
A Unified Analysis of Mixed Sample Data
Augmentation: A Loss Function Perspective

Chanwoo Park ∗ ,†

MIT
cpark97@mit.edu

Sangdoo Yun ∗

NAVER AI Lab
sangdoo.yun@navercorp.com

Sanghyuk Chun
NAVER AI Lab

sanghyuk.c@navercorp.com

Abstract

We propose the first unified theoretical analysis of mixed sample data augmentation
(MSDA), such as Mixup and CutMix. Our theoretical results show that regardless
of the choice of the mixing strategy, MSDA behaves as a pixel-level regularization
of the underlying training loss and a regularization of the first layer parameters.
Similarly, our theoretical results support that the MSDA training strategy can
improve adversarial robustness and generalization compared to the vanilla training
strategy. Using the theoretical results, we provide a high-level understanding of
how different design choices of MSDA work differently. For example, we show
that the most popular MSDA methods, Mixup and CutMix, behave differently, e.g.,
CutMix regularizes the input gradients by pixel distances, while Mixup regularizes
the input gradients regardless of pixel distances. Our theoretical results also show
that the optimal MSDA strategy depends on tasks, datasets, or model parameters.
From these observations, we propose generalized MSDAs, a Hybrid version of
Mixup and CutMix (HMix) and Gaussian Mixup (GMix), simple extensions of
Mixup and CutMix. Our implementation can leverage the advantages of Mixup
and CutMix, while our implementation is very efficient, and the computation cost
is almost neglectable as Mixup and CutMix. Our empirical study shows that
our HMix and GMix outperform the previous state-of-the-art MSDA methods
in CIFAR-100 and ImageNet classification tasks. Source code is available at
https://github.com/naver-ai/hmix-gmix.

1 Introduction

As deep neural networks (DNNs) are data-hungry, the scale of datasets has become a foundation of
modern DNN training; recent ground-breaking deep models are built upon gigantic datasets, such as
410B language tokens [6], 3.5B images [47], and 1.8B image-text pairs [33]. While such tremendously
large-scale datasets are not always collectible, amplifying the dataset scale by synthesizing more data
points by data augmentation techniques is common. Especially, mixed sample data augmentation
(MSDA) [76, 63, 62, 30, 72, 66, 60, 3, 68, 74, 11, 65, 39, 25, 18, 54, 32, 16, 23, 38, 45, 14, 32,
58, 44] has become a standard technique to train a strong deep model by synthesizing a mixed
sample from multiple (usually two) samples by combining both of their sample values and labels
in a linear combination [76] or a cut-and-paste manner [72]. This simple idea, however, shows
surprising performance enhancements in various applications, including image object recognition
[72, 39, 25, 64, 16], semi-supervised learning [4, 59] self-supervised learning [35, 40, 42], noisy label
training [43], meta-learning [71], semantic segmentation [10, 20], natural language understanding
[24, 34], and audio processing [48, 37, 49]. Another advantage of MSDA beyond the performance
improvements is that MSDA usually does not need domain-specific knowledge, such as strong
image-specific [15] or audio-specific [53] transformations; hence MSDA can be universally employed

∗Equal contribution † Works done while doing an internship at NAVER AI Lab

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/naver-ai/hmix-gmix

by various applications. However, although MSDA shows excellent benefits in practice, there is still
yet not enough understanding of how MSDA works well universally; can MSDA always show better
generalization and robustness than the standard training with a theoretical guarantee? Furthermore,
the design choice of MSDA can be significantly varying and the optimal design choice is still
ambiguous. For example, Lee et al. [42] showed that in self-supervised learning, Mixup is more
effective than CutMix, while other studies [56, 57] observed opposite results. The ambiguity is
originated from the fact that we do not have a unified theoretical lens of understanding how different
design choices affect the actual learning process; in short, how are Mixup and CutMix different?

There have been several attempts to theoretically understand Mixup, a special case of MSDA
[77, 12, 8, 78]. They delve into the effect of Mixup in a loss function perspective, e.g., Mixup behaves
as a regularization of the standard training [77], or in a learning theory perspective, e.g., Mixup
training can provide an upper bound for the true loss [12, 71]. However, their analyses are limited to
Mixup, while other MSDAs, such as CutMix, are poorly understandable through the lens of their
analyses. In this paper, we extend the theoretical results of Zhang et al. [77] and Chidambaram et
al. [12] to a general MSDA to provide a first unified theoretical lens for understanding how general
MSDAs work by different choices of mixing strategies. We show that MSDA behaves as an input
gradient and Hessian regularization (Theorem 1) as well as a regularizer for the first layer parameters;
MSDA improves adversarial robustness (Theorem 3) and generalization (Theorem 4). Our theoretical
results show that popular MSDA methods, such as Mixup and CutMix, behave differently in terms
of regularization effects. Briefly, CutMix gives a strong regularization in the product of nearby
distance pixel-level partial gradient and nearby distance Hessian of the estimated function f , while
CutMix gives a weak regularization in the product of long-distance pixel-level partial gradient and
long-distance Hessian of the estimated function f . In contrast, Mixup gives a regularization in
gradient or Hessian of the estimated function f regardless of the pixel-level distance.

From our unified theoretical lens for MSDA, we can conclude that there is no one-fit-all optimal
MSDA fit to every data or model parameter. In other words, the optimal mixing strategy depends
on applications, datasets, and model architectures. It supports previous empirical observations that
combining different MSDA methods (e.g., alternatively using Mixup and CutMix during training)
can outperform using only one MSDA [50, 5, 64, 73]. From these observations, we propose two
simple MSDA methods that naturally generalize Mixup and CutMix, so that it can take advantage of
both methods. Our first proposed method, Hybrid version of Mixup and CutMix (HMix), mixes two
samples in both Mixup and CutMix manners; it first cut-and-paste two samples as CutMix, and then
it linearly interpolates the out-of-box values of two samples as Mixup. We let HMix be able to behave
as both Mixup and CutMix by introducing a stochastic control parameter. Our second proposed
method, Gaussian Mixup (GMix), also mixes two samples in both Mixup and Cutmix manners; firstly
we select a point, and then we mix two samples gradually using the Gaussian function. Our empirical
results on CIFAR-100 and ImageNet show that HMix and GMix outperform the state-of-the-art
MSDA methods, including Mixup, CutMix, and Stochastic Mixup & CutMix.

2 A General Framework for Mixed Sample Data Augmentation (MSDA)

In this section, we define the formal definition of MSDA and notations. We define a training dataset
as D = {zi = (xi, yi)}mi=1, randomly sampled from a distribution Pz . Here, z = (x, y) is the input
(e.g., an image) and output (e.g., the target class label) pair. Then, for randomly selected two data
samples, zi and zj , an augmented sample by MSDA, z̃(MSDA)

i,j , is synthesized as follows

z̃
(MSDA)
i,j (λ,1− λ) = (x̃

(MSDA)
i,j (λ, 1− λ), ỹ

(MSDA)
i,j (λ, 1− λ))

where, x̃
(MSDA)
i,j (λ, 1− λ) = M(λ)⊙ xi + (1−M(λ))⊙ xj and

ỹ
(MSDA)
i,j (λ, 1− λ) = N(λ)⊙ yi + (1−N(λ))⊙ yj ,

(1)

where λ is the ratio parameter between samples, drawn from Dλ (usually Beta distribution). ⊙ means
a component-wise multiplication in vector (or matrix). M(λ) is a random variable conditioned on
λ that indicates how we mix the input (e.g., by linear interpolation [76] or by a pixel mask [72]).
N(λ) denotes a random variable conditioned on λ that demonstrates how we combine the output. We
assume that the output y can be one-dimensional data or a matrix; the former means regression or
classification task, and the latter means semantic segmentation task. For the sake of simplicity, we let
y be one-dimensional data: N(λ) = λ and E[M(λ)] = λ1⃗.

2

Remark 1. If the meaning is not ambiguous, then we sometimes omit λ (i.e., M(λ) to M). For
the sake of simplicity, we consider mixing only two samples (i.e., z̃(MSDA)

i,j (λ, 1 − λ)), but we can
similarly extend these analyses to mixing n-samples data augmentation [60, 32, 23]. If we combine
n-samples, the ratio parameter will be a vector in general (See Appendix B).

Remark 2. As recent studies [68, 39, 38] have shown, M(λ) or N(λ) can depend on (zi, zj), e.g.,
by using a saliency map [39, 38] or the class activation map [68]. Since the proof techniques for our
theoretical analysis are invariant to the choice of M(λ) and N(λ), our proof techniques also can be
applied to the dynamic MSDA methods. For simplicity, we assume that M is a random variable only
depending on λ. In other words, we assume W as a random sample space, and M : W × Λ → Rn is
a measurable function. We left the theoretical analysis of dynamic methods to the future.

Now, we re-write the two most popular MSDA methods, Mixup [76] and CutMix [72], for i-th and
j-th samples with λ, drawn from Dλ, by using the proposed framework (Equation (1)) as follows:

Mixup: z̃
(mixup)
i,j (λ, 1− λ) = (x̃

(mixup)
i,j (λ, 1− λ), ỹ

(mixup)
i,j (λ, 1− λ))

where x̃
(mixup)
i,j (λ, 1− λ) = λxi + (1− λ)xj and

ỹ
(mixup)
i,j (λ, 1− λ) = λyi + (1− λ)yj .

(2)

CutMix: z̃
(cutmix)
i,j (λ, 1− λ) = (x̃

(cutmix)
i,j (M, 1−M), ỹ

(cutmix)
i,j (λ, 1− λ))

where x̃
(cutmix)
i,j (M̃ (cutmix), 1− M̃ (cutmix)) = M̃ (cutmix) ⊙ xi + (1− M̃ (cutmix))⊙ xj

and ỹ
(cutmix)
i,j (λ, 1− λ) = λyi + (1− λ)yj .

(3)

Note that Equation (2) is equivalent to Equation (1) by putting M(λ) = λ1⃗. In Equation (3),
M̃ (cutmix) is a binary mask that indicates the location of the cropped box region with a relative area λ.
Similarly, other MSDA variants can be easily formed as Equation (1) by introducing new M(λ) and
N(λ).

Notations. We define the loss function as l(θ, z), where θ ∈ Θ ⊆ Rd. We define L(θ) =
Ez∼Pz

l(θ, z) as the non-augmented population loss and Lm(θ) = 1
m

∑m
i=1 l(θ, zi) as the empirical

loss for the non-augmented population. For a general MSDA, we can define MSDA loss as

LMSDA
m (θ) = Ei,j∼Unif([m])Eλ∼Dλ

EM l(θ, z̃
(MSDA)
i,j (λ, 1− λ)). (4)

Therefore, the Mixup and CutMix losses can be written as

Lmixup
m (θ) =

1

m2

m∑
i,j=1

Eλ∼Dλ l(θ, z̃
(mixup)
i,j (λ, 1− λ))

Lcutmix
m (θ) =

1

m2

m∑
i,j=1

Eλ∼DλEM l(θ, z̃
(cutmix)
i,j (λ, 1− λ)),

(5)

where [m] = {1, 2, . . . ,m} and Dλ is a distribution supported on [0, 1] with a conjugate prior.
Throughout this paper, we consider Dλ as Beta(α, β), a common selection for λ in practice. We
define DX as the empirical distribution of the training dataset.

3 A Unified Theoretical Understanding of MSDA

In this section, we provide a unified theoretical lens of how MSDA works. Specifically, we follow
the theoretical results for Mixup provided by Zhang et al. [77], where Zhang et al. have shown
that Mixup is equivalent to the summation of the original loss function and a Mixup-originated
regularization term. We will give a general approximation form for MSDA using λ ∼ Beta(α, β).
We also show that our analysis can be extended to n-sample mixed augmentation (See Appendix B)

From an MSDA loss to an input gradient and Hessian regularization. We first consider the
following class of loss functions for a twice differentiable prediction function fθ(x) (e.g., a softmax
output of a neural network), a twice differentiable function h, and target y:

L = {l(θ, z) | l(θ, z) = h(fθ(x))− yfθ(x) for a twice differentiable function h}.

3

This function class L includes the loss function induced by Generalized Linear Models (GLMs)
and cross-entropy. Now, we introduce our first theoretical result that induces an MSDA loss (i.e.,
Equation (4)) can be re-written as the summation of the original loss (the empirical loss for the
non-augmented population loss, Lm(θ)) and input gradient-related regularization terms as follows.

Theorem 1. Consider a loss function l ∈ L. We define D̃λ as α
α+β Beta(α+1, β)+ β

α+β Beta(β+1, α).
Assume that Erx∼DX

[rx] = 0. Then, we can re-write the general MSDA loss (4) as

LMSDA
m (θ) = Lm(θ) +

3∑
i=1

R(MSDA)
i (θ) + Eλ∼D̃(λ)EM [(1−M)⊺φ(1−M)(1−M)], (6)

where lima→0 φ(a) = 0,

R(MSDA)
1 (θ) =

1

m

m∑
i=1

(yi − h′(fθ(xi))) (∇fθ(xi)
⊺xi)Eλ∼D̃λ

(1− λ),

R(MSDA)
2 (θ) =

1

2m

m∑
i=1

h′′(fθ(xi))Eλ∼D̃λ
G(DX , xi, f,M),

R(MSDA)
3 (θ) =

1

2m

m∑
i=1

(h′(fθ(xi))− yi)Eλ∼D̃λ
H(DX , xi, f,M),

(7)

and

G(DX ,xi, f,M) = EM (1−M)⊺Erx∼DX (∇f(xi)⊙ (rx − xi) (∇f(xi)⊙ (rx − xi))
⊺) (1−M)

=
∑

j,k∈coord

ajk∂jfθ(xi)∂kfθ(xi) (Erx∼DX [rxjrxk] + xijxik) ,

H(DX ,xi, f,M) = Erx∼DXEM (1−M)⊺
(
∇2fθ(xi)⊙ ((rx − xi)(rx − xi)

⊺)
)
(1−M)

=
∑

j,k∈coord

ajk

(
Erx∼DX [rxjrxk∂

2
jkfθ(xi)] + xijxik∂

2
jkfθ(xi)

)
,

(8)

where
ajk := EM [(1−Mj)(1−Mk)]. (9)

Proof outline of Theorem 1. Using the definition of z̃ij and using the fact that the Binomial distri-
bution and Beta distribution are in the conjugate, we can reformulate L

(MSDA)
m . In the process of

reformulating L
(MSDA)
m , we should define D̃λ. Then, we can make a quadratic Taylor approximation

of the loss term. Here, Erx [rx] = 0 is used for not only the simplicity of the results, but also for the
fact that using normalization in the dataset. Details can be found in Appendix A. We also show that
Theorem 1 can be extended to n-sample MSDA methods (Appendix B). In this case, the combinatorial
terms in quadratic multivariate Taylor approximation also come out.

How is our approximation accurate? We call L̃MSDA
m (θ) := Lm(θ) +

∑3
i=1 R

(MSDA)
i as the

approximate MSDA loss. Here, we empirically demonstrate that our quadratic approximation is
almost accurate by following numerical validations in [67, 8, 77]. Specifically, we train logistic
regression models on two-moons dataset [7] in two ways: (1) by using the original MSDA loss
function (2) by using our approximated loss function. We employ two MSDA examples as below.

• The original Mixup i.e., λ ∼ Beta(1, 1) and M = λ1⃗

• Variants of CutMix i.e., λ ∼ Beta(1, 1) and M = (m1,m2) such that mi ∼ Bernoulli(λ).

Figure 1 displays the approximate loss function and the original loss function. According to empirical
findings, we can conclude that the original MSDA loss is fairly close to the approximate MSDA loss.

What makes the difference between various MSDA methods? In the theorem, as we define EM (1−
M) = 1 − λ, R(MSDA)

1 is the same for every MSDA method. Namely, the difference between
MSDA methods originated from R(MSDA)

2 and R(MSDA)
3 . Note that if we set M = λ1⃗, Theorem 1

indicates a Mixup loss (5), and the result is consistent with Zhang et al. [77]. In Equation (7) and
Equation (8), we observe that R2 is related to the input gradient ∇fθ(xi) and R3 is related to input

4

0 200 400 600 800 1000
epoch

0.45

0.55

0.65

0.75

lo
ss

MSDA
Approximate MSDA

(a) Mixup

0 200 400 600 800 1000
epoch

0.45

0.55

0.65

lo
ss

MSDA
Approximate MSDA

(b) CutMix

Figure 1: Comparison of the original MSDA loss with the approximate MSDA loss function.

Figure 2: The negative M value results. the image is λ∗dog+(1−λ)∗cat where −0.75 ≤ λ ≤ 0.75

Hessian ∇2fθ(xi) with mask-dependent coefficients ajk (9). In other words, different design choice
of MSDA (e.g., how to design M) will lead to different magnitudes of regularization on the input
gradients and Hessians. Because the values of input gradients and Hessians are varying by datasets,
tasks and model architecture choices, we can conclude that the optimal choice of M is dependent on
the applications. We also describe how the other MSDA methods (e.g., dynamic MSDAs [65, 39, 38])
can be interpreted through the lens of our unified analysis in Appendix I.

In addition, to show that MSDA behaves as a regularization on input gradients and Hessians for
any desired ajk, we also show that there always exists a MSDA design choice M for any desired
regularization coefficient matrix A(λ) := (ajk(λ)) with the regular conditions.

Theorem 2. For the given λ, we assume A(λ)− (1− λ)2 1⃗⃗1⊺ is a nonnegative definite matrix. Then
we can construct a real-valued mask M that E(1−Mj)(1−Mk) = ajk for all j, k.

Proof. Setting M = 1−λ+(A(λ)− (1−λ)21⃗⃗1⊺)1/2Z where Z is normal distribution, the theorem
holds.

Note that, in the proof, M values are not bounded where typically we choose 0 ≤ Mi ≤ 1. In other
words, the theorem holds if we allow mask values out of [0, 1]. To investigate the potentiality of
unbounded mask, we explore Mixup with unbounded masks in Figure 2. Although, allowing negative
values to M can be beneficial, we leave a new mask design with unbounded values as a future work.

Unfortunately, as the target loss function (6) is mingled with the choice of mask M , data sample xi,
and pixel-level function gradient, the optimal choice of mixing strategy M is not achievable in the
closed-form solution. Instead, Theorem 1 implies that there is no absolute superiority between the
design choice of MSDA, but it depends on datasets and the target tasks, as our empirical observation
is consistent with the theoretical interpretation. In Section 4, we will provide more examples of how
different M affects the actual coefficients ajk and the input gradients for better understanding.

Using the regularization term R(MSDA)
2 (7), we can also provide a theoretical connection between

MSDA methods and the notion of flatness where a more flat solution leads to better generalization in
applications [36, 21, 31, 19, 9]. Inspired by Ma et al. [46], we split the parameters by θ = (θ1, θ2),
and then the neural network can be represented by the form fθ(x) = f̃θ2(θ1x). Therefore, we have

∇θ1 f̃θ2(θ1x) =
∂f

∂(θ1x)
x⊺, ∇xf̃θ2(θ1x) = θ⊺1

∂f

∂(θ1x)
,

5

where ∂f
∂(θ1x)

is the partial derivative of the first layer. Now, we have

((1−M)⊙∇f(x))⊺x = tr(x((1−M)⊙∇f(x))⊺) = tr
(
x

(
θ⊺1

∂f

∂θ1x
⊙ (1−M)

)⊺)
= tr

(
x

((
∂f

∂θ1x

)⊺

θ1 diag(1−M)

))
= tr

((
∇θ1 f̃θ2(θ1x)

)⊺
θ1 diag(1−M)

)
.

Note that the terms in G (8) can be re-written as follows∑
j,k∈coord

EM [(1−Mj)(1−Mk)]∂jfθ(xi)∂kfθ(xi)(xijxik) = E
[
(((1−M)⊙∇f(x))⊺x)2

]
.

In other words, by minimizing the regularization term R(MSDA)
2 ,

∫
(θ⊺1∇θ1 f̃θ2)

2, i.e., the regularization
effect of flatness at the interpolation solution can be minimized in a sample-wise weighted manner.
Therefore, the regularization term R(MSDA)

2 also can be interpreted as a regularization of the first layer
parameters and their partial derivative of f .

Robustness and generalization properties of MSDA. As a number of studies [51, 52, 46] have
shown that regularizing input gradient and Hessian will give better robustness and generalization
to the target network θ, it can be shown that MSDA also has adversarial robustness properties and
generalization properties based on Theorem 1. The full statement of Theorem 3 and Theorem 4 can
be found in Appendix C and Appendix D, respectively.
Theorem 3 (Informal). With the logistic loss function under the ReLU network, the approximate loss
function of MSDA is greater than the adversarial loss with the ℓ2 attack of size ϵ

√
d.

Proof outline of Theorem 3. Defining adversarial loss function and using second order taylor expan-
sion, we can prove that adversarial loss is less than MSDA loss.

Theorem 4 (Informal). Under the GLM model and the regular conditions, and if we use MSDA in
training, we have

L(θ) ≤ L̃(MSDA)
m (θ) +

√
O (log(1/δ))

n

with probability at least 1− δ. This also holds for the MSE loss and a feature-level MSDA.

Proof outline of Theorem 4. MSDA regularization can be altered to the original empirical risk mini-
mization problem with a constrained function set, and calculating Radamacher complexity of this
function set gives the theorem.

In addition to Theorem 3 and Theorem 4, we can prove that the optimal solution of (4) can achieve a
perfect classifier (i.e., classifies every augmented sample x correctly) in the logistic classification
setting by following Chidambaram et al. [12]. The full statement are in Appendix E.

Summary. Our unified theoretical lens for MSDA shows that for any MSDA method formed as
Equation (4), the method satisfies that (1) it behaves as a regularizer of input gradients, Hessian,
and the first layer parameters (Theorem 1); (2) there exists a mask M for any desired regularization
coefficients ajk (Theorem 2) (3) it achieves better adversarial robustness (Theorem 3) and generaliza-
tion (Theorem 4) than the vanilla training. Interestingly, Theorem 1 shows the difference between
different MSDA design choices (e.g., different M , such as linear interpolation [76], cropped box
[72]) will lead to different magnitudes of the input gradient regularization (7).

4 Comparison of Different MSDA Design Choices: The Role of Masks

As we observed in the previous section, different design choices for MSDA (i.e., the choice of
M) affect to the degree of the regularization in Theorem 1 (i.e., R(MSDA)

2 and R(MSDA)
3) by the

relationships of pixels. In this section, we show how different MSDA methods lead to different
regularization effects by empirical studies; we first show the values of the regularization coefficients

6

Original A Original B Mixup CutMix Hmix (ours) Gmix (ours)

Mixed Images

Mixing Masks

0.0

1.0

Figure 3: Examples generated by different MSDAs. From left to right, two original images to be mixed,
Mixup, CutMix sample, HMix, and GMix. The first and the second rows show generated samples and their
mixing masks M , respectively. We set λ = 0.65 for all images and r = 0.5 for HMix.

ajk by varying masks; then we show the input gradient values that are regularized by ajk (9) after
the MSDA training; finally, we show that the best choice of the mask design can be varying by the
target task settings. In addition, we propose two generalized versions of Mixup and CutMix, called
HMix and GMix, that empirically show the intermediate property of Mixup and CutMix.

Introduction to HMix and GMix. Recall that the regularization coefficients ajk is determined by
M (Equation (9)). For example, by choosing M = λ1⃗ (i.e., Mixup), ajk is always (1− λ)2. On the
other hand, the result slightly changes for CutMix: ajk depends on how j and k are close. Informally,
due to dependency between Mj and Mk (as M ’s component is always 0 in the cropped box regions
and 1 in others), close j and k give large ajk, but distant j and k give small ajk. ajk is calculated as

ajk =
max(min(h(j1)− l(k1), h(k1)− l(j1)), 0)max(min(h(j2)− l(k2), h(k2)− l(j2)), 0)

(n− [
√
1− λn])2

(10)

where j = (j1, j2), k = (k1, k2), h(t) = min(t, n− [
√
1− λn]), l(t) = max(t− [

√
1− λn], 0).

We visualize ajk of different MSDA methods in Figure 4. We compare Mixup, CutMix, Stochastic
Mixup & CutMix. We also propose two generalized MSDA methods, named HMix and GMix.
Before comparing the methods, we first formally define Stochastic Mixup & CutMix, HMix and
GMix. These methods can be formed as (1) where the definition of M is varying by the methods.

Stochastic Mixup & CutMix is a practical variant of MSDA by considering Mixup and CutMix at the
same time. By a simple alternation of two augmentations, the state-of-the-art performances on large-
scale datasets are shown [64, 70]. Stochastic Mixup & CutMix is the same as Equation (1) by setting
M(λ) = (1 − λ)⃗1 with probability q and M(λ) = M cutmix(λ) with probability 1 − q. We choose
q = 0.5 as [64, 70]. In our loss function perspective, the regularizing coefficient terms (i.e., R2,R3)
become the average of Mixup and CutMix’s regularization coefficient. Namely, let amixup

ij = (1− λ)2

be a regularization coefficient of Mixup and acutmix
ij be a regularization coefficient of CutMix (10),

then the regularization coefficients of Stochastic Mixup & CutMix is qacutmix
ij + (1− q)amixup

ij .

Here, we additionally propose two MSDA variants, HMix and GMix, that leverage the advantages of
Mixup and CutMix, resulting in showing the intermediate property between Mixup and CutMix.

Hybrid version of Mixup and CutMix (HMix) combines Mixup and CutMix by shrinking the CutMix
cropped box region and linearly interpolating two images in the areas out of the box as Mixup. The
shrinking ratio of the cropped box region is determined by the ratio r. HMix can be written as (1)
by setting M by (1) randomly cropped box region with side length

√
1− λ

√
rN where N is the

side length of the original image, and make M ’s component in the box region as 0 (2) in the areas
other than the box, we set Mi as λ

1−(1−λ)r . We can easily check that E[M] = λ1⃗. As r → 0, this
method goes to Mixup, and as r → 1, this method goes to CutMix. Note that the ratio r can be a
random variable, such as Beta(γ, γ). In this case, if we set γ → 0, as Beta(γ, γ) goes to Bernoulli
distribution, this is equivalent to Stochastic Mixup & CutMix.

We propose Gaussian Mixup (GMix) to relax the CutMix box condition to a continuous version as
the rectangle cropping of CutMix causes implausible augmented data, e.g., the boundary between
two mixed samples. Therefore, we combine two ideas of Mixup and CutMix. Firstly, we select a

7

0.0

0.5

Figure 4: Visualization of regularization coefficients for different MSDA methods. aij values of Mixup,
CutMix, Stochastic Mixup & CutMix (the alternation of Mixup and CutMix), HMix, GMix (described in
Section 4 and Appendix H) are shown. Each (x, y) value is computed by Eiai,i+(x,y) where i is a pixel vector.

point p from the given input. Then, we make Mi as the related function with ∥i− p∥2. Specifically,
we use the Gaussian function for making M : (1) randomly select a point p in image (2) in the areas
other than the box, we set Mi as 1− exp

(
− ∥i−p∥2π

2(1−λ)N2

)
. The proposed GMix has the following aij

aij =
1

N2

∑
p∈pixel

exp

(
−π

2(1− λ)N2

(
−∥i− p∥2 − ∥j − p∥2

))

=

∫
R2

exp

(
−π

2(1− λ)N2

(
−∥i− p∥2 − ∥j − p∥2

))
dx

= (1− λ) exp

(
−π

(1− λ)N2

∥∥∥∥ i− j

2

∥∥∥∥2
)
. (11)

As seen in Equation (11), aij smoothly goes down when the pixel distance becomes larger.

Figure 3 shows the examples generated Mixup, CutMix, HMix, and GMix. The proposed methods
(HMix and GMix) generate images in a hybrid form with the properties of both Mixup and CutMix.

Comparison in terms of regularization coefficients ajk. We illustrate the regularization coeffi-
cients ajk of the different MSDA methods in Figure 4. In particular, we fix the mask parameter λ to
0.5 and the input resolution to 64 × 64. Figure 4 shows the difference between the MSDA methods
in terms of how they regularize the input gradients and input Hessians: Mixup has equal weights to
every gradient component or Hessian component, while CutMix gives high regularization in close
coordinate gradient products or Hessian. We also observe that the hybrid methods (e.g., Stochastic
Mixup & CutMix, HMix, and GMix) show the intermediate coefficient values of Mixup and CutMix.

Comparison in terms of the regularized input gradients after MSDA training. Equation (8)
shows that the regularization term aij directly affects to the pixel gradients |∂ifθ(xk)∂jfθ(xk)| in
our approximated loss function. The purpose of Figure 5 is to show how the pixel gradients are
actually regularized after training. We investigate the amount of the regularized input gradients by
|∂vfθ(x)∂v+pfθ(x)| with respect to the pixel distance vector p for trained models by different MSDA
methods. Here, if our approximated loss function actually behaves as a regularization, then we can
expect that the pixel gradients |∂vfθ(x)∂v+pfθ(x)| is small when aij is large for the given p.

We first define the partial gradient product as follows:
PartialGradProd(x, p) = max

v
|∂vfθ(x)∂v+pfθ(x)| (12)

Now, we visualize the pixel-wise maximum values of PartialGradProd(x, p) in Figure 5. We train
different models fθ on resized ImageNet (64 x 64) and measure the values on the validation dataset.
The x-axis and y-axis of Figure 5 denote the pixel distance p along each x and y axis, and the scale
of the colorbar denotes the value of the maximum partial gradient product. In the figure, we can
observe that CutMix reasonably regularizes effectively in the input gradients products when a pixel
distance is small; these results aligned with our previous interpretation, CutMix behaves a pixel-level
regularizer where it gives stronger regularization (larger aij) to the closer pixels. Note that we are
not discussing the relationship between regularizing effects and accuracy but discussing regularizing
coefficients and the optimized function’s pixel gradients.

Understanding application cases when a specific MSDA design choice works better than others.
From our theoretical results and empirical studies, we have shown that the design choice of MSDAs

8

(a) Vanilla (no MSDA) (b) Mixup (c) CutMix

Figure 5: Regularized input gradients by MSDA. The normalized pixel-wise partial gradient norm product
comparison among the models trained with vanilla setting (a), Mixup (b) and CutMix (c). We plotted (12), and
x and y axis denote the pixel distance p along each axis.

Table 1: Different tasks need different MSDA strategies. Validation accuracies of Mixup and CutMix trained
networks on two different scenarios on ImageNet-100. Each scenario assumes different pixel importances.

Mixup CutMix ∆ (CutMix - Mixup)

Scenario 1: Large crop 58.3 64.4 +6.1
Scenario 2: Small crop 67.7 67.0 -0.7

(i.e., M) leads to different regularization effects by regularization coefficient ajk. Furthermore, as we
have shown in Theorem 2, there always exists a mask that can form any desired ajk. We hypothesize
that for the given dataset, if a short distance relation is relatively more important than longer distance
relations, then CutMix will be better than Mixup. On the contrary, in the opposite case, if a short
distance relation is relatively less important, then Mixup will be better than CutMix.

Here, we study different task scenarios when different ajks are required by controlling the pixel-level
importance of ImageNet-100 [61] training images. In particular, we design two different scenarios
where each of them needs different regularization strategies due to the different pixel-level importance
of each task. The results are shown in Table 1. We also report the performance of our proposed
methods in both scenarios 1 and 2 in Appendix G.

Scenario 1: Smaller objects by large crop size. We randomly crop a large region (80% to 100%)
of an image and resize to 64 × 64 to train a model. As the objects in the image become small, a
close-distance relationship might be more important than a large-distance relationship. Here, we
expect CutMix performs better than Mixup as shown in Table 1.

Scenario 2: Larger objects by small crop size We randomly crop a small region (25% to 40%) of
an image and resize to 64 × 64 to train a model. Contrary to Scenario 1, the objects in the image
would become large in the cropping region and the large-distance relationship might be important,
therefore, we expect that Mixup performs better than CutMix. This hypothesis is aligned to Table 1.

5 Comparison of Different MSDA Design Choices: An Empirical Validation

In this section, we compare various MSDA methods on two popular large-scale image classification
benchmarks: CIFAR-100 [41] and ImageNet-1K [17]. We will confirm that our proposed design
choices, HMix and GMix, are not only theoretically interpolating Mixup and CutMix in the toy
settings, but also taking benefits of each method by showing great performances in real-world
applications. The implementation details and the hyper-parameter study can be found in Appendix F.

Results on CIFAR-100 classification. We evaluate HMix and GMix against baseline MSDA
methods including Mixup [76], CutMix [72], Stochastic Mixup & CutMix, [64] and PuzzleMix [39]
on CIFAR-100 dataset. Here, we include PuzzleMix, to see the effectiveness of our data-agnostic
method against the data-aware mask strategy. Note that although our theoretical results (Section 3)
are based on the data-agnostic mask selection methods, our theoretical results can be easily extended
to the data-dependent mask selection methods. We leave the extension as a future research direction.

9

Table 2: CIFAR-100 classification. Comparison of various MSDA methods on various network architectures.
Note that PuzzleMix needs additional computations (twice than others) for computing the input saliency.

Augmentation Method RN56 WRN28-2 PreActRN18 PreActRN34 PreActRN50

Vanilla (no MDSA) 73.23 73.50 76.73 77.68 79.07
Mixup 73.12 74.05 77.21 79.02 79.34
CutMix 74.83 74.79 78.66 80.05 81.23
PuzzleMix - 76.51 79.38 80.89 82.46
Stochastic Mixup & CutMix 74.88 75.49 79.25 81.05 81.21

HMix (ours) 74.99 75.68 79.25 81.07 81.38
GMix (ours) 75.75 76.15 79.17 80.52 81.45

To see the generalizability of our methods, we train various network architectures including
ResNet-56 (RN56) [26], WideResNet28-2 (WRN28-2) [75], PreActResNet-18 (PreActRN18) [27],
PreActResNet-34 (PreActRN34) [27] and PreActResNet-50 (PreActRN50) [27] with various MSDA
methods. We train networks for 300 epochs using SGD optimizer with a learning rate 0.2. Table 2
shows the summarized results. We set the hyper-parameter α for Mixup, CutMix, and Stochastic
Mixup & CutMix to 1. α for HMix and GMix were set to 1 and 0.5, respectively. We use r = 0.5
for HMix. In the table, HMix and GMix outperform Mixup only and CutMix only counterparts and
Stochastic Mixup & CutMix often show comparable performances to HMix and GMix. Our methods
show comparable performance with the state-of-the-art data-dependent strategy PuzzleMix.

Table 3: ImageNet-1K classification. Comparison of
various MSDA methods on ResNet-50 architecture.

Augmentation Method Top-1 accuracy

Vanilla (no MDSA) 75.68 (+0.00)
Mixup 77.78 (+2.10)
CutMix 78.04 (+2.36)
Stochastic Mixup & CutMix 78.13 (+2.45)

HMix (ours) 78.38 (+2.70)
GMix (ours) 78.13 (+2.45)

Results on ImageNet-1K classification. Ta-
ble 3 shows the comparison of various MSDA
methods on ImageNet-1K. We train ResNet-
50 [26] with various MSDA methods for 300
epochs using SGD optimizer with a learning
rate 0.1. We set the hyper-parameter α for all
methods except Mixup to 1, while Mixup has
α = 0.8. We use r = 0.75 for HMix. Here,
we do not include PuzzleMix because it needs
heavy additional computations to compute the
input saliencies. In the table, HMix shows the
best performance, while GMix and Stochastic Mixup & CutMix show the second-best performances.
We also include evaluations on various robustness benchmarks in Appendix G.

6 Conclusion

We analyze MSDA by a unified theoretical framework. Our unified theoretical results show that any
MSDA method behaves as a regularization on the input gradients and Hessians, where the degree of
the regularization is controlled by the design choice of MSDA. We compare various MSDA methods
in (1) regularization coefficient (2) regularized gradients (3) model performances in various scenarios
with different pixel-level importance. We propose two simple MSDA methods, HMix and GMix,
which leverage the benefits of Mixup and CutMix by their design. Our experimental results show that
HMix and GMix outperform popular MSDA methods Mixup and CutMix. Furthermore, our methods
show comparable or outperformed performances than the state-of-the-art MSDA method, Stochastic
Mixup & CutMix, in CIFAR-100 and ImageNet classification tasks.

Author Contributions

This work is done as an internship project by C Park under the supervision of S Yun. C Park
contributed to the theoretical analysis, including theory ideas and proofs. Theoretical results were
verified and interpreted by C Park and S Chun. HMix and GMix were designed by C Park and S
Yun. S Yun implemented and conducted CIFAR and ImageNet experiments. Empirical findings and
analyses were contributed by all authors. Paper presentation, such as paper writing and storyline, is
mainly led by S Chun. All authors significantly contributed to the final manuscript.

10

References
[1] R. Arora, P. Bartlett, P. Mianjy, and N. Srebro. Dropout: Explicit forms and capacity control.

ICML, 2021. 23

[2] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002. 24, 25

[3] C. Beckham, S. Honari, V. Verma, A. M. Lamb, F. Ghadiri, R. D. Hjelm, Y. Bengio, and C. Pal.
On adversarial mixup resynthesis. NeurIPS, 2019. 1

[4] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A
holistic approach to semi-supervised learning. NeurIPS, 2019. 1

[5] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed and accuracy of object
detection. arXiv preprint arXiv:2004.10934, 2020. 2

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. NeurIPS, 2020. 1

[7] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pretten-
hofer, A. Gramfort, J. Grobler, et al. Api design for machine learning software: experiences
from the scikit-learn project. arXiv preprint arXiv:1309.0238, 2013. 4

[8] L. Carratino, M. Cissé, R. Jenatton, and J.-P. Vert. On mixup regularization. arXiv preprint
arXiv:2006.06049, 2020. 2, 4

[9] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park. Swad: Domain generalization
by seeking flat minima. NeurIPS, 2021. 5

[10] Y.-T. Chang, Q. Wang, W.-C. Hung, R. Piramuthu, Y.-H. Tsai, and M.-H. Yang. Mixup-
cam: Weakly-supervised semantic segmentation via uncertainty regularization. arXiv preprint
arXiv:2008.01201, 2020. 1

[11] P. Chen, S. Liu, H. Zhao, and J. Jia. Gridmask data augmentation. arXiv preprint
arXiv:2001.04086, 2020. 1

[12] M. Chidambaram, X. Wang, Y. Hu, C. Wu, and R. Ge. Towards understanding the data
dependency of mixup-style training. ICLR, 2022. 2, 6, 26

[13] S. Chun, S. J. Oh, S. Yun, D. Han, J. Choe, and Y. Yoo. An empirical evaluation on robustness
and uncertainty of regularization methods. ICML Workshop on Uncertainty and Robustness in
Deep Learning, 2019. 28

[14] S. Chun and S. Park. Styleaugment: Learning texture de-biased representations by style
augmentation without pre-defined textures. arXiv preprint arXiv:2108.10549, 2021. 1

[15] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. CVPR, 2020. 1

[16] A. Dabouei, S. Soleymani, F. Taherkhani, and N. M. Nasrabadi. Supermix: Supervising the
mixing data augmentation. CVPR, 2021. 1

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. CVPR, 2009. 9

[18] M. Faramarzi, M. Amini, A. Badrinaaraayanan, V. Verma, and S. Chandar. Patchup: A
regularization technique for convolutional neural networks. arXiv preprint arXiv:2006.07794,
2020. 1

[19] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. ICLR, 2021. 5

[20] G. French, S. Laine, T. Aila, M. Mackiewicz, and G. Finlayson. Semi-supervised semantic
segmentation needs strong, varied perturbations. BMVC, 2020. 1

11

[21] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. NeurIPS, 2018. 5

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
ICLR, 2015. 28

[23] K. Greenewald, A. Gu, M. Yurochkin, J. Solomon, and E. Chien. k-mixup regularization for
deep learning via optimal transport. arXiv preprint arXiv:2106.02933, 2021. 1, 3

[24] H. Guo, Y. Mao, and R. Zhang. Augmenting data with mixup for sentence classification: An
empirical study. arXiv preprint arXiv:1905.08941, 2019. 1

[25] E. Harris, A. Marcu, M. Painter, M. Niranjan, A. Prügel-Bennett, and J. Hare. Fmix: Enhancing
mixed sample data augmentation. arXiv preprint arXiv:2002.12047, 2020. 1, 29

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR,
2016. 10, 27

[27] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. ECCV, 2016.
10

[28] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. ICLR, 2018. 28

[29] M. Hong, J. Choi, and G. Kim. Stylemix: Separating content and style for enhanced data
augmentation. CVPR, 2021. 29

[30] H. Inoue. Data augmentation by pairing samples for images classification. arXiv preprint
arXiv:1801.02929, 2018. 1

[31] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights leads
to wider optima and better generalization. UAI, 2018. 5

[32] J. Jeong, S. Cha, Y. Yoo, S. Yun, T. Moon, and J. Choi. Observations on k-image expansion of
image-mixing augmentation for classification. arXiv preprint arXiv:2110.04248, 2021. 1, 3

[33] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le, Y. Sung, Z. Li, and T. Duerig.
Scaling up visual and vision-language representation learning with noisy text supervision. ICML,
2021. 1

[34] A. Jindal, D. Gnaneshwar, R. Sawhney, and R. R. Shah. Leveraging bert with mixup for sentence
classification (student abstract). AAAI, 2020. 1

[35] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus. Hard negative mixing
for contrastive learning. NeurIPS, 2020. 1

[36] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch
training for deep learning: Generalization gap and sharp minima. ICLR, 2017. 5

[37] G. Kim, D. K. Han, and H. Ko. Specmix: A mixed sample data augmentation method for
training withtime-frequency domain features. INTERSPEECH, 2021. 1

[38] J. H. Kim, W. Choo, H. Jeong, and H. O. Song. Co-mixup: Saliency guided joint mixup with
supermodular diversity. ICLR, 2021. 1, 3, 5, 29

[39] J. H. Kim, W. Choo, and H. O. Song. Puzzle mix: Exploiting saliency and local statistics for
optimal mixup. ICML, 2020. 1, 3, 5, 9, 27, 29

[40] S. Kim, G. Lee, S. Bae, and S.-Y. Yun. Mixco: Mix-up contrastive learning for visual represen-
tation. arXiv preprint arXiv:2010.06300, 2020. 1

[41] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images, 2009. 9

[42] K. Lee, Y. Zhu, K. Sohn, C.-L. Li, J. Shin, and H. Lee. i-mix: A domain-agnostic strategy for
contrastive representation learning. ICLR, 2021. 1, 2

12

[43] J. Li, R. Socher, and S. C. Hoi. Dividemix: Learning with noisy labels as semi-supervised
learning. ICLR, 2020. 1

[44] Z. Liu, S. Li, G. Wang, C. Tan, L. Wu, and S. Z. Li. Decoupled mixup for data-efficient learning.
arXiv preprint arXiv:2203.10761, 2022. 1

[45] Z. Liu, S. Li, D. Wu, Z. Chen, L. Wu, J. Guo, and S. Z. Li. Automix: Unveiling the power of
mixup. ECCV, 2022. 1, 29

[46] C. Ma and L. Ying. On linear stability of sgd and input-smoothness of neural networks. NeurIPS,
2021. 5, 6

[47] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. Van
Der Maaten. Exploring the limits of weakly supervised pretraining. ECCV, 2018. 1

[48] I. Medennikov, Y. Y. Khokhlov, A. Romanenko, D. Popov, N. A. Tomashenko, I. Sorokin,
and A. Zatvornitskiy. An investigation of mixup training strategies for acoustic models in asr.
Interspeech, 2018. 1

[49] L. Meng, J. Xu, X. Tan, J. Wang, T. Qin, and B. Xu. Mixspeech: Data augmentation for
low-resource automatic speech recognition. ICASSP, 2021. 1

[50] D. Misra. Mish: A self regularized non-monotonic activation function. BMVC, 2020. 2

[51] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard. Robustness via curvature
regularization, and vice versa. CVPR, 2019. 6

[52] W. Mustafa, R. A. Vandermeulen, and M. Kloft. Input hessian regularization of neural networks.
arXiv preprint arXiv:2009.06571, 2020. 6

[53] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le. Specaugment:
A simple data augmentation method for automatic speech recognition. Interspeech, 2019. 1

[54] J. Qin, J. Fang, Q. Zhang, W. Liu, X. Wang, and X. Wang. Resizemix: Mixing data with
preserved object information and true labels. arXiv preprint arXiv:2012.11101, 2020. 1, 29

[55] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. A. Mann. Data augmentation
can improve robustness. NeurIPS, 2021. 22

[56] S. Ren, H. Wang, Z. Gao, S. He, A. Yuille, Y. Zhou, and C. Xie. A simple data mixing prior for
improving self-supervised learning. CVPR, 2022. 2

[57] Z. Shen, Z. Liu, Z. Liu, M. Savvides, T. Darrell, and E. Xing. Un-mix: Rethinking image
mixtures for unsupervised visual representation learning. AAAI, pages 2216–2224, 2022. 2

[58] J. Y. Sohn, L. Shang, H. Chen, J. Moon, D. Papailiopoulos, and K. Lee. Genlabel: Mixup
relabeling using generative models. arXiv preprint arXiv:2201.02354, 2022. 1

[59] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel, E. D. Cubuk, A. Kurakin,
and C.-L. Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.
NeurIPS, 2020. 1

[60] R. Takahashi, T. Matsubara, and K. Uehara. Data augmentation using random image cropping
and patching for deep cnns. IEEE Transactions on Circuits and Systems for Video Technology,
30(9):2917–2931, 2019. 1, 3

[61] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019. 9

[62] Y. Tokozume, Y. Ushiku, and T. Harada. Between-class learning for image classification. CVPR,
2018. 1

[63] Y. Tokozume, Y. Ushiku, and T. Harada. Learning from between-class examples for deep sound
recognition. ICLR, 2018. 1

13

[64] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient
image transformers & distillation through attention. ICML, 2021. 1, 2, 7, 9

[65] A. Uddin, M. Monira, W. Shin, T. Chung, S. H. Bae, et al. Saliencymix: A saliency guided data
augmentation strategy for better regularization. ICLR, 2021. 1, 5, 29

[66] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Bengio.
Manifold mixup: Better representations by interpolating hidden states. ICML, 2019. 1, 29

[67] S. Wager, S. Wang, and P. S. Liang. Dropout training as adaptive regularization. NeurIPS, 2013.
4

[68] D. Walawalkar, Z. Shen, Z. Liu, and M. Savvides. Attentive cutmix: An enhanced data augmen-
tation approach for deep learning based image classification. arXiv preprint arXiv:2003.13048,
2020. 1, 3

[69] R. Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. 27

[70] R. Wightman, H. Touvron, and H. Jégou. Resnet strikes back: An improved training procedure
in timm. NeurIPS, 2021. 7

[71] H. Yao, L.-K. Huang, L. Zhang, Y. Wei, L. Tian, J. Zou, J. Huang, et al. Improving generalization
in meta-learning via task augmentation. ICML, 2021. 1, 2

[72] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train
strong classifiers with localizable features. ICCV, 2019. 1, 2, 3, 6, 9, 22, 28

[73] S. Yun, S. J. Oh, B. Heo, D. Han, J. Choe, and S. Chun. Re-labeling imagenet: from single to
multi-labels, from global to localized labels. CVPR, 2021. 2

[74] S. Yun, S. J. Oh, B. Heo, D. Han, and J. Kim. Videomix: Rethinking data augmentation for
video classification. arXiv preprint arXiv:2012.03457, 2020. 1

[75] S. Zagoruyko and N. Komodakis. Wide residual networks. BMVC, 2016. 10

[76] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. ICLR, 2018. 1, 2, 3, 6, 9, 22

[77] L. Zhang, Z. Deng, K. Kawaguchi, A. Ghorbani, and J. Zou. How does mixup help with
robustness and generalization? ICLR, 2021. 2, 3, 4, 19, 21, 22, 23

[78] L. Zhang, Z. Deng, K. Kawaguchi, and J. Zou. When and how mixup improves calibration.
arXiv preprint arXiv:2102.06289, 2021. 2

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We

discuss potential negative societal impacts in the appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provide
code-level implementation details in the appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide the hyperparameter settings in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We provide them in the appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

