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Abstract

Graph-based Retrieval-Augmented Generation001
(RAG) methods have significantly enhanced the002
performance of large language models (LLMs)003
in domain-specific tasks. However, existing004
RAG methods do not adequately utilize the005
naturally inherent hierarchical knowledge in006
human cognition, which limits the capabilities007
of RAG systems. In this paper, we introduce008
a new RAG approach, called HiRAG, which009
utilizes hierarchical knowledge to enhance the010
semantic understanding and structure capturing011
capabilities of RAG systems in the indexing012
and retrieval processes. Our extensive exper-013
iments demonstrate that HiRAG achieves sig-014
nificant performance improvements over the015
state-of-the-art baseline methods.016

1 Introduction017

Retrieval Augmented Generation (RAG) (Gao018

et al., 2023) (Lewis et al., 2020) (Fan et al., 2024)019

has been introduced to enhance the capabilities of020

LLMs in domain-specific or knowledge-intensive021

tasks. Naive RAG methods retrieve text chunks that022

are relevant to a query, which serve as references023

for LLMs to generate responses, thus helping ad-024

dress the problem of "Hallucination" (Zhang et al.,025

2023) (Tang and Yang, 2024). However, naive026

RAG methods usually overlook the relationships027

among entities in the retrieved text chunks. To ad-028

dress this issue, RAG systems with graph structures029

were proposed (Edge et al., 2024) (Liang et al.,030

2024) (Zhang et al., 2025) (Peng et al., 2024a),031

which construct knowledge graphs (KGs) to model032

relationships between entities in the input docu-033

ments. Although existing RAG systems integrat-034

ing graph structures have demonstrated outstand-035

ing performance on various tasks, they still have036

some serious limitations. GraphRAG (Edge et al.,037

2024) introduces communities in indexing using038

the Leiden algorithm (Traag et al., 2019), but the039

communities only capture the structural proxim- 040

ity of the entities in the KG. KAG (Liang et al., 041

2024) indexes with a hierarchical representation of 042

information and knowledge, but their hierarchical 043

structure relies too much on manual annotation and 044

requires a lot of human domain knowledge, which 045

renders their method not scalable to general tasks. 046

LightRAG (Guo et al., 2024) utilizes a dual-level 047

retrieval approach to obtain local and global knowl- 048

edge as the contexts for a query, but it ignores the 049

knowledge gap between local and global knowl- 050

edge, that is, local knowledge represented by the 051

retrieved individual entities (i.e., entity-specific de- 052

tails) may not be semantically related to the global 053

knowledge represented in the retrieved community 054

summaries (i.e., broader, aggregated summaries), 055

as these individual entities may not be a part of the 056

retrieved communities for a query. 057

We highlight two critical challenges in exist- 058

ing RAG systems that integrate graph structures: 059

(1) distant structural relationship between se- 060

mantically similar entities and (2) knowledge 061

gap between local and global knowledge. We 062

illustrate them using a real example from a public 063

dataset, as shown in Figure 1. 064

Challenge (1) occurs because existing methods 065

over-rely on source documents, often resulting in 066

constructing a knowledge graph (KG) with many 067

entities that are not structurally proximate in the 068

KG even though they share semantically similar 069

attributes. For example, in Figure 1, although the 070

entities "BIG DATA" and "RECOMMENDATION 071

SYSTEM" share semantic relevance under the con- 072

cept of "DATA MINING", their distant structural 073

relationship in the KG reflects a corpus-driven dis- 074

connect. These inconsistencies between semantic 075

relevance and structural proximity are systemic in 076

KGs, undermining their utility in RAG systems 077

where contextual coherence is critical. 078

Challenge (2) occurs as existing methods (Guo 079

et al., 2024) (Edge et al., 2024) typically retrieve 080
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Figure 1: The challenges faced by existing RAG systems: (1) Distant structural relationship between semantically
similar entities. (2) Knowledge gap between local and global knowledge.

context either from global or local perspectives but081

fail to address the inherent disparity between these082

knowledge layers. Consider the query "Please in-083

troduce Amazon" in Figure 1, where global context084

emphasizes Amazon’s involvement in technolog-085

ical domains like big data and cloud computing,086

but local context retrieves entities directly linked087

to Amazon (e.g., subsidiaries, leadership). When088

these two knowledge layers are fed into LLMs as089

the contexts of a query without contextual align-090

ment, LLMs may struggle to reconcile their distinct091

scopes, leading to disjointed reasoning, incomplete092

answers, or even contradictory outputs. For in-093

stance, an LLM might conflate Amazon’s role as a094

cloud provider (global) with its e-commerce oper-095

ations (local), resulting in incoherent or factually096

inconsistent responses as the red words shown in097

the case. This underscores the need for new meth-098

ods that bridge hierarchical knowledge layers to099

ensure cohesive reasoning in RAG systems.100

To address these challenges, we propose101

Retrieval-Augmented Generation with Hierar-102

chical Knowledge (HiRAG), which integrates hier-103

archical knowledge into the indexing and retrieval104

processes. Hierarchical knowledge (Sarrafzadeh105

and Lank, 2017) is a natural concept in both graph106

structure and human cognition, yet it has been107

overlooked in existing approaches. Specifically,108

to address Challenge (1), we introduce Indexing109

with Hierarchical Knowledge (HiIndex). Rather110

than simply constructing a flat KG, we index a111

KG hierarchically layer by layer. Each entity (or112

node) in a higher layer summarizes a cluster of113

entities in the lower layer, which can enhance114

the connectivity between semantically similar en-115

tities. For example, in Figure 1, the inclusion of116

the summary entity "DATA MINING" strengthens117

the connection between "BIG DATA" and "REC- 118

OMMENDATION SYSTEM". To address Chal- 119

lenge (2), we propose Retrieval with Hierarchical 120

Knowledge (HiRetrieval). HiRetrieval effectively 121

bridges local knowledge of entity descriptions to 122

global knowledge of communities, thus resolving 123

knowledge layer disparities. It provides a three- 124

level context comprising the global level, the bridge 125

level, and the local level knowledge to an LLM, en- 126

abling the LLM to generate more comprehensive 127

and precise responses. 128

In summary, we make the following main contri- 129

butions: 130

• We identify and address two critical chal- 131

lenges in graph-based RAG systems: distant 132

structural relationships between semantically 133

similar entities and the knowledge gap be- 134

tween local and global information. 135

• We propose HiRAG, which introduces unsu- 136

pervised hierarchical indexing and a novel 137

bridging mechanism for effective knowledge 138

integration, significantly advancing the state- 139

of-the-art in RAG systems. 140

• Extensive experiments demonstrate both the 141

effectiveness and efficiency of our approach, 142

with comprehensive ablation studies validat- 143

ing the contribution of each component. 144

2 Related Work 145

In this section, we discuss recent research con- 146

cerning graph-augmented LLMs, specifically RAG 147

methods with graph structures. GNN-RAG (Mavro- 148

matis and Karypis, 2024) employs GNN-based rea- 149

soning to retrieve query-related entities. Then they 150

find the shortest path between the retrieved entities 151
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and candidate answer entities to construct reason-152

ing paths. LightRAG (Guo et al., 2024) integrates153

a dual-level retrieval method with graph-enhanced154

text indexing. They also decrease the computa-155

tional costs and speed up the adjustment process.156

GRAG (Hu et al., 2024) leverages a soft pruning157

approach to minimize the influence of irrelevant158

entities in retrieved subgraphs. It also implements159

prompt tuning to help LLMs comprehend textual160

and topological information in subgraphs by in-161

corporating graph soft prompts. StructRAG (Li162

et al., 2024) identifies the most suitable structure163

for each task, transforms the initial documents into164

this organized structure, and subsequently gener-165

ates responses according to the established struc-166

ture. Microsoft GraphRAG (Edge et al., 2024)167

first retrieves related communities and then let the168

LLM generate the response with the retrieved com-169

munities. They also answer a query with global170

search and local search. KAG (Liang et al., 2024)171

introduces a professional domain knowledge ser-172

vice framework and employs knowledge alignment173

using conceptual semantic reasoning to mitigate174

the noise issue in OpenIE. KAG also constructs175

domain expert knowledge using human-annotated176

schemas.177

3 Preliminary and Definitions178

In this section, we give a general formulation of an179

RAG system with graph structure referring to the180

definitions in (Guo et al., 2024) and (Peng et al.,181

2024b).182

In an RAG framework M as shown in Equa-183

tion 1, LLM is the generation module, R repre-184

sents the retrieval module, φ denotes the graph185

indexer, and ψ refers to the graph retriever:186

M = (LLM,R(φ,ψ)). (1)187

When we answer a query, the answer we get from188

an RAG system is represented by a∗, which can be189

formulated as190

a∗ = argmax
a∈A
M(a|q,G), (2)191

192
G = φ(D) = {(h, r, t)|h, t ∈ V, r ∈ E}, (3)193

where M(a|q,G) is the target distribution with194

a graph retriever ψ(G|q,G) and a generator195

LLM(a|q,G), and A is the set of possible re-196

sponses. The graph database G is constructed from197

the original external database D. We utilize the198

total probability formula to decompose M(a|q,G), 199

which can be expressed as 200

M(a|q,G) =
∑
G∈G

LLM(a|q,G)·ψ(G|q,G). (4) 201

Most of the time, we only need to retrieve the 202

most relevant subgraph G from the external graph 203

database G. Therefore, here we can approximate 204

M(a|q,G) as follows: 205

M(a|q,G) ≈ LLM(a|q,G∗) · ψ(G∗|q,G), (5) 206

whereG∗ denotes the optimal subgraph we retrieve 207

from the external graph database G. What we fi- 208

nally want is to get a better generated answer a∗. 209

210

4 The HiRAG Framework 211

HiRAG consists of the two modules, HiIndex and 212

HiRetrieval, as shown in Figure 2. In the HiIndex 213

module, we construct a hierarchical KG with differ- 214

ent knowledge granularity in different layers. The 215

summary entities in a higher layer represent more 216

coarse-grained, high-level knowledge but they can 217

enhance the connectivity between semantically sim- 218

ilar entities in a lower layer. In the HiRetrieval 219

module, we select the most relevant entities from 220

each retrieved community and find the shortest path 221

to connect them, which serve as the bridge-level 222

knowledge to connect the knowledge at both lo- 223

cal and global levels. Then an LLM will generate 224

responses with these three-level knowledge as the 225

context. 226

4.1 Indexing with Hierarchical Knowledge 227

In the HiIndex module, we index the input docu- 228

ments as a hierarchical KG. First, we employ the 229

entity-centric triple extraction to construct a basic 230

KG G0 following (Carta et al., 2023). Specifically, 231

we split the input documents into text chunks with 232

some overlaps. These chunks will be fed into the 233

LLM with well-designed prompts to extract entities 234

V0 first. Then the LLM will generate relations (or 235

edges) E0 between pairs of the extracted entities 236

based on the information of the corresponding text 237

chunks. The basic KG can be represented as 238

G0 = {(h, r, t)|h, t ∈ V0, r ∈ E0}. (6) 239

The basic KG is also the 0-th layer of our hierar- 240

chical KG. We denote the set of entities (nodes) in 241

the i-th layer as Li where L0 = V0. To construct 242
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Figure 2: The overall architecture of the HiRAG framework.

the i-th layer of the hierarchical KG, for i ≥ 1,243

we first fetch the embeddings of the entities in the244

(i − 1)-th layer of the hierarchical KG, which is245

denoted as246

Zi−1 = {Embedding(v)|v ∈ Li−1}, (7)247

where Embedding(v) is the embedding of an248

entity v. Then we employ Gaussian Mixture Mod-249

els (GMMs) to conduct semantical clustering on250

Li−1 based on Zi−1, following the method de-251

scribed in RAPTOR (Sarthi et al., 2024). We obtain252

a set of clusters as253

Ci−1 = GMM(Li−1,Zi−1) = {S1, . . . ,Sc},
(8)254

where ∀x, y ∈ [1, c], Sx ∩ Sy = ∅ and255 ⋃
1≤x≤c Sx = Li−1. After clustering with GMMs,256

the descriptions of the entities in each cluster in257

Ci−1 are fed into the LLM to generate a set of sum-258

mary entities for the i-th layer. Thus, the set of sum-259

mary entities in the i-th layer, i.e., Li, is the union260

of the sets of summary entities generated from all261

clusters in Ci−1. Then, we create the relations be-262

tween entities in Li−1 and entities in Li, denoted as263

E{i−1,i}, by connecting the entities in each cluster264

S ∈ Ci−1 to the corresponding summary entities in265

Li that are generated from the entities in S.266

To generate summary entities in Li, we use a267

set of meta summary entities X to guide the LLM268

to generate the summary entities. Here, X is a269

small set of general concepts such as "organiza-270

tion", "person", "location", "event", "technology",271

etc., that are generated by LLM. For example, the 272

meta summary "technology" could guide the LLM 273

to generate summary entities such as "big data" and 274

"AI". Note that conceptually X is added as the top 275

layer in Figure 2, but X is actually not part of the 276

hierarchical KG. 277

After generating the summary entities and rela- 278

tions in the i-th layer, we update the KG as follows: 279

Ei = Ei−1 ∪ E{i−1,i}, (9) 280
281

Vi = Vi−1 ∪ Li, (10) 282
283

Gi = {(h, r, t)|h, t ∈ Vi, r ∈ Ei}. (11) 284

We repeat the above process for each layer from 285

the 1st layer to the k-th layer. We will discuss 286

how to choose the parameter k in Section 5. Also 287

note that there is no relation between the summary 288

entities in each layer except the 0-th layer (i.e., the 289

basic KG). 290

We also employ the Leiden algorithm (Traag 291

et al., 2019) to compute a set of communities P 292

from the hierarchical KG. Each community may 293

contain entities from multiple layers and an entity 294

may appear in multiple communities. For each 295

community p ∈ P , we generate an interpretable 296

semantic report using LLMs. Unlike existing meth- 297

ods such as GraphRAG (Edge et al., 2024) and 298

LightRAG (Guo et al., 2024), which identify com- 299

munities based solely on direct structural proxim- 300

ity in a basic KG, our hierarchical KG introduces 301

multi-resolution semantic aggregation. Higher- 302

layer entities in our KG act as semantic hubs that 303

4



abstract clusters of semantically related entities re-304

gardless of their distance from each other in a lower305

layer. For example, while a flat KG might sepa-306

rate "cardiologist" and "neurologist" nodes due to307

limited direct connections, their hierarchical ab-308

straction as "medical specialists" in upper layers309

enables joint community membership. The hierar-310

chical structure thus provides dual connectivity en-311

hancement: structural cohesion through localized312

lower-layer connections and semantic bridging via313

higher-layer abstractions. This dual mechanism314

ensures our communities reflect both explicit re-315

lational patterns and implicit conceptual relation-316

ships, yielding more comprehensive knowledge317

groupings than structure-only approaches.318

4.2 Retrieval with Hierarchical Knowledge319

We now discuss how we retrieve hierarchical320

knowledge to address the knowledge gap issue.321

Based on the hierarchical KG Gk constructed in322

Section 4.1, we retrieve three-level knowledge at323

both local and global levels, as well as the bridging324

knowledge that connects them.325

To retrieve local-level knowledge, we extract the326

top-n most relevant entities V̂ as shown in Equa-327

tion 12, where Sim(q, v) is a function that mea-328

sures the semantic similarity between a user query329

q and an entity v in the hierarchical KG Gk. We set330

n to 20 as default.331

V̂ = TopN({v ∈ Vk|Sim(q, v)}, n). (12)332

To access global-level knowledge related to a query,333

we find the communities P̂ ⊂ P that are con-334

nected to the retrieved entities as described in Equa-335

tion 13, where P is computed during indexing in336

Section 4.1. Then the community reports of these337

communities are retrieved, which represent coarse-338

grained knowledge relevant to the user’s query.339

P̂ =
⋃
p∈P
{p|p ∩ V̂ ≠ ∅}. (13)340

To bridge the knowledge gap between the retrieved341

local-level and global-level knowledge, we also342

find a set of reasoning paths R connecting the re-343

trieved communities. Specifically, from each com-344

munity, we select the top-m query-related key en-345

tities and collect them into V̂P̂ , as shown in Equa-346

tion 14. The set of reasoning pathsR is defined as347

the set of shortest paths between each pair of key348

entities according to their order in V̂P̂ , as shown in349

Equation 15. Based onR, we construct a subgraph350

R̂ as described in Equation 16. Here, R̂ collects a 351

set of triples from the KG that connect the knowl- 352

edge in the local entities and the knowledge in the 353

global communities. 354

V̂P̂ =
⋃
p∈P̂

TopN({v ∈ p|Sim(q, v)},m), (14) 355

356
R =

⋃
i∈[1,|V̂P̂ |−1]

ShortestPathGk
(V̂P̂ [i], V̂P̂ [i+1]),

(15) 357358

R̂ = {(h, r, t) ∈ Gk|h, t ∈ R}. (16) 359

After retrieving the three-level hierarchical knowl- 360

edge, i.e., local-level descriptions of the individual 361

entities in V̂ , global-level community reports of the 362

communities in P̂ , and bridge-level descriptions of 363

the triples in R̂, we feed them as the context to the 364

LLM to generate a comprehensive answer to the 365

query. We also provide the detailed procedures of 366

HiRAG with pseudocodes in Appendix B. 367

4.3 Why is HiRAG effective? 368

HiRAG’s efficacy stems from its hierarchical archi- 369

tecture, HiIndex (i.e., hierarchical KG) and HiRe- 370

trieval (i.e., three-level knowledge retrieval), which 371

directly mitigates the limitations outlined in Chal- 372

lenges (1) and (2) as described in Section 1. 373

Addressing Challenge (1): The hierarchical 374

knowledge graph Gk introduces summary entities 375

in its higher layers, creating shortcuts between enti- 376

ties that are distantly located in lower layers. This 377

design bridges semantically related concepts effi- 378

ciently, bypassing the need for exhaustive traversal 379

of fine-grained relationships in the KG. 380

Resolving Challenge (2): HiRetrieval con- 381

structs reasoning paths by linking the top-n entities 382

most semantically relevant to a query with their 383

associated communities. These paths represent 384

the shortest connections between localized entity 385

descriptions and global community-level insights, 386

ensuring that both granular details and broader con- 387

textual knowledge inform the reasoning process. 388

Synthesis: By integrating (i) semantically sim- 389

ilar entities via hierarchical shortcuts, (ii) global 390

community contexts, and (iii) optimized pathways 391

connecting local and global knowledge, HiRAG 392

generates comprehensive, context-aware answers 393

to user queries. 394

5 Experimental Evaluation 395

We report the performance evaluation results of 396

HiRAG in this section. 397
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Baseline Methods. We compared HiRAG with398

state-of-the-art and popular baseline RAG meth-399

ods. NaiveRAG (Gao et al., 2022) (Gao et al.,400

2023) splits original documents into chunks and401

retrieves relevant text chunks through vector search.402

GraphRAG (Edge et al., 2024) utilizes commu-403

nities and we use the local search mode in our404

experiments as it retrieves community reports as405

global knowledge, while their global search mode406

is known to be too costly and does not use local407

entity descriptions. LightRAG (Guo et al., 2024)408

uses both global and local knowledge to answer a409

query. FastGraphRAG (Circlemind, 2024) inte-410

grates KG and personalized PageRank as proposed411

in HippoRAG (Gutiérrez et al., 2025). KAG (Liang412

et al., 2024) integrates structured reasoning of413

KG with LLMs and employs mutual indexing and414

logical-form-guided reasoning to enhance profes-415

sional domain knowledge services.416

Datasets and Queries. We used four datasets417

from the UltraDomain benchmark (Qian et al.,418

2024), which is designed to evaluate RAG sys-419

tems across diverse applications, focusing on long-420

context tasks and high-level queries in specialized421

domains. We used Mix, CS, Legal, and Agriculture422

datasets like in LightRAG (Guo et al., 2024). We423

also used the benchmark queries provided in Ultra-424

Domain for each of the four datasets. The statistics425

of these datasets are given in Appendix A.426

LLM. We employed DeepSeek-V3 (DeepSeek-427

AI et al., 2024) as the LLM for information extrac-428

tion, entity summarization, and answer generation429

in HiRAG and other baseline methods. We utilized430

GLM-4-Plus (GLM et al., 2024) as the embedding431

model for vector search and semantic clustering be-432

cause DeepSeek-V3 does not provide an accessible433

embedding model.434

5.1 Overall Performance Comparison435

Evaluation Details. Our experiments followed the436

evaluation methods of recent work (Edge et al.,437

2024)(Guo et al., 2024) by employing a power-438

ful LLM to conduct multi-dimensional comparison.439

We used the win rate to compare different methods,440

which indicates the percentage of instances that441

a method generates higher-quality answers com-442

pared to another method as judged by the LLM.443

We utilized GPT-4o (Achiam et al., 2023) as the444

evaluation model to judge which method generates445

a superior answer for each query for the following446

four dimensions: (1) Comprehensiveness: how447

thoroughly does the answer address the question,448

covering all relevant aspects and details? (2) Em- 449

powerment: how effectively does the answer pro- 450

vide actionable insights or solutions that empower 451

the user to take meaningful steps? (3) Diversity: 452

how well does the answer incorporate a variety of 453

perspectives, approaches, or solutions to the prob- 454

lem? (4) Overall: how does the answer perform 455

overall, considering comprehensiveness, empower- 456

ment, diversity, and any other relevant factors? For 457

a fair comparison, we also alternated the order of 458

the answers generated by each pair of methods in 459

the prompts and calculated the overall win rates of 460

each method. 461

Evaluation Results. We report the win rates of 462

HiRAG and the five baseline methods in Table 1. 463

HiRAG outperforms the baselines accross the four 464

datasets and the four dimensions in most of the 465

cases. Here are the conclusions we can draw from 466

the results: 467

Evaluation Results. We present the win rates of 468

HiRAG and five baseline methods in Table 1. Hi- 469

RAG consistently outperforms existing approaches 470

across all four datasets and four evaluation dimen- 471

sions in the majority of cases. Key insights derived 472

from the results are summarized below. 473

Graph structure enhances RAG systems: 474

NaiveRAG exhibits inferior performance com- 475

pared to methods integrating graph structures, 476

primarily due to its inability to model relationships 477

between entities in retrieved components. Fur- 478

thermore, its context processing is constrained by 479

the token limitations of LLMs, highlighting the 480

importance of structured knowledge representation 481

for robust retrieval and reasoning. 482

Global knowledge improves answer qual- 483

ity: Approaches incorporating global knowledge 484

(GraphRAG, LightRAG, KAG, HiRAG) signifi- 485

cantly surpass FastGraphRAG, which relies on lo- 486

cal knowledge via personalized PageRank. An- 487

swers generated without global context lack depth 488

and diversity, underscoring the necessity of holis- 489

tic knowledge integration for comprehensive re- 490

sponses. 491

HiRAG’s superior performance: Among graph- 492

enhanced RAG systems, HiRAG achieves the high- 493

est performance across all datasets (spanning di- 494

verse domains) and evaluation dimensions. This 495

superiority stems primarily from two innovations: 496

(1) HiIndex which enhances connections between 497

remote but semantically similar entities in the hier- 498

archical KG, and (2) HiRetrieval which effectively 499

bridges global knowledge with localized context to 500
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Table 1: Win rates (%) of HiRAG, its two variants (for ablation study), and baseline methods.

Mix CS Legal Agriculture

NaiveRAG HiRAG NaiveRAG HiRAG NaiveRAG HiRAG NaiveRAG HiRAG

Comprehensiveness 16.6% 83.4% 30.0% 70.0% 32.5% 67.5% 34.0% 66.0%
Empowerment 11.6% 88.4% 29.0% 71.0% 25.0% 75.0% 31.0% 69.0%
Diversity 12.7% 87.3% 14.5% 85.5% 22.0% 78.0% 21.0% 79.0%
Overall 12.4% 87.6% 26.5% 73.5% 25.5% 74.5% 28.5% 71.5%

GraphRAG HiRAG GraphRAG HiRAG GraphRAG HiRAG GraphRAG HiRAG

Comprehensiveness 42.1% 57.9% 40.5% 59.5% 48.5% 51.5% 49.0% 51.0%
Empowerment 35.1% 64.9% 38.5% 61.5% 43.5% 56.5% 48.5% 51.5%
Diversity 40.5% 59.5% 30.5% 69.5% 47.0% 53.0% 45.5% 54.5%
Overall 35.9% 64.1% 36.0% 64.0% 45.5% 54.5% 46.0% 54.0%

LightRAG HiRAG LightRAG HiRAG LightRAG HiRAG LightRAG HiRAG

Comprehensiveness 36.8% 63.2% 44.5% 55.5% 49.0% 51.0% 38.5% 61.5%
Empowerment 34.9% 65.1% 41.5% 58.5% 43.5% 56.5% 36.5% 63.5%
Diversity 34.1% 65.9% 33.0% 67.0% 63.0% 37.0% 37.5% 62.5%
Overall 34.1% 65.9% 41.0% 59.0% 48.0% 52.0% 38.5% 61.5%

FastGraphRAG HiRAG FastGraphRAG HiRAG FastGraphRAG HiRAG FastGraphRAG HiRAG

Comprehensiveness 0.8% 99.2% 0.0% 100.0% 1.0% 99.0% 0.0% 100.0%
Empowerment 0.8% 99.2% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%
Diversity 0.8% 99.2% 0.5% 99.5% 1.5% 98.5% 0.0% 100.0%
Overall 0.8% 99.2% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%

KAG HiRAG KAG HiRAG KAG HiRAG KAG HiRAG

Comprehensiveness 2.3% 97.7% 1.0% 99.0% 16.5% 83.5% 5.0% 99.5%
Empowerment 3.5% 96.5% 4.5% 95.5% 9.0% 91.0% 5.0% 99.5%
Diversity 3.8% 96.2% 5.0% 95.0% 11.0% 89.0% 3.5% 96.5%
Overall 2.3% 97.7% 1.5% 98.5% 8.5% 91.5% 0.0% 100.0%

w/o HiIndex HiRAG w/o HiIndex HiRAG w/o HiIndex HiRAG w/o HiIndex HiRAG

Comprehensiveness 46.7% 53.3% 44.2% 55.8% 49.0% 51.0% 50.5% 49.5%
Empowerment 43.2% 56.8% 38.8% 61.2% 47.5% 52.5% 50.5% 49.5%
Diversity 40.5% 59.5% 40.0% 60.0% 48.0% 52.0% 48.5% 51.5%
Overall 42.4% 57.6% 40.0% 60.0% 46.5% 53.5% 48.0% 52.0%

w/o Bridge HiRAG w/o Bridge HiRAG w/o Bridge HiRAG w/o Bridge HiRAG

Comprehensiveness 49.2% 50.8% 46.5% 53.5% 49.5% 50.5% 47.0% 53.0%
Empowerment 44.2% 55.8% 43.0% 57.0% 38.5% 61.5% 41.0% 59.0%
Diversity 44.6% 55.4% 44.0% 56.0% 43.5% 56.5% 46.0% 54.0%
Overall 47.3% 52.7% 42.5% 57.5% 44.0% 56.0% 42.0% 58.0%

optimize relevance and coherence.501

5.2 Hierarchical KG vs. Flat KG502

To evaluate the significance of the hierarchical KG,503

we replace the hierarchical KG with a flat KG (or504

a basic KG), denoted by w/o HiIndex as reported505

in Table 1. Compared with HiRAG, the win rates506

of w/o HiIndex drop in almost all cases and quite507

significantly in at least half of the cases. This abla-508

tion study thus shows that the hierarchical indexing509

plays an important role in the quality of answer gen-510

eration, since the connectivity among semantically511

similar entities is enhanced with the hierarchical512

KG, with which related entities can be grouped513

together both from structural and semantical per-514

spectives.515

From Table 1, we also observe that the win rates516

of w/o HiIndex are better or comparable to those 517

of GraphRAG and LightRAG when compared with 518

HiRAG. This suggests that our three-level knowl- 519

edge retrieval method, i.e., HiRetrieval, is effective 520

even applied on a flat KG, because GraphRAG and 521

LightRAG also index on a flat KG but they only 522

use the local entity descriptions and global commu- 523

nity reports, while w/o HiIndex uses an additional 524

bridge-level knowledge. 525

5.3 HiRetrieval vs. Gapped Knowledge 526

To show the effectiveness of HiRetrieval, we also 527

created another variant of HiRAG without using the 528

bridge-level knowledge, denoted by w/o Bridge in 529

Table 1. The result shows that without the bridge- 530

layer knowledge, the win rates drop significantly 531

across all datasets and evaluation dimensions, be- 532

7



cause there is knowledge gap between the local-533

level and global-level knowledge as discussed in534

Section 1.535

Case Study. Figure 3 shows the three-level536

knowledge used as the context to an LLM to answer537

the query in Figure 1. The bridge-level knowledge538

contains entity descriptions from different commu-539

nities, as shown by the different colors in Figure 3,540

which helps the LLM correctly answer the question541

about Amazon’s role as an e-commerce and cloud542

provider.543

Figure 3: Answer to the query in Figure 1 with addi-
tional bridge-level knowledge.

5.4 Determining the Number of Layers544

One important thing in HiIndex is to determine the545

number of layers, k, for the hierarchical KG, which546

should be determined dynamically according to the547

quality of clusters in each layer. We stop build-548

ing another layer when the majority of the clusters549

consist of only a small number of entities, mean-550

ing that the entities can no longer be effectively551

grouped together. To measure that, we introduce552

the notion of cluster sparsity CSi, as inspired by553

graph sparsity, to measure the quality of clusters in554

the i-th layer as described in Equation 17.555

CSi = 1−
∑

S∈Ci |S|(|S| − 1)

|Li|(|Li| − 1)
. (17)556

The more the clusters in Ci have a small number557

of entities, the larger is CSi, where the worst case558

is when each cluster contains only one entity (i.e.,559

CSi = 1). Figure 4 shows that as we have more560

layers, the cluster sparsity increases and then sta-561

bilizes. We also plot the change rate from CSi562

to CSi+1, which shows that there is little or no563

more change after constructing a certain number564

of layers. We set a threshold ϵ = 5% and stop565

constructing another layer when the change rate of566

cluster sparsity is lower than ϵ because the cluster567

quality has little or no improvement after that.568

Figure 4: Cluster sparsity CSi and change rate from
CSi to CSi+1, where the shadow areas represent the
value ranges of the four datasets and the blue/pink lines
are the respective average values.

5.5 Efficiency and Costs Analysis 569

To evaluate the efficiency and costs of HiRAG, 570

we also report the token costs, the number of API 571

calls, and the time costs of indexing and retrieval 572

of HiRAG and the baselines in Table 2. For index- 573

ing, we record the total costs of the entire process. 574

Although HiRAG needs more time and resources 575

to conduct indexing for better performance, we 576

remark that indexing is offline and the total cost 577

is only about 7.55 USD for the Mix dataset us- 578

ing DeepSeek-V3. In terms of retrieval, we calcu- 579

late the average costs per query. Unlike KAG and 580

LightRAG, HiRAG does not cost any tokens for 581

retrieval. Therefore, HiRAG is more efficient for 582

online retrieval. 583

Table 2: Comparisons in terms of tokens, API calls and
time cost.

Token Cost API Calls Time Cost (s)
Method Indexing Retrieval Indexing Retrieval Indexing Retrieval
GraphRAG 8,507,697 0.00 2,666 1.00 6,696 0.70
LightRAG 3,849,030 357.76 1,160 2.00 3,342 3.06
KAG 6,440,668 110,532.00 831 9.17 8,530 58.47
HiRAG 21,898,765 0.00 6,790 1.00 17,208 0.85

6 Conclusions 584

We presented a new approach to enhance RAG sys- 585

tems by effectively utilizing graph structures with 586

hierarchical knowledge. By developing (1) HiIn- 587

dex which enhances structural and semantic con- 588

nectivity across hierarchical layers, and (2) HiRe- 589

trieval which effectively bridges global conceptual 590

abstractions with localized entity descriptions, Hi- 591

RAG achieves superior performance than existing 592

methods. 593

7 Limitations 594

HiRAG has the following limitations. Firstly, con- 595

structing a high-quality hierarchical KG may incur 596

8



substantial token consumption and time overhead,597

as LLMs need to perform entity summarization in598

each layer. However, the monetary cost of using599

LLMs may not be the major concern as the cost600

is decreasing rapidly recently, and therefore we601

may consider parallelizing the indexing process to602

reduce the indexing time. Secondly, the retrieval603

module requires more sophisticated query-aware604

ranking mechanisms. Currently, our HiRetrieval605

module relies solely on LLM-generated weights606

for relation ranking, which may affect query rele-607

vance. We will research for more effective ranking608

mechanisms to further improve the retrieval quality.609

References610

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama611
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,612
Diogo Almeida, Janko Altenschmidt, Sam Altman,613
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.614
arXiv preprint arXiv:2303.08774.615

Salvatore Carta, Alessandro Giuliani, Leonardo Piano,616
Alessandro Sebastian Podda, Livio Pompianu, and617
Sandro Gabriele Tiddia. 2023. Iterative zero-shot llm618
prompting for knowledge graph construction. arXiv619
preprint arXiv:2307.01128.620

Circlemind. 2024. fast-graphrag. https://github.621
com/circlemind-ai/fast-graphrag.622

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-623
uan Wang, Bochao Wu, Chengda Lu, Chenggang624
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,625
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,626
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,627
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei628
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng629
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,630
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,631
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,632
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie633
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,634
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean635
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,636
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,637
Mingchuan Zhang, Minghua Zhang, Minghui Tang,638
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,639
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu640
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,641
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin642
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao643
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,644
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu645
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,646
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,647
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,648
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,649
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,650
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,651
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,652

Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin 653
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, 654
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, 655
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, 656
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan- 657
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao 658
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, 659
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, 660
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix- 661
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 662
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue 663
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan 664
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi- 665
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. 666
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, 667
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan 668
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi- 669
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, 670
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, 671
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi 672
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical 673
report. Preprint, arXiv:2412.19437. 674

Darren Edge, Ha Trinh, Newman Cheng, Joshua 675
Bradley, Alex Chao, Apurva Mody, Steven Truitt, 676
and Jonathan Larson. 2024. From local to global: A 677
graph rag approach to query-focused summarization. 678
arXiv preprint arXiv:2404.16130. 679

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, 680
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing 681
Li. 2024. A survey on rag meeting llms: Towards 682
retrieval-augmented large language models. In Pro- 683
ceedings of the 30th ACM SIGKDD Conference on 684
Knowledge Discovery and Data Mining, pages 6491– 685
6501. 686

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 687
2022. Precise zero-shot dense retrieval without rele- 688
vance labels. arXiv preprint arXiv:2212.10496. 689

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 690
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, 691
and Haofen Wang. 2023. Retrieval-augmented gen- 692
eration for large language models: A survey. arXiv 693
preprint arXiv:2312.10997. 694

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, 695
Chenhui Zhang, Da Yin, Dan Zhang, Diego Ro- 696
jas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao 697
Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale 698
Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, 699
Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, 700
Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai 701
Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin 702
Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, 703
Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin 704
Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan 705
Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, 706
Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, 707
Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, 708
Zhenyu Hou, and Zihan Wang. 2024. Chatglm: A 709
family of large language models from glm-130b to 710
glm-4 all tools. Preprint, arXiv:2406.12793. 711

9

https://github.com/circlemind-ai/fast-graphrag
https://github.com/circlemind-ai/fast-graphrag
https://github.com/circlemind-ai/fast-graphrag
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793


Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and712
Chao Huang. 2024. Lightrag: Simple and fast713
retrieval-augmented generation. arXiv preprint714
arXiv:2410.05779.715

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michi-716
hiro Yasunaga, and Yu Su. 2025. Hipporag: Neu-717
robiologically inspired long-term memory for large718
language models. Preprint, arXiv:2405.14831.719

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan,720
Chen Ling, and Liang Zhao. 2024. Grag: Graph721
retrieval-augmented generation. arXiv preprint722
arXiv:2405.16506.723

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio724
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-725
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-726
täschel, et al. 2020. Retrieval-augmented generation727
for knowledge-intensive nlp tasks. Advances in Neu-728
ral Information Processing Systems, 33:9459–9474.729

Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu730
Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xian-731
pei Han, Le Sun, and Yongbin Li. 2024. Struc-732
trag: Boosting knowledge intensive reasoning of llms733
via inference-time hybrid information structurization.734
arXiv preprint arXiv:2410.08815.735

Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu736
Zhu, Zhouyu Jiang, Ling Zhong, Yuan Qu, Pei-737
long Zhao, Zhongpu Bo, Jin Yang, Huaidong Xiong,738
Lin Yuan, Jun Xu, Zaoyang Wang, Zhiqiang Zhang,739
Wen Zhang, Huajun Chen, Wenguang Chen, and740
Jun Zhou. 2024. Kag: Boosting llms in profes-741
sional domains via knowledge augmented generation.742
Preprint, arXiv:2409.13731.743

Costas Mavromatis and George Karypis. 2024. Gnn-744
rag: Graph neural retrieval for large language model745
reasoning. arXiv preprint arXiv:2405.20139.746

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,747
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang748
Tang. 2024a. Graph retrieval-augmented generation:749
A survey. Preprint, arXiv:2408.08921.750

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,751
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang752
Tang. 2024b. Graph retrieval-augmented generation:753
A survey. arXiv preprint arXiv:2408.08921.754

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao,755
and Zhicheng Dou. 2024. Memorag: Moving to-756
wards next-gen rag via memory-inspired knowledge757
discovery. arXiv preprint arXiv:2409.05591.758

Bahareh Sarrafzadeh and Edward Lank. 2017. Improv-759
ing exploratory search experience through hierarchi-760
cal knowledge graphs. In Proceedings of the 40th761
international ACM SIGIR conference on research762
and development in information retrieval, pages 145–763
154.764

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh 765
Khanna, Anna Goldie, and Christopher D Man- 766
ning. 2024. Raptor: Recursive abstractive pro- 767
cessing for tree-organized retrieval. arXiv preprint 768
arXiv:2401.18059. 769

Yixuan Tang and Yi Yang. 2024. Multihop-rag: Bench- 770
marking retrieval-augmented generation for multi- 771
hop queries. Preprint, arXiv:2401.15391. 772

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. 773
2019. From louvain to leiden: guaranteeing well- 774
connected communities. Scientific reports, 9(1):1– 775
12. 776

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, 777
Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan 778
Dong, Hao Chen, Yi Chang, and Xiao Huang. 2025. 779
A survey of graph retrieval-augmented generation 780
for customized large language models. Preprint, 781
arXiv:2501.13958. 782

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, 783
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, 784
Yulong Chen, et al. 2023. Siren’s song in the ai ocean: 785
a survey on hallucination in large language models. 786
arXiv preprint arXiv:2309.01219. 787

Appendix 788

In this section, we delve into the construction of the 789

hierarchical KG with the HiIndex module, accom- 790

panied by illustrative pseudo-codes. We present 791

statistics and a simple case study to demonstrate 792

the enhanced connectivity among entities in the hi- 793

erarchical KG. Additionally, we give well designed 794

prompt templates used in HiRAG. 795

A Experimental Datasets 796

Table 3: Statistics of datasets.

Dataset Mix CS Legal Agriculture
# of Documents 61 10 94 12
# of Tokens 625948 2210894 5279400 2028496

Table 3 presents the statistical characteristics 797

of the experimental datasets, where all documents 798

were consistently tokenized using Byte Pair Encod- 799

ing (BPE) tokenizer "cl100k_base". 800

B Implementation Details of HiRAG 801

We give a more detailed and formulated expres- 802

sion of hierarchical indexing (HiIndex) and hier- 803

archical retrieval (HiRetrieval). As described in 804

Algorithm 1, the hierarchical knowledge graph is 805

constructed iteratively. The number of clustered 806

layers depends on the rate of change in the cluster 807
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Algorithm 1: HiIndex
Input: Basic knowledge graph G0 extracted by

the LLM; Predefined threshold ϵ;
Output: Hierarchical knowledge graph Gk;

1: L0 ← V0;
2: Z0 ← {Embedding(v)|v ∈ L0};
3: i← 1;
4: while True do
5: /*Perform semantical clustering*/
6: Ci−1 ← GMM(Gi−1,Zi−1);
7: /*Calculate cluster sparsity*/

8: CSi ← 1−
∑

Sx∈Ci−1
|Sx|(|Sx|−1)

|Li−1|(|Li−1|−1) ;
9: if change rate of CSi ≤ ϵ then

10: i← i− 1;
11: break;
12: end if
13: /*Generate summary entities and

relations*/
14: Li ← {};
15: E{i−1,i} ← {};
16: for Sx in Ci−1 do
17: L, E ← LLM(Sx,X );
18: Li ← Li ∪ L;
19: E{i−1,i} ← E{i−1,i} ∪ E ;
20: end for
21: Zi = {Embedding(v)|v ∈ Li};
22: /*Update KG*/
23: Ei ← Ei−1 ∪ E{i−1,i};
24: Vi ← Vi−1 ∪ Li;
25: Gi ← {(h, r, t)|h, t ∈ Vi, r ∈ Ei}
26: i← i+ 1;
27: end while
28: k ← i;
29: Gk ← {(h, r, t)|h, t ∈ Vk, r ∈ Ek};

sparsity at each layer. As shown in Algorithm 2,808

we retrieve knowledge of three layers (local layer,809

global layer, and bridge layer) as contexts for LLM810

to generate more comprehensive and accurate an-811

swers.812

C The Clustering Coefficients of HiIndex813

We calculate and compare the clustering coeffi-814

cients of GraphRAG, LightRAG and HiRAG in Fig-815

ure 5. HiRAG shows a higher clustering coefficient816

than other baseline methods, which means that817

more entities in the hierarchical KG constructed by818

the HiIndex module tend to cluster together. And819

this is also the reason why the HiIndex module can820

improve the performance of RAG systems.821

Algorithm 2: HiRetrieval
Input: The hierarchical knowledge graph Gk; The

detected community set P in Gk; The number
of retrieved entities n; The number of selected
key entities m in each retrieved community;

Output: The generated answer a;
1: /*The local-layer knowledge context*/
2: V̂ ← TopN({v ∈ Vk|Sim(v, q)}, n);
3: /*The global-layer knowledge context*/
4: P̂ ←

⋃
p∈P{p|p ∩ V̂ ≠ ϕ};

5: R̂ ← {};
6: V̂P̂ ← {};
7: /*Select key entities*/
8: for p in P̂ do
9: V̂P̂ ← V̂P̂ ∪ TopN({v ∈

p|Sim(v, q)},m);
10: end for
11: /*Find the reasoning path*/
12: for i in [1, |V̂P̂ | − 1] do
13: R ←

R∪ ShortestPathGk
(V̂P̂ [i], V̂P̂ [i+ 1]);

14: end for
15: /*The bridge-layer knowledge context*/
16: R̂ ← {(h, r, t) ∈ Gk|h, t ∈ R};
17: /*Generate the answer*/
18: a← LLM(q, V̂, R̂, P̂);

D A Simple Case of Hierarchical KG 822

As shown in Figure 6, we fix the issues mentioned 823

in Section 1 with a hierarchical KG. This case 824

demonstrates that the GMMs clustered semanti- 825

cally similar entities "BIG DATA" and "RECOM- 826

MENDATION SYSTEM" together. The LLM sum- 827

marizes "DISTRIBUTED COMPUTING" as their 828

shared summary entities in the next layer. As a con- 829

sequence, the connections between these related 830

entities can be enhanced from a semantic perspec- 831

tive. 832

Figure 5: Comparisons between the clustering coeffi-
cients of GraphRAG, LightRAG and HiRAG across four
datasets.
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Figure 6: The shortest path with hierarchical KG be-
tween the entities in the case mentioned in the introduc-
tion.

E Prompt Templates used in HiRAG833

E.1 Prompt Templates for Entity Extraction834

As shown in Figure 7, we used that prompt template835

to extract entities from text chunks. We also give836

three examples to guide the LLM to extract entities837

with higher accuracy.838

E.2 Prompt Templates for Relation839

Extraction840

As shown in Figure 8, we extract relations from the841

entities extracted earlier and the corresponding text842

chunks. Then we can get the triples in the basic843

knowledge graph, which is also the 0-th layer of844

the hierarchical knowledge graph.845

E.3 Prompt Templates for Entity846

Summarization847

As shown in Figure 9, we generate summary en-848

tities in each layer of the hierarchical knowledge849

graph. We will not only let the LLM generate the850

summary entities from the previous layer, but also851

let it generate the relations between the entities of852

these two layers. These relations will clarify the853

reasons for summarizing these entities.854

E.4 Prompt Templates for RAG Evaluation855

In terms of the prompt templates we use to conduct856

evaluations, we utilize the same prompt design as857

that in LightRAG. The prompt will let the LLM858

generate both evaluation results and the reasons in859

JSON format to ensure clarity and accuracy.860
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Figure 7: The prompt template designed to extract entities from text chunks.
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Figure 8: The prompt template designed to extract relations from entities and text chunks.
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Figure 9: The prompt template designed to generate summary entities and the corresponding relations.
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