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Abstract

We propose a kernel-based nonparametric estima-
tor for the causal effect when the cause is corrupted
by error. We do so by generalizing estimation in
the instrumental variable setting. Despite signifi-
cant work on regression with measurement error,
additionally handling unobserved confounding in
the continuous setting is non-trivial: we have seen
little prior work. As a by-product of our inves-
tigation, we clarify a connection between mean
embeddings and characteristic functions, and how
learning one simultaneously allows one to learn
the other. This opens the way for kernel method
research to leverage existing results in character-
istic function estimation. Finally, we empirically
show that our proposed method, MEKIV, improves
over baselines and is robust under changes in the
strength of measurement error and to the type of
error distributions.

1 INTRODUCTION

Real world data poses many problems for causal effect esti-
mation. Unmeasured confounding, the existence of hidden
common causes of a treatmentX and an outcome of interest
Y , is a problem that lies at the heart of many applied sci-
ences. Solving this problem led to a variety of approaches,
the most common based on the idea of instrumental vari-
ables (IVs): an auxiliary variableZ independent of Y upon a
perfect intervention on X [Pearl, 2009, Hernán and Robins,
2020], which is predictive of X but not caused by it.

A less commonly studied challenge is when the treatment is
not directly observed. For instance, we may want to learn
the effect of taking a drug (X = 1) against not taking
it (X = 0), where we incentivize the patients to take it
or not (Z = 1 vs Z = 0). It is not necessarily the case
that X = Z, because the patients do it at home instead

0.25 0.00 0.25 0.50 0.75 1.00 1.25
X

6

4

2

0

2

4

6

Y

merror scale: 2.0, type: gaussian

corrupted data
KIVM
ours
structural function

Figure 1: Comparison of curves fitted by our method and KIVM
under a corrupted treatment measurement X against with true
curve. KIVM is a method we will discuss in the sequel, which
ignores that measurements of X are corrupted by additive noise.

of a hospital with supervision, and so they may not com-
ply with the incentive. This non-compliance problem is
compounded with the measurement error problem: a self-
reported measurement of taking (M = 1) or not taking
(M = 0) the drug does not imply X = M , because the
patient may be lying or just forgetful. An instrumental vari-
able approach to estimate an average treatment effect (ATE)
such as E[Y | do(X = 1)] − E[Y | do(X = 0)] [Pearl,
2009] may fail to give reliable results if our data consists of
records of (Z,M, Y ), but the assumption X =M does not
hold.

A related issue happens when postulating latent constructs
as causes. In a widespread example by [Bollen, 1989], a
model for the effects of “industrialization level” of a coun-
try in its political freedom Y is considered. We may oper-
ationalize this construct by postulating a space of possible
interventions Z on industrialization X that keep the relation
between X and Y invariant. However, it remains the case
that X is not directly observable but for indirect measure-
ments M , such as the GDP or the proportion of labor force
working in industry.
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Of relevance, in both classes of indirect treatment measure-
ment problem, is that the causal relation E[Y | do(x)] is
considered to be fundamental, with E[Y | do(m)] being ei-
ther zero, or poorly defined, or of secondary interest (for
instance, redefining GDP may as well have a genuine causal
impact, but this intervention is not the motivation behind
understanding the causal impact of industrialization levels).
In particular, measurement mechanisms may change more
easily than the relation between the putative cause and the
outcome of interest (we may redefine GDP, or collect data
where the phrasing and timing of our questioning of a pa-
tient’s compliance varies in different communities, while
assuming that the relation between X and Y is invariant).
In a way, this measurement problem is a counterpart to why
estimating intention-to-treat effects, i.e. E[Y | do(z)], is
not in many cases the goal of an IV analysis, despite the
policy-making implications.

The need to understand effects of the mismeasured quan-
tities on other quantities of interest motivates the study of
measurement error modeling [Carroll et al., 2006, Schen-
nach, 2016, Hernán and Robins, 2020]. Famously, even
in the linear (noncausal) regression case, naïvely regress-
ing Y on a noisy measurement of X results in attenuation
error, which essentially means that the regression coeffi-
cient will be underestimated due to the measurement error
[Carroll et al., 2006]. An analogous phenomenon will take
place when estimating causal effects. Figure 1 depicts a ker-
nel method that attempts to estimate a X-Y dose-response
curve, ignoring measurement error in X , compared against
the curve found by the method we propose.

The nonlinear and confounded setting is an open domain
to be explored. Schennach [2016] suggests that, in general,
three measurements are needed to identify the full joint
distribution of the measurements and the latent variable.
However, in cases where we can make some assumptions
on the error distribution, this can be reduced. Furthermore,
we are not interested in the full joint distribution with the
latent variable X , but only the parts which we need as com-
ponents of the IV regression model. To that effect, we will
assume that our problem follows the Markov properties
of Figure 2: we are interested in the structural function
f(x) ≡ E[Y | do(x)], where observationally Y = f(x)+ ϵ,
the error term ϵ being correlated with treatment X . We
assume that we have access to at least two treatment mea-
surements, M and N , and an instrumental variable Z.

Our contribution is threefold:

• we propose an estimator for the structural function
f(x) without requiring latent variable modeling. The
resulting method can be applied without restrictive
assumptions in the likelihood, such as the requirement
for Gaussian error terms;

• in particular, we provide a method to learn the con-
ditional mean embedding [Muandet et al., 2017] of a
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Figure 2: An instrumental variable model with confounded treat-
ment X and Y , where the treatment is unobservable, but has
indirect measurements M and N .

latent variable distribution, which can be applied to
many two-stage IV settings;

• we propose a way to exploit the connection between
characteristic function methods and kernel methods,
which may be applied to many settings outside of mea-
surement error modelling (see Section 4.1).

2 RELATED WORK

Measurement bias takes several forms in causal inference.
See [Hernán and Robins, 2020, Chapter 9] for a textbook
overview, including examples motivating different error
structures. For instance, there is a growing literature on
causal inference by adjusting for confounders which are
only measured via proxies [e.g Kuroki and Pearl, 2014, Bat-
tistin and Chesher, 2014, Kallus et al., 2018, Miao et al.,
2018, Mastouri et al., 2021, Ghassami et al., 2022]. Because
different components of a causal structure contribute differ-
ently to the target estimand, it is not surprising though that
conditions on identifiability in our setup vary substantively
from, e.g., those required by models of confounding proxies.
In general, our work is related to the large field of latent vari-
able distribution identification, particularly those involving
Markovian assumptions [Allman et al., 2009]. Even closer
is the literature on error-in-variables regression [Carroll
et al., 2006], as it provides several results for identification
and estimation in the related problem of regression analy-
sis. Schennach [2016] provides a more up-to-date review,
including some comments on its use in causal effect esti-
mation. To the best of our knowledge, no direct connection
between methods for continuous causal effect estimation
with both unmeasured confounding and measurement error
in the treatment is described in the literature. For partially
identified models in discrete spaces, Finkelstein et al. [2021]
provide an approach based on the linear programming for-
mulation of Balke and Pearl [1994]. It should be pointed out
that the term “instrumental variable” is sometimes used in
the error-in-variables regression literature as the name for
a second measurement of the missing regressor X [Carroll



et al., 2006, Chapter 6]. In this work, it signifies a direct
cause of X (the more standard definition in causal infer-
ence literature). A similar setting was studied in Gultchin
et al. [2021], where Z operated as a crude intervention on
a complex cause X and causal effects under new Z inter-
ventions could be computed due to invariance. A family
of methods for causal inference with corrupted data is pre-
sented by Agarwal and Singh [2021], including a linear
error-in-variables formulation with Riesz representers that
can be interpreted as estimating causal effects when no con-
founding is present. An example of effect estimation with
observed confounding adjustment is Song et al. [2015], and
an example combining deconfounding and measurement
error correction with linear models is Vansteelandt et al.
[2009]. Finally, measurement error has also been consid-
ered in the causal graph discovery literature [e.g. Silva et al.,
2006, Zhang et al., 2018]. In this case, all observed variables
are measurements of some underlying latent causes, and the
goal is to learn the causal structure among such latent vari-
ables. Parametric assumptions are usually necessary, and
no nonlinear causal effect estimators are provided when la-
tent variables are themselves confounded by further hidden
common causes.

3 BACKGROUND

Throughout, we use capital letters (e.g. A) to denote a ran-
dom variable on a measurable space. We denote measurable
spaces by calligraphic letters (A), with one exception: P ,
which we use to denote a probability measure. We use low-
ercase letters to denote realizations of a random variable
(A = a). We will use the structural causal model (SCM)
formulation of Pearl [2009], where causal relationships
are represented as directed acyclic graphs (DAGs). The
operator do(·) is defined in these models to describe the
process of forcing a random variable to take a particular
value, which isolates its effect on downstream variables (i.e.
E[Y | do(A = a)] describes the isolated effect of A on Y ).

Our goal is to estimate the average treatment effect (ATE)
E[Y | do(X = x)] given the graph in Figure 2 (equivalent
to the structural function f : X −→ Y). Here X, ϵ are
unobserved. We only have access to an instrument Z, the
effect Y , and corrupted measurements of X: M and N .

3.1 STRUCTURAL ASSUMPTIONS ON p(x, y | z)

When the treatment X is observed and an instrument Z is
available, the structural function is identified by
Assumption 1 Y = f(X) + ϵ and E[ϵ|Z] = 0

Assumption 2 p(x|z) is not constant in z.

Under Assumptions 1 and 2, the structural function satisfies

the following equation PZ -almost surely.:

E[Y |Z] = E[f(X)|Z] =
∫
f(x)dPX|Z (1)

Typical methods fall into two categories: 1) two-stage meth-
ods (Singh et al. [2019a], Hartford et al. [2017], Xu et al.
[2020]): first identify the conditional distribution directly or
through estimating conditional expectations of basis func-
tions; this is followed by identifying f under the identified
conditional distribution of vector of conditional expected
values of basis functions; 2) moment-based methods (Zhang
et al. [2020], Bennett et al. [2019]): estimate f using mo-
ment conditions generated by the conditional moment re-
striction: E[(Y − f(X))g(Z)] = 0 ∀g measurable. A prac-
tical difference between two-stage methods and moment-
based methods is that two-stage methods require separate
data for each stage, and the first stage does not require the
outcome observations Y , whereas moment-based methods
require data for all variables simultaneously. In this work,
we seek to identify the measurement process before iden-
tifying the structural function. We thus naturally adopt the
two-stage framework since the measurement process re-
quires only the instrument and the measurements, and not
the outcome labels.

3.2 REPRODUCING KERNEL HILBERT SPACES

For any space S ∈ {X ,Y,M,N ,Z}, let k : S × S → R
be a positive definite kernel. We denote by ϕ its associ-
ated canonical feature map ϕ(x) = k(x, ·) for any x ∈ S,
and HS its corresponding Reproducing Kernel Hilbert
Space (RKHS) of real-valued functions on S. The space
HS is a Hilbert space with inner product ⟨·, ·⟩HS . It sat-
isfies two important properties: (i) k(x, ·) ∈ HS for all
x ∈ S, (ii) the reproducing property: for all h ∈ HS and
x ∈ S, h(x) = ⟨h, k(x, ·)⟩HS . For any distribution p on
S, µp :=

∫
k(x, ·)p(x)dx is an element of HS and is re-

ferred to as the kernel mean embedding of p (Smola et al.
[2007]). Similarly, for any conditional distribution p(x|z),
µPX|z :=

∫
k(x, ·)p(x|z)dx is a conditional mean embed-

ding (CME) of p(x|z) (Song et al. [2009, 2013]); see Muan-
det et al. [2017] for a review.

3.3 STRUCTURE LEARNING USING KERNEL
MEAN EMBEDDINGS

Provided that the structural function f lies in the RKHS HX ,
then its conditional expectation under PX|Z can be written
as E[f(X)|Z] = ⟨f, µPX|Z ⟩HX . In Singh et al. [2019b], the
conditional mean embedding is estimated by the standard
regression formula using the observed samples {zj , xj}s1j=1

before the structural function f is estimated using a second-
stage sample {žj , y̌j}s2j=1. We present their solution here.

The CME estimator of PX|z is estimated using the samples



{zj , xj}s1j=1

µ̂
(s1)
PX|z

= ΦX(KZZ + s1λ̂I)
−1Φ′

Zϕ(z) (2)

where λ̂ is the ridge regression hyperparameter chosen
using the validation procedure described in [Singh et al.,
2019a, App.7.4.2]. KZZ denote the kernel matrix where
(KZZ)jl = k(zj , zl), (ΦX)(:,j) = ϕ(xj). This is precisely
the adaptation of ridge regression to multi-dimensional fea-
ture spaces to the case where the number of features can
be infinite. Furthermore, if we assume that the structure
function lies in an RKHS, then we can learn the function f
in two steps of regression: first a regression to get the CME,
followed by a regression from the CME to Y to obtain f .
We go ahead to make this assumption. Importantly, we stress
that the purpose of this assumption is for the nonparamet-
ric modelling of f , and is not to do with the correction of
measurement error.
Assumption 3 f ∈ HX

Assuming f ∈ HX , the estimated CME µ̂
(s1)
PX|z

is used to
learn the structural function f by solving the empirical ana-
logue of the following:

E[Y |Z] = ⟨f, µPX|z ⟩HX (3)

We solve for f via least squares in two stages: 1. Use
{žj , y̌j}s1j=1 to Monte-Carlo estimate E[Y |Z] and µPX|z

(call the latter µ̂(s1)
PX|z

); 2. Use {žj , y̌j}s2j=1 to estimate f via

f̂ (s2)(x) = β̂′KXx (4)

β̂ = (V V ′ + s2ξ̂KXX)−1V y̌ (5)

V = KXX(KZZ + s1λ̂I)
−1KZŽ (6)

where ξ̂ is a hyperparameter. Note that µ̂(s1)
PX|z

enters in

eq. (6): Vjl = ϕ(xj)
TΦX(KZZ + s1λ̂I)

−1Φ′
Zϕ(žl) =

µ̂
(s1)
PX|žl

(xj). We refer the readers to Singh et al. [2019b]

for the full derivation and for tuning ξ̂.

This approach works when we observe treatment X . When
X is unobserved, this is not possible. Thus, we propose
a method to learn the CME directly from corrupted mea-
surements of X; then, f is yielded as a mapping from the
learnt CME to Y as in Eq. (4) to Eq. (6). Our method is
detailed in Section 4. We note that the solution of Singh
et al. [2019b] requires standard conditions for kernel causal
learning, which we inherit. For clarity of presentation, we
detail them in the Section 3 of the Supplementary Materials.

3.4 CHARACTERISTIC FUNCTION
IDENTIFICATION OF A LATENT VARIABLE
USING MISMEASURED OBSERVATIONS

The main obstacle in the learning of the CME µX|Z is the
lack of observed data of X . To this end, we first review a

strongly related problem, which is to identify the character-
istic function of p(x|z) using corrupted observations M and
N . The following assumptions are needed.
Assumption 4 Measurement errors enter additively:

M = X +∆M (7)
N = X +∆N (8)

Assumption 5 The measurement errors are uncorrelated
with each other, ∆M is uncorrelated with X , ∆N is inde-
pendent with X , and ϵ is uncorrelated with ∆N :

E[∆M |X,∆N ] = 0 (9)
X ⊥⊥ ∆N (10)
E[ϵ|∆N ] = 0 (11)

As X is unobserved and can be redefined up to any invert-
ible transformation, Eq. (7) is not imposing further con-
straints besides a monotonic relation between M and X
in expectation. Eqs. (9) and (11) are weaker formulations
of conditional independence statements ∆M ⊥⊥ {X,∆N}
and ϵ ⊥⊥ ∆N .
Remark 1 Eq. (8) is a restrictive assumption. However,
we point out that it can be relaxed and the relaxed setting
can be reduced to our setting. Thus we focus on the sim-
plified setting where future methods can extend from; we
discuss one way to relax the assumption in Section 2 of the
Supplementary Materials.

With two measurements, Schennach [2004] provides a con-
structive estimator for the moments of latent variables. Our
work uses a special case of their theorem which we state
below.
Assumption 6 E[|X|] <∞ and E[|∆M |] <∞
Corollary 1 Given Assumptions 4-6, the characteristic
function of X given Z = z, i.e. ψPX|z (α), is equal to

ψPX|z (α):=︷ ︸︸ ︷
EPX|z [e

iαX ] = exp

(∫ α

0

i
E[MeiνN |z]
E[eiνN |z]

dν

)
. (12)

Proof. Follows directly from [Schennach, 2004, Theorem
1], where the original phrased the equality for the marginal
distribution p(x,m, n).

Since characteristic functions are exact representations of
probability distributions, Corollary 1 says that we may
model PX|z through modelling PM,N |z and PN |z , and the
mathematical relation is specified by Eq. (12).

4 METHOD

In this section we will show how to recover E[Y | do(X=
x)]. To do so, recall that all we need is the kernel mean



embedding µPX|Z . We begin by demonstrating that esti-
mating µPX|Z boils down to estimating the characteristic
function ψPX|Z . We then introduce a trick for solving inte-
gral equations that we call the differentiation trick which
allows us to estimate ψPX|Z without explicitly estimating
the integral. Finally, we give a full procedure for estimating
E[Y | do(X=x)] and describe advantages of our approach.

4.1 FROM KERNEL MEAN EMBEDDINGS TO
CHARACTERISTIC FUNCTIONS

For simplicity, we limit our description to R. However, all
of the following arguments can be extended trivially to
Rd, d > 1. First recall the Fourier transform:

h̃(α) =
1

2π

∫ ∞

−∞
h(x)e−iαxdx

and the inverse Fourier transform:

h(x) =

∫ ∞

−∞
h̃(α)eiαxdα.

Further, we assume the following.
Assumption 7 (Symmetric, characteristic and translation-in-
variant kernels) k(x, ·), k(m, ·), k(n, ·) are symmetric,
characteristic and translation-invariant kernels.

Kernel symmetry is a standard assumption in ML as kernel
functions are generally real. Characteristic kernels allow us
to embed probability distributions uniquely in an RKHS.
Translation-invariant kernels allow us to consider the proba-
bility measure associated with kernel functions.

Under Assumption 7, we can write k(x, y) = k(x− y) and
k(t) is positive definite. By Bochner’s theorem, we know
that k can be written as the Fourier transform of a unique
measure k̃:

k(t) =
1

2π

∫ ∞

−∞
e−iαtk̃(α)dα

i.e. k(x, y) =
∫ ∞

−∞
e−iα(x−y)q(α)dα

where q(α) := 1
2π k̃(α). As illustrated in e.g. Fukumizu

[2008], we may construct an RKHS on the entire real line
using Fourier transforms as feature maps:

HX =

f ∈ L2(R, dx)

∣∣∣∣∣
∫ ∞

−∞

∣∣∣f̃(α)∣∣∣2
q(α)

dα <∞


⟨f, g⟩HX

=

∫ ∞

−∞

f̃(α)g̃(α)

q(α)
dα

Now consider the Fourier transform of k(x, ·), where x is
fixed. Since we know that k(x, y) =

∫
e−iαxeiαyq(α)dα,

by inspection we realise k̃(x, α) = e−iαxq(α), recover-
ing the identity that k(x, y) =

∫∞
−∞

e−iαxq(α)eiαyq(α)
q(α) dα =

⟨k(x, ·), k(y, ·)⟩HX
.

Recall the definition of the conditional mean embedding
of PX|z for a particular z: µPX|z (y) :=

∫
k(x, y)p(x|z)dx.

When all variables are observed, the conditional mean em-
bedding (CME) can be estimated by samples {xj , zj}sj=1:

µ̂
(s)
X|z(y) =

s∑
j=1

γ̂
(s)
j (z)k(xj , y) (13)

where

γ̂
(s)
j (z) = (KZZ + sλ̂(s)I)−1KZz (14)

Taking the Fourier transform of µ̂(s)
X|z(y):

˜̂µ
(s)
X|z(α) =

s∑
j=1

γ̂
(s)
j (z)e−iαxjq(α)

= q(α)

s∑
j=1

γ̂
(s)
j (z)e−jαxj

︸ ︷︷ ︸
=:ψ̂

(s)
PX|z

(−α)

Define the s−sample estimate of the characteristic function
ψ̂
(s)
PX|z

(α) :=
∑s
j=1 γ̂

(s)
j (z)eiαxj with {xj}sj=1 ∼ PX|z .

Next, we show that ψ̂(s)
PX|z

−→ ψPX|z in L2(R, q) if and

only if µ̂(s)
PX|z

−→ µPX|z in HX .

Theorem 1 (Convergence in CME is identical to conver-
gence in characteristic function) . Let k : X × X −→ R
be a symmetric, positive definite, and translationally invari-
ant characteristic kernel, then for a (conditional) probability
measure on X , denoted PX|z , we have that ψ̂(s)

PX|z
−→

ψPX|z in L2(R, q) if and only if µ̂(s)
PX|z

−→ µPX|z in HX .
Moreover, whenever either converges, the other converges
at the same rate.

We provide the proof in Section 6 of the Supplementary
Materials.

This means learning the characteristic function ψPX|z in
L2(R, q) simultaneously gives us a precise estimate of the
kernel mean embedding µPX|z in HX .

4.2 LEARNING THE LATENT CHARACTERISTIC
FUNCTION

We now show how to learn the latent characteristic function
which will give us the latent kernel mean embedding.

Notation. To lighten notation, from now on we will use f̂
to denote the empirical estimate of a quantity f , and only
use f̂ (s) when we need to be specify the sample size s.



What if we are able to observe X? When X is observed,
µ̂
(s)
PX|z

can be obtained directly and it can be shown that

µ̂
(s)
PX|z

−→ µPX|z as s −→ ∞. By Theorem 1, the same
samples and λ which closely estimate the CME µPX|z

would also closely estimate the characteristic function
ψPX|z , and vice versa 1. Thus, when s is suitably large,
we can accurately approximate the right hand side of (12)
as

exp

(∫ α

0

i
E[MeiνN |z]
E[eiνN |z]

dν

)
≈

s∑
j=1

γ̂j(z)e
iαxj (15)

where γ̂j(z) is specified by Eq. (14). Recall that this term
also depends on λ̂. To make this explicit we write γ̂λ̂j (z).

Solving for X . Given eq. 15 we make the following ob-
servation: given samples of {zj}j , the estimate ψ̂PX|z only
depends on {xj}j and λ̂.

Therefore, we can solve for {xj}j , λ̂ by minimising the
discrepancy between both sides of Eq. (15) over {xj}j , λ̂:

{x̂j}j , λ̂X = argmin
{xj}j ,λ̂

Eq(α),PŽ


 s∑
j=1

γ̂λ̂j (Ž)e
iαx̂j − η

2


(16)

with η = exp

∫ α

0

(
i
E[MeiνN |Ž]
E[eiνN |Ž]

dν

)

The expectation is taken over q(α) and PŽ because, had the
X−samples been observed, the convergence of characteris-
tic function is in L2(R, q) and the Ž distribution does not
have to equal to the one used to learn the CME, as long as
the two have the same support. To estimate η requires two
components of approximation: a) finite-sample approxima-
tion of E[eiνN |Ž] and E[MeiνN |Ž], b) computation of the
integral

∫ α
0

(
iE[MeiνN |Ž]

E[eiνN |Ž]
dν

)
, given a). While it is possible

to use numerical methods such as quadrature to approximate
the integral, we propose to save the second component by
differentiation.

The Differentiation Trick. We now describe a trick for
handling intractable integrals when solving a system of
equations. First, let us reproduce eq. (12) below

ψPX|z (α):=︷ ︸︸ ︷
EPX|z [e

iαX ] = exp

(∫ α

0

i
E[MeiνN |z]
E[eiνN |z]

dν

)
.

We can take the natural logarithm and differentiate both
1This should be possible for z from an unseen distribution

PŽ provided the unseen distribution has the same support as the
training distribution PZ .

sides of eq. (12), and substitute the samples of Ž:

E[XeiαX |ž]
E[eiαX |ž]

=
E[MeiαN |ž]
E[eiαN |ž]

(17)

Since differentiation is a many-to-1 operation, we need to
verify that the solution to Eq. (17) is also the solution to
Eq. (12).
Lemma 1 Considering differentiable functions Cn → C.
Denote f ′(x) := d

dxf(x). Then if f ′ = g′ and f(a) =
g(a) = b, a, b ∈ C, then f = g.

Proof. If f ′ = g′, then f = g + C for some C ∈ C. But
f(a)− g(a) = b− b = 0, so C = 0.

Theorem 2 The (conditional) distribution of X , denoted
by PX|z , which satisfies Eq. (17) is unique, and therefore is
the same as the solution to (12).

The proof relies on the fact that characteristic functions
are always 1 at α = 0 (Section 6 of the Supplementary
Materials).

When should one use the differentiation trick? When esti-
mation for the target function/parameter requires evaluating
an intractable integral, one can think of using the differenti-
ation trick. Lemma 1 specifies one condition where this can
be done. Note that there are more situations where the dif-
ferentiation trick can be applied, such as when all functions
in the target class have the same normalization constant. We
summarize two situations where the differentiation trick can
be applied:

• When the target function class is itself normalized, or
fixed at certain input values. Examples of this which
may be of interest to machine learning practitioners
are: a) probability densities, which always integrates to
1, b) cumulative distributions, which is always 1 at ∞.

• When an invertible transformation of the function class
is normalized or fixed at certain inputs. In those cases,
one can in principle solve the problem in the normal-
ized function class, and then apply the invertible trans-
formation to go back to original class.

Towards a sample-based estimator. As discussed, we
may replace E[eiαX |ž] and E[eiαN |ž] with their finite-
sample estimates ψ̂PX|ž and ψ̂PN|ž . For E[XeiαX |ž] and
E[MeiαN |ž], we realise that E[XeiαX |ž] = ∂

∂αE[e
iαX |ž],

and E[MeiαN |ž] = ∂
∂υ

∣∣∣∣
υ=0

E[ei(αN+υM)|ž]. Thus, we re-

place them with ∂
∂α ψ̂PX|z (α) and ∂

∂υ

∣∣∣∣
υ=0

ψ̂PM,N|z (α, υ)

respectively. The full expressions of s−sample estimates
for ψ̂PX|z (α), ψ̂PN|z (α), ψ̂PM,N|z (υ, α) and the relevant
derivatives are stated in Section 4 of the Supplementary
Materials.



Therefore, we arrive at the new objective function:

{x̂j}sj=1, λ̂X =

argmin
{xj}s

j=1,λ̂X

Eq(α),PŽ

[(
wX(α, Ž)− wMN (α, Ž)

)2]
(18)

with wX(α, Ž) =

∑s
j=1 xj γ̂X(Ž)je

iαxj∑s
j=1 γ̂X(Ž)jeiαxj

(19)

wMN (α, Ž) =

∑s
j=1mj γ̂M,N (Ž)je

iαnj∑s
j=1 γ̂N (Ž)jeiαnj

(20)

wMN is the sample estimate for the integrand in η from
Eq. (16). We can interpret the output values of wMN as the
labels for the supervised learning task defined by Eq. (18),
the (α, ž) as inputs, and the {xj} and λ̂X are the parameters.
As soon as we have obtained the optimal {x̂j}sj=1 and λ̂X ,
we can substitute into Eq. (13) and Eq. (14) to obtain the
CME estimate µ̂PX|z .

4.3 ALGORITHM

We propose MEKIV: Measurement-Error-corrected Kernel
Instrumental Variable regression. Two independent samples
are needed: {zj ,mj , nj}s1j=1 and {žj , y̌j}s2j=1.

Thanks to Theorem 1, In step 1 of the MEKIV, we use
{zj ,mj , nj}s1j=1 to compute the sample estimates of the
conditional kernel mean embeddings of PN |z and PM,N |z ,
which in large sample size is guaranteed to converge to the
ground truth Singh et al. [2019b]. By Theorem 1, this also
gives us a sample estimate of the characteristic functions
which converges in L2 of their measures induced by their
respective kernels.

Step 2 of the MEKIV learns the characteristic function of
PX|Z by optimising for the X samples using the training
objective in Eq. (18). Again by Theorem 1, a good estimate
of the characteristic function gives us a good estimate of the
conditional kernel mean embedding.

In Step 3, MEKIV uses the learnt kernel conditional mean
embedding and the second samples {žj , y̌j}s2j=1 to estimate
the structural function f - equivalent to the stage 2 of the
KIV (Singh et al. [2019b]).

The pseudocode of our complete algorithm can be found in
Algorithm 1 and 2 in the Supplementary Materials.

Step 1. From the first sample {zj ,mj , nj}s1j=1, learn the con-
ditional mean embedding of p(m|z) and p(m,n|z) using
the result stated in Eq. (2), Section 3.3:

µ̂
(s1)
PN|z

(·) =
s1∑
j=1

(γ̂
(s1)
N (z))jk(nj , ·), (21)

with γ̂
(s1)
N (z) = (KZZ + s1λ̂NI)

−1KZz (22)

Similarly, it can be shown that:

µ̂
(s1)
PM,N|z

(·) =
s1∑
j=1

(γ̂M,N (z))jk((mj , nj), ·), (23)

where γ̂
(s1)
M,N (z) = (KZZ + s1λ̂M,NI)

−1KZz (24)

Remark 2 (23) allows the use of product kernels.

Step 2. After obtaining from Step 1 the quantities: γ̂N and
γ̂MN , Step 2 creates samples {αj}, {žj} and {(wMN )j}.
To this end, Step 2 samples {αj}s2j=1 from q(α), and uses
{žj}s2j=1 unseen in Step 1. In general, {žj}s2j=1 can be drawn
from any distribution PŽ with the same support as PZ . To
maximize sample usage, we take all pairs in the cross prod-
uct {αj}s2j=1 × {zj}s2j=1, giving (s2)

2 pairs: {αj , žj}(s2)
2

j=1 -
here we overload notation {žj} to be both before and after
taking the cross product. We input each pair of {αj , žj} into

Eq. (20) to generate the labels {(wMN )j}(s2)
2

j=1 . The process
of sampling {αj} from q(α) has a close connection with
the Random Fourier Features literature (Bach [2017], Sripe-
rumbudur and Szabó [2015], Rahimi and Recht [2007]).

We now seek {xj}s1j=1 and λ̂X in order to minimize the
following objective, which is the empirical analogue of
Eq. (18):

{x̂j}s1j=1, λ̂X = argmin
{xj}

s1
j=1,λ̂X

(s2)
2∑

j=1

[
(wX(αj , žj)− (wMN )j)

2
]

(25)

For clarity, Step 2 is illustrated in Algorithm 2 (see Supple-
mentary Materials).

Step 3. Given estimates of {xj}s1j=1 and λ̂X , we obtain
the empirical estimate µ̂PX|z . Along with the samples
{žj , y̌j}s2j=1, we obtain the solution for f̂s1 . The procedure
is identical to the Stage 2 estimation of KIV Singh et al.
[2019b], for which we stated the derived estimator in Sec-
tion 3.3. Our solution for f is:

f̂ (s2)(x) = (β̂)′KX̂x (26)

with β̂ = (V V ′ + s2ξ̂KX̂X̂)−1V y̌ (27)

V = KX̂X̂(KZZ + s1λ̂I)
−1KZŽ (28)

4.4 ADVANTAGES OF MEKIV

We highlight the benefits of MEKIV:

• MEKIV is free of distributional assumptions: as
long as the measurement error satisfies the mean-
independence conditions in Eq. (9)-(11), the distribu-
tions can have any shape.

• Computational efficiency: MEKIV models only the
CME of PX|Z , and in particular, no modelling of the
full joint distribution PX|Z,M,N as is commonly done
in standard latent variable modelling.



• Ease of implementation: Unlike standard latent vari-
able modelling, which is typically hard to train due to
the large number of hyperparameters, MEKIV is easy
to implement and works stably without large efforts in
tuning.

5 EXPERIMENTS

In this section we evaluate the empirical performance of
MEKIV across multiple designs and against baselines. In
particular, we compare to three baselines: A) KernelIV
Singh et al. [2019b] with ground truth X provided from
an oracle (KIV-Oracle); B) KernelIV taking M as the true
treatment observations (KIV-M); C) since taking the aver-
age of independent errors reduces the error variance, we
also compare with KernelIV taking (M +N)/2 as the true
treatment observations (KIV-MN).

We run each estimator on three designs. The linear design
Chen and Christensen [2017] involves learning the structural
function f(x) = 4x−2, whereX is unseen and we are only
given corrupted measurements of treatment (M,N), contin-
uous instrument Z, and observations of outcome variables
Y which is confounded with the true treatments X . The sig-
moid design Chen and Christensen [2017] involves learning
the structural f(x) = ln(|16x− 8|+ 1) · sgn(x− 0.5) un-
der the same data generating process otherwise. The demand
design Hartford et al. [2017] involves learning demand func-
tion h(p, t, s) = 100+(10+p) ·s ·ψ(t)−2p where ψ(t) is
a complicated nonlinear function. A data tuple including the
ground truth treatments consists of (Y, P, T, S, C) where Y
is sales, P is price, T is time of year, S is customer senti-
ment (a discrete variable), and C parameterizes the supply
cost shift. A parameter ρ ∈ {0.25, 0.5, 0.9} calibrates the
confounding level of P by supply-side market forces. We
set X := (P, T, S) and instruments are Z := (C, T, S).

Since the originally proposed design is one where X is
observed, we construct M and N from X and we mask
X from all algorithms except KIV-Oracle. For the demand
design where X is 3-dimensional, we mask only the dimen-
sion corresponding to P . For each design we construct M
and N from adding noise on X . We analyze the robustness
of MEKIV in two dimensions. First, we vary the measure-
ment error distribution: we implement a Gaussian additive
noise design and a multi-modal Mixture of Gaussian addi-
tive noise design where we mix two Gaussian distributions,
centred at twice the standard deviation of X away from 0 on
either side. Second, for each measurement error distribution,
we vary their standard deviation. For both designs, we set
the standard deviation of the Gaussian(s) to be {0.5, 1, 2}
times the standard deviation of the ground truth X .

For the linear and sigmoid design, we implement 30 simu-
lations for each algorithm, measurement error distribution
(merror type) and measurement error standard deviation
(merror level). For the demand dataset, due to time con-

straints, we implement 30 simulations for the Mixture of
Gaussian measurement error distribution and 10 for the
Gaussian distribution, for each algorithm and measurement
error standard deviation. We calculate MSE with respect
to the true structural function f . Figure 3, 4 and Figure 6
(Supplementary Materials) plots the results in each design,
measurement error distribution type, and measurement er-
ror level. We expect KIV-Oracle to be the best across all
methods and its performance is viewed as an upper bound
for the other algorithms. MEKIV beats all other baselines
in the highest measurement error level setting and is robust
to non-classical measurement error as demonstrated by its
performance under Mixture of Gaussian error.

6 EXEMPLARY REAL WORLD
SCENARIOS

Measurement error from survey data: effect of income
on children’s cognitive outcome. Dahl and Lochner [2012]
investigated the impact of family income on children’s devel-
opment. The primary concern with using a regression-type
method is that family income and children’s development
is confounded by other family characteristics, such as par-
ents’ cognitive ability. Dahl and Lochner thus proposed the
state’s Earned Income Tax Credit (EITC) scheme as an in-
strumental variable to correct for the confounding. Here,
they exploit the fact that the EITC scheme expands over
the years, so, via this, they can capture the variation of total
family income independent from that caused by intrinsic
family characteristics. They base their analysis on the panel
dataset in the Children of the National Longitudinal Survey
of Youth. Survey data are known to contain measurement
errors (Carroll et al. [2006]). Moreover, the family income
measured by the survey in two consecutive years can be
posed as repeated measurements of true total family income
- assuming that family income is a stable variable that does
not vary drastically over a short number of years. Moreover,
Dahl and Lochner [2012] took a linear model approach for
simplicity, but our method can be used for a nonlinear anal-
ysis. We apply our method to this dataset and discuss the
experiment in detail in Supplementary Materials.

In conclusion, we find that EITC as an instrument is weak, so
we prescribe that for a meaningful analysis of the hypothesis
of income-on-children’s-outcome, a stronger perturbation
on the income is required. For example, this can be done by
selecting a neighbourhood for which the strength of EITC
parameters is increased for some number of years.

6.1 UNDERSTANDING HOW STUDENT SKILLS
IMPACT THEIR LONG-TERM OUTCOME

We consider the following thought experiment: an education
trial may take place such that the teachers exercise certain
educational strategies to improve the skills of students, in



Figure 3: Out of sample MSEs (log10) for linear and sigmoid designs.

Figure 4: Out of sample MSEs (log10) for demand design.

the hopes of ultimately improving their long-term outcome.
Such an educational strategy may be the introduction of
challenging science projects; this would be Z. This may be
hypothesized to encourage the students to understand taught
concepts better and apply their knowledge to more complex
scenarios. The resultant short-term changes in these skills
(X) may be measured by test scores (M , N ), which contain
measurement error. The project should then follow the co-
hort of students to see what they achieve years later when
they reach adulthood (Y ). We may then run our method to
determine the nonlinear causal relationship from skills, such
as logical thinking and creative application of knowledge,
to long-term outcomes.

7 CONCLUSION AND FUTURE WORK

We propose MEKIV, an instrumental variable approach for
confounded structural learning when the treatment variable
is measured with error. We clarify a connection between
mean embedding learning and characteristic function learn-
ing, showing that the two can be done simultaneously. In
constructing our algorithm, we introduce the ‘differentiation
trick’ which allows target function recovery while avoid-
ing the computation of an intractable integral. Our method
performs well on both Gaussian and non-Gaussian measure-
ment error, and is robust over increasing measurement error
levels.

Our method should work well when interventional data is
present, but when only purely observational data is present,

the instrumental variable assumption may need to be relaxed.
This is due to the rarity of instrumental variables in obser-
vational studies - instrumental variables in observational
studies are often weak, and in some cases they might not
even be valid. We leave this for future work. Nevertheless,
the ubiquity of instrumental variable assumptions suggests
that our approach should be widely applicable; our proposed
methodology connecting kernel learning and characteristic
function learning also carries independent interest and may
find applications outside of the topic of treatment effect
estimation considered in this paper.
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