Under review as a conference paper at ICLR 2026

PARAMETER-EFFICIENT REINFORCEMENT LEARNING
USING PREFIX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) is a leading approach
for tuning language models on mathematical reasoning tasks. However, it re-
mains unclear whether RLVR’s gains stem from genuine reasoning improvements
or simply from steering the model toward answer formats that already appear in
the reference distribution. Inspired by recent evidence (Zhao et al., [2025 [Yue
et al., 2025)), we study this question by optimizing only the first k tokens (e.g.
k = 32) of each solution, generating the remainder of the response from the
reference model. We study two methods for prefix optimization, using a naive
algorithm that clusters prefixes and selects the best prefix (Prefix Clustering), and
a method that optimizes the prefix by finetuning a lightweight adapter model with
RL (Prefix-RL). We show that tuning only the first k£ tokens can significantly im-
prove the accuracy on math, suggesting that at least some of the gains from RL are
due to upweighting a preferable solution strategy. Our results suggest that simple
prefix optimization methods can provide an efficient alternative to RL, deliver-
ing substantial improvements across different models and benchmarks for a tiny
fraction of the compute required for standard RL, and that these gains are robust
across prefix lengths and random seeds.

1 INTRODUCTION

CHANGES SINCE SUBMISSION

This revised version includes the following changes in response to reviewer feedback:

(i) added comparisons to LoRA and Prefix-Tuning baselines (Table ;

(i1) added robustness analysis across random seeds (Table@ Fig. @;

(iii) added a full prefix-length sweep including k£ = {1, 4, 8,16, 32,64} (Table Fig. @);

(iv) added new out-of-distribution evaluations on physics benchmarks OCW Courses and UGPhysics
(Table[7} Fig.[7);

(v) clarified the choice of k for Prefix Clustering and Prefix-RL and added guidance for selecting k;
(vi) clarified dataset statistics and updated MATH train-split numbers;

Reinforcement Learning (RL) based finetuning is used for improving language models performance
on mathematical reasoning (Jaech et al.,|2024;|Guo et al., 2025; [Shao et al.,|2024; Team et al.,|2025)),
coding (Austin et al., 2021; |Gehring et al., 2024} Luo et al., 2025) and other domains (Ouyang
et al., 2022} Lee et al.| [2024; Bai et al.l [2022; |Gurung & Lapatal 2025} [Su et al., 2025). A recent
work studying the behavior of RL on mathematical reasoning has observed that the improvement
due to RL can be attributed, at least partially, to a process of upweighting beneficial behaviors or
strategies that are learned in the pretraining phase (Zhao et al., [2025). In particular, the authors
show that RL causes the models to concentrate their output distribution on particular generation
formats that achieve higher relative accuracy. These results are demonstrated for models pretrained
“from scratch” on different mixtures of datasets that contain a variety of strategies for solving math
problems, such as using different styles of code and text.

We begin this work by investigating to what extent the gains from RL can be attributed to upweight-
ing useful strategies that are already present in the reference model. To test this, we evaluate dif-
ferent approaches for improving the model’s performance by optimizing the prefix of the response.

Under review as a conference paper at ICLR 2026

Table 1: Performance of Prefix-RL and Prefix-Clustering (PC) on different choices of reference
models and math benchmarks. For all the Prefix-RL experiments, we use a 1B-parameter model
from the same family as the adapter model for generating a prefix of k tokens to the target
model. We compare the model’s performance before RL against the benchmarks, and for Qwen-
7B, we also add LoRA and Prefix-Tuning baselines. Here, we report the performance of the
best checkpoint. Regarding Prefix-Clustering, for each reference model, we sample k=16-token
prefix candidates on MATH-train, cluster them with k-means (with k being chosen via the elbow
method (Thorndike} [1953))), evaluate, and fix the best single prefix for all test evaluations. Then,
we let the reference model complete this prefix and report the accuracy over different math
benchmarks.

Target Model Math-500 AIME AMC23 Minerva
Qwen-7B 67.4 23.0 40.3 19.1
+Prefix-RL (k = 32) 74.4 (+7.0) 25.8 (+2.8) 50.0 (+9.7) 22.4 (+3.3)
+Prefix-RL (k = 64) 73.8 (+6.4) 23.3 (+0.2) 52.2 (+11.9) 22.1 (+2.9)
+Prefix Clustering (kK = 16) 59.4 (-8.0) 24.4 (+1.4) 42.2 (+1.9) 29.4 (+10.3)
+LoRA 70.2 (+2.8) 24.4 (+1.4) 36.2 (-4.0) 20.9 (+1.8)
+Prefix-Tuning 45.4 (-22.0) 493 (-18.07) 20.62 (-19.68) 13.97 (-5.13)
Llama-8B-Instruct 48.4 17.3 234 14.0
+Prefix-RL (k = 32) 50.8 (+2.4) 20.7 (+3.4) 27.5 (+4.1) 19.9 (+5.9)
+Prefix-RL (k = 64) 51.0 (+2.6) 20.7 (+3.4) 26.9 (+3.4) 20.2 (+6.3)
+Prefix Clustering (k = 16) 49.8 (+1.4) 21.1 (+3.9) 35.6 (+13.1) 15.8 (+1.8)
Llama-8B-Instruct-FP8 43.6 17.3 31.2 14.0
+Prefix-RL (k = 32) 50.4 (+6.8) 19.1 (+1.8) 26.9 (-4.4) 18.4 (+4.4)
+Prefix-RL (k = 64) 49.8 (+6.2) 20.7 (+3.4) 25.6 (-5.6) 18.8 (+4.8)
+Prefix Clustering (k = 16) 48.8 (+5.2) 23.4 (+6.1) 19.4 (-11.9) 17.6 (+3.7)
Llama-70B-Instruct-FP8 62.0 32.8 45.0 29.0
+Prefix-RL (k = 32) 67.8 (+5.8) 49.1 (+16.3) 46.2 (+1.2) 34.6 (+5.5)
+Prefix-RL (k = 64) 68.4 (+6.4) 48.2 (+15.4) 47.5 (+2.5) 32.4 (+3.3)
+Prefix Clustering (k = 16) 67.0 (+5.0) 48.0 (+15.2) 44.4 (-0.6) 32.0 (+2.9)
Qwen-72B 82.0 41.2 56.9 23.2
+Prefix-RL (k = 32) 84.0 (+2.0) 40.6 (-0.5) 66.6 (+9.7) 29.0 (+5.9)
+Prefix-RL (k = 64) 82.6 (+0.6) 40.4 (-0.8) 65.0 (+8.1) 25.7 (+2.6)

+Prefix Clustering (k = 16) 71.8 (-10.2) 43.0 (+1.8) 58.4 (+1.6) 30.9 (+7.7)

In other words, our goal is to change only the first k£ tokens generated by the model after prompted
with the input question, for some small k. Indeed, note that the first k tokens typically reveal the
solution strategy and format (e.g., starting with “## Step 1: To...” indicates a step-by-step solution).
Therefore, optimizing only the prefix captures the improvement due to upweighting good strategies.
Since in our setting the majority of the tokens come from the reference model, RL cannot be used
to improve genuine reasoning skills.

Under review as a conference paper at ICLR 2026

We test two methods for prefix optimization. Qwen-1B - 7B (Math-500)
First, we try a very naive approach that selects
a fixed prefix (i.e., a prefix that does not depend
on the input) and uses it as the beginning of the
response for all input prompts. To do this, we

—e— k=32

—e— k=064
perform prefix clustering: we cluster prefixes of —— 7BRL*
16 tokens generated by the reference model us- ——- 7B 0-Shot
ing a standard clustering algorithm into 5 — 6 ——- PC (n=16)

clusters, then we choose the single fixed pre-
fix that maximizes performance on the MATH
train set. Surprisingly, this extremely simple
method that uses the same “optimized” prefix Training step

for all input prompts already achieves signifi-

cant boosts in performance for certain models Figure 1: We finetune Qwen-1B using RL to gen-
in the Llama family, as these models seem to erate the first k tokens in the answer, with a frozen
improve simply by starting the response with (inference-only) Qwen-7B model that completes
a prefix that indicates step-by-step reasoning. the solution. *The accuracy of running RL on
However, this method does not improve perfor- the full 7B model is taken from SimpleRL (Zeng
mance on Qwen models, as the “preferred” pre- |et al.l |2025), and we treat it as a skyline for our
fixes for these models usually relate to the input method.

more strongly.

As a next step, we finetune the different models using RL to generate only the first k tokens (prefix)
in an answer, and let the reference (pre-RL) model complete the generation. This method, which we
call Prefix-RL, uses a small (= 1B parameter) adapter model for generating a prefix that guides
the generation of a much larger target model. We then use RL to optimize the small adapter model,
while requiring only inference access to the larger rarget model (see Figure [2). Interestingly, in
this case our experiments show that significant improvements can be gained with many models
by optimizing only a short prefix of tokens using RL (see Appendix Table f). We note that due
to limited computational resources, we were not able to perform complete RL finetuning on the
models we test (of scale 7B and above). However, for Qwen-7B, we compare to the RL fine-tuning
results reported by SimpleRL (Zeng et al.| 2025)), and see that prefix RL optimization improves
performance from around 68% to 74%, with full RL finetuning offering further improvement to 78%
(all on MATH-500). This shows that while RL still improves performance on later tokens, possibly
through improvements in reasoning capabilities, a significant improvement is due to selecting a
correct solution strategy and steering the models in the right direction.

The observation above, beyond being scientifically interesting, emphasizes the opportunity of im-
proving models’ performance by doing minimal optimization on the generation prefixes, instead of
running full-finetuning with RL, which is often infeasible with a small computational budget. In
particular, prefix optimization allows performance improvements with minimal compute, requires
inference-only access to the optimized models, and results in no weight updates in the target model.
While prefix optimization cannot directly replace full-model RL finetuning, it can provide a prac-
tical, accessible, and efficient alternative, enabling significant performance improvements even in
resource-constrained scenarios. We believe that these findings can be leveraged for the development
of a cheap and scalable alternative to RL, and leave a more thorough study of prefix optimization
methods in different settings to future work.

1.1 RELATED WORK

Controllable generation. Early controllability methods steer a frozen LLM by adjusting per-token
probabilities at decoding time. Plug-and-Play Language Models (PPLM) (Dathathri et al, 2019)
perturb hidden states with gradient ascent, while GeDi (Krause et al., 2020) and DExperts (Liu
et al.| 2021) combine logits from small expert models with those of the base LM. These approaches
achieve fine-grained control but must remain in the decoding loop for every token, increasing
inference latency and hindering deployment on low-cost hardware. In contrast, Prefix-RL optimizes
a single prefix before the backbone begins decoding, so the continuation proceeds at the native
speed of the frozen model. See Liang et al. (Liang et al., 2024) for a comprehensive survey on
controllable generation.

Under review as a conference paper at ICLR 2026

Prompt +
Prompt “trained model” k prefix tokens “inference only”

—_————

e
— - - T - I How many divisors does 196 have? |

Adapter Model Answer: ## Step 1: To find

(1B params) | the number of divisors,

| How many divisors
does 196 have?

Target Model &
(7B/70B params)

s
Reward for [Answer: ## Step 1: To find \

RL update Reward Model | the number of divisors, we factorize

its prime factors to understand its dividors

Prediction : 9
Answer : 9

I

I

#4+ Step 2: Prime factorization of 196 is 22 72 |

Reward : +1 :

I
\ The final answer is [9].

Prefix tokens +
Target Model completion

Figure 2: Anillustration of the Prefix-RL method. A small adapter model receives the input question
and generates the first k tokens (prefix) in the response. The large farget model is used in “inference-
mode” to complete the solution. We then compute the reward based on the final answer generated
by the model, and apply standard RL procedure (PPO) to update the adapter model (keeping the
target model frozen).

Prompt-optimization. = Prompt-engineering and prompt-tuning techniques treat the input
prompt as the object of optimization. RLPrompt (Deng et al., 2022) applies RL for optimizing
discrete prompts, and Retroformer (Yao et al.,[2023) trains a retrospective policy to rewrite prompts
across dialogue turns. Prompts must be prepended to every user query, and their efficacy can be
brittle across domains or small input perturbations. Prefix-RL instead optimizes a prefix of the
answer, which is semi-structured and directly tailored to the task’s solution space.

Prefix-Tuning. Li and Liang introduced Prefix-Tuning (Li & Liang| 2021)), a lightweight al-
ternative to full-model finetuning, where a small number of task-specific vectors (called the
“prefix”) are prepended to the model input, optimizing only these parameters while freezing the rest
of the model. Unlike Prefix-Tuning, which optimizes continuous embeddings through supervised
training, our Prefix-RL approach leverages RL with verifiable rewards to directly optimize the
solution strategy in mathematical reasoning tasks, enabling effective steering of large models
through minimal intervention.

Adapter-based RL steering. Inference-Time Policy Adapters (IPA) (Lu et all 2023) learn a
small network that rescales logits of a frozen LM at each step via RL. While IPA shares our frozen-
backbone philosophy, it still requires step-wise intervention, so inference cost grows with sequence
length. Prefix-RL intervenes only once, making it strictly cheaper at test time. Moreover, IPA is
demonstrated on style and toxicity control, whereas we focus on verifiable rewards for mathemat-
ical reasoning, a setting where sparse, binary feedback is readily available from automated checkers.

Parameter-efficient finetuning. Low-rank and adapter-based methods such as LoRA (Hu
et al., 2021), QLoRA (Dettmers et al., 2023), and adapter layers (Houlsby et al.l 2019) reduce
the number of trainable parameters by inserting small modules into a frozen backbone and only
updating those modules. However, when used with RL, gradients must still be backpropagated
through the entire target network, so the training FLOPs scale with the size of the backbone just as
in full-model RL. In contrast, Prefix-RL performs RL updates only on a separate, small adapter that
generates an answer prefix, while the large target runs in inference-only mode. This decouples the
training cost from the target model size and enables RL steering even for very large or quantized
targets.

Under review as a conference paper at ICLR 2026

2 THE EFFECTIVENESS OF PREFIX OPTIMIZATION WITH REINFORCEMENT
LEARNING

We begin by empirically studying how Reinforcement Learning improves mathematical reasoning.
In particular, we want to understand whether the improvements from RL are due to upweighting the
probability of generating solution strategies that the reference (pre-RL) model can already generate,
or whether RL improves reasoning capabilities (e.g. through improved arithmetic capability, better
execution of proof steps, more accurate recall of mathematical facts, etc.). To test this, we will tune
only the first k£ tokens in the generation of the model, while generating the remainder of the solution
from the reference model.

More formally, let =1, ..., z, be a sequence of tokens encoding the input question, and let f,.f be
the reference model. Our goal will be to generate the first k£ tokens of the output from some model
gg,1€. Y1, .., Yk ~ go(x1,...,2n). Then, we generate the rest of the response from the reference
model, conditioned on the input and the prefix: Ygi1,..-,Ym ~ fret(T1,. . s TnyY1,...,Yx). We
then treat 1, . . ., Y, as the complete solution and compute the reward r(y1, . . . , ¥) based on this
solution (e.g., whether the answer to a mathematical question is correct). We consider two methods
for sampling the prefix:

Prefix Clustering. Given some training dataset D of inputs, for each input x ~ D we sample
an output from the reference model y ~ fief(x). We cluster all the prefixes of length k from the
sampled outputs with k-means clustering (with £ being chosen via the elbow method (Thorndike}
1953)). Following this, we get ¢ prefixes, denoted (ygl)7 . 7y,(cl))7 o (y%c)7 . ,y,(cc)). We then
choose the prefix with the highest reward on the training set D:

imax = arg maXEIND [T’ (frcf (1'1, ey xnayy), - 7yl(;)>):|

(imax)

Then we use this fixed, input-independent prefix y; Yo ,y,(:“““) for all examples, and compute

(imax) (imax).

the reward on the evaluation set. That is, we fix gg(21,...,2n) = ¥; yee s Yp

Prefix-RL. Here we use RL to finetune an adapter model gy to generate the first k tokens of the
output. When collecting rollouts during finetuning, we first generate y1,...,yx ~ go(x1,...,Zy)
and then generate Yxi1,...,Ym ~ fref(T1,.--,Tn,Y1,...,Yk). We optimize the parameters of gy
using PPO (Schulman et al., 2017) with respect to the rewards 7(y1, . . . , Ym), but keep frer fixed for
the entire procedure. In this section we set the adapter to have the same architecture and initialization
as the reference model. Because f¢ is frozen and only completes tokens k+1:m, any improvement
can only come from changing how the sequence is started rather than from teaching the backbone
new token-level skills. In other words, this setting isolates the extent to which RL gains can be
explained by upweighting existing solution strategies in the pre-RL distribution. In the next section
we will demonstrate how using small adapters (compared to the reference target model) can serve as
a simple and effective alternative to standard RL. An illustration of this setup is shown in Figure[2]

The solution strategy style is typically determined by the first few tokens generated. Optimizing the
prefix for the task we train on will allow the model to choose the best solution strategy for this task.
However, since we are generating most of the tokens from the reference model, it is unlikely that
our optimization can result in enhanced reasoning capabilities.

Under review as a conference paper at ICLR 2026

Figure E] presents the accuracy achieved when Llama-3.2-1B-Instruct (Math-500)
optimizing only the first k£ tokens of a se-

. .) 381
quence, using either prefix clustering or pre- 361
fix RL, and compare it to RL applied to the 3341 — k=16

entire sequence. While full-sequence RL ul- < 324

—e— k=32
timately yields the highest accuracy, both pre- 3304

—— Full-RL
fix optimization methods greatly improve per- £ 28/ ——- Zero-Shot
formance compared to the reference model, E;i: —=- PC (n=16)
demonstrating substantial gains with signifi- vy
cantly less compute. This suggests that a no- 201 . .
table portion of RL’s benefit arises from guiding N 0 AP
the model toward generating answers in more Training step
effective formats, rather than from enhancing
reasoning capabilities. Figure 3: To test whether RL improves perfor-

mance through upweighting of existing solution
strategies, we RL-finetune a Llama-1B model to
produce the first k£ tokens in the response, us-
ing the reference (pre-RL) 1B model to complete
the solution. We compare this against the per-
formance of a standard RL procedure optimizing
the full sequence of tokens, zero-shot, and a fixed
Prefix-Clustering (PC) baseline.

Motivated by this insight, in the next section
we will explore Prefix Clustering and Prefix-RL
as efficient alternatives to standard RL. In par-
ticular, we will use Prefix-RL as a parameter-
efficient alternative to RL, finetuning a small
adapter model to generate a prefix for a larger
target model. For both Prefix Clustering and
Prefix-RL, we only require inference access to
the target model, thus reducing the computa-
tional burden of training a large model.

3 PREFIX-RL: SETTING AND RESULTS

We now turn to study the efficacy of Prefix Clustering and Prefix-RL on different choices of models
and datasets. We start by describing the experimental setting and evaluation methods, introduce our
results and discuss some analysis of the methods. We observe that while Prefix Clustering improves
performance only for some models (namely, models from the Llama family), Prefix-RL provides
improvements across most of the settings we try.

3.1 EXPERIMENTAL SETTING

Models. In our experiments, the adapter models are Llama-3.1-1B-Instruct (Grattafiori et al., [2024)
and Qwen2.5-1.5B (Yang et al., [2024). The target models are Llama-3.1-8B-Instruct (Grattafiori
et al.|2024), Llama-3.1-70B-Instruct-FP8 (NVIDIA| 2024)), Qwen2.5-7B and Qwen2.5-72B (Yang
et al.,|2024). In all settings, we ensure that the adapter and target models belong to the same model
family, as we observe (see that Prefix-RL does not perform as well when the two models
are pretrained on different datasets. We also include quantized target models in our study—most
notably Llama-3.1-70B-Instruct-FP8—highlighting a key strength of Prefix-RL: to our knowledge,
this is the first demonstration of using RL to steer quantized FP8 models via a small learned adapter
while keeping the quantized target weights frozen, showcasing the flexibility of our approach.

Datasets. We opt for the same dataset choices as in (Zeng et al. [2025). When the adapter
model is Llama-3.1-1B-Instruct, the training dataset is the training split of MATH (Hendrycks
et al.; 2021), which contains 7,500 problems (the full MATH dataset has 12,500 problems across
train and test). For Qwen, following Zeng et al.| (2025), we build a larger RLVR dataset by
taking all question—answer pairs from the MATH training and test splits with difficulty levels 3-5.
We then remove any problems that appear in the MATH-500 evaluation set (Hendrycks et al.
2021} |Lightman et al., [2023)) to avoid contamination, resulting in 8,888 training examples for the
Qwen2.5-1.5B adapter.

Training. We follow the OpenRLHF pipeline (Hu et al., |2024), using default coefficients of
B = 0.001 for the KL divergence penalty and & = —0.001 for the entropy bonus. Rollouts are
generated using a sampling temperature of 0.7 with vLLM (Kwon et al.| 2023). By default, we do

Under review as a conference paper at ICLR 2026

Table 2: Comparison in terms of FLOPs between Standard RL finetuning and Prefix-RL with prefix
of length k.

Method Training Compute Inference Compute

Standard RL Cirain N RT Cint N:RT
Prefix-RL (k) Cirain Ny Rk Cint R(N;T + N k)

N, = # Params. of target model, N, = # Params. of adapter model
R = #Rollouts, T = # Tokens per rollout.
Clrain = Train compute constant, Ci,s = Inference compute constant.

not apply weight decay. The training and rollout batch sizes are both set to 512, and we sample 8
responses per prompt, resulting in 8 gradient updates per rollout step. We use the PPO algorithm
(Schulman et al.,|2017) and set the actor and critic learning rates as 5e-7 and 9e-6, respectively. By
default, the maximum prompt length is set to 1600. For our standard RL experiments, the maximum
response length is 2048. For Prefix-RL, the adapter is only allowed to emit the first k tokens; unless
otherwise stated we use k € {32,64} for the main results in Table |1} and we additionally sweep
k € {1,4,8,16,32,64} for Qwen-7B in the robustness study in Appendix @ All experiments
optimize a verifiable reward: after the target model finishes generation, we extract the final answer
and compute a binary reward using math_verify (Kydlicek, 2024)—1 if the answer is verified
correct, 0 otherwise. We store the model checkpoint every 10 steps for evaluation, and use 4 H100
GPUs for each experiment. We train all our models for 10 episodes which equates to 140 steps for
the Llama adapter and 170 steps for the Qwen adapter.

We also train LoRA and supervised Prefix-Tuning baselines on Qwen-7B; see Appendices [C.I]and
for architecture and hyperparameters.

Inference of the target model. We serve the target models on separate nodes using vLLM. For
small-sized target models as Llama-3.1-8B-Instruct and Qwen2.5-7B, the server requires 1 H100
GPU while larger models such as Llama-3.1-70B-Instruct-FP8 and Qwen2.5-72B, need 4 H100
GPUs. By default, the maximum generation length is set to 2048, the temperature to 0, top_p to 1
and only one completion is generated per prefix.

Evaluation. We evaluate our models on four widely used complex mathematical reasoning
benchmarks: MATH-500 (Hendrycks et al. 2021} [Lightman et al. [2023), AIME Problem Set
1983-2024 (Veeraboinal |2023), Minerva Math (Lewkowycz et al. 2022), OlympiadBench (He
et al.,[2024). For the adapter models, the maximum number of generated tokens is set to be the same
as during finetuning and for the target model, the maximum number of generated tokens is set to
2048. We set the temperature to 0, top_p to 1, and only generate one pair (prefix, completion) per
question. We use the math_verify package to extract the answers and verify their correctness.
Lastly, we report the pass@1 performance in all our evaluations.

Computational Benefits of Prefix-RL Prefix-RL offers an alternative to standard RL that is
substantially cheaper to run. Recall that Reinforcement Learning uses two distinct computa-
tional phases: inference—where we generate rollouts from the model to collect reward—and
training—where we tune the parameters of the model using policy gradient. summarizes
the (approximate) cost of training and inference, which we discuss in Appendix [B} Beyond a clear
FLOPs advantage, Prefix-RL allows one to run RL finetuning with a smaller number of resources
in practice. For instance, we are able to tune a 70B model using just 8 GPUs—4 for training
the adapter and 4 for serving the target model. In contrast, standard RLHF implementations (Hu
et al., 2024; [Volcengine, 2024) typically require 32 GPUs for the same setup, representing a
4x reduction in GPU usage. Moreover, we believe further efficiency gains are possible through
improved allocation of compute between training and inference, as well as by sharing inference
across processes—suggesting that the practical savings of Prefix-RL may be even greater.

Under review as a conference paper at ICLR 2026

3.2 MAIN RESULTS

We observe that Prefix Clustering achieves mixed performance: it improves performance (quite
significantly) in some settings, but in some cases it results in severe degradation in performance.
Prefix-RL, on the other hand, results in more consistent behavior. While the magnitude of the
gains varies depending on the target model and on the specific task, Prefix-RL consistently
yields performance improvements across the range of model scales and mathematical reasoning
benchmarks that we tested.

Performance gains with Prefix Clustering. Prefix Clustering yields mixed results (Table[I). For
the Llama family, a fixed k=16 prefix delivers sizable gains on several benchmarks, e.g., +13.1
on AMC23 for Llama-8B-Instruct and +15.2 on AIME for Llama-70B-Instruct-FP8, suggesting
that these models benefit substantially from being steered into a particular solution style (typically
an explicit step-by-step plan). In contrast, Prefix Clustering performs poorly on Qwen models
(e.g., —8.0 on MATH-500 for Qwen-7B), indicating that Qwen’s preferred openings are more
input-dependent. Overall, PC is a compelling, training-free baseline that surfaces the “format
upweighting” effect, but its brittleness across families motivates learning input-conditional prefixes
with Prefix-RL. Throughout the paper we therefore treat PC primarily as a diagnostic for whether
any fixed opening can move accuracy at all, rather than as a practical inference-time method.
Longer fixed prefixes (e.g., 32 or 64 tokens) quickly became brittle in preliminary experiments,
especially on Qwen, where a global prefix often conflicts with the input question and hurts accuracy,
so we keep PC at k=16 in all settings.

Performance gains with Prefix-RL. Despite being significantly more cost-efficient than
standard RL fine-tuning, Prefix-RL recovers a substantial fraction of its performance gains. As
shown in [Figure T} full RL finetuning yields a 10-point gain in accuracy (from 68% to 78%), while
Prefix-RL, at a much lower training cost, achieves a 7-point improvement (from 68% to 75%).

Results from show that the benefits of Prefix-RL extend to more challenging benchmarks;
for instance, applying Prefix-RL to Qwen2.5-7B leads to a +4.4% in performance on Minerva Math.
These gains are consistent across model families, with Llama-3.1-8B-Instruct also showing reliable
improvement. Notably, performance gains persist at scale when using Llama-3.1-70B-Instruct-FP8
and Qwen-2.5-72B as the target model. While the improvement on Qwen-2.5-72B is smaller, we
hypothesize this is due to the model’s already high baseline performance on MATH (82% prior to
RL), and datasets containing more complex problems could yield further improvement even in the
Prefix-RL training regime.

For completeness, we include full training-dynamics curves in Appendix Figure[5] which illustrate
that Prefix-RL produces stable improvement throughout training across both k¥ = 32 and k = 64
settings.

Prefix-RL on quantized FP8 models. In the largest relative performance gains by
Prefix-RL are observed with quantized FP8 target models, reaching up to a +16.3% increase
in accuracy. This substantial improvement may be partially explained by the lower baseline
performance of quantized model. For instance, the gap between Llama-3.1-8B-Instruct and its
quantized counterpart is 5% on MATH-500 prior to finetuning (see [Table I). However, after
applying Prefix-RL, the quantized model nearly closes this gap— maintaining only a 1% difference
compared to the full-precision model.

Robustness across random seeds. To quantify variance in our most important configuration
(Qwen2.5-1.5B — Qwen2.5-7B), we train Prefix-RL with four random seeds for k € {32,64}.
Table [6] reports mean =+ standard deviation over seeds, and Figure [§] plots the corresponding
accuracy curves. Across all four benchmarks and both values of k, every seed outperforms the base
model, and effect sizes (e.g., +5.1-+10.6 points on AMC23) are 2-25x larger than the standard
deviations. This indicates that, despite noisy per-step curves typical of RL, the gains from Prefix-RL
are statistically robust to initialization.

Sensitivity to prefix length. We also study how performance depends on the prefix length
k for Qwen-7B. Using the same training setup as in Table we train Prefix-RL with

Under review as a conference paper at ICLR 2026

k € {1,4,8,16,32,64} on MATH and evaluate the resulting checkpoints on MATH-500,
AIME, AMC23, and Minerva. The results are summarized in Table[8]and Figure 9]

On MATH-500 (the training distribution), all values of k£ improve over the 67.4% base accuracy,
with scores clustered in a narrow band around 72-74%. However, the very short prefix k=1 behaves
differently on the held-out benchmarks: it yields only modest gains or even worse performance on
AIME (—1.0), AMC23 (—0.9), and Minerva (—2.2), even though those evaluations use the same
checkpoints trained on MATH. In contrast, moderate prefix lengths & € {4, 8,16, 32,64} consis-
tently improve all four benchmarks, with AMC23 gains ranging from +1.3 to 47.5 points and
Minerva gains up to +4.8 points.

Together with the training-dynamics curves in Figure |8] which show stable critic/policy losses
and smoothly increasing KL divergence for all &, this suggests that Prefix-RL is not overly
sensitive to the exact choice of k as long as the prefix is long enough to encode a solution strategy
(roughly k£ > 4). In practice, selecting a coarse value such as k=32 works well across models and
benchmarks, while extremely short prefixes (k=1) appear brittle, especially on out-of-distribution
evaluations.

OOD Non-Math RLVR. To test whether these prefix policies transfer beyond math, we also
evaluate the same Qwen-7B checkpoints (trained only on MATH) on two undergraduate physics
benchmarks: the OCW Courses dataset (physics questions derived from MIT OpenCourse-
Ware, released on HuggingFace) and UGPhysics (Xu et al) 2025). For each prefix length
k € {1,4,8,16,32,64}, we keep the adapter fixed and only vary the number of hint tokens used
at inference time. As shown in Table [7| and Figure [/| all prefix lengths improve accuracy on
OCW Courses, and all k£ except 64 improve UGPhysics over the zero-shot Qwen-7B baseline.
The strongest gains again occur for moderate prefix lengths (k ~ 8-32), supporting the view that
the learned prefixes encode a broadly useful solution strategy rather than overfitting to the MATH
training distribution.

Comparison to LoRA and supervised Prefix-Tuning. Table || also reports parameter-efficient
baselines that modify the Qwen2.5-7B target directly. A LoRA-based RL run yields a modest
improvement on MATH-500 (+2.8 points) and AIME (+1.4) and a small gain on Minerva (+1.8),
but it underperforms Prefix-RL and even hurts AMC23 (—4.0). Our Prefix-Tuning SFT baseline
performs substantially worse: training a 32-token prefix on the same MATH-filtered data degrades
MATH-500 by 22 points and reduces accuracy on the other benchmarks as well. Importantly, both
baselines require backpropagating through the full 7B backbone, so their training cost is comparable
to standard RL, whereas Prefix-RL achieves larger and more consistent gains while updating only a
1.5B adapter.

In summary, Prefix-RL enables scalable and resource-efficient reinforcement learning by shifting
the optimization burden to a lightweight adapter, making it a viable solution for finetuning large
models under strict compute constraints.

3.3 ANALYSIS

To better understand how Prefix-RL influences model behavior, we conducted a qualitative analysis
of the generated prefixes. Specifically, we examined whether the learned prefixes promote more
structured and effective solution strategies across a range of problem types.

As shown in Prefix-RL consistently steers the model responses toward clearer, more struc-
tured, and solution-oriented reasoning. In contrast, the reference model often produces incomplete
or vague responses lacking clear direction or strategy. After applying Prefix-RL, responses more fre-
quently include explicit planning steps—for example, identifying relationships between logarithmic
equations, analyzing properties of functions in calculus problems, or invoking geometric princi-
ples appropriately. These changes improve both the interpretability and correctness of the model’s
reasoning.

That being said, the degree of improvement varies; in the algebraic roots example, the refinement
is relatively modest, primarily emphasizing solution simplification rather than introducing a fun-
damentally new strategy. This suggests that Prefix-RL may offer diminishing returns in settings
where the base model already exhibits a reasonable degree of structure. Overall, these qualitative

Under review as a conference paper at ICLR 2026

findings support the effectiveness of Prefix-RL in prompting large models to adopt clearer and more
strategic problem-solving approaches, particularly in cases where the reference model’s outputs are
underspecified or unfocused.

4 DISCUSSION AND LIMITATIONS

In this work we studied how simple prefix optimization methods can achieve significant performance
gains on verifiable mathematical reasoning problems. We discussed two methods: Prefix Clustering,
which uses a simple clustering method for finding an optimal input-independent prefix, and Prefix-
RL, which uses RL to finetune a small adapter model that generates the prefix for a large, frozen,
target model. We showed that these prefix optimization methods, and in particular Prefix-RL, can
significantly improve performance across different choices of models and benchmarks. Importantly,
these methods are extremely efficient in terms of compute, reducing the cost of training to a negligi-
ble fraction of the cost of training the full model, shifting most of the computational load to running
inference. This offers remarkable gains in practice, as the cost of inference is dropping quickly due
to innovations in inference hardware (Chitty-Venkata et al.||2024), inference-optimized model archi-
tectures (Huang et al.||2024)) and algorithms for improving inference-time efficiency and utilization
(Leviathan et al.l |2023). Reducing the amount of compute required for training, which is almost
exclusively done on expensive GPUs or TPUs, offers significant gains in cost and energy.

Another clear advantage of prefix optimization methods over standard RL-based finetuning is that
they can adapt the target model’s behavior without changing its weights. It has been observed in
different settings that updating the model’s weights when finetuning on a particular task can cause
catastrophic forgetting, harming performance on unrelated tasks (Luo et al.| [2023; |Kalajdzievski,
2024). More relevant to our context, different works show that RL-finetuning can cause a drop in
performance due to “alignment tax” (Askell et al., [2021)), causes language drift (Lee et al., 2019)
or language mixing (Guo et al., 2025), which may degrade performance on natural language tasks.
Prefix optimization avoids these failures by providing an adaptation method that does not change the
target model, where different adapters trained for different tasks can be deployed without causing
harmful interference.

Finally, we note that our methods can be used on top of closed-weights models like GPT or Claude,
since we only require inference access via APL. We believe that this offers a great promise for cheap
user-specific RL optimization, but leave a thorough exploration of this setting to future work.

4.1 LIMITATIONS

While our results demonstrate promising improvements, we acknowledge that our method has some
inherent limitations. We do not claim that Prefix-RL can achieve performance gains that are compa-
rable to RL-based finetuning of the full model. Therefore, we view Prefix-RL as a way to trade-off
performance for computational cost, providing a cheap and efficient way to boost performance on
downstream tasks, even for very large models. Unfortunately, we are unable to perform side-by-side
comparison between Prefix-RL and standard RL on large models, as performing full RL-finetuning
of 70B parameter models is beyond our computational budget.

A key limitation of our study’s scope is that we focus on single-pass generation under RLVR. We do
not attempt to model multi-pass reflective solvers where the model may backtrack, revise, or branch
mid-solution. For such systems, early tokens may still steer the initial plan, but later reflection steps
could override or refine that plan in ways our setup does not capture.

Additionally, we find that Prefix-RL relies on both the adapter and target models belonging to the
same model family, likely due to the importance of shared response patterns. While we have not
extensively tested cross-family configurations (e.g., Qwen-1B adapter with Llama-70B target), pre-
liminary observations suggest such mismatches lead to degraded performance. Fortunately, many
large models have corresponding distilled variants that retain similar behavior (Muennighoff et al.,
20255 Team), |2025; |Guo et al., 2025), which may help mitigate this constraint.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional Al:
Harmlessness from Al Feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus, Aditya Tanikanti,
Ken Raffenetti, Valerie Taylor, Murali Emani, and Venkatram Vishwanath. LIm-inference-bench:
Inference benchmarking of large language models on ai accelerators. In SC24-W: Workshops of
the International Conference for High Performance Computing, Networking, Storage and Analy-
sis, pp. 1362—-1379. IEEE, 2024.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized 1lms, 2023. URL https://arxiv.org/abs/2305.14314|

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alexander Gurung and Mirella Lapata. Learning to reason for long-form story generation. arXiv
preprint arXiv:2503.22828, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,

and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

11

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2305.14314

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.orqg/abs/2106.09685.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,
2024.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin Lee, Carole-Jean
Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. Advances in Neural
Information Processing Systems, 37:84033-84059, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Damjan Kalajdzievski. Scaling laws for forgetting when fine-tuning large language models. arXiv
preprint arXiv:2401.05605, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hynek Kydlicek. Math-verify: ~Math verification library. https://github.com/
huggingface/math-verify, 2024. Version 0.6.1. Apache-2.0 License.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs. RLHF:
Scaling Reinforcement Learning from Human Feedback with Al Feedback. In Proceedings of the
International Conference on Machine Learning, 2024. URL http://dblp.uni-trier.
de/db/conf/icml/icml2024.html1#0001PMMFLBHCRP24l

Jason Lee, Kyunghyun Cho, and Douwe Kiela. Countering language drift via visual grounding.
arXiv preprint arXiv:1909.04499, 2019.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative

reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843-3857, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

12

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify
http://dblp.uni-trier.de/db/conf/icml/icml2024.html#0001PMMFLBHCRP24
http://dblp.uni-trier.de/db/conf/icml/icml2024.html#0001PMMFLBHCRP24

Under review as a conference paper at ICLR 2026

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan
Liu, Shunyu Yao, Feiyu Xiong, et al. Controllable text generation for large language models: A
survey. arXiv preprint arXiv:2408.12599, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
arXiv preprint arXiv:2105.03023, 2021.

Ximing Lu, Faeze Brahman, Peter West, Jachun Jang, Khyathi Chandu, Abhilasha Ravichander,
Lianhui Qin, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, et al. Inference-time policy
adapters (ipa): Tailoring extreme-scale Ims without fine-tuning. arXiv preprint arXiv:2305.15065,
2023.

Michael Luwo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o03-mini level. https://pretty-radio-b75.notion.site/
DeepCoder—-A-Fully-Open-Source—-14B-Coder-at-03-mini-Level-1cf81902c14680b3beeb5eb34¢
2025. Notion Blog.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

NVIDIA. Nvidia llama-3.1-70b-instruct-fp8. https://huggingface.co/nvidia/
Llama-3.1-70B-Instruct—-FP8, 2024. Accessed: 2024-06-05.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730-27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/blefde53be364a73914f58805a001731-Paper—Conference.pdfl

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
e-prints, pp. arXiv—2503, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

NovaSky Team. Sky-tl: Train your own ol preview model within $450. https://novasky-
ai.github.io/posts/sky-t1, 2025. Accessed: 2025-01-09.

Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267-276, 1953.

13

https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://huggingface.co/nvidia/Llama-3.1-70B-Instruct-FP8
https://huggingface.co/nvidia/Llama-3.1-70B-Instruct-FP8
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime—-problem—-set-1983-2024,

Volcengine. Verl: Versatile and efficient representations for law. https://github.com/
volcengine/verl, 2024. Accessed: 2024-06-05.

Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can Yang,
and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics reasoning
with large language models. arXiv preprint arXiv:2502.00334, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh
Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large
language agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: RI post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

14

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://github.com/volcengine/verl
https://github.com/volcengine/verl

Under review as a conference paper at ICLR 2026

A APPENDIX

Table 3: Comparison of model responses before and after RL training

Question

Reference Model

After Prefix-RL (k=32)

Convert the point (0,3) in
rectangular coordinates to
polar coordinates. Enter
your answer in the form
(r,0), where r > 0 and 0 <
0 < 2.

Step 1: Recall the con-
version formulas between
rectangular and polar co-
ordinates. The conver-
sion from rectangular coor-
dinates (x,y) to polar coor-

Step 1: To convert the
point (0,3) from rectangu-
lar coordinates to polar co-
ordinates, we need to un-
derstand the relationship be-
tween these two

dinates (r,
Define p = > -, k—lfz and | We have that ## Step 1: To find a way to
q = 2;0:1 1%3 Find a way | \begin{alignx} .Write the ;givenddouble sumd
to write S°° , S 1 = 11°\inft in terms of p and ¢, we nee
. Lj=1 2km G | \sum—{ JUNIREEY | understand the
in terms of p and q. \sum_{k = 1}"\in

If f(z) = 32=2, what is the
value of f(—2) + f(-1) +
f£(0)? Express your answer
as a common fraction.

Step 1: Evaluate f(-2) To
find the value of f(—2), we
substitute z = —2 into the

Step 1: To find the value
of f(=2) + f(=1) + f(0),

we need to first

How many positive whole-
number divisors does 196
have?

(The divisors are not neces-
sarily distinct.) ## Step 1:
Find the prime factorization
of 196 To find the number of
positive whole-number div

Step 1: To find the
number of positive whole-
number divisors of 196, we
need to understand what
makes up a divisor. ##

The results of a cross-
country team’s training run
are graphed below. Which
student has the greatest av-
erage speed? [asy] ... [/asy]

The average speed of each
student is calculated by di-
viding the distance traveled
by the time taken. The av-
erage speed of Evelyn is 4.5
km/h, the

Step 1: To find the av-
erage speed of each student,
we need to calculate the to-
tal distance traveled and the
total time taken for each stu-
dent

15

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Qwen model responses before and after RL training

Question

Reference Model

After Prefix-RL (k=32)

Each of the two Magellan tele-
scopes has a diameter of 6.5 m. In
one configuration the effective focal
length is 72 m. Find the diameter of
the image of a planet (in cm) at this
focus if the angular diameter of the
planet at the time of the observation
is 45”.

(The angular diam-
eter of the Sun is
0.5"”.) To solve this
problem, we need to
use the concept of an-
gular

To find the diameter of the
image of a planet at the fo-
cus of the Magellan tele-
scope, we need to use the re-
lationship between the angu-
lar diameter of the planet

A white dwarf star has an effec-
tive temperature, 7, = 50,000 de-
grees Kelvin, but its radius, Rwp,
is comparable to that of the Earth.
Take Rwp = 10* km (107 m or
10° cm). Compute the luminosity
(power output) of the white dwarf.
Treat the white dwarf as a black-
body radiator. Give your answer in
units of ergs per second, to two sig-
nificant figures.

N/A

To compute the luminosity
of the white dwarf, we need
to use the Stefan-Boltzmann
law, which relates the power
output of a blackbody radia-
tor

Preamble: A prism is constructed
from glass and has sides that form
a right triangle with the other two
angles equal to 45°. The sides are
L, L,and H, where Lisalegand H
is the hypotenuse. A parallel light
beam enters side L normal to the
surface, passes into the glass, and
then strikes H internally. The index
of refraction of the glassis n = 1.5.
Compute the critical angle for the
light to be internally reflected at H.
Give your answer in degrees to 3
significant figures.

To determine the crit-
ical angle for the
light to be internally
reflected at the hy-
potenuse H of the
prism, we need to an-
alyze the path of the

To determine the critical an-
gle for the light to be in-
ternally reflected at the hy-
potenuse H, we need to use
Snell’s Law and the geome-

try

A particular star has an absolute
magnitude M = —7. If this star
is observed in a galaxy that is at a
distance of 3Mpc, what will its ap-
parent magnitude be?

Assume that the dis-
tance modulus for-
mula is given by p =
5logo(d) — 5, where
d is the

Assume that the distance
modulus formula is given by
= 5logy(d) — 5, where d
is the

Find the gravitational acceleration
due to the Sun at the location of the
Earth’s orbit (i.e., at a distance of
1AU). Give your answer in meters
per second squared, and express it
to one significant figure.

(The mass of the Sun
is 1.99 x 103° kg and
the mass of the

To find the gravitational ac-
celeration due to the Sun at
the location of the Earth’s
orbit (i.e., at a distance of (1
AU

16

Under review as a conference paper at ICLR 2026

Math-500

54

521
£ 501 —— k=32
=481 —— k=64
® 46 —— Full-RL
5 44 ——- 8B 0O-shot
& 421 ——- PC(n=16)

40

38~

Training step

Figure 4: Training dynamics of Llama-3.1-8B-Instruct under Prefix-RL with k£ € 32,64 on MATH-
500. We compare to full-sequence RL, zero-shot, and a fixed Prefix-Clustering baseline.

Table 5: Prefix-RL improves pass@1 on AIME 2024, AIME 2025, and OLYMPIADBENCH across
model families. Numbers in parentheses are absolute A over the corresponding base model.

Target Model AIME2024 AIME2025 OlympiadBench
Qwen 7B 7.5 3.8 14.7
+Prefix-RL (k = 32) 10.8 (+3.3) 10.8 (+7.1) 15.9 (+1.2)
+Prefix-RL (k = 64) 9.2 (+1.7) 10.0 (+6.2) 15.4 (+0.7)
Llama 8B-Instruct 10.0 0.0 52
+Prefix-RL (k = 32) 7.9 (-2.1) 2.1 (+2.1) 8.5 (+3.3)
+Prefix-RL (k = 64) 8.8 (-1.2) 2.1 (+2.1) 7.7 (+2.5)
Llama 8B-FP8 6.7 0.0 5.6
+Prefix-RL (k = 32) 7.1 (+0.4) 3.8 (+3.8) 7.3 (+1.6)
+Prefix-RL (k = 64) 7.9 (+1.2) 1.7 (+1.7) 7.7 (+2.1)
Llama 70B-Instruct-FP8 154 29 10.5

+Prefix-RL (k = 32) 20.0 (+4.6) 3.8 (+0.8) 12.6 (+2.1)
+Prefix-RL (k = 64) 20.0 (+4.6) 3.8 (+0.8) 12.8 (+2.2)

Qwen 72B 12.5 9.2 14.7
+Prefix-RL (k = 32) 12.5 (+0.0) 14.6 (+5.4) 19.4 (+4.7)
+Prefix-RL (k = 64) 12.5 (+0.0) 13.8 (+4.6) 19.4 (+4.7)

17

Under review as a conference paper at ICLR 2026

Llama-1B —» 70B-FP8 (Math-500) Llama-1B —» 70B-FP8 (AIME) Qwen-1B - 72B (Math-500)

701 86
684 844

g 661 g 821

364* 3‘ 801

© 62 © 78

5 5

0 604 0 761

v o

< 581 <741
561 N === ———=
54— T T T T T 70 T T T

Q <0 ,\’QQ Q «0 ,\’QQ Q <0 ,\QQ ,\cp
Training step Training step Training step

Qwen-1B - 72B (Minerva) Llama-1B - 8B-FP8 (Math-500) Llama-1B - 8B-FP8 (Minerva)

324
30
R 281
326*
g
5 241
v
<& 221
204
18 T T T T T T T T T
Q «0 ,\’QB \’50 Q «0 ,\’QQ Q «0 ,&00
Training step Training step Training step
—e— k=32 ——- Zero-Shot ——- Prefix-Clustering
—— k=64

Figure 5: Training dynamics of Prefix-RL across models for prefix lengths k = 32 and k = 64.

18

Under review as a conference paper at ICLR 2026

B COMPUTATIONAL BENEFITS OF PREFIX-RL

For the compute estimate, we use a common approximation for the FLOPs of transformer-based
language models, where the FLOPs for training a model with N parameters on D tokens is = 6 N D
(Kaplan et al., [2020; Hoffmann et al., [2022). Similarly, the inference cost for generating D tokens
with N-parameter model also grows approximately with NV D, although with a different constant that
may depend on the precision of the model and the hardware efficiency. Therefore, we can generally
consider the training and inference cost to be Cl,nin N D and Ci,s IV D respectively, where we use
constants Clain, Cint that capture the efficiency of training and inference.

Now, let V¢, N, be the number of parameters for the target and adapter models respectively, and
denote by R the total number of rollouts and by 7' the (average) number of tokens per rollout.
Then, we get that the training compute for standard RL is Cy;nin Ny RT while the cost of training on
prefixes of length k using Prefix-RL is only C;ain N, RE. Therefore, the number of training FLOPs
is reduced by a factor N, T'/(N,k). By contrast, LoORA and other adapter-style approaches that attach
modules directly to the target still require backpropagating through all NV, backbone parameters at
each step, so their training FLOPs match those of standard RL even though the number of updated
parameters is smaller. For instance, when the adapter is Qwen2.5-1.5B and the target is Qwen2.5-
72B, the FLOPs budget approximately 3, 000 times smaller than standard RL.

While training cost is reduced dramatically, Prefix-RL does involve a slight computational over-
head in terms of inference FLOPs. Indeed, for every generation from the target model we need to
first generate a prefix of k tokens from the adapter, which adds an extra N,k FLOPs per rollout.
However, note that these tokens are then used as an input to the target model, and can be processed
in parallel instead of autoregressively. Therefore, overall inference time may actually be slightly
reduced compared to standard RL, even though FLOPs are higheI{ﬂ We note that a similar logic
applies to inference calls to the model during serving (after the RL finetuning stage is over), where
Prefix-RL can also provide a small improvement in inference latency.

C EXTRA BASELINES

C.1 LoRA RL BASELINE

LoRA RL baseline. For Qwen2.5-7B we also train a parameter-efficient RL baseline using LoRA
adapters attached directly to the target model. We follow the same RLVR pipeline as in our Prefix-
RL runs (same reward, dataset, rollout configuration, and PPO hyperparameters), but instead of
training a separate adapter we insert rank-64 LoRA modules with o = 32 and dropout 0.0 into
the attention and feed-forward layers of Qwen2.5-7B and update only these parameters. Because
gradients still flow through the full 7B backbone, the training FLOPs of this baseline scale with the
target size N;.

C.2 PREFIX-TUNING SFT BASELINE

Prefix-Tuning SFT baseline. As a supervised counterpart to Prefix-RL, we train a Prefix-
Tuning adapter on Qwen2.5-7B using the same MATH-filtered dataset. We follow the standard
Prefix-Tuning setup (Li & Liang, [2021), with 32 virtual tokens, prefix projection enabled, and
token/encoder dimensions matching the Qwen-7B hidden size. The model is trained with supervised
fine-tuning (SFT) to predict full solutions, optimizing only the prefix parameters while keeping the
backbone frozen. At evaluation time we attach the learned prefix adapter, decode deterministically,
and score outputs with math_verify using the same prompts and evaluation pipeline as for
Prefix-RL.

!"This is similar to speculative decoding (Leviathan et al.l2023), where a small model generates a sequence
of tokens that is validated by a larger model, where a (minor) increase in FLOPs enables decrease in latency.

19

Under review as a conference paper at ICLR 2026

Table 6: Prefix-RL on Qwen-7B: mean = standard deviation over 4 random seeds for k € {32, 64}.
All Prefix-RL configurations outperform the base model. The improvements are 2-25x larger than
the corresponding standard deviations, indicating that our gains are robust to initialization.

Target Model Math-500 AIME AMC23 Minerva

Qwen-7B 67.4 23.0 40.3 19.1
+Prefix-RL (k = 32) 73.1+£1.4(+5.7) 2454 0.4 (+15) 46.2+£1.0(+6.0) 23.3 £ 2.6 (+4.2)
+Prefix-RL (k = 64) 72.5+0.2(+5.1) 23.54+0.2(+0.5) 50.9+ 2.4 (+10.6) 21.8 4 2.0 (+2.7)

D ADDITIONAL ROBUSTNESS EXPERIMENTS

D.1 PREFIX-RL VARIATION ACROSS SEEDS

20

Under review as a conference paper at ICLR 2026

Qwen-1B -> 7B Prefix-RL Performance (Mean + Std Dev across Seeds)
Math Aime Amc23 Minerva

racy (%)
racy (%)
racy (%)

y (%)

Accu
Accu
Accu

Accuracy (%)
t
7o

s 7 10 w150 1 s s 75 a0 s s 5 s s 75 a0 s s 5 s s s 00
Training Step Training Step Training Step Training Step

Figure 6: Prefix-RL training dynamics on Qwen-7B for k& € {32,64}. Each panel shows accuracy
vs. training step on a different math benchmark. Solid lines denote the mean over 4 random seeds;
shaded regions represent the standard deviation.

Prefix-RL Performance vs. k (Number of Hint Tokens)

OCW Courses UG Physics

9 Prefix-RL =@- Prefix-RL
== Qwen-7B (Base) == Qwen-7B (Base)

N
=

10.00

N
1S}

9.75

-
©

9.50

=
=)

Accuracy (%)
-
j
Accuracy (%)

9.00

-
o

8.75
15

14 8.50

13 8.25

1 4 8 16 32 64 1 4 8 16 32 64
k (Number of Hint Tokens) k (Number of Hint Tokens)

Figure 7: Prefix-RL transfer to physics benchmarks. We evaluate the same Qwen-7B checkpoints
trained on MATH on two physics datasets—OCW Courses (Lewkowycz et al.| 2022) (left) and
UGPhysics (right)—while varying the number of hint tokens k used at inference
time. The dashed line denotes the zero-shot Qwen-7B baseline. As in the math setting, moderate
prefix lengths (k ~ 8-32) yield the largest gains, and all k except 64 improve over the base model
on at least one dataset.

Table 7: Prefix-RL transfer to college-level physics benchmarks. We evaluate Qwen-7B on OCW
Courses (Lewkowycz et al.,[2022)) and UGPhysics (Xu et al.,2025)) using the same Prefix-RL check-

points trained on MATH, varying the number of hint tokens k at inference time. Parentheses show
absolute improvement over the zero-shot Qwen-7B baseline.

Target Model OCW Courses UG Physics

Qwen-7B 13.9 9.0

+Prefix-RL (k = 1) 16.9 (+3.0) 9.7 (+0.7)
+Prefix-RL (k = 4) 19.1 (+5.2) 9.4 (+0.3)
+Prefix-RL (k = 8) 20.2 (+6.3) 9.4 (+0.4)
+Prefix-RL (k = 16) 20.2 (+6.3) 9.9 (+0.9)
+Prefix-RL (k = 32) 18.4 (+4.5) 9.2 (+0.2)
+Prefix-RL (k = 64) 19.1 (+5.2) 8.5 (-0.6)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.2 PREFIX-RL K-SWEEP

22

Under review as a conference paper at ICLR 2026

Table 8: Effect of prefix length k£ on Prefix-RL for Qwen-7B. Each row corresponds to a single
Prefix-RL run with the given k. Numbers in parentheses are absolute changes in pass@1 compared

to the base model.

Target Model Math-500 AIME AMC23 Minerva
Qwen-7B 67.4 23.0 40.3 19.1
+Prefix-RL (k =1) 694 (+2.0) 22.0(-1.0) 39.4(-0.9) 169 (-2.2)
+Prefix-RL (k =4) 72.8 (+5.4) 22.5(-0.5) 447 (+4.4) 202 (+1.1)
+Prefix-RL (k =8) 73.8(+6.4) 23.7(+0.7) 43.4(+3.1) 21.0(+1.9)
+Prefix-RL (k = 16) 73.0 (+5.6) 23.2(+0.2) 41.6 (+1.3) 23.9(+4.8)
+Prefix-RL (k = 32) 72.0 (+4.6) 24.1 (+1.1) 46.2(+5.9) 22.1 (+3.0)
+Prefix-RL (k = 64) 72.8 (+5.4) 23.7(+0.7) 47.8(+7.5) 19.9 (+0.8)

Train Critic loss

Train Policy loss

i !
Sbee il

TTIIAT
K&

critic_loss

I

5 285

uuuuu

75 100 75 100
Training step Training step

(a) Critic loss (b) Policy loss

Train KI

2 50 s 10
Training step

(c) KL divergence
Figure 8: Training dynamics of Prefix-RL on Qwen-7B for different prefix lengths & €

{1,4,8,16,32,64}. Critic and policy losses quickly stabilize across all settings, while shorter pre-
fixes (especially k£ = 1) induce a larger KL divergence from the reference policy.

23

Under review as a conference paper at ICLR 2026

Prefix-RL Performance vs. k (Number of Hint Tokens)

Math-500 AIME
”
~@~ Prefix-RL 245 @~ Prefix-RL
=T Quen 8 (sase) 2 Gwens (sase)
s
200
»
» 25
zn >
g O L —
g g
g g
o s
o
20

8 16 2] 1 0 8 2 6
K (Number of Hint Tokens) K (Number of Hint Tokens)
AMC23 Minerva
o PrefixAL 8- prefixAL
~= Qwen-78 (Base) ~= Quen-78 (Base)
s
46
T >
< <
a2
w0 /
16
®
1 2 6 1 4 » 6

8
K (Number of Hint Tokens)

8
K (Number of Hint Tokens)

Figure 9: Prefix-RL performance vs. prefix length & on Qwen-7B. Each panel shows pass@1 on a
benchmark, using the same runs as in Table[8] Very short prefixes (k = 1) underperform on AIME,
AMC?23, and Minerva, while moderate lengths (k =~ 4—16) capture most of the gains.

24

Under review as a conference paper at ICLR 2026

E USE OF LARGE LANGUAGE MODELS

LLMs were used solely for language editing and LaTeX assistance; all technical ideas, experiments,
analyses, and conclusions are the authors’ own, and all LLM outputs were reviewed and revised by
the authors.

25

	Introduction
	Related Work

	The Effectiveness of Prefix Optimization with Reinforcement Learning
	Prefix-RL: Setting and Results
	Experimental Setting
	Main Results
	Analysis

	Discussion and Limitations
	Limitations

	Appendix
	Computational Benefits of Prefix-RL
	Extra Baselines
	LoRA RL Baseline
	Prefix-Tuning SFT Baseline

	Additional Robustness Experiments
	Prefix-RL variation across seeds
	Prefix-RL k-sweep

	Use of Large Language Models

