
reward scale 5.

n exploration traj 2
n exploration traj (ensemble) 1

n exploration traj (single maml) 2
numtaskssample 5 len(taskuniverse)

B.2. Hyperparameters PEARL

C. Additional Experimental Results
C.1. Plot of all embeddings

(a) MAML-reward-grad (b) MAML-reward-state (c) MAML-Fisher

(d) PEARL-latent (e) PEARL-reward-state (f) PEARL-Fisher

Figure 3. 2-dimensional PCA of different task embeddings or 50 tasks sampled in each mode after 1 training episode of the probe policy
on PEARL and 10 training episodes on MAML.
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(a) MAML-reward-grad (b) MAML-reward-state (c) MAML-Fisher

(d) PEARL-latent (e) PEARL-reward-state (f) PEARL-Fisher

Figure 4. 2-dimensional TSNE of different task embeddings or 50 tasks sampled in each mode after 1 training episode of the probe policy
on PEARL and 10 training episodes on MAML.


