
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARAMETER-EFFICIENT REINFORCEMENT LEARNING
USING PREFIX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) is a leading approach
for tuning language models on mathematical reasoning tasks. However, it re-
mains unclear whether RLVR’s gains stem from genuine reasoning improvements
or simply from steering the model toward answer formats that already appear in
the reference distribution. Inspired by recent evidence (Zhao et al., 2025; Yue
et al., 2025), we study this question by optimizing only the first k tokens (e.g.
k = 32) of each solution, generating the remainder of the response from the
reference model. We study two methods for prefix optimization, using a naive
algorithm that clusters prefixes and selects the best prefix (Prefix Clustering), and
a method that optimizes the prefix by finetuning a lightweight adapter model with
RL (Prefix-RL). We show that tuning only the first k tokens can significantly im-
prove the accuracy on math, suggesting that at least some of the gains from RL are
due to upweighting a preferable solution strategy. Our results suggest that simple
prefix optimization methods can provide an efficient alternative to RL, deliver-
ing substantial improvements across different models and benchmarks for a tiny
fraction of the compute required for standard RL, and that these gains are robust
across prefix lengths and random seeds.

1 INTRODUCTION

CHANGES SINCE SUBMISSION

This revised version includes the following changes in response to reviewer feedback:
(i) added comparisons to LoRA and Prefix-Tuning baselines (Table 1);
(ii) added robustness analysis across random seeds (Table 6, Fig. 6);
(iii) added a full prefix-length sweep including k = {1, 4, 8, 16, 32, 64} (Table 8, Fig. 9);
(iv) added new out-of-distribution evaluations on physics benchmarks OCW Courses and UGPhysics
(Table 7, Fig. 7);
(v) clarified the choice of k for Prefix Clustering and Prefix-RL and added guidance for selecting k;
(vi) clarified dataset statistics and updated MATH train-split numbers;

Reinforcement Learning (RL) based finetuning is used for improving language models performance
on mathematical reasoning (Jaech et al., 2024; Guo et al., 2025; Shao et al., 2024; Team et al., 2025),
coding (Austin et al., 2021; Gehring et al., 2024; Luo et al., 2025) and other domains (Ouyang
et al., 2022; Lee et al., 2024; Bai et al., 2022; Gurung & Lapata, 2025; Su et al., 2025). A recent
work studying the behavior of RL on mathematical reasoning has observed that the improvement
due to RL can be attributed, at least partially, to a process of upweighting beneficial behaviors or
strategies that are learned in the pretraining phase (Zhao et al., 2025). In particular, the authors
show that RL causes the models to concentrate their output distribution on particular generation
formats that achieve higher relative accuracy. These results are demonstrated for models pretrained
“from scratch” on different mixtures of datasets that contain a variety of strategies for solving math
problems, such as using different styles of code and text.

We begin this work by investigating to what extent the gains from RL can be attributed to upweight-
ing useful strategies that are already present in the reference model. To test this, we evaluate dif-
ferent approaches for improving the model’s performance by optimizing the prefix of the response.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Performance of Prefix-RL and Prefix-Clustering (PC) on different choices of reference
models and math benchmarks. For all the Prefix-RL experiments, we use a 1B-parameter model
from the same family as the adapter model for generating a prefix of k tokens to the target
model. We compare the model’s performance before RL against the benchmarks, and for Qwen-
7B, we also add LoRA and Prefix-Tuning baselines. Here, we report the performance of the
best checkpoint. Regarding Prefix-Clustering, for each reference model, we sample k=16-token
prefix candidates on MATH-train, cluster them with k-means (with k being chosen via the elbow
method (Thorndike, 1953)), evaluate, and fix the best single prefix for all test evaluations. Then,
we let the reference model complete this prefix and report the accuracy over different math
benchmarks.

Target Model Math-500 AIME AMC23 Minerva

Qwen-7B 67.4 23.0 40.3 19.1
+Prefix-RL (k = 32) 74.4 (+7.0) 25.8 (+2.8) 50.0 (+9.7) 22.4 (+3.3)
+Prefix-RL (k = 64) 73.8 (+6.4) 23.3 (+0.2) 52.2 (+11.9) 22.1 (+2.9)
+Prefix Clustering (k = 16) 59.4 (-8.0) 24.4 (+1.4) 42.2 (+1.9) 29.4 (+10.3)
+LoRA 70.2 (+2.8) 24.4 (+1.4) 36.2 (-4.0) 20.9 (+1.8)
+Prefix-Tuning 45.4 (-22.0) 4.93 (-18.07) 20.62 (-19.68) 13.97 (-5.13)

Llama-8B-Instruct 48.4 17.3 23.4 14.0
+Prefix-RL (k = 32) 50.8 (+2.4) 20.7 (+3.4) 27.5 (+4.1) 19.9 (+5.9)
+Prefix-RL (k = 64) 51.0 (+2.6) 20.7 (+3.4) 26.9 (+3.4) 20.2 (+6.3)
+Prefix Clustering (k = 16) 49.8 (+1.4) 21.1 (+3.9) 35.6 (+13.1) 15.8 (+1.8)

Llama-8B-Instruct-FP8 43.6 17.3 31.2 14.0
+Prefix-RL (k = 32) 50.4 (+6.8) 19.1 (+1.8) 26.9 (-4.4) 18.4 (+4.4)
+Prefix-RL (k = 64) 49.8 (+6.2) 20.7 (+3.4) 25.6 (-5.6) 18.8 (+4.8)
+Prefix Clustering (k = 16) 48.8 (+5.2) 23.4 (+6.1) 19.4 (-11.9) 17.6 (+3.7)

Llama-70B-Instruct-FP8 62.0 32.8 45.0 29.0
+Prefix-RL (k = 32) 67.8 (+5.8) 49.1 (+16.3) 46.2 (+1.2) 34.6 (+5.5)
+Prefix-RL (k = 64) 68.4 (+6.4) 48.2 (+15.4) 47.5 (+2.5) 32.4 (+3.3)
+Prefix Clustering (k = 16) 67.0 (+5.0) 48.0 (+15.2) 44.4 (-0.6) 32.0 (+2.9)

Qwen-72B 82.0 41.2 56.9 23.2
+Prefix-RL (k = 32) 84.0 (+2.0) 40.6 (-0.5) 66.6 (+9.7) 29.0 (+5.9)
+Prefix-RL (k = 64) 82.6 (+0.6) 40.4 (-0.8) 65.0 (+8.1) 25.7 (+2.6)
+Prefix Clustering (k = 16) 71.8 (-10.2) 43.0 (+1.8) 58.4 (+1.6) 30.9 (+7.7)

In other words, our goal is to change only the first k tokens generated by the model after prompted
with the input question, for some small k. Indeed, note that the first k tokens typically reveal the
solution strategy and format (e.g., starting with “## Step 1: To...” indicates a step-by-step solution).
Therefore, optimizing only the prefix captures the improvement due to upweighting good strategies.
Since in our setting the majority of the tokens come from the reference model, RL cannot be used
to improve genuine reasoning skills.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 50 100 150
Training step

58
60
62
64
66
68
70
72
74
76
78
80

Ac
cu

ra
cy

 (
%

)

Qwen-1B 7B (Math-500)

k = 32
k = 64
7B RL*
7B 0-Shot
PC (n=16)

Figure 1: We finetune Qwen-1B using RL to gen-
erate the first k tokens in the answer, with a frozen
(inference-only) Qwen-7B model that completes
the solution. *The accuracy of running RL on
the full 7B model is taken from SimpleRL (Zeng
et al., 2025), and we treat it as a skyline for our
method.

We test two methods for prefix optimization.
First, we try a very naive approach that selects
a fixed prefix (i.e., a prefix that does not depend
on the input) and uses it as the beginning of the
response for all input prompts. To do this, we
perform prefix clustering: we cluster prefixes of
16 tokens generated by the reference model us-
ing a standard clustering algorithm into 5 − 6
clusters, then we choose the single fixed pre-
fix that maximizes performance on the MATH
train set. Surprisingly, this extremely simple
method that uses the same “optimized” prefix
for all input prompts already achieves signifi-
cant boosts in performance for certain models
in the Llama family, as these models seem to
improve simply by starting the response with
a prefix that indicates step-by-step reasoning.
However, this method does not improve perfor-
mance on Qwen models, as the “preferred” pre-
fixes for these models usually relate to the input
more strongly.

As a next step, we finetune the different models using RL to generate only the first k tokens (prefix)
in an answer, and let the reference (pre-RL) model complete the generation. This method, which we
call Prefix-RL, uses a small (≈ 1B parameter) adapter model for generating a prefix that guides
the generation of a much larger target model. We then use RL to optimize the small adapter model,
while requiring only inference access to the larger target model (see Figure 2). Interestingly, in
this case our experiments show that significant improvements can be gained with many models
by optimizing only a short prefix of tokens using RL (see Appendix Table 4). We note that due
to limited computational resources, we were not able to perform complete RL finetuning on the
models we test (of scale 7B and above). However, for Qwen-7B, we compare to the RL fine-tuning
results reported by SimpleRL (Zeng et al., 2025), and see that prefix RL optimization improves
performance from around 68% to 74%, with full RL finetuning offering further improvement to 78%
(all on MATH-500). This shows that while RL still improves performance on later tokens, possibly
through improvements in reasoning capabilities, a significant improvement is due to selecting a
correct solution strategy and steering the models in the right direction.

The observation above, beyond being scientifically interesting, emphasizes the opportunity of im-
proving models’ performance by doing minimal optimization on the generation prefixes, instead of
running full-finetuning with RL, which is often infeasible with a small computational budget. In
particular, prefix optimization allows performance improvements with minimal compute, requires
inference-only access to the optimized models, and results in no weight updates in the target model.
While prefix optimization cannot directly replace full-model RL finetuning, it can provide a prac-
tical, accessible, and efficient alternative, enabling significant performance improvements even in
resource-constrained scenarios. We believe that these findings can be leveraged for the development
of a cheap and scalable alternative to RL, and leave a more thorough study of prefix optimization
methods in different settings to future work.

1.1 RELATED WORK

Controllable generation. Early controllability methods steer a frozen LLM by adjusting per-token
probabilities at decoding time. Plug-and-Play Language Models (PPLM) (Dathathri et al., 2019)
perturb hidden states with gradient ascent, while GeDi (Krause et al., 2020) and DExperts (Liu
et al., 2021) combine logits from small expert models with those of the base LM. These approaches
achieve fine-grained control but must remain in the decoding loop for every token, increasing
inference latency and hindering deployment on low-cost hardware. In contrast, Prefix-RL optimizes
a single prefix before the backbone begins decoding, so the continuation proceeds at the native
speed of the frozen model. See Liang et al. (Liang et al., 2024) for a comprehensive survey on
controllable generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: An illustration of the Prefix-RL method. A small adapter model receives the input question
and generates the first k tokens (prefix) in the response. The large target model is used in “inference-
mode” to complete the solution. We then compute the reward based on the final answer generated
by the model, and apply standard RL procedure (PPO) to update the adapter model (keeping the
target model frozen).

Prompt-optimization. Prompt-engineering and prompt-tuning techniques treat the input
prompt as the object of optimization. RLPrompt (Deng et al., 2022) applies RL for optimizing
discrete prompts, and Retroformer (Yao et al., 2023) trains a retrospective policy to rewrite prompts
across dialogue turns. Prompts must be prepended to every user query, and their efficacy can be
brittle across domains or small input perturbations. Prefix-RL instead optimizes a prefix of the
answer, which is semi-structured and directly tailored to the task’s solution space.

Prefix-Tuning. Li and Liang introduced Prefix-Tuning (Li & Liang, 2021), a lightweight al-
ternative to full-model finetuning, where a small number of task-specific vectors (called the
“prefix”) are prepended to the model input, optimizing only these parameters while freezing the rest
of the model. Unlike Prefix-Tuning, which optimizes continuous embeddings through supervised
training, our Prefix-RL approach leverages RL with verifiable rewards to directly optimize the
solution strategy in mathematical reasoning tasks, enabling effective steering of large models
through minimal intervention.

Adapter-based RL steering. Inference-Time Policy Adapters (IPA) (Lu et al., 2023) learn a
small network that rescales logits of a frozen LM at each step via RL. While IPA shares our frozen-
backbone philosophy, it still requires step-wise intervention, so inference cost grows with sequence
length. Prefix-RL intervenes only once, making it strictly cheaper at test time. Moreover, IPA is
demonstrated on style and toxicity control, whereas we focus on verifiable rewards for mathemat-
ical reasoning, a setting where sparse, binary feedback is readily available from automated checkers.

Parameter-efficient finetuning. Low-rank and adapter-based methods such as LoRA (Hu
et al., 2021), QLoRA (Dettmers et al., 2023), and adapter layers (Houlsby et al., 2019) reduce
the number of trainable parameters by inserting small modules into a frozen backbone and only
updating those modules. However, when used with RL, gradients must still be backpropagated
through the entire target network, so the training FLOPs scale with the size of the backbone just as
in full-model RL. In contrast, Prefix-RL performs RL updates only on a separate, small adapter that
generates an answer prefix, while the large target runs in inference-only mode. This decouples the
training cost from the target model size and enables RL steering even for very large or quantized
targets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2 THE EFFECTIVENESS OF PREFIX OPTIMIZATION WITH REINFORCEMENT
LEARNING

We begin by empirically studying how Reinforcement Learning improves mathematical reasoning.
In particular, we want to understand whether the improvements from RL are due to upweighting the
probability of generating solution strategies that the reference (pre-RL) model can already generate,
or whether RL improves reasoning capabilities (e.g. through improved arithmetic capability, better
execution of proof steps, more accurate recall of mathematical facts, etc.). To test this, we will tune
only the first k tokens in the generation of the model, while generating the remainder of the solution
from the reference model.

More formally, let x1, . . . , xn be a sequence of tokens encoding the input question, and let fref be
the reference model. Our goal will be to generate the first k tokens of the output from some model
gθ, i.e. y1, . . . , yk ∼ gθ(x1, . . . , xn). Then, we generate the rest of the response from the reference
model, conditioned on the input and the prefix: yk+1, . . . , ym ∼ fref(x1, . . . , xn, y1, . . . , yk). We
then treat y1, . . . , ym as the complete solution and compute the reward r(y1, . . . , ym) based on this
solution (e.g., whether the answer to a mathematical question is correct). We consider two methods
for sampling the prefix:

Prefix Clustering. Given some training dataset D of inputs, for each input x ∼ D we sample
an output from the reference model y ∼ fref(x). We cluster all the prefixes of length k from the
sampled outputs with k-means clustering (with k being chosen via the elbow method (Thorndike,
1953)). Following this, we get c prefixes, denoted (y

(1)
1 , . . . , y

(1)
k), . . . , (y

(c)
1 , . . . , y

(c)
k). We then

choose the prefix with the highest reward on the training set D:

imax = argmax
i

Ex∼D

[
r
(
fref

(
x1, . . . , xn, y

(i)
1 , . . . , y

(i)
k

))]
Then we use this fixed, input-independent prefix y

(imax)
1 , . . . , y

(imax)
k for all examples, and compute

the reward on the evaluation set. That is, we fix gθ(x1, . . . , xn) = y
(imax)
1 , . . . , y

(imax)
k .

Prefix-RL. Here we use RL to finetune an adapter model gθ to generate the first k tokens of the
output. When collecting rollouts during finetuning, we first generate y1, . . . , yk ∼ gθ(x1, . . . , xn)
and then generate yk+1, . . . , ym ∼ fref(x1, . . . , xn, y1, . . . , yk). We optimize the parameters of gθ
using PPO (Schulman et al., 2017) with respect to the rewards r(y1, . . . , ym), but keep fref fixed for
the entire procedure. In this section we set the adapter to have the same architecture and initialization
as the reference model. Because fref is frozen and only completes tokens k+1:m, any improvement
can only come from changing how the sequence is started rather than from teaching the backbone
new token-level skills. In other words, this setting isolates the extent to which RL gains can be
explained by upweighting existing solution strategies in the pre-RL distribution. In the next section
we will demonstrate how using small adapters (compared to the reference target model) can serve as
a simple and effective alternative to standard RL. An illustration of this setup is shown in Figure 2.

The solution strategy style is typically determined by the first few tokens generated. Optimizing the
prefix for the task we train on will allow the model to choose the best solution strategy for this task.
However, since we are generating most of the tokens from the reference model, it is unlikely that
our optimization can result in enhanced reasoning capabilities.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 50 100
Training step

20
22
24
26
28
30
32
34
36
38

Ac
cu

ra
cy

 (
%

)

Llama-3.2-1B-Instruct (Math-500)

k = 16
k = 32
Full-RL
Zero-Shot
PC (n=16)

Figure 3: To test whether RL improves perfor-
mance through upweighting of existing solution
strategies, we RL-finetune a Llama-1B model to
produce the first k tokens in the response, us-
ing the reference (pre-RL) 1B model to complete
the solution. We compare this against the per-
formance of a standard RL procedure optimizing
the full sequence of tokens, zero-shot, and a fixed
Prefix-Clustering (PC) baseline.

Figure 3 presents the accuracy achieved when
optimizing only the first k tokens of a se-
quence, using either prefix clustering or pre-
fix RL, and compare it to RL applied to the
entire sequence. While full-sequence RL ul-
timately yields the highest accuracy, both pre-
fix optimization methods greatly improve per-
formance compared to the reference model,
demonstrating substantial gains with signifi-
cantly less compute. This suggests that a no-
table portion of RL’s benefit arises from guiding
the model toward generating answers in more
effective formats, rather than from enhancing
reasoning capabilities.

Motivated by this insight, in the next section
we will explore Prefix Clustering and Prefix-RL
as efficient alternatives to standard RL. In par-
ticular, we will use Prefix-RL as a parameter-
efficient alternative to RL, finetuning a small
adapter model to generate a prefix for a larger
target model. For both Prefix Clustering and
Prefix-RL, we only require inference access to
the target model, thus reducing the computa-
tional burden of training a large model.

3 PREFIX-RL: SETTING AND RESULTS

We now turn to study the efficacy of Prefix Clustering and Prefix-RL on different choices of models
and datasets. We start by describing the experimental setting and evaluation methods, introduce our
results and discuss some analysis of the methods. We observe that while Prefix Clustering improves
performance only for some models (namely, models from the Llama family), Prefix-RL provides
improvements across most of the settings we try.

3.1 EXPERIMENTAL SETTING

Models. In our experiments, the adapter models are Llama-3.1-1B-Instruct (Grattafiori et al., 2024)
and Qwen2.5-1.5B (Yang et al., 2024). The target models are Llama-3.1-8B-Instruct (Grattafiori
et al., 2024), Llama-3.1-70B-Instruct-FP8 (NVIDIA, 2024), Qwen2.5-7B and Qwen2.5-72B (Yang
et al., 2024). In all settings, we ensure that the adapter and target models belong to the same model
family, as we observe (see section 4) that Prefix-RL does not perform as well when the two models
are pretrained on different datasets. We also include quantized target models in our study—most
notably Llama-3.1-70B-Instruct-FP8—highlighting a key strength of Prefix-RL: to our knowledge,
this is the first demonstration of using RL to steer quantized FP8 models via a small learned adapter
while keeping the quantized target weights frozen, showcasing the flexibility of our approach.

Datasets. We opt for the same dataset choices as in (Zeng et al., 2025). When the adapter
model is Llama-3.1-1B-Instruct, the training dataset is the training split of MATH (Hendrycks
et al., 2021), which contains 7,500 problems (the full MATH dataset has 12,500 problems across
train and test). For Qwen, following Zeng et al. (2025), we build a larger RLVR dataset by
taking all question–answer pairs from the MATH training and test splits with difficulty levels 3–5.
We then remove any problems that appear in the MATH-500 evaluation set (Hendrycks et al.,
2021; Lightman et al., 2023) to avoid contamination, resulting in 8,888 training examples for the
Qwen2.5-1.5B adapter.

Training. We follow the OpenRLHF pipeline (Hu et al., 2024), using default coefficients of
β = 0.001 for the KL divergence penalty and α = −0.001 for the entropy bonus. Rollouts are
generated using a sampling temperature of 0.7 with vLLM (Kwon et al., 2023). By default, we do

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison in terms of FLOPs between Standard RL finetuning and Prefix-RL with prefix
of length k.

Method Training Compute Inference Compute

Standard RL CtrainNtRT CinfNtRT
Prefix-RL (k) CtrainNaRk CinfR(NtT +Nak)

Nt = # Params. of target model, Na = # Params. of adapter model
R = # Rollouts, T = # Tokens per rollout.

Ctrain = Train compute constant, Cinf = Inference compute constant.

not apply weight decay. The training and rollout batch sizes are both set to 512, and we sample 8
responses per prompt, resulting in 8 gradient updates per rollout step. We use the PPO algorithm
(Schulman et al., 2017) and set the actor and critic learning rates as 5e-7 and 9e-6, respectively. By
default, the maximum prompt length is set to 1600. For our standard RL experiments, the maximum
response length is 2048. For Prefix-RL, the adapter is only allowed to emit the first k tokens; unless
otherwise stated we use k ∈ {32, 64} for the main results in Table 1, and we additionally sweep
k ∈ {1, 4, 8, 16, 32, 64} for Qwen-7B in the robustness study in Appendix D. All experiments
optimize a verifiable reward: after the target model finishes generation, we extract the final answer
and compute a binary reward using math verify (Kydlı́ček, 2024)—1 if the answer is verified
correct, 0 otherwise. We store the model checkpoint every 10 steps for evaluation, and use 4 H100
GPUs for each experiment. We train all our models for 10 episodes which equates to 140 steps for
the Llama adapter and 170 steps for the Qwen adapter.

We also train LoRA and supervised Prefix-Tuning baselines on Qwen-7B; see Appendices C.1 and
C.2 for architecture and hyperparameters.

Inference of the target model. We serve the target models on separate nodes using vLLM. For
small-sized target models as Llama-3.1-8B-Instruct and Qwen2.5-7B, the server requires 1 H100
GPU while larger models such as Llama-3.1-70B-Instruct-FP8 and Qwen2.5-72B, need 4 H100
GPUs. By default, the maximum generation length is set to 2048, the temperature to 0, top p to 1
and only one completion is generated per prefix.

Evaluation. We evaluate our models on four widely used complex mathematical reasoning
benchmarks: MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023), AIME Problem Set
1983-2024 (Veeraboina, 2023), Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024). For the adapter models, the maximum number of generated tokens is set to be the same
as during finetuning and for the target model, the maximum number of generated tokens is set to
2048. We set the temperature to 0, top p to 1, and only generate one pair (prefix, completion) per
question. We use the math verify package to extract the answers and verify their correctness.
Lastly, we report the pass@1 performance in all our evaluations.

Computational Benefits of Prefix-RL Prefix-RL offers an alternative to standard RL that is
substantially cheaper to run. Recall that Reinforcement Learning uses two distinct computa-
tional phases: inference—where we generate rollouts from the model to collect reward—and
training—where we tune the parameters of the model using policy gradient. Table 2 summarizes
the (approximate) cost of training and inference, which we discuss in Appendix B. Beyond a clear
FLOPs advantage, Prefix-RL allows one to run RL finetuning with a smaller number of resources
in practice. For instance, we are able to tune a 70B model using just 8 GPUs—4 for training
the adapter and 4 for serving the target model. In contrast, standard RLHF implementations (Hu
et al., 2024; Volcengine, 2024) typically require 32 GPUs for the same setup, representing a
4× reduction in GPU usage. Moreover, we believe further efficiency gains are possible through
improved allocation of compute between training and inference, as well as by sharing inference
across processes—suggesting that the practical savings of Prefix-RL may be even greater.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.2 MAIN RESULTS

We observe that Prefix Clustering achieves mixed performance: it improves performance (quite
significantly) in some settings, but in some cases it results in severe degradation in performance.
Prefix-RL, on the other hand, results in more consistent behavior. While the magnitude of the
gains varies depending on the target model and on the specific task, Prefix-RL consistently
yields performance improvements across the range of model scales and mathematical reasoning
benchmarks that we tested.

Performance gains with Prefix Clustering. Prefix Clustering yields mixed results (Table 1). For
the Llama family, a fixed k=16 prefix delivers sizable gains on several benchmarks, e.g., +13.1
on AMC23 for Llama-8B-Instruct and +15.2 on AIME for Llama-70B-Instruct-FP8, suggesting
that these models benefit substantially from being steered into a particular solution style (typically
an explicit step-by-step plan). In contrast, Prefix Clustering performs poorly on Qwen models
(e.g., −8.0 on MATH-500 for Qwen-7B), indicating that Qwen’s preferred openings are more
input-dependent. Overall, PC is a compelling, training-free baseline that surfaces the “format
upweighting” effect, but its brittleness across families motivates learning input-conditional prefixes
with Prefix-RL. Throughout the paper we therefore treat PC primarily as a diagnostic for whether
any fixed opening can move accuracy at all, rather than as a practical inference-time method.
Longer fixed prefixes (e.g., 32 or 64 tokens) quickly became brittle in preliminary experiments,
especially on Qwen, where a global prefix often conflicts with the input question and hurts accuracy,
so we keep PC at k=16 in all settings.

Performance gains with Prefix-RL. Despite being significantly more cost-efficient than
standard RL fine-tuning, Prefix-RL recovers a substantial fraction of its performance gains. As
shown in Figure 1, full RL finetuning yields a 10-point gain in accuracy (from 68% to 78%), while
Prefix-RL, at a much lower training cost, achieves a 7-point improvement (from 68% to 75%).

Results from Table 1 show that the benefits of Prefix-RL extend to more challenging benchmarks;
for instance, applying Prefix-RL to Qwen2.5-7B leads to a +4.4% in performance on Minerva Math.
These gains are consistent across model families, with Llama-3.1-8B-Instruct also showing reliable
improvement. Notably, performance gains persist at scale when using Llama-3.1-70B-Instruct-FP8
and Qwen-2.5-72B as the target model. While the improvement on Qwen-2.5-72B is smaller, we
hypothesize this is due to the model’s already high baseline performance on MATH (82% prior to
RL), and datasets containing more complex problems could yield further improvement even in the
Prefix-RL training regime.

For completeness, we include full training-dynamics curves in Appendix Figure 5, which illustrate
that Prefix-RL produces stable improvement throughout training across both k = 32 and k = 64
settings.

Prefix-RL on quantized FP8 models. In Table 1, the largest relative performance gains by
Prefix-RL are observed with quantized FP8 target models, reaching up to a +16.3% increase
in accuracy. This substantial improvement may be partially explained by the lower baseline
performance of quantized model. For instance, the gap between Llama-3.1-8B-Instruct and its
quantized counterpart is 5% on MATH-500 prior to finetuning (see Table 1). However, after
applying Prefix-RL, the quantized model nearly closes this gap— maintaining only a 1% difference
compared to the full-precision model.

Robustness across random seeds. To quantify variance in our most important configuration
(Qwen2.5-1.5B → Qwen2.5-7B), we train Prefix-RL with four random seeds for k ∈ {32, 64}.
Table 6 reports mean ± standard deviation over seeds, and Figure 6 plots the corresponding
accuracy curves. Across all four benchmarks and both values of k, every seed outperforms the base
model, and effect sizes (e.g., +5.1–+10.6 points on AMC23) are 2–25× larger than the standard
deviations. This indicates that, despite noisy per-step curves typical of RL, the gains from Prefix-RL
are statistically robust to initialization.

Sensitivity to prefix length. We also study how performance depends on the prefix length
k for Qwen-7B. Using the same training setup as in Table 1, we train Prefix-RL with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

k ∈ {1, 4, 8, 16, 32, 64} on MATH and evaluate the resulting checkpoints on MATH-500,
AIME, AMC23, and Minerva. The results are summarized in Table 8 and Figure 9.

On MATH-500 (the training distribution), all values of k improve over the 67.4% base accuracy,
with scores clustered in a narrow band around 72–74%. However, the very short prefix k=1 behaves
differently on the held-out benchmarks: it yields only modest gains or even worse performance on
AIME (−1.0), AMC23 (−0.9), and Minerva (−2.2), even though those evaluations use the same
checkpoints trained on MATH. In contrast, moderate prefix lengths k ∈ {4, 8, 16, 32, 64} consis-
tently improve all four benchmarks, with AMC23 gains ranging from +1.3 to +7.5 points and
Minerva gains up to +4.8 points.

Together with the training-dynamics curves in Figure 8, which show stable critic/policy losses
and smoothly increasing KL divergence for all k, this suggests that Prefix-RL is not overly
sensitive to the exact choice of k as long as the prefix is long enough to encode a solution strategy
(roughly k ≥ 4). In practice, selecting a coarse value such as k=32 works well across models and
benchmarks, while extremely short prefixes (k=1) appear brittle, especially on out-of-distribution
evaluations.

OOD Non-Math RLVR. To test whether these prefix policies transfer beyond math, we also
evaluate the same Qwen-7B checkpoints (trained only on MATH) on two undergraduate physics
benchmarks: the OCW Courses dataset (physics questions derived from MIT OpenCourse-
Ware, released on HuggingFace) and UGPhysics (Xu et al., 2025). For each prefix length
k ∈ {1, 4, 8, 16, 32, 64}, we keep the adapter fixed and only vary the number of hint tokens used
at inference time. As shown in Table 7 and Figure 7, all prefix lengths improve accuracy on
OCW Courses, and all k except 64 improve UGPhysics over the zero-shot Qwen-7B baseline.
The strongest gains again occur for moderate prefix lengths (k ≈ 8–32), supporting the view that
the learned prefixes encode a broadly useful solution strategy rather than overfitting to the MATH
training distribution.

Comparison to LoRA and supervised Prefix-Tuning. Table 1 also reports parameter-efficient
baselines that modify the Qwen2.5-7B target directly. A LoRA-based RL run yields a modest
improvement on MATH-500 (+2.8 points) and AIME (+1.4) and a small gain on Minerva (+1.8),
but it underperforms Prefix-RL and even hurts AMC23 (–4.0). Our Prefix-Tuning SFT baseline
performs substantially worse: training a 32-token prefix on the same MATH-filtered data degrades
MATH-500 by 22 points and reduces accuracy on the other benchmarks as well. Importantly, both
baselines require backpropagating through the full 7B backbone, so their training cost is comparable
to standard RL, whereas Prefix-RL achieves larger and more consistent gains while updating only a
1.5B adapter.

In summary, Prefix-RL enables scalable and resource-efficient reinforcement learning by shifting
the optimization burden to a lightweight adapter, making it a viable solution for finetuning large
models under strict compute constraints.

3.3 ANALYSIS

To better understand how Prefix-RL influences model behavior, we conducted a qualitative analysis
of the generated prefixes. Specifically, we examined whether the learned prefixes promote more
structured and effective solution strategies across a range of problem types.

As shown in Table 4, Prefix-RL consistently steers the model responses toward clearer, more struc-
tured, and solution-oriented reasoning. In contrast, the reference model often produces incomplete
or vague responses lacking clear direction or strategy. After applying Prefix-RL, responses more fre-
quently include explicit planning steps—for example, identifying relationships between logarithmic
equations, analyzing properties of functions in calculus problems, or invoking geometric princi-
ples appropriately. These changes improve both the interpretability and correctness of the model’s
reasoning.

That being said, the degree of improvement varies; in the algebraic roots example, the refinement
is relatively modest, primarily emphasizing solution simplification rather than introducing a fun-
damentally new strategy. This suggests that Prefix-RL may offer diminishing returns in settings
where the base model already exhibits a reasonable degree of structure. Overall, these qualitative

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

findings support the effectiveness of Prefix-RL in prompting large models to adopt clearer and more
strategic problem-solving approaches, particularly in cases where the reference model’s outputs are
underspecified or unfocused.

4 DISCUSSION AND LIMITATIONS

In this work we studied how simple prefix optimization methods can achieve significant performance
gains on verifiable mathematical reasoning problems. We discussed two methods: Prefix Clustering,
which uses a simple clustering method for finding an optimal input-independent prefix, and Prefix-
RL, which uses RL to finetune a small adapter model that generates the prefix for a large, frozen,
target model. We showed that these prefix optimization methods, and in particular Prefix-RL, can
significantly improve performance across different choices of models and benchmarks. Importantly,
these methods are extremely efficient in terms of compute, reducing the cost of training to a negligi-
ble fraction of the cost of training the full model, shifting most of the computational load to running
inference. This offers remarkable gains in practice, as the cost of inference is dropping quickly due
to innovations in inference hardware (Chitty-Venkata et al., 2024), inference-optimized model archi-
tectures (Huang et al., 2024) and algorithms for improving inference-time efficiency and utilization
(Leviathan et al., 2023). Reducing the amount of compute required for training, which is almost
exclusively done on expensive GPUs or TPUs, offers significant gains in cost and energy.

Another clear advantage of prefix optimization methods over standard RL-based finetuning is that
they can adapt the target model’s behavior without changing its weights. It has been observed in
different settings that updating the model’s weights when finetuning on a particular task can cause
catastrophic forgetting, harming performance on unrelated tasks (Luo et al., 2023; Kalajdzievski,
2024). More relevant to our context, different works show that RL-finetuning can cause a drop in
performance due to “alignment tax” (Askell et al., 2021), causes language drift (Lee et al., 2019)
or language mixing (Guo et al., 2025), which may degrade performance on natural language tasks.
Prefix optimization avoids these failures by providing an adaptation method that does not change the
target model, where different adapters trained for different tasks can be deployed without causing
harmful interference.

Finally, we note that our methods can be used on top of closed-weights models like GPT or Claude,
since we only require inference access via API. We believe that this offers a great promise for cheap
user-specific RL optimization, but leave a thorough exploration of this setting to future work.

4.1 LIMITATIONS

While our results demonstrate promising improvements, we acknowledge that our method has some
inherent limitations. We do not claim that Prefix-RL can achieve performance gains that are compa-
rable to RL-based finetuning of the full model. Therefore, we view Prefix-RL as a way to trade-off
performance for computational cost, providing a cheap and efficient way to boost performance on
downstream tasks, even for very large models. Unfortunately, we are unable to perform side-by-side
comparison between Prefix-RL and standard RL on large models, as performing full RL-finetuning
of 70B parameter models is beyond our computational budget.

A key limitation of our study’s scope is that we focus on single-pass generation under RLVR. We do
not attempt to model multi-pass reflective solvers where the model may backtrack, revise, or branch
mid-solution. For such systems, early tokens may still steer the initial plan, but later reflection steps
could override or refine that plan in ways our setup does not capture.

Additionally, we find that Prefix-RL relies on both the adapter and target models belonging to the
same model family, likely due to the importance of shared response patterns. While we have not
extensively tested cross-family configurations (e.g., Qwen-1B adapter with Llama-70B target), pre-
liminary observations suggest such mismatches lead to degraded performance. Fortunately, many
large models have corresponding distilled variants that retain similar behavior (Muennighoff et al.,
2025; Team, 2025; Guo et al., 2025), which may help mitigate this constraint.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI:
Harmlessness from AI Feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus, Aditya Tanikanti,
Ken Raffenetti, Valerie Taylor, Murali Emani, and Venkatram Vishwanath. Llm-inference-bench:
Inference benchmarking of large language models on ai accelerators. In SC24-W: Workshops of
the International Conference for High Performance Computing, Networking, Storage and Analy-
sis, pp. 1362–1379. IEEE, 2024.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alexander Gurung and Mirella Lapata. Learning to reason for long-form story generation. arXiv
preprint arXiv:2503.22828, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

11

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2305.14314

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,
2024.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin Lee, Carole-Jean
Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. Advances in Neural
Information Processing Systems, 37:84033–84059, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Damjan Kalajdzievski. Scaling laws for forgetting when fine-tuning large language models. arXiv
preprint arXiv:2401.05605, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hynek Kydlı́ček. Math-verify: Math verification library. https://github.com/
huggingface/math-verify, 2024. Version 0.6.1. Apache-2.0 License.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs. RLHF:
Scaling Reinforcement Learning from Human Feedback with AI Feedback. In Proceedings of the
International Conference on Machine Learning, 2024. URL http://dblp.uni-trier.
de/db/conf/icml/icml2024.html#0001PMMFLBHCRP24.

Jason Lee, Kyunghyun Cho, and Douwe Kiela. Countering language drift via visual grounding.
arXiv preprint arXiv:1909.04499, 2019.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

12

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify
http://dblp.uni-trier.de/db/conf/icml/icml2024.html#0001PMMFLBHCRP24
http://dblp.uni-trier.de/db/conf/icml/icml2024.html#0001PMMFLBHCRP24

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan
Liu, Shunyu Yao, Feiyu Xiong, et al. Controllable text generation for large language models: A
survey. arXiv preprint arXiv:2408.12599, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
arXiv preprint arXiv:2105.03023, 2021.

Ximing Lu, Faeze Brahman, Peter West, Jaehun Jang, Khyathi Chandu, Abhilasha Ravichander,
Lianhui Qin, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, et al. Inference-time policy
adapters (ipa): Tailoring extreme-scale lms without fine-tuning. arXiv preprint arXiv:2305.15065,
2023.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025. Notion Blog.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

NVIDIA. Nvidia llama-3.1-70b-instruct-fp8. https://huggingface.co/nvidia/
Llama-3.1-70B-Instruct-FP8, 2024. Accessed: 2024-06-05.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
e-prints, pp. arXiv–2503, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

NovaSky Team. Sky-t1: Train your own o1 preview model within $450. https://novasky-
ai.github.io/posts/sky-t1, 2025. Accessed: 2025-01-09.

Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.

13

https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://huggingface.co/nvidia/Llama-3.1-70B-Instruct-FP8
https://huggingface.co/nvidia/Llama-3.1-70B-Instruct-FP8
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024.

Volcengine. Verl: Versatile and efficient representations for law. https://github.com/
volcengine/verl, 2024. Accessed: 2024-06-05.

Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can Yang,
and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics reasoning
with large language models. arXiv preprint arXiv:2502.00334, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh
Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large
language agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

14

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://github.com/volcengine/verl
https://github.com/volcengine/verl

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

Table 3: Comparison of model responses before and after RL training

Question Reference Model After Prefix-RL (k=32)
Convert the point (0, 3) in
rectangular coordinates to
polar coordinates. Enter
your answer in the form
(r, θ), where r > 0 and 0 ≤
θ < 2π.

Step 1: Recall the con-
version formulas between
rectangular and polar co-
ordinates. The conver-
sion from rectangular coor-
dinates (x, y) to polar coor-
dinates (r,

Step 1: To convert the
point (0, 3) from rectangu-
lar coordinates to polar co-
ordinates, we need to un-
derstand the relationship be-
tween these two

Define p =
∑∞

k=1
1
k2 and

q =
∑∞

k=1
1
k3 . Find a way

to write
∑∞

j=1

∑∞
k=1

1
(j+k)3

in terms of p and q.

We have that
\begin{align*}
\sum_{j = 1}ˆ\infty

\sum_{k = 1}ˆ\in

Step 1: To find a way to
write the given double sum
in terms of p and q, we need
to understand the

If f(x) = 3x−2
x−2 , what is the

value of f(−2) + f(−1) +
f(0)? Express your answer
as a common fraction.

Step 1: Evaluate f(-2) To
find the value of f(−2), we
substitute x = −2 into the

Step 1: To find the value
of f(−2) + f(−1) + f(0),
we need to first

How many positive whole-
number divisors does 196
have?

(The divisors are not neces-
sarily distinct.) ## Step 1:
Find the prime factorization
of 196 To find the number of
positive whole-number div

Step 1: To find the
number of positive whole-
number divisors of 196, we
need to understand what
makes up a divisor. ##

The results of a cross-
country team’s training run
are graphed below. Which
student has the greatest av-
erage speed? [asy] ... [/asy]

The average speed of each
student is calculated by di-
viding the distance traveled
by the time taken. The av-
erage speed of Evelyn is 4.5
km/h, the

Step 1: To find the av-
erage speed of each student,
we need to calculate the to-
tal distance traveled and the
total time taken for each stu-
dent

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Qwen model responses before and after RL training

Question Reference Model After Prefix-RL (k=32)
Each of the two Magellan tele-
scopes has a diameter of 6.5 m. In
one configuration the effective focal
length is 72 m. Find the diameter of
the image of a planet (in cm) at this
focus if the angular diameter of the
planet at the time of the observation
is 45′′.

(The angular diam-
eter of the Sun is
0.5′′.) To solve this
problem, we need to
use the concept of an-
gular

To find the diameter of the
image of a planet at the fo-
cus of the Magellan tele-
scope, we need to use the re-
lationship between the angu-
lar diameter of the planet

A white dwarf star has an effec-
tive temperature, Te = 50, 000 de-
grees Kelvin, but its radius, RWD,
is comparable to that of the Earth.
Take RWD = 104 km

(
107 m or

109 cm
)
. Compute the luminosity

(power output) of the white dwarf.
Treat the white dwarf as a black-
body radiator. Give your answer in
units of ergs per second, to two sig-
nificant figures.

N/A To compute the luminosity
of the white dwarf, we need
to use the Stefan-Boltzmann
law, which relates the power
output of a blackbody radia-
tor

Preamble: A prism is constructed
from glass and has sides that form
a right triangle with the other two
angles equal to 45◦. The sides are
L,L, and H , where L is a leg and H
is the hypotenuse. A parallel light
beam enters side L normal to the
surface, passes into the glass, and
then strikes H internally. The index
of refraction of the glass is n = 1.5.
Compute the critical angle for the
light to be internally reflected at H .
Give your answer in degrees to 3
significant figures.

To determine the crit-
ical angle for the
light to be internally
reflected at the hy-
potenuse H of the
prism, we need to an-
alyze the path of the

To determine the critical an-
gle for the light to be in-
ternally reflected at the hy-
potenuse H , we need to use
Snell’s Law and the geome-
try

A particular star has an absolute
magnitude M = −7. If this star
is observed in a galaxy that is at a
distance of 3Mpc, what will its ap-
parent magnitude be?

Assume that the dis-
tance modulus for-
mula is given by µ =
5 log10(d)−5, where
d is the

Assume that the distance
modulus formula is given by
µ = 5 log10(d)− 5, where d
is the

Find the gravitational acceleration
due to the Sun at the location of the
Earth’s orbit (i.e., at a distance of
1AU). Give your answer in meters
per second squared, and express it
to one significant figure.

(The mass of the Sun
is 1.99×1030 kg and
the mass of the

To find the gravitational ac-
celeration due to the Sun at
the location of the Earth’s
orbit (i.e., at a distance of (1
AU

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 50 100
Training step

38
40
42
44
46
48
50
52
54

Ac
cu

ra
cy

 (
%

)

Math-500

k = 32
k = 64
Full-RL
8B 0-shot
PC (n=16)

Figure 4: Training dynamics of Llama-3.1-8B-Instruct under Prefix-RL with k ∈ 32, 64 on MATH-
500. We compare to full-sequence RL, zero-shot, and a fixed Prefix-Clustering baseline.

Table 5: Prefix-RL improves pass@1 on AIME 2024, AIME 2025, and OLYMPIADBENCH across
model families. Numbers in parentheses are absolute ∆ over the corresponding base model.

Target Model AIME2024 AIME2025 OlympiadBench

Qwen 7B 7.5 3.8 14.7
+Prefix-RL (k = 32) 10.8 (+3.3) 10.8 (+7.1) 15.9 (+1.2)
+Prefix-RL (k = 64) 9.2 (+1.7) 10.0 (+6.2) 15.4 (+0.7)

Llama 8B-Instruct 10.0 0.0 5.2
+Prefix-RL (k = 32) 7.9 (-2.1) 2.1 (+2.1) 8.5 (+3.3)
+Prefix-RL (k = 64) 8.8 (-1.2) 2.1 (+2.1) 7.7 (+2.5)

Llama 8B-FP8 6.7 0.0 5.6
+Prefix-RL (k = 32) 7.1 (+0.4) 3.8 (+3.8) 7.3 (+1.6)
+Prefix-RL (k = 64) 7.9 (+1.2) 1.7 (+1.7) 7.7 (+2.1)

Llama 70B-Instruct-FP8 15.4 2.9 10.5
+Prefix-RL (k = 32) 20.0 (+4.6) 3.8 (+0.8) 12.6 (+2.1)
+Prefix-RL (k = 64) 20.0 (+4.6) 3.8 (+0.8) 12.8 (+2.2)

Qwen 72B 12.5 9.2 14.7
+Prefix-RL (k = 32) 12.5 (+0.0) 14.6 (+5.4) 19.4 (+4.7)
+Prefix-RL (k = 64) 12.5 (+0.0) 13.8 (+4.6) 19.4 (+4.7)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 50 100
Training step

54
56
58
60
62
64
66
68
70

Ac
cu

ra
cy

 (
%

)

Llama-1B 70B-FP8 (Math-500)

0 50 100
Training step

32
34
36
38
40
42
44
46
48
50

Ac
cu

ra
cy

 (
%

)
Llama-1B 70B-FP8 (AIME)

0 50 100 150
Training step

70
72
74
76
78
80
82
84
86

Ac
cu

ra
cy

 (
%

)

Qwen-1B 72B (Math-500)

0 50 100 150
Training step

18
20
22
24
26
28
30
32

Ac
cu

ra
cy

 (
%

)

Qwen-1B 72B (Minerva)

0 50 100
Training step

38
40
42
44
46
48
50
52

Ac
cu

ra
cy

 (
%

)

Llama-1B 8B-FP8 (Math-500)

0 50 100
Training step

10

12

14

16

18

20

Ac
cu

ra
cy

 (
%

)

Llama-1B 8B-FP8 (Minerva)

k = 32
k = 64

Zero-Shot Prefix-Clustering

Figure 5: Training dynamics of Prefix-RL across models for prefix lengths k = 32 and k = 64.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B COMPUTATIONAL BENEFITS OF PREFIX-RL

For the compute estimate, we use a common approximation for the FLOPs of transformer-based
language models, where the FLOPs for training a model with N parameters on D tokens is ≈ 6ND
(Kaplan et al., 2020; Hoffmann et al., 2022). Similarly, the inference cost for generating D tokens
with N -parameter model also grows approximately with ND, although with a different constant that
may depend on the precision of the model and the hardware efficiency. Therefore, we can generally
consider the training and inference cost to be CtrainND and CinfND respectively, where we use
constants Ctrain, Cinf that capture the efficiency of training and inference.

Now, let Nt, Na be the number of parameters for the target and adapter models respectively, and
denote by R the total number of rollouts and by T the (average) number of tokens per rollout.
Then, we get that the training compute for standard RL is CtrainNtRT while the cost of training on
prefixes of length k using Prefix-RL is only CtrainNaRk. Therefore, the number of training FLOPs
is reduced by a factor NtT/(Nak). By contrast, LoRA and other adapter-style approaches that attach
modules directly to the target still require backpropagating through all Nt backbone parameters at
each step, so their training FLOPs match those of standard RL even though the number of updated
parameters is smaller. For instance, when the adapter is Qwen2.5-1.5B and the target is Qwen2.5-
72B, the FLOPs budget approximately 3, 000 times smaller than standard RL.

While training cost is reduced dramatically, Prefix-RL does involve a slight computational over-
head in terms of inference FLOPs. Indeed, for every generation from the target model we need to
first generate a prefix of k tokens from the adapter, which adds an extra Nak FLOPs per rollout.
However, note that these tokens are then used as an input to the target model, and can be processed
in parallel instead of autoregressively. Therefore, overall inference time may actually be slightly
reduced compared to standard RL, even though FLOPs are higher1. We note that a similar logic
applies to inference calls to the model during serving (after the RL finetuning stage is over), where
Prefix-RL can also provide a small improvement in inference latency.

C EXTRA BASELINES

C.1 LORA RL BASELINE

LoRA RL baseline. For Qwen2.5-7B we also train a parameter-efficient RL baseline using LoRA
adapters attached directly to the target model. We follow the same RLVR pipeline as in our Prefix-
RL runs (same reward, dataset, rollout configuration, and PPO hyperparameters), but instead of
training a separate adapter we insert rank-64 LoRA modules with α = 32 and dropout 0.0 into
the attention and feed-forward layers of Qwen2.5-7B and update only these parameters. Because
gradients still flow through the full 7B backbone, the training FLOPs of this baseline scale with the
target size Nt.

C.2 PREFIX-TUNING SFT BASELINE

Prefix-Tuning SFT baseline. As a supervised counterpart to Prefix-RL, we train a Prefix-
Tuning adapter on Qwen2.5-7B using the same MATH-filtered dataset. We follow the standard
Prefix-Tuning setup (Li & Liang, 2021), with 32 virtual tokens, prefix projection enabled, and
token/encoder dimensions matching the Qwen-7B hidden size. The model is trained with supervised
fine-tuning (SFT) to predict full solutions, optimizing only the prefix parameters while keeping the
backbone frozen. At evaluation time we attach the learned prefix adapter, decode deterministically,
and score outputs with math verify using the same prompts and evaluation pipeline as for
Prefix-RL.

1This is similar to speculative decoding (Leviathan et al., 2023), where a small model generates a sequence
of tokens that is validated by a larger model, where a (minor) increase in FLOPs enables decrease in latency.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Prefix-RL on Qwen-7B: mean ± standard deviation over 4 random seeds for k ∈ {32, 64}.
All Prefix-RL configurations outperform the base model. The improvements are 2–25× larger than
the corresponding standard deviations, indicating that our gains are robust to initialization.

Target Model Math-500 AIME AMC23 Minerva

Qwen-7B 67.4 23.0 40.3 19.1
+Prefix-RL (k = 32) 73.1± 1.4 (+5.7) 24.5± 0.4 (+1.5) 46.2± 1.0 (+6.0) 23.3± 2.6 (+4.2)
+Prefix-RL (k = 64) 72.5± 0.2 (+5.1) 23.5± 0.2 (+0.5) 50.9± 2.4 (+10.6) 21.8± 2.0 (+2.7)

D ADDITIONAL ROBUSTNESS EXPERIMENTS

D.1 PREFIX-RL VARIATION ACROSS SEEDS

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 6: Prefix-RL training dynamics on Qwen-7B for k ∈ {32, 64}. Each panel shows accuracy
vs. training step on a different math benchmark. Solid lines denote the mean over 4 random seeds;
shaded regions represent the standard deviation.

Figure 7: Prefix-RL transfer to physics benchmarks. We evaluate the same Qwen-7B checkpoints
trained on MATH on two physics datasets—OCW Courses (Lewkowycz et al., 2022) (left) and
UGPhysics (Xu et al., 2025) (right)—while varying the number of hint tokens k used at inference
time. The dashed line denotes the zero-shot Qwen-7B baseline. As in the math setting, moderate
prefix lengths (k ≈ 8–32) yield the largest gains, and all k except 64 improve over the base model
on at least one dataset.

Table 7: Prefix-RL transfer to college-level physics benchmarks. We evaluate Qwen-7B on OCW
Courses (Lewkowycz et al., 2022) and UGPhysics (Xu et al., 2025) using the same Prefix-RL check-
points trained on MATH, varying the number of hint tokens k at inference time. Parentheses show
absolute improvement over the zero-shot Qwen-7B baseline.

Target Model OCW Courses UG Physics

Qwen-7B 13.9 9.0
+Prefix-RL (k = 1) 16.9 (+3.0) 9.7 (+0.7)
+Prefix-RL (k = 4) 19.1 (+5.2) 9.4 (+0.3)
+Prefix-RL (k = 8) 20.2 (+6.3) 9.4 (+0.4)
+Prefix-RL (k = 16) 20.2 (+6.3) 9.9 (+0.9)
+Prefix-RL (k = 32) 18.4 (+4.5) 9.2 (+0.2)
+Prefix-RL (k = 64) 19.1 (+5.2) 8.5 (-0.6)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.2 PREFIX-RL K-SWEEP

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Effect of prefix length k on Prefix-RL for Qwen-7B. Each row corresponds to a single
Prefix-RL run with the given k. Numbers in parentheses are absolute changes in pass@1 compared
to the base model.

Target Model Math-500 AIME AMC23 Minerva

Qwen-7B 67.4 23.0 40.3 19.1
+Prefix-RL (k = 1) 69.4 (+2.0) 22.0 (-1.0) 39.4 (-0.9) 16.9 (-2.2)
+Prefix-RL (k = 4) 72.8 (+5.4) 22.5 (-0.5) 44.7 (+4.4) 20.2 (+1.1)
+Prefix-RL (k = 8) 73.8 (+6.4) 23.7 (+0.7) 43.4 (+3.1) 21.0 (+1.9)
+Prefix-RL (k = 16) 73.0 (+5.6) 23.2 (+0.2) 41.6 (+1.3) 23.9 (+4.8)
+Prefix-RL (k = 32) 72.0 (+4.6) 24.1 (+1.1) 46.2 (+5.9) 22.1 (+3.0)
+Prefix-RL (k = 64) 72.8 (+5.4) 23.7 (+0.7) 47.8 (+7.5) 19.9 (+0.8)

(a) Critic loss (b) Policy loss

(c) KL divergence

Figure 8: Training dynamics of Prefix-RL on Qwen-7B for different prefix lengths k ∈
{1, 4, 8, 16, 32, 64}. Critic and policy losses quickly stabilize across all settings, while shorter pre-
fixes (especially k = 1) induce a larger KL divergence from the reference policy.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 9: Prefix-RL performance vs. prefix length k on Qwen-7B. Each panel shows pass@1 on a
benchmark, using the same runs as in Table 8. Very short prefixes (k = 1) underperform on AIME,
AMC23, and Minerva, while moderate lengths (k ≈ 4–16) capture most of the gains.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E USE OF LARGE LANGUAGE MODELS

LLMs were used solely for language editing and LaTeX assistance; all technical ideas, experiments,
analyses, and conclusions are the authors’ own, and all LLM outputs were reviewed and revised by
the authors.

25

	Introduction
	Related Work

	The Effectiveness of Prefix Optimization with Reinforcement Learning
	Prefix-RL: Setting and Results
	Experimental Setting
	Main Results
	Analysis

	Discussion and Limitations
	Limitations

	Appendix
	Computational Benefits of Prefix-RL
	Extra Baselines
	LoRA RL Baseline
	Prefix-Tuning SFT Baseline

	Additional Robustness Experiments
	Prefix-RL variation across seeds
	Prefix-RL k-sweep

	Use of Large Language Models

