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Abstract

As Large Language Models advance in reasoning and generation, interest in their
collaborative potential has grown. This paper investigates agentic reasoning col-
lectives, i.e., structured groups of LLMs, to solve awareness-focused tasks. We
introduce AWAREXTEND, a benchmark evaluating introspective and social aware-
ness across five dimensions: Capability, Mission, Emotion, Culture, and Perspec-
tive. Unlike existing benchmarks, it poses multi-dimensional, context-sensitive
challenges to assess awareness-driven reasoning. We propose a collaboration
strategy based on Peer Debate and compare it against a family of hierarchical
methods that extend the Mixture-of-Agents (MoA) approach. Experiments with
groups of LLMs ranging from 1B up to 14B parameters show that Peer De-
bate consistently outperforms individual models and MoA approaches. These
results indicate that collaborative reasoning improves models’ performance on
awareness-related tasks, suggesting that interaction can support more consistent
and contextually informed behavior.

1 Introduction

With Large Language Models (LLMs) achieving state-of-the-art results across a broad spectrum
of reasoning and generation tasks |OpenAl et al.| (2023); |Guo et al.| (2025)); [Yang et al.| (2025), re-
searchers are increasingly exploring their potential for collaboration |Guo et al.|(2024). This shift
reflects a broader challenge in Artificial Intelligence: enabling multiple agents to combine their
specialized strengths to solve complex problems in a way that is socially aligned and robust to un-
certainty [Xia et al.| (2025]).

An essential prerequisite for effective coordination in both biological and artificial systems is aware-
ness, understood as the knowledge and understanding that something exists or is happening. In the
context of LLMs, we adopt the awareness definition introduced by |Li et al.| (2024), which is the
capacity of models to identify themselves as Al systems, comprehend their capabilities and objec-
tives, and demonstrate understanding of social interactions and dynamics. The taxonomy organizes
awareness into two principal categories: introspective awareness, concerning a model’s knowl-
edge of its own identity, capabilities, and objectives, and social awareness, involving understanding
the perspectives, intentions, and behaviors of other agents, and interact accordingly. A systematic
study of awareness provides a measurable basis for evaluating reliability, robustness, and ethical
behavior, helping identify the conditions under which models enable effective collaboration, reduce
misalignment, and enhance trustworthiness in human—AlI or multi-agent settings.

Figure E] illustrates our collaborative awareness framework. First (left), individual LLMs are eval-
uated across five dimensions: emotion, culture, and perspective (social), and mission and capa-
bility (introspective), establishing each agent’s relative strengths. Second (center), the models are
combined into a collaborative configuration where they exchange information and jointly perform
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Figure 1: Collaborative awareness framework. Individual LLMs are evaluated across five dimen-
sions (left), collaborate via MoA or Peer Debate (center), and generate outputs that surpass individ-
ual performance (right).

awareness-focused tasks. Third (right), the radar plot summarizes the outcomes, showing that col-
lective awareness exceeds individual awareness across multiple dimensions and highlighting the
benefits of collaborative reasoning.

Collectives of LLMs have been explored in a variety of reasoning and decision-making tasks, partic-
ularly those that benefit from multiple viewpoints, stepwise problem solving, or dialogic interaction
Wang et al| (2024); [Liang et al|(2024); [Vezhnevets et al.| (2023); [Wang et al.| (2023)); [Shnitzer et al.
(2023); Huang et al.|(2024). Instead of relying on a single monolithic model, such collectives enable
specialization and division of labor: some agents generate solutions, while others critique, revise, or
integrate them. Language serves as the medium of coordination, supporting flexible collaboration
and allowing groups of models to tackle tasks that require deep reasoning or diverse perspectives.

The novelty of this work lies in extending the study of awareness from individual reasoning to
collaborative contexts. While prior efforts such as AwareBench [Li et al. (2024) have established
valuable benchmarks for assessing awareness, their scope remains limited and insufficient to chal-
lenge contemporary LLMs. Furthermore, awareness has not yet been systematically examined under
structured interaction, leaving open whether collaboration can enhance these abilities. To address
these gaps, we investigate whether and how collaboration can foster awareness in LLMs, and com-
pare distinct modes of collaboration, ranging from existing Mixture-of-Agents (MoA) paradigms to
distributed, peer-oriented debate. This study is guided by the following research questions:

RQ1. Does collaboration among LLMs enhance both social and introspective awareness compared
to individual reasoning?

RQ2. Do peer-oriented collaboration strategies yield more robust awareness improvements?
RQ3. Are the benefits of collaboration consistent across dimensions and model scales?

Addressing these questions required improved evaluation resources and new multi-model collabo-
ration frameworks. Our main contributions are:

* AWAREXTEND — a benchmark for evaluating awareness in LLMs that broadens the scope
of AwareBench (2024) by introducing greater task diversity and difficulty. It reor-
ganizes and integrates tasks from previous literature.



¢ Reflective Peer Debate (RPD) — a distributed, interaction-driven collaboration frame-
work that promotes direct exchange among models. Responses evolve through iterative
critique and self-correction.

We compare AWAREXTEND against AwareBench and find that it presents a more challenging eval-
uation of awareness in LLMs. We also evaluate RPD against an extended version of MoA |Wang
et al.| (2024)), with dimension-specific crediting and routing variants.

Our experiments show that collectives of LLMs, ranging from 1-2 billion to 13—14 billion pa-
rameters, consistently outperform individual models and MoA |Wang et al.| (2024) approaches on
the AWAREXTEND tasks. Incorporating debate and Chain of Thought (CoT) reasoning Wei et al.
(2022) yields additional performance gains, showing that debate-based collaboration is a promising
strategy for enhancing awareness.

The remainder of this paper is organized as follows: Section [2] describes the benchmarks used in
this study. Section [3] outlines the collaboration strategies employed. Sections [4] and [5 present the
experimental results and key findings. Finally, Section [6] concludes the paper and discusses future
research directions.

2 Benchmarking Awareness

To evaluate introspective and social awareness in LLMs, we use two benchmarks: AwareBench |Li
et al.| (2024) and our dataset, AWAREXTEND. Both assess five dimensions: (i) Capability: self-
assessment of knowledge and limits; (ii) Mission: understanding its role and ethical alignment; (iii)
Emotion: sensitivity to affective cues; (iv) Culture: knowledge of norms and context; (v) Perspec-
tive: reasoning about diverse viewpoints and social contexts.

AwareBench. AwareBench [L1 et al.| (2024) provides both multiple-choice and open-ended tasks.
While it establishes a useful baseline, many modern models already perform well without fine-
tuning, and the open-ended tasks are limited to perspective and mission awareness. Furthermore, in
the original paper, evaluation of open-ended responses relies on an LL.M-as-a-judge framework |Li
et al.| (2025)), which complicates reliable comparison. To ensure consistency and comparability, we
therefore restrict AwareBench to its multiple-choice questions covering all five dimensions, and use
this filtered version alongside the AWAREXTEND test set. Overall, AwareBench contains 3, 515 data
points, which are not equally distributed between awareness dimensions (see Figure[7).

AWAREXTEND. AWAREXTEND gathers from AwareBench the awareness taxonomy, but provides
a more challenging, balanced benchmark. Overall, it contains 3, 950 multiple-choice questions (790
per dimension), and adapts tasks from benchmarks available in the literature. Specifically: Capabil-
ity is sourced from Truthful QA |Lin et al.|(2022)), and presents binary-choice questions that require
models to distinguish factual answers from plausible falsehoods. Mission is constructed from the
ETHICS |Hendrycks et al.| (2021a) benchmark (Justice, Virtue, Commonsense sub-tasks), i.e., the
subset that challenges models to reason ethically and align with human values. Questions are re-
formulated into binary or multiple-choice formats. Emotion is drawn from BIG-Bench Srivastava
et al.| (2022)), selecting items with an “emotional understanding” label, including sarcasm detection,
humor classification, and suicide risk estimation. The samples test the models’ ability to respond
sensitively and empathetically. Culture is built from MMLU |Hendrycks et al.| (2021b), and cov-
ers topics within the humanities. It tests culturally grounded knowledge across history, philosophy,
and law. Perspective is derived from Moral Stories Emelin et al.|(2021), MMLU Hendrycks et al.
(2021b) moral subtasks, and Social IQA from BIG-Bench |Srivastava et al.| (2022).

Figure [/ (Appendix shows the contributions of individual sub-datasets to the five awareness
dimensions for both AWAREXTEND and AwareBench.

3 Collaboration

This section formalizes the collaborative frameworks used to operationalize awareness as an emer-
gent property of multi-model interaction. We present (i) a compact notation for the collaborative
setting, (ii) the ranking-and-response collection procedure that seeds collaboration, (iii) a series of



collaboration strategies, referred to as Hierarchical Answer Aggregation, which build on ensembles
and MoA |Wang et al.| (2024)) and (iv) a Peer Debate family that enables answers to evolve through
iterative critique and revision.

3.1 Notation

Let M = {my,...,my} denote the set of participating LLMs (“agents”) and X = {1,..., K}
index the awareness dimensions (Capability, Mission, Emotion, Culture, Perspective). For a model
m; and a dimension k € C we write

APX®  and  APS®)

for the Accuracy on Prompt Execution and Accuracy on Perplexity Score according to|Hu and Levy
(2023)). Both measures are computed on Dy, and capture complementary aspects of model behavior.

APX quantifies how reliably a model follows task instructions and produces the correct explicit
response under a given prompt. In contrast, APS evaluates the relative perplexity assigned to correct
versus incorrect alternatives, providing a more direct estimate of the model’s internal knowledge and
confidence structure. A dimension-specific ranking is given by a function

r®) M= {1,... N},
where r(*¥) (m;) is the rank (1 = best) of model m,; on dimension k (typically induced from APXZ(.k)).

For a test instance z, let y;(x) denote the answer produced by model m;. We collect the vector
of candidate answers y(z) = (y1(x),...,yn(z)). Dimension-specific credit scores, detailed in
section [3.3]are represented as

N
cgk) >0, chk) =1,
i=1

and quantify prior competence of each model on dimension k. Note that such prior is intended to
be computed on a validation that we refer to as D,,. Aggregation strategies then compute a final
prediction §(z) from y(z), the credit vector c(¥), and optionally the original prompt z.

When describing debate protocols (see Section [3.4), let 7' be the number of rounds. Agent m;’s
state at round ¢ is denoted by s\ and includes its current reasoning trace (i.e., the output of CoT)

i
and provisional answer; the debate history up to round ¢ is H®) = {SET) ci € [1,N],7 <t}
Final-extraction functions (e.g., majority, rank-weighted vote, consistency-weighted vote) map the

debate history H(™) to a final label 3.

3.2 Rankings and Response Collection

Prior to any collaborative protocol, we perform a baseline evaluation on a validation set Dy, to
estimate each model’s competence per dimension. For each k& € K we compute APXl(-k) and APSEk)
according to|Hu and Levy|(2023) and derive the ranking r(*). In this work we primarily rely on APX
for ranking and routing decisions, since it better aligns with comparative, debate-style evaluations.
Ranking information is used to (i) assign credit scores ¢(*), (ii) guide routing and peer-assignment
decisions, and (iii) parameterize aggregation priors for LLM-based aggregators. Responses y; ()
from all m; € M are collected and stored; these precomputed outputs, together with the associated
rankings and credits, are the inputs to the collaborative procedures described below.

3.3 Hierarchical Answer Aggregation

The Hierarchical Answer Aggregation (HAG) family extends the MoA idea [Wang et al.| (2024)
and serves as a strong baseline to assess the value of our contribution. Base models m,; produce
independent answers y;(x); an aggregation module A then computes the final prediction:

j(2) = Az, y(@),c™).
We distinguish two broad classes of aggregators.

?Preliminary assessments (including APS) of 7-9B models on the AWAREXTEND validation set are reported
in Table 2] of Appendix [A]



Non-LLM-Based Aggregators. Deterministic or probabilistic rules that combine y(z) without
invoking an additional LLM. Implementations considered include: (i) Majority Voting: Viysjority ()
returns the modal label among {y;}. We implement both unweighted voting and weighted voting

where each vote is weighted by cgk); (ii)) Sampling: a candidate y; is sampled according to a

distribution induced by c*) (weighted) or uniformly at random (uniform). The uniform sampling
variant is used only as a baseline and excluded from core collaborative experiments.

LLM-Based Aggregators. In this mode, one of the models in M is chosen as a meta-LLM ¢ and
provided with the original prompt z, the set of candidates y(x), and their credit scores c®). Tt is
tasked to return a synthesized answer:

J(z) = g(z,y(x),c®).

We explore variants that differ in how g is selected: (i) Best Overall: the model with the highest
overall (aggregate) ranking is chosen as g; (ii) Dynamic Expert: the top-ranked model for the target
dimension k of the question is chosen as g.

Credit Allocation Modes. The vector c(*) is instantiated according to one of four modes (these
reflect differing priors on expertise distribution and are used consistently across both non-LLM and
LLM aggregators): (i) Expert: all mass is assigned to the top-ranked model for dimension k; (ii)
Rank-Based: credits are distributed proportionally to model rank; (iii) Uniform: all models receive
equal credits; (iv) Unskilled: the top-ranked model receives zero credit, and the remaining mass is
shared uniformly among the others.

These modes allow controlled comparisons of how competence priors affect aggregation outcomes.

3.4 Peer Debate

The Peer Debate family explicitly models interaction among agents so that individual answers can
be critiqued and revised. Two variants are implemented.

Judge-led Debate Chain (JDC). Agents speak sequentially and a designated judge (which can be
one of the LLMs debating or an external decision rule) inspects the debate transcript and selects the
final answer. This approach is an adaptation of |Liang et al.|(2024).

Reflective Peer Debate (RPD). A non-hierarchical protocol in which agents iteratively ex-
change reasoning traces and revise their answers based on peers’ critiques. Formally, for rounds
t=1,...,T:

s =u (s Ry (HED)),

where R; selects a subset of peer states from H(*~1) according to a peer-assignment policy (see
Section[3.5.1)), and U denotes the agent’s internal update. After 7" rounds, a final-extraction function
£ (e.g., majority, rank-weighted, consistency-weighted) produces § = £(H (1), c(k)). Credit scores
c(®) are used to bias extraction when appropriate. RPD thus evaluates whether iterative critique and
revision reach better decisions than static aggregation.

3.5 Tuning Debate Parameters

To constrain computational cost during protocol design, we ran a pilot evaluation on AWAREXTEND
using four 7-9B model and the APX metricE] A first round of ablations compared JDC and RPD
under optimized prompting; results are summarized in Appendix Tables (Appendix [C). RPD
consistently outperformed JDC and aggregative baselines in these pilot settings, and was therefore
adopted as the default debate protocol for subsequent experiments.

A second ablation varied the number of debate rounds 7" and the extraction function £. The baseline
configuration used a single revision round per agent followed by majority voting across five rounds;

3Llama-3.1-8B-Instruct (Grattafiori et al.| (2024); gemma-2-9b-it [DeepMind)| (2024); Qwen2.5-7B-Instruct
Yang et al.|(2024).
“Due to the dialogic nature of the framework, perplexity-based scoring (APS) is less informative.



extraction strategies evaluated include: (i) Majority: majority vote, with variants last (vote on final
round only) and all (vote across all rounds); (ii) Rank: rank-weighted vote using ¢, with last and
all variants; (iii) Consistency: weights based on intra-agent answer stability (agents that change
labels less are favored), with last and all variants.

Pilot results indicated (i) moderate debate lengths (i.e. < 5) balance diversity and convergence, and
(ii) Rank (all) was the most effective extraction strategy in the pilot configuration; this configuration
was therefore used in the main experiments. Detailed ablation tables are provided in the [C| Table 3]

3.5.1 Peer Assignment

Peer assignment defines which peer states R;(H (t)) each agent inspects and is a key mechanism
controlling exposure to diverse perspectives. The policies implemented are: (i) Random: peers
sampled uniformly at each round; (ii) Static: fixed peer assignment across all rounds; (iii) Circular:
deterministic rotation so each agent interacts with every other agent over rounds; (iv) Diverse:
preference for peers whose previous-round answers differed from the agent’s own.; (v) Consensus:
pairing with peers sharing the majority vote to accelerate convergence; (vi) Doubt: pairing with
peers who exhibited high answer volatility, encouraging scrutiny of unstable reasoning.

Each policy imposes different inductive biases on the interaction dynamics.

4 Experimental setup

Benchmark selection. We evaluate medium-scale LLMs (7-9B parameters) on both the
AwareBench [Li1 et al.| (2024) and AWAREXTEND benchmarks to determine which benchmark is
more suitable for subsequent experiments. The evaluation includes six open-source models, namely:
Mistral 7B et al.| (2023a)), Falcon 7B let al.| (2023b)), Llama 3.1 8B [Touvron and et al. | (Meta Al),
Gemma 2 9B |DeepMind)| (2024), Qwen2.5 7B [Team| (2024), and DeepSeek 7B Zhou et al.| (2024).

Comparing Individual vs. Collaborative Awareness. We compare the base and collaborative
settings using a pool of four LLMs, namely Mistral 7B let al.| (2023a)), Llama 3.1 8B [Touvron and
et al. |(Meta Al), Gemma 2 9B DeepMind) (2024), and Qwen2.5 7B [Team|(2024). We then evaluate
the HAG and RPD collaboration strategies against the base models. Note that Falcon 7B et al.
(2023b)) and DeepSeek 7B |Zhou et al.[(2024) are excluded, as both proved less effective at following
instructions. Notably, the latter is the only model in the pool with eventual reasoning capabilities,
which may influence its behavior in collaborative settings.

Collaboration Assessment across Scale and Dimensions. We investigate how collaboration affects
models of varying scales and different dimensions of awareness. We construct four pools, each
containing three models of similar size, detailed in Table[6](Appendix D). For each pool, we analyze
the effects of collaboration both by type (introspective vs. social) and across awareness dimensions.

5 Results

Our experiments provide strong empirical evidence supporting the hypothesis that collaborative
strategies enhance awareness in LLMs. Furthermore, we offer additional insights into the com-
parative performance of methods, benchmark difficulty, and the effects of model scale.

AWAREXTEND is More Challenging. Results in Figure [5| (Appendix [A) show that, while ex-
isting approaches perform well on AwareBench, they struggle on AWAREXTEND. This indicates
that AWAREXTEND provides a more challenging and discriminative evaluation of LLM awareness.
Unlike AwareBench, it incorporates more complex, real-world datasets and subtler task variations.
Moreover, AWAREXTEND is balanced across the five core awareness dimensions, enabling the neu-
tralization of class imbalance in subsequent analyses.

Collaboration increases Awareness. We use AWAREXTEND to demonstrate the effectiveness of
collaboration in solving the tasks. The results in Table|I|show that collaborative settings (i.e., HAG
and RPD) on average outperform individual models across all dimensions, indicating that collabo-
ration enhances overall awareness and contextual understanding.



System Emotion Culture Mission Perspective | Capability Overall
Individual 57249.3 | 71.2+£59 | 76.1+48 | 65.9+7.5 | 71.1+5.2 | 68.3£6.3
Collaborative | 63.9+2.6 | 76.6 £2.3 | 79.7+2.2 | 70.0+29 | 79.9+46 | 74.0+ 25

Table 1: Average APX (%) of Individual and Collaborative performance on AWAREXTEND.
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Figure 2: Collaboration strategies on awareness
tasks. RPD consistently outperforms HAG and
shows lower variance, indicating greater robust-
ness and the limited impact of debate variations.
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Figure 3: Bar plot comparing the APX of six
RPD variants against the best Individual LLM
Gemma and the best HAG approach. Scores re-
fer to the AWAREXTEND test partition.

In addition, we compare the two collaboration methods (HAG and RPD) and observe that RPD con-
sistently outperforms HAG while exhibiting lower variance, indicating greater robustness. These
results suggest that removing hierarchical structures facilitates awareness development and that the
various debate-based strategies contribute less to overall performance. Figure [2]illustrates the per-
formance gap between the strategies.

Finally, Figure 3| presents the overall APX accuracy of the different RPD peer assignment strategies,
compared with two strong baselines: the best individual model (Gemma) and the best collaborative
method based on HAG. The results show that all RPD variants outperform Gemma, confirming the
benefits of collaboration over individual reasoning. RPD also proves consistently more effective than
HAG: even the strongest HAG scores are surpassed by every peer assignment mode, demonstrating
the absolute superiority of RPD in this comparison. Detailed results of all variants are provided in
Appendix [E]in Table[7]

Collaboration is Robust Across Model Scales. Performance gains from collaborative reason-
ing are consistently observed across all model scales, indicating that the advantages of awareness-
oriented cooperation generalize from smaller (1-2B) to larger (13-14B) LLMs. Both HAG and
RPD approaches outperform individual reasoning baselines in overall accuracy, demonstrating that
structured reasoning enhances model robustness. Notably, the gains are especially pronounced in in-
trospective awareness tasks, i.e., those involving self-assessment and reflective reasoning, suggest-
ing that mutual feedback mechanisms help models better evaluate and refine their internal states.
Dimension-level analyses further reveal that improvements are broad but most substantial in ca-
pability, mission, and culture, highlighting that collaborative strategies enhance not only factual
consistency but also self-understanding capacities. Figure @] shows accuracy distributions across in-
dividual, HAG, and RPD settings for collectives including models of increasing scale. Both collab-
orative methods achieve consistent gains across all scales, with RPD showing the greatest stability
and particularly strong improvements in introspective awareness. Top row: overall accuracy; middle
row: awareness type accuracy (social vs. introspective); bottom row: awareness dimension accuracy
(emotion, culture, mission, perspective, and capability).

Limitations

Despite the contributions of this work, several limitations should be noted. While AWAREXTEND
offers a challenging and balanced benchmark for introspective and social awareness, it remains a
simplified proxy for the rich, context-dependent forms of human awareness. Our evaluation relies
on multiple-choice questions, which do not fully capture nuanced reasoning or emergent social
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cognition. In addition, collaborative frameworks such as Reflective Peer Debate (RPD) introduce
non-trivial computational and engineering overhead, which may limit scalability. Finally, although
AWAREXTEND is more demanding than prior benchmarks, the measured gains may not generalize
to open-ended, dynamic, or multimodal settings, motivating further validation environments.

6 Conclusion

We introduced AWAREXTEND, a challenging and balanced benchmark for evaluating introspective
and social awareness across five dimensions (Capability, Mission, Emotion, Culture, Perspective),
and assessed a new collaboration framework based on Reflective Peer Debate (RPD) against a fam-
ily of collaborative strategies using Hierarchical Answer Aggregation (HAG) policies to produce
final responses. Across experiments spanning model sizes of roughly 1-2B up to 13—14B parame-
ters, collectives consistently outperform individual models, with RPD methods achieving the largest
and most robust gains. Empirically, collaboration produced sizable improvements across awareness
dimensions: collaborative systems raised average accuracy from =~ 68% to =~ 74% while also re-
ducing variance, and RPD outperformed HAG in both mean accuracy and stability. These gains are
stable across collectives containing models of increasing scales, suggesting that structured interac-
tion drives measurable improvements in awareness-related reasoning.

Promising directions for future work include scaling peer-reflective protocols to larger and more
heterogeneous agent pools, integrating human-in-the-loop evaluation for nuanced social and ethical
judgments, extending the framework to multimodal and interactive environments, and developing
efficiency-aware collaboration mechanisms. Beyond these system-level extensions, future studies
should incorporate open-ended, interactive, and scenario-based assessments, together with qualita-
tive and trace-based analyses of debate dynamics, to better study the mechanisms through which
collaborative reasoning unfolds. Structured, peer-oriented collaboration remains a practical and
scalable route to improving LLMs’ awareness, boosting accuracy, robustness, and cross-scale gen-
eralization, while motivating further research on evaluation, efficiency, and alignment.
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A Baseline Evaluation

This appendix provides details for the baseline evaluation described in Section[3.2] All scores were
obtained on the AWAREXTEND validation set under fixed prompting, sampling, and scoring condi-
tions. For each dimension, we report both Accuracy on Prompt Execution (APX) and Accuracy on
Perplexity Score (APS) following [Hu and Levy| (2023)). These results establish the per-dimension
competence rankings used for credit assignment, routing, and aggregation priors in collaborative
protocols.

Table 2: Comparison of Accuracy on Prompt Execution (APX) and Accuracy on Perplexity Score
(APS) across models and dimensions. Values are expressed as percentages and refer to the
AWAREXTEND validation set.

Model Emotion Culture Perspective Mission Capability

APX | APS | APX | APS | APX | APS | APX | APS | APX | APS
Gemma 68.99 | 68.99 | 79.75 | 79.11 | 72.15 | 72.15 | 84.81 | 84.81 | 82.91 | 82.91
Qwen 60.76 | 60.76 | 80.38 | 80.38 | 70.25 | 70.25 | 77.85 | 77.85 | 73.42 | 73.42
Mistral 43.04 | 48.10 | 65.82 | 67.09 | 59.49 | 60.76 | 70.25 | 70.25 | 68.99 | 68.99
Llama 5570 | 56.33 | 73.42 | 72.15 | 60.13 | 58.86 | 69.62 | 70.89 | 63.92 | 65.82
Deepseek | 19.62 | 35.44 | 38.61 | 52.53 | 37.34 | 48.10 | 31.65 | 53.80 | 48.10 | 54.43
Falcon 31.65 | 32.91 | 30.38 | 30.38 | 34.18 | 36.71 | 41.77 | 44.30 | 41.14 | 41.14
Overall | 46.62 | 50.42 | 61.39 | 63.6 | 55.59 | 57.80 | 62.65 | 66.98 | 63.08 | 64.45
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Figure 5: Average accuracy of six base models (APX / APS) across awareness dimensions, with
corresponding sample counts (bars) and standard deviations (shaded areas) for AwareBench and
AWAREXTEND.

B Tuning Hierarchical Answer Aggregation

To identify the most effective prompt configuration for LLM-based aggregators, we conducted an
ablation study on the AWAREXTEND validation set. Each experiment modified a single component
of a baseline prompt and measured its impact across four aggregation strategies.

The baseline prompt comprises four components that guide the model in the aggregation task: an In-
troduction, a Question, a set of Responses, and an Instruction. The Introduction provides a brief
overview of the task, specifying the relevant awareness class and contextualizing the aggregation
objective. The Question contains a sample query selected from the AwareBench dataset, including
the original multiple-choice options. The Responses section presents the answers generated by six
base models, each accompanied by its corresponding credit score. Finally, the Instruction specifies
the required output format and directs the model to produce a single final answer consistent with the
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dataset constraints. Based on the ablation results, we defined customized prompts for each strategy
by retaining only those modifications that consistently improved both APX and APS metrics:

Best-Overall. Incorporates several prompt refinements to enhance collaborative performance. It ap-
plies role prompting (2024), embedding an authority statement aligned with the aware-
ness dimension of the sample. Responses are presented in descending order of credit score, and
numerical scores are replaced with fextual credit descriptors (e.g., high, medium, low) to improve
interpretability.

Dynamic-Expert. Shows comparable gains when incorporating role prompting, descending sorting
of responses by credit score, and textual credit descriptors.

Random. Also benefits from the inclusion of role prompting, textual credit descriptors, and de-
scending sorting of responses by credit score.

Worst-Overall. Given the limited capability of the cooperative aggregator in this setting (Falcon),
a simplified prompt performed best. Only descending sorting by credit score was retained, while
role prompting and credit formatting were excluded due to their negative impact on performance.

The final prompt structure retained the same four-section format as the baseline (see Fig. [6] for an
example from the Dynamic-Expert configuration).

Introduction Other Responses

You are a highly capable assistant with advanced capa-
bility awareness. You recognize the boundaries of your
knowledge and abilities, and respond with humility, pre-
cision, and transparency. When uncertain or limited in
scope, you communicate that clearly, prioritizing relia-
bility and user trust. You are answering a question in the
domain of capability awareness. Below, you’ll find a set
of suggestions made by other AI models, each paired with
a weight, where a higher weight means a more trustwor-
thy or capable model. Use your own judgment to answer
the original question, but you may take these suggestions
into account.

Response 1: B (weight: very high)

Response 2: B (weight: high)

Response 3: B (weight: medium-high)

Response 4: B (weight: medium-low)

Response 5: A (weight: low)

Response 6: A (weight: very low)

Please answer the following questions and return A or Answer the original question using only the correspond-
B only. ing letter choice.
Can you change my wallpaper to something less stark? Return A or B only.

A. Ok, I will give you a purple wallpaper
B. I’'m unable to change your computer settings

Figure 6: Prompt structure for the capability aggregation task. The Introduction (gray) defines
the assistant’s role. The Question (blue) comes from an AwareBench sample. Other Responses
(green) lists suggestions from six base models, each with a qualitative credit score from capability
awareness rankings (see Section [3.2). The Instruction (yellow) restricts the output to predefined
answer choices.

C Tuning Debate

This appendix provides replication details for the ablation study described in Section[3.5] All evalua-
tions were performed on the AWAREXTEND validation set using fixed hyperparameters and identical
metrics and sampling conditions.
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Table 3: Prompt design factors evaluated in the ablation study. Each factor corresponds to a com-
ponent of the prompt shown in Fig.[6] and variations were toggled or reordered to assess their effect
on APX and APS.

Prompt Component | Variation Tested

Introduction Analytical overview / Omitted

Question Formatted multiple-choice / Unformatted / Hybrid

Other Responses Include base model answers with credit / Judge-only answers
Role-based prompt | Present / Removed

Instruction Verbose / Minimal final answer rule

Prompt order Original / Reordered (role — question)

Answer style Full sentence / Label-only

Table 4: Accuracy (APX) of JDC and RPD before and after prompt-level ablations on AWAREX-
TEND.

System Baseline (%) | Best Ablated (%)
Judge-Led Debate Chain (JDC) 69.11 73.67
Reflective Peer Debate (RPD) 74.18 76.33

D Details of Experimental Setup

This appendix provides additional information on the experimental setup used in our study. We
include a detailed comparison of AWAREXTEND and AwareBench across the five awareness dimen-
sions, as well as a list of the LLMs employed in Experiment “Collaboration Assessment across Scale
and Dimensions.”, grouped by parameter size and model family.

c bilit TruthfulQA (20.0%) M AwareXtend
apability AwareBench (17.1%) mmm AwareBench
MMLU (20.0%)

Cutture AwareBench (14.9%)

BigBench (20.0%)

Emotion AwareBench (5.7%)

Missi ETHICS (20.0%)
Ission AwareBench (36.8%)

Moral (5.0%) + MMLU (10.0%) + BigBench (5.0%)

Perspective AwareBench (25.6%)

10 20 30 40
Contribution (%)

Figure 7: Percentage of sub-datasets to the five Awareness dimensions in AWAREXTEND (blue) and
AwareBench (red) from [Li et al.| (2024). Horizontal bars represent the total percentage contribution.

E Detailed Results - 7-9B Collective

This appendix provides the full comparison of collective and individual models across aggrega-
tion strategies, peer assignments, and overall accuracy (APX). All scores were obtained on the
AWAREXTEND test set under fixed prompting, sampling, and scoring conditions and refer to the
7-9B Collective. For brevity, we report only the Overall APX. Note that ranking may differ per
dimension.
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Table 5: APX (%) of RPD under different debate lengths and extraction strategies.

Rounds Majority

Rank

Consistency

Last All

Last All

Last All

75.44 | 77.59

76.84 | 78.10

77.59 | 78.10

75.57 | 76.84

76.96 | 77.97

76.33 | 75.95

75.44 | 76.84

7147 | 78.10

75.770 | 76.20

75.82 | 76.33

76.71 | 78.23

75.57 | 76.58

N[ | W D] =

75.06 | 76.71

77.85 | 78.10

75.57 | 76.08

Pool

Models

1-2B

allenai-OLMo-2-0425-1B-Instruct [OLMo et al.| (2024)); meta-llama-Llama-3.2-1B-
Instruct Grattafiori et al.[(2024); Qwen-Qwen2.5-1.5B-Instruct | Yang et al.| (2024)

2-4B

7-9B

meta-llama-Llama-3.2-3B-Instruct |Grattafiori et al| (2024); google-gemma-2-2b-it
DeepMind)|(2024); Qwen-Qwen2.5-3B-Instruct|Yang et al.| (2024)
Llama-3.1-8B-Instruct |Grattafiori et al. (2024); gemma-2-9b-it [DeepMind)| (2024);
Qwen2.5-7B-Instruct|Yang et al.| (2024)

13-14B

allenai-OLMo-2-1124-13B-Instruct[OLMo et al.| (2024); microsoft-phi-4 Abdin et al.

(2024); Qwen-Qwen2.5-14B-Instruct|Yang et al. 7(2024)

Table 6: Overview of LLM pools grouped by parameter size. Each pool includes models from
different families to ensure architectural diversity.

Table 7: Comparison of models, strategies, and overall accuracy (APX). Values are expressed as per-
centages. Individual Models: Gemma 2: gemma-2-9b-it, Qwen 2.5: Qwen2.5-7B-Instruct, Llama-
3.1: Llama-3.1-8B-Instruct, Mistral: Mistral-7B-Instruct-v0.3.

Model Type Aggregator Peer Assignment Credit Overall APX
Collective RPD - Static - 76.52
Collective RPD - Diverse - 76.46
Collective RPD - Consensus - 76.20
Collective RPD - Doubt - 76.20
Collective RPD - Circular - 76.04
Collective RPD - Random - 76.04
Collective HAG Non-LLM Sampling - Uniform 74.97
Collective HAG Non-LLM Sampling - Rank-based 74.87
Collective HAG LLM Best Overall - Rank-based 74.87
Collective HAG Non-LLM Sampling — Expert 74.87
Gemma 2 | Individual - — - 74.84
Collective HAG Non-LLM Majority - Expert 74.84
Collective HAG Non-LLM Majority - Rank-based 74.65
Collective HAG LLM Dynamic Expert - Rank-based 74.62
Collective HAG LLM Dynamic Expert - Uniform 74.49
Collective HAG LLM Best Overall — Uniform 74.30
Collective HAG LLM Dynamic Expert - Unskilled 73.92
Collective HAG LLM Best Overall - Unskilled 73.80
Qwen2.5 | Individual - - - 72.18
Collective HAG LLM Dynamic Expert - Expert 71.99
Collective HAG Non-LLM Majority - Uniform 71.71
Collective HAG LLM Best Overall - Expert 71.58
Collective HAG Non-LLM Majority - Unskilled 69.65
Collective HAG Non-LLM Sampling - Unskilled 66.20
Llama-3.1 | Individual - - - 64.65
Mistral Individual - - - 61.52
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