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Figure 1: Example images in CHAMMI-75, a heterogenous dataset of multi-channel microscopy
images. Channel colors are assigned to an RGB pseudo-color for visualization.

Abstract

Quantifying cell morphology using images and machine learning has proven
to be a powerful tool to study the response of cells to treatments. How-
ever, the models used to quantify cellular morphology are typically trained
with a single microscopy imaging type and under controlled experimental
conditions. This results in specialized models that cannot be reused across
biological studies because the technical specifications do not match (e.g.,
different number of channels), or because the target experimental condi-
tions are out of distribution. Here, we present CHAMMI-75, a dataset of
heterogeneous, multi-channel microscopy images with 2.8M multi-channel
images from 75 diverse biological studies. We curated this resource from
publicly available sources to investigate cellular morphology models that
are channel-adaptive and can process any microscopy image type. Our ex-
periments show that training with CHAMMI-75 can improve performance in
multi-channel bioimaging tasks, opening the way to create the next gener-
ation of cellular morphology models for biological studies.

1 Introduction

Microscopy is a versatile scientific tool in experimental biology and allows researchers to
acquire images of cells under controlled experimental conditions. Unlike natural images,
which are consistently acquired and stored in a three-channel, RGB format, microscopy
images can have a varied number of channels; anywhere from one to dozens, each encoding
a different type of signal. Deep learning is widely adopted to analyze microscopy images
(Moen et al., 2019; Volpe et al., 2023; Pratapa et al., 2021; Xing et al., 2017), but the most
common strategy to create such models is to modify architectures developed for RGB images
by changing and fixing the number of channels according to the problem (Doron et al., 2023;
Gupta et al., 2024). This limits the ability to reuse models from experiment to experiment,
or to pre-train large-scale models that accumulate universal knowledge of cellular biology.
Multi-channel imaging models have emerged to address the limitations of existing vision ar-
chitectures, enabling the processing of varied number of channels at test time (Kraus et al.,
2024; Bourriez et al., 2024; Pham & Plummer, 2024; Pham et al., 2025). A common trend in
such architectures is the separation of channels as individual modalities, resulting in flexible,
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Figure 2: Comparison of existing microscopy datasets used for representation learning of cell
morphology. CHAMMI-75 is the largest dataset of multi-channel microscopy images. Others datasets:
IDRCell100k (Bourriez et al., 2024), CHAMMI (Chen et al., 2023), CytoImageNet (Hua et al.,
2021), HPAv23 (Gupta et al., 2024), Microsnoop (Xun et al., 2024), RxRx Recursion (2025), JUMP-
CP (Chandrasekaran et al., 2023a), and Phenoprints-16M (Kenyon-Dean et al., 2024).

variable-length inputs with diverse channel types. While these initiatives represent an im-
portant step towards creating foundation models for cellular imaging, most of them are still
small-scale, proof-of-concept experiments. The main reason is the lack of standardized and
well-curated datasets to properly test these ideas at large scale. Multi-channel microscopy
images are publicly available, but it is not straightforward to put them together in a single,
useful resource for machine learning research because of their technical differences, varied
formats, and inconsistent metadata.
We present a new multi-channel microscopy image dataset that we call CHAMMI-75 (Fig-
ure 1). Our dataset is larger than prior work (Figure 2) and combines diverse heteroge-
neous sources of biological images into a single resource to investigate cellular morphology.
CHAMMI-75 breaks the assumptions of most prior work focused on deep learning for bioim-
age analysis since it contains more technical and biological variation than typically used to
train cellular imaging models (Figure 3). For example, CHAMMI-75 includes images of 16 or-
ganisms and 223 cell lines collected with different microscopes, at different resolutions, and
with different numbers of channels. Our goal was to obtain a representative visual sample
of the cellular biology universe that can be observed with microscopy. With the acceler-
ated progress of machine learning, this diversity comes as a valuable source of information
to train the next generation of multi-channel imaging models. Ultimately, we believe that
foundation models for microscopy imaging should be able to understand cell morphology at
all scales, in all cell types, and independently of the imaging technology used for observation.
This work addresses the data gap hindering the development of generalizable models for
cellular imaging. Progress in machine learning is often catalyzed not only by algorithmic
novelty but by the rigorous, large-scale data curation efforts that enable it. ImageNet (Deng
et al., 2009) and LAION (Schuhmann et al., 2022) are prominent examples that fundamen-
tally shifted the focus of representation learning research and supported breakthroughs that
would have been impossible without such data. In computational biology, challenging and
realistic data is similarly necessary to advance the field. While significant progress has been
achieved with fixed-channel image models, many open problems still exist to achieve a gen-
eral understanding of cellular states regardless of the imaging technology. CHAMMI-75 is the
first resource to integrate heterogeneous multi-channel imaging data at this scale in a way
that directly facilitates the investigation of these challenges.
The purpose of CHAMMI-75 is to facilitate the creation of models for cell phenotyping,
which is the task of identifying and quantifying morphological differences between cellular
states (e.g., healthy vs. perturbed cells). This goal is distinct from, but complementary to,
other critical bioimage analysis tasks such as cell segmentation, where foundation models
like Segment Anything for Microscopy (Archit et al., 2025) have demonstrated success in
generalized mask generation across modalities. CHAMMI-75 provides the data necessary
to train and evaluate models that can detect subtle biological classification signals, which
cannot be achieved through segmentation alone.
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Figure 3: Diversity of sources and biological studies in CHAMMI-75. The treemap illustrates the
distribution of images according to the hosting platforms they were obtained from (colors) and the
type of biological study (inner rectangles). We sampled from 18 different sources to ensure broad
coverage of biological study types.

The contributions of our work are: (1) we introduce a large, heterogeneous dataset of
multi-channel microscopy images, with 25 channel types and high technical and biological
variation. (2) We introduce two new datasets and benchmarks to evaluate multi-channel
model performance, which represent real-world contemporary biological studies with novel
channel combinations (e.g., 14-channel images). (3) We conducted a systematic experimen-
tal evaluation to investigate the usefulness of our dataset as a pre-training resource, using
self-supervised learning. The experimental results show that CHAMMI-75 yields strong mod-
els that perform well in a diverse set of challenging biological tasks. (4) We will make all
the data, code, and models publicly available to allow for reproducibility of our results, and
to facilitate future development in the field.

2 Related Work

Figure 2 provides a high-level overview comparison of our dataset and prior work. The
biological imaging community has a long tradition of publicly sharing the datasets obtained
in their studies. Prominent initiatives to store and share imaging datasets include the
Image Data Repository (IDR) (Williams et al., 2017), the Bioimage Archive (Hartley et al.,
2022), and the Cell Painting Gallery (Weisbart et al., 2024). Other major projects create
large datasets of cells exposed to many treatments to serve as a map to investigate various
biological questions. These include the RxRx datasets (Sypetkowski et al., 2023), along
with the JUMP-CP dataset (Chandrasekaran et al., 2023b), which cover a large number
of genetic and chemical perturbations. Similarly, the Human Protein Atlas (Thul et al.,
2017), the OpenCell project (Cho et al., 2022), and Allen Institute for Cell Science (Viana
et al., 2023) have created image datasets to map the localization of proteins in human cells.
While all these resources have multi-channel images and are publicly available, they are
typically used and analyzed separately. Closest to ours is IDRCell100k (Bourriez et al.,
2024), a dataset created for multi-channel model development containing 100K images from
79 different sources. Inspired by their work, we extend the effort and scale to an order of
magnitude more images and with additional data curation.
Prior work has explored channel-adaptive imaging (e.g., (Bao et al., 2023; Bourriez et al.,
2024; Kraus et al., 2024; Pham & Plummer, 2024; Pham et al., 2025)), and where the
number and configuration of the input channels is not fixed, they either train on private
data (Kraus et al., 2024; Kenyon-Dean et al., 2024), or on small, publicly available datasets
for proof-of-concept experiments (Chen et al., 2023). Other work either focuses on weakly-
or self-supervised methods over fixed channels (Caicedo et al., 2018; Moshkov et al., 2024;
Doron et al., 2023; Kim et al., 2025), or developing channel-agnostic methods (Carpenter
et al., 2006; Caicedo et al., 2017; Pawlowski et al., 2016; Ando et al., 2017; Xun et al.,
2024; Morelli et al., 2025; Lian et al., 2025; De Lorenci et al., 2025). These studies provided
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Figure 4: Content and distribution of images in CHAMMI-75 according to the integrated metadata.
a) Selected metadata fields and summary statistics of their diversity. b) Sparse, long-tail distribution
of channel configurations across studies. None of the studies has all channel types, and none of the
channels is used in all studies.

insight into how image-based profiling can reveal the response of cells to biological reagents
(Caicedo et al., 2016), and it can be scaled to high-throughput experiments using robotic
automation (Boutros et al., 2015). As our dataset contains varying numbers of channels, our
experiments use representatives of both channel-agnostic and channel-adaptive modeling.

3 The CHAMMI-75 Dataset

CHAMMI-75 is a collection of 2,849,483 fields-of-view (FoV) sampled from 75 publicly available
microscopy imaging studies; 74 sources used for pre-training data and one source held out
for evaluation only. Each FoV in the pre-training set is a multi-channel microscopy image
with up to seven channels, and may have a single or multiple cells (Figure 1). Our dataset
is the largest multi-channel image dataset for model pre-training in microscopy. Compared
to existing microscopy imaging datasets, CHAMMI-75 draws from many more sources and
contains many more channel types (Figure 2), opening new opportunities to investigate
multi-channel models at large scale.
The process of building CHAMMI-75 followed three major phases. We started with a data
acquisition phase for selecting hosting platforms, identifying source datasets, downloading
raw data, and standardizing image formats. Next, we conducted a metadata integration
phase where all the experimental details of the downloaded images were collected, organized,
and integrated across all sources. The final phase was data curation, which focused on
strategically sampling the most representative and informative images for learning. This
phase transformed the downloaded image set collected in the first phase into CHAMMI-75.
Data acquisition. The CHAMMI-75 dataset was collected from 18 different hosting plat-
forms that store biological images from published scientific studies (Figure 3). The top 5
sources of imaging data according to the number of studies obtained are: The Image Data
Resource (IDR) (Williams et al., 2017), Zenodo (CERN & OpenAIRE, 2013), Mendeley
Data (Elsevier, 2025), Figshare (Singh, 2011), and RxRx (Recursion, 2025). Other promi-
nent sources of high-quality imaging data include: The Cell Painting Gallery (Weisbart
et al., 2024), the BioImage Archive (Hartley et al., 2022), the Human Protein Atlas (HPA)
(Thul et al., 2017), the Broad Bioimage Benchmark Collection (Ljosa et al., 2012), and the
Allen Institute for Cell Science (Viana et al., 2023). These repositories provide access to
image datasets created by biological labs around the world with open data licenses; 97%
of datasets in our collection have a Creative Commons license (65% CC BY 4.0, 12% CC0
1.0). More details in Table A6.
From these hosting platforms, we selected 75 source datasets with highly heterogeneous
biological and technical settings. Biological diversity was defined in terms of organisms
and types of perturbations, while technical diversity was defined in terms of microscopy
techniques and imaging settings (Figure 4). More details of the data acquisition pipeline in
Appendix A.1.
Metadata integration. We collected metadata information to prepare consistent infor-
mation for guiding the sampling of high-quality, diverse images for the pre-training set.
Not all images are equally informative or useful, and we targeted biological and technical
variables reported in the original studies for filtering purposes. As a result, the metadata
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Figure 5: Dataset curation pipeline. Left: the dataset downloaded from the hosting platforms.
Middle: the metadata is used to filter redundancy by randomly sampling a few: 2D slices from
3D images, frames from live microscopy videos, and wells from control conditions. Right: content-
based clustering selects diverse, high-quality images as a final step to create CHAMMI-75.

table has 22 columns organized in 6 groups depending on the type of information (Figures 4
and A9). These values were obtained from the original sources by parsing information from
(1) available resource descriptor files, (2) values encoded in image filenames, and (3) details
reported in the source paper. Most studies have a scientific publication that describes ex-
perimental details, and for part of the metadata preparation, we used large-language models
to assist with the identification and organization of certain information. The final meta-
data was parsed programmatically using deterministic rules and then manually curated and
validated. (Appendix A.3).
Data curation. Data curation is an important effort to successfully scale representation
learning (Vo et al., 2024; Siméoni et al., 2025). Our goal was to select a diverse sample that
represents the main factors of variation in the ∼26M downloaded images. To this end, we
systematically sampled images following information in the metadata table. Figure 5 illus-
trates the main steps of the dataset curation, designed to minimize redundancy and select
informative images from all sources. The main filtering steps include 3D stack sampling,
temporal sampling, control-based sampling, and K-means based filtering (Appendix A.2).
By carefully curating images in this way, we selected 2.8M diverse multi-channel images
from multiple sources, resulting in the pre-training dataset CHAMMI-75.
Content annotations. We analyzed image contents to produce annotations about the
locations of single cells. Specifically, we configured cell segmentation pipelines for all sources
using Cellpose (Stringer et al., 2021; Pachitariu & Stringer, 2022) primarily to detect the
nucleus (when available) or the cell body. We recorded the center of mass coordinates
for 1.8B single cells found in the 2.8M multi-channel images. This information is useful
to generate crops that contain visible cells during training, thus avoiding empty, noisy, or
non-informative regions. More details are reported in the Appendix A.8.

4 Evaluation benchmarks

Here we briefly describe six datasets and associated evaluation tasks that we adopt for
performance evaluation, which represent real-world, contemporary image-based biological
studies. Details about the benchmarks are reported in Figure 6 and in Appendix A.9.
CHAMMI benchmark. This benchmark (Chen et al., 2023) contains about 220K multi-
channel images in three subsets with different numbers and types of channels, and includes
six out-of-domain generalization tasks. The tasks include: cell-cycle stage classification (3
channels, WTC-11 dataset), protein localization classification (4 channels, HPA dataset),
and replicate treatment retrieval (5 channels, LINCS Cell Painting dataset). We follow the
standard evaluation protocol and report the CHAMMI score.
IDR-0017. A chemical-genetic interaction study (Breinig et al., 2015) that includes 150K
two-channel images of 12 cell-lines treated with 1,280 compounds. The task is to identify
hits among the combinatorial experiments by ranking gene-compound combinations that
are likely to have a large effect with respect to controls. Ground truth hits were obtained
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Figure 6: Illustration of the evaluation sets in CHAMMI-75. We adopted existing benchmarks
(HPAv23 (Gupta et al., 2024) and JUMP-CP1 (Chandrasekaran et al., 2023a)), and introduce
three new from real biological studies (IDR0017 (Breinig et al., 2015), CellPHIE (Kang et al.,
2025), and RBC-MC (Doan et al., 2020)) for channel and cross-domain generalization.

from the original study, and performance is evaluated using recall at the top 50 and 100
items of a ranked list and AUROC.
HPAv23 at 256×256. HPA studies the localization of proteins in human cells by classifying
images of cells into the correct localization category (Ouyang et al., 2019; Le et al., 2022).
We adopt the latest version of the dataset, HPAv23, with 1.1 million images of single cells
and annotations for protein localization classification in 19 or 31 classes. The original image
size is 1024x1024, and we reduced it to 256x256 to accelerate benchmarking. We preserve
the rest of the benchmark intact, and report average precision scores accordingly.
JUMP-CP1 Compounds. We adopt a subset of the JUMP-CP (Chandrasekaran et al.,
2023b) dataset, which includes 24K five-channel images of U2OS cells perturbed with 306
chemicals at two time points. There are two ranking tasks in this benchmark: 1) phenotypic
activity: identify compounds with a response significantly different from negative controls,
and 2) phenotypic consistency: measures whether groups of biologically related compounds
are clustered together. We report mean average precision for both tasks.
CellPHIE. A pooled genetic perturbation screen to investigate Huntington’s Disease (Kang
et al., 2025), this dataset contains 57K 14-channel images of single cells perturbed with one
of 19 genes. A non-targetting control is used as a reference to determine the effect of
perturbations. The task is to classify single cells in a binary classification setting: non-
targetting vs perturbed gene. Images from this dataset are not included in the pretraining
dataset, resulting in a novel channel combination benchmark.
Red Blood Cell Morphology Classification (RBC-MC). A set of 130,560 single-
channel bright-field images (48x48 pixels) of RBCs obtained via imaging flow cytometry
from two distinct clinical sites (Swiss and Canadian blood banks) (Doan et al., 2020). The
task is a multi-class classification into seven clinically relevant morphological categories
associated with blood quality. The benchmark employs a cross-domain validation protocol
with a linear probe trained on data from one site and tested on the other (Swiss vs Canadian).

5 Experiments and Results

We identify two main multi-channel strategies that are emerging in recent work: (1) Bag
of channels (BoC) models, which train backbone networks that read one channel at a time
and then concatenate features for downstream tasks. Examples of this strategy include
Microsnoop (Xun et al., 2024), uniDINO (Morelli et al., 2025), and DINO-BoC (De Lorenci
et al., 2025). (2) Multi-channel attention (MCA) models, which unravel channel tokens into
a single, long sequence to model cross-channel associations. This includes models such as
Channel-ViT (Bao et al., 2023), CA-MAE (Kraus et al., 2024), and ChA-MAEViT (Pham
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Table 1: Performance of models across benchmarks. Column legend: mcT: Multi-channel training,
mcM: Multi-channel mechanism ( manual selection of channel combination, bag of channels,

variable-length sequence of channel tokens), Dataset: Pre-training dataset, CM: CHAMMI,
H: HPAv23 256x256, J1: JUMP-CP1, J2: JUMP-CP2, I: IDR0017, CP: CellPHIE (channel
generalization), R: RBC-MC (cross-domain generalization). All models are ViT-small and have
been trained with SSL, except for the top-line results of SubCell (gray row), which is a collection
of specialized, larger models (ViT-base) trained with multi-objective, weakly supervised learning.
The result of best performing SubCell model for each benchmark is presented. Numbers in bold
are best result among SSL methods. Bold numbers: best result across methods.

Model Characteristics Benchmarks ↑
Model mcT mcM Dataset CM H J1 J2 I CP R

SubCell × HPAv23 53.38 69.33 77.60 07.44 24.94 71.23 59.10
DINOv2 × LVD-142M 37.93 53.76 75.84 07.03 25.20 72.27 59.41
OpenPhenom X RxRx + JUMP 38.22 49.13 74.26 04.99 25.24 75.56 64.43
IDRCell X IDRCell100k 37.38 44.05 72.37 04.97 24.42 79.14 55.85
DINO-BoC X CHAMMI-75 L 48.75 58.87 76.32 06.79 25.53 80.51 68.34

et al., 2025), among others (Pham & Plummer, 2024; Bourriez et al., 2024). Here, we
benchmark ViT models with the BoC approach, and analyze their scalability properties
together with Channel-ViT as a representative architecture of MCA models.

5.1 Benchmarking experiments

We trained a ViT-small model with DINO-BoC (De Lorenci et al., 2025) on CHAMMI-75 and
compare the results against existing models used to obtain representations of cellular images.
Performance is measured in the six benchmarks described in Section 4.
Baselines. We consider state-of-the-art pre-trained models that have been recently re-
leased for cellular image analysis. We start with SubCell (Gupta et al., 2024), a suit of
ViT-base models trained with the HPAv23 dataset using multi-objective, weakly supervised
learning. SubCell has four fixed-channel models (one 2ch, two 3ch, one 4ch) trained in two
modes (MAE-Cells, ViT-ProtS). The eight SubCell models exhibit excellent performance in
downstream tasks; however, their usage requires manual configuration to decide a channel
combination and model type. The variation of results between SubCell models is substantial
(Appendix D.1.1), making its usage challenging and computationally expensive to test in
practice. We also evaluate OpenPhenom (Kraus et al., 2024), a channel adaptive ViT-small
model trained on five and six-channel Cell Painting images, and DINOv2 (Oquab et al.,
2023), which is a fixed RGB channel model adapted for multi-channel images using BoC.
Finally, we trained a model with the best configuration found in the scaling evaluation but
adapted for IDRCell100K (Bourriez et al., 2024), a multi-channel microscopy image dataset
close to ours in number of sources (79 vs 75) but smaller (100k multi-channel images).
Results. Table 1 shows pre-training channel-adaptive architectures with SSL yields mod-
els that are generally useful in many tasks, regardless of the number of channels. SubCell
sets top-line results across several benchmarks; its strong performance may be explained by
factors such as training with biological objectives, larger ViT models, channel specializa-
tion, and manual selection of best results across their different settings. Our BoC model
trained with CHAMMI-75 obtained the best performance in six out of seven benchmarks,
demonstrating generalization in tasks with varying channel configurations. The same model
trained with IDRCell100k (a multi-channel microscopy image dataset) underperforms in
most tasks, suggesting that CHAMMI-75 contains additional informative images and higher
quality data for learning. OpenPhenom also underperforms in several tasks, and while it is
channel adaptive, it was trained exclusively with Cell Painting data (RxRx & JUMP-CP)
using MAE. Overall, our model exhibits strong performance in challenging tasks thanks to
a combination of simple methods and high-quality, well-curated data.
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5.2 Channel Generalization and Cross Modality Transfer

We explore channel generalization through the most challenging and realistic scenarios en-
countered in biological practice. First, generalization to novel channel combinations, which
is very frequent in laboratories by combining known channels in novel ways. The CellPHIE
(CP) benchmark, with its unique 14-channel configuration, serves as a real-world test for
this capability. Second, generalization to novel modalities and domains. The RBC-MC (R)
benchmark tests this by using single-channel bright-field imaging flow cytometry (modal-
ity) to classify red blood cell morphologies. Importantly, its paired cross-domain evaluation
across clinical sites, challenges models to encode biologically relevant features.
The results, summarized in the last two columns of Table 1, strongly validate our approach:
the model trained with CHAMMI-75 (DINO-BoC) yields the best performance in both gener-
alization challenges. This performance contrasts sharply with highly specialized models like
SubCell, which lags behind when faced with these novel conditions. Specifically, our smaller,
SSL-trained model outperforms the larger, WSL-trained SubCell by 11% in CellPHIE and
13% in RBC-MC. This result confirms that the large scale and diversity of CHAMMI-75 are
essential factors for achieving robust channel and domain generalization.

5.3 Factors impacting representation learning
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Figure 7: Data ablation study with five factors of variation.
Heterogeneity and microscopy type (modality) are the main
drivers of performance improvements in CHAMMI-75.

To understand which factors of the
heterogeneous CHAMMI-75 dataset
drive robust representation learn-
ing, we performed five targeted
data ablation studies, systemat-
ically controlling and contrast-
ing key metadata variables while
measuring performance across the
six out-of-distribution generaliza-
tion tasks in the CHAMMI bench-
mark. These experiments revealed
a clear hierarchy of factors that
influence model performance (Fig-
ure 7). First, specialized vs. het-
erogeneous data: the single largest
factor is the sheer diversity of
the training data. Models trained
with specialized data from a single
task show a 40% relative perfor-
mance drop compared to models
trained on the full, heterogeneous
CHAMMI-75 set. This strongly suggests that generalized knowledge gained from broad ex-
posure outweighs highly specific, small-scale training. More details in Appendix B.
The second most influential factor is the diversity of imaging modality (microscopy type).
When we contrasted a model trained only on the two most dominant and similar modal-
ities (fluorescence and epi-fluorescence) against a model trained on the remaining twelve
less-represented modalities, the high-diversity modality model outperformed the dominant-
modality model by a 13% relative margin. This is a powerful finding that confirms our initial
hypothesis: it is the exposure to a broad range of technical acquisition methods, rather than
high volume within a narrow setup, that compels the model to learn truly generalizable rep-
resentations. Variations in frequent biological factors, such as training without the most
common cell line (U2OS or A549), or limiting training by the number of channels (e.g.,
training only on studies with up to two, three, or four channels), resulted in minor or neg-
ligible performance changes (∼ 1− 3%) across the generalization tasks. This indicates that
while highly diverse cell lines and varied channel counts contribute to overall robustness,
the diversity of the physical imaging process (modality) is the primary technical variable
that forces the model to learn a deeper, more abstract morphology.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

BoC

MCA

SSL fixed-ch.

Model: ViT-small Dataset: 74ds-small

SFC

Figure 8: Scaling properties of self-supervised, multi-channel models. Dataset and model scaling
results on the CHAMMI benchmark. SFC supervised fixed-channels, BoC bag of channels, MCA
multi-channel attention, model scaled with best configuration.

5.4 Scalability analysis

We evaluate CHAMMI-75 as a pre-training resource through two main evaluations. (a) Dataset
scaling: we assess performance on the CHAMMI benchmark (six out-of-distribution, phe-
notype matching tasks) by increasing the amount of multi-channel images used for training.
Baselines include specialized models (1ds, ∼33K images, 3, 4, or 5 channels). We then
combine sets: 3 CHAMMI subsets (3ds, 100K images, 8 channels), 10 datasets (10ds, 178K
images, 14 channels), and a sample of CHAMMI-75 (74ds-small, 560K images, 25 channels).
The full CHAMMI-75 set (74ds-large, 2.8M images, 25 channels) is used only for the main
benchmarking. (b) Model scaling: we fix the dataset size (74ds-small) and increase model
parameters. In all cases, we train ViT models, BoC (single channel) and MCA (variable
channels), with a 224x224 input size using three SSL algorithms (SimCLR, MAE, DINO).
Hyperparameters are kept consistent where possible. After SSL training, features are ex-
tracted from the CHAMMI test sets with frozen weights and no finetuning. Mode experi-
mental details in the Appendix C and G.2.
Consistent with prior work, models trained with SSL benefit from more data. Comparing
SSL performance against fully-supervised, specialized models (an upper bound), our results
(Figure 8) confirm that as data and model size increase, SSL models approach the specialized
supervised performance. This shows a single, scaled, unsupervised multi-channel model can
be highly competitive. The primary performance determinant is the multi-channel strategy
(BoC or MCA), followed by the SSL algorithm and model size. BoC models outperform
MCA in the SSL regime, suggesting difficulty in learning cross-channel correlations unsu-
pervised. BoC models are also easier to scale, as MCA requires 3X to 5X more GPU hours
due to longer sequences (Figure G21). Among algorithms, DINO consistently performs
best. Based on these findings, we trained a BoC ViT-small model using DINO on the full
CHAMMI-75 dataset (5X larger), requiring 2,352 GPU hours. This yielded a 9.8% relative
improvement over the best result from the dataset scaling evaluation, with potential for
further gains using larger ViT architectures, which were not explored.

5.5 Weakly supervised learning

Table 2: Performance of WSL models ChA-
MAEViT (Pham et al., 2025) and MCA-SupC (Khosla
et al., 2020) across benchmarks, with a DINO-based
self-supervised model (MCA-SSL) included for comparison.

Benchmarks ↑
Model CM H J1 J2 I CP
MCA-SSL 37.18 37.46 61.72 01.85 24.40 67.93
MCA-SupC 36.15 51.81 72.72 05.20 25.21 75.59
ChA-MAEViT 38.72 56.92 74.99 05.53 24.99 76.12

The state-of-the-art in image-
based profiling introduces prior
knowledge of biological conditions
using weakly supervised learning
(WSL) with objectives such as
treatment or protein classification
(Gupta et al., 2024; Moshkov et al.,
2024). While these pretext tasks
are not focused on the primary
model use, they improve perfor-
mance as long as the labels are
clean and consistent enough to fa-
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cilitate learning. Table 2 evaluates two WSL models trained with 74ds-small using
the CHAMMI-75 reagent identifier (see Appendix A.4). We find WSL method ChA-
MAEViT (Pham et al., 2025) obtains best performance, demonstrating the ability of
CHAMMI-75 to benefit multiple learning strategies.

5.6 Additional Analysis

Our experimental analysis was designed to isolate the impact of core design choices under
the self-supervised pre-training regime, which is necessary to leverage large, heterogeneous
datasets without consistent supervised labels. Our results suggest the following model fac-
tors impacting performance: (1) Multi-channel strategy: the BoC approach proved to be
more effective and scalable under the SSL regime, yielding up to 19% relative improvement
over MCA, which also has a high computational cost. (2) SSL method: among the tested
methods, DINO was the top-performing algorithm, showing a 15% relative improvement
over MAE and a 7% relative improvement over SimCLR (Figure 8a). (3) Model size: we
observed consistent performance gains from model scaling. Moving from ViT-Small to ViT-
Large models resulted in a relative improvement of 9% to 11% (Figure 8b). (4) The use
of weak supervision, even with noisy labels, improved performance by 1-19% relative to
the baseline in the MCA setting. These results provide guidance for future research on
multi-channel models as the field continues to bridge the gap between self-supervised and
supervised performance.
Finally, we conducted an evaluation of biological feature disentanglement using the batch
correction framework of Arevalo et al. (2024). The results indicate that features learned with
CHAMMI-75 are more robust to technical variation (requiring less batch correction) while
maximizing biological signal. Following correction with the Seurat CCA algorithm (Stuart
et al., 2019), our features achieve high separation of biological (compound) clusters from
technical (laboratory) batches, performing better than features extracted by CellProfiler
features and those learned from the IDRCell100K dataset. This validates that CHAMMI-75 is
a high-quality resource for learning disentangled features. This finding is further supported
by the qualitative analysis of our feature space (Appendix F), where UMAP visualizations
of single-channel features confirm that the primary clustering factor is the source study
(technical domain). This domain-sensitive learning indicates that models successfully encode
the immense heterogeneity of the dataset, confirming the necessity of post-processing steps
like batch correction to maximize biological signal (Appendix E).

6 Conclusion and Limitations

Conclusion. We introduced CHAMMI-75, a dataset of heterogeneous multi-channel mi-
croscopy images for pre-training cellular image analysis models. The dataset combined
images from 75 diverse sources, resulting in a curated, high-quality resource that has more
biological and technical variation than other microscopy datasets used in prior work. Our
dataset paves the way to investigate multi-channel imaging models at large scale, and can
facilitate the development of foundation models that work seamlessly across biological labs
and image configurations. We adopted existing benchmarks and introduced new ones, in-
cluding a novel channel combination set, to continue evaluating progress in the ever-changing
world of microscopy. Our experimental results show that CHAMMI-75 can be used to scale
models that yield strong performance across the benchmarks. All the data, code, and models
necessary to reproduce this research will be publicly available upon publication.
Limitations. The scaling evaluation was limited by the computational resources available
in academic institutions. This work was focused on high-quality data curation and leaves
the investigation of novel methods for multi-channel modeling for future research. The
final metadata is informative but noisy despite best efforts to standardize all sources. This
represents a real-world condition of imaging data, and generates challenges for supervised
methods or similar types of studies. While the presented dataset is large and representative
of many microscopy imaging types and biological conditions, it is also sparse and does not
cover all relevant variables in balanced way.
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Ethics Statement

We have no ethical concerns with our work. All the datasets sampled in our 75 studies have
been cited with their licenses. The licensing information can be obtained in the Appendix
A6. All these datasets can be used for furthering scientific research, and understanding
foundation models in microscopy but not for commercial purposes.

Reproducibility Statement

For reproducibility purposes, we will release our best model weights, dataset and the code
on a suitable platform upon acceptance of the paper. We hope that the community can use
this work as a resource for further research into foundation models for cellular microscopy.
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A Dataset

The CHAMMI-75 dataset contains two versions for pre-training: a small dataset for devel-
opment and ablation studies, and a large dataset for scaling models. Table A3 reports the
number of images in each set.

Table A3: Number of multi-channel images in the small and large pretraining sets

Set # Single Channel Images # Multi-Channel Images
Small 1,679,765 560,558
Large 8,029,583 2,849,483

A.1 Data Preparation

Before sampling and data curation, all the data from the original 75 studies was down-
loaded to our local servers in their original TIFF/OME 16-bit formats. We used a high-
throughput computing cluster (Center for High Throughput Computing, 2006), Condor
workflows (Livny et al., 1997), and GNU Parallel (Tange, 2024) for pre-processing and
standardization of these datasets, bringing them down to ∼50TB of compressed images.
First, we decoded the original image format (e.g., TIFF, flex, etc) and separated individual
channels, individual z-planes, and individual temporal frames into separate files. Next, we
standardized pixel depth from the original (e.g., 12 or 16 bits) to 8 bits after rescaling illu-
mination values. Images intensities were normalized between 0 and 255 after trimming the
tail end distributions of the initial histogram at the 0.1% and 99.9% percentiles. Finally,
each single file was independently stored in PNG format with lossless compression, resulting
in ∼42M individual channel files. Note that no spatial rescaling or cropping was used to
reduce storage size — images in our dataset preserve their original resolution.

A.2 Dataset Curation

3D sampling. Seven of the 75 studies involve imaging data acquired in three dimensions,
i.e., z-planes recorded at various depths. Given that our focus is 2D imaging, we sampled
20% of the z-planes from the central region of the 3D stack. This follows two observations:
first, images in the extremes of the stack appear to be empty or out of focus in most cases.
Second, z-planes from the same 3D stack are highly correlated and may not bring new
information from the 2D perspective. After applying this filtering, we reduced the number
of multi-channel images from 26.7M to 24.2M. A4 reports the sampling information for all
the 3D studies.

Table A4: 3D Sampling Information for Multi-Channel Images

Dataset Name Multi-Channel Images
After Before Ratio Preserved

idr0001 741,960 2,374,272 0.3125
idr0011 39,890 167,551 0.2381
idr0086 16,705 76,851 0.2174
idr0089 8,857 40,565 0.2183
idr0115 138,035 579,747 0.2381
idr0120 75,828 192,908 0.3931
idr0123 3,394 13,342 0.2544
wtc0001 39,294 117,882 0.3333

Temporal sampling. Nine of the 75 studies involve time-lapse imaging, i.e., images ac-
quired through time. In live microscopy, the camera does not move and the cells do not
move too quickly, resulting in highly correlated 2D frames. Following the same intuitions
from 3D sampling, we sampled a fraction of the frames by defining evenly distributed time
points in a given sequence. With this, we reduced the number of multi-channel images from
24.2M to 6.8M. A5 reports the sampling information for all the temporal studies.
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Table A5: Temporal Sampling of Studies for Multi-Channel Images

Dataset Name Multi-Channel Images
After Before Percent Preserved

idr0002 43,392 386,884 0.1122
idr0011 39,890 39,890 1
idr0013 959,795 17,848,117 0.0538
idr0115 14,815 138,035 0.1073
nidr0003 16,699 33,403 0.4999
nidr0020 14,685 29,370 0.5

Control-based sampling. The majority of studies in the collection involve experiments
with control conditions used to compare against treatments. Control samples are usually
abundant and replicated multiple times to improve the ability to make meaningful compar-
isons. To reduce redundancy, we sampled a fraction of the control images to balance its
representation with respect to treatment samples. This reduced the number of multi-channel
images from 6.8M to 5.9M.
Intensity filtering. The pixel intensity statistics of microscopy images tend to have a low
mean and a long tail distribution. We filtered channels whose mean pixel intensity is too
dark with respect to the distribution of all channels in the same study, under the assumption
that these images are mostly empty FoV or have too small or too few interesting objects.

A.3 Metadata parsing

The resulting metadata file is useful to understand the distribution of images and to sample a
representative subset. Figure 4 illustrates the diversity of images after selection and sampling
according to a few relevant annotations, which could be leveraged for learning. Importantly,
while there are many types of images represented, the specific subgroups in the training set
are sparse and have long-tail distributions (Fig. 4b). This is a known challenge of real world
data and an opportunity to investigate robust learning strategies despite the natural biases.
Also, note that the original sources may not have all the information of the 22 columns that
we tried to parse, due to lack of standards for imaging metadata (Schmied et al., 2024).
Therefore, the final metadata file may have missing information for some studies.

Techniques Used to Reduce the Number of Reagents in the Metadata After
merging all metadata sources the resulting file contained 145k reagents, which were reduced
to 92k using multiple alignment techniques. We performed metadata harmonization to
address heterogeneous identifiers and naming conventions in the candidate list. Using a
programmatic gene‑ID mapping step (mygene) we mapped ENSEMBL identifiers to HGNC
symbols and removed records that were duplicates by virtue of having both identifiers; this
eliminated 16,029 ENSEMBL‑only redundancies and reduced the working set to 114,748
reagents. We then applied a sequence of regex‑ and rule‑based sanitization passes: we dis-
carded tokens of two characters or fewer, removed purely numeric tokens of three characters
or fewer, and normalized hyphenation to collapse format mismatches (for example, MK2206
versus MK‑2206) while explicitly preserving legitimate hyphens that encode stereochem-
istry, numbered loci distinctions (gene1‑1 versus gene11), and organism‑specific conventions
(for example, fly/worm par‑1 versus human PAR1). We also stripped timestamp‑like exper-
imental annotations appended to gene symbols (for example, HU‑90‑min‑ILK6) and, when
a canonical symbol existed elsewhere in the list, removed the annotated variant entirely. We
also used some databases such as Flybase, and Pombase datasets to rename Drosophila and
Yeast related genes.

Ground Truth Extraction for IDR Studies We developed a reproducible, meta-
data‑paper pipeline to adjudicate “hit” versus “no hit” labels for candidate metadata
reagents using the content present in each paper’s reconstructed text, tables, and ma-
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chine‑generated figure descriptions. A dataset‑specific prompt encodes the inclusion criteria
for what constitutes a hit in that study.
The pipeline begins by loading the reconstructed text for a selected study. If image links
are present in the text, we apply a two‑stage figure augmentation pass using OpenAI’s o1
model (Jaech et al., 2024). First, we download each image and produce a transcription that
captures the image, visible labels and legend text. Second, we use the figure transcription to
summarize roles, interactions, conditions, and quantitative readouts described in the figure.
For each image, the URL in the text is replaced with the generated description so that
subsequent steps operate on a text representation that incorporates figure content.
Candidate entity construction is metadata‑driven. We read the study’s reagent or gene list
line‑by‑line and derive name variants by lowercasing, extracting parenthetical synonyms,
and stripping common suffix words to produce base names. We compile a word‑bounded
regular‑expression union of all variants, exclude very short tokens and a small stoplist to
reduce spurious matches, and scan the augmented text to recover a de‑duplicated set of
candidates that are explicitly mentioned in the paper. Because candidates originate from
the metadata list and are matched with word boundaries, we limit substring bleed (for
example, avoiding matches of “ER” within “ERK”).
Hit adjudication is performed by invoking paper specific “hit” definitions for each candidate
against the full augmented text under a text‑only evidence policy. The adjudicator, Ope-
nAI’s o1 model, must both assert whether the candidate meets the inclusion criteria and
return a concise rationale together with a short, verbatim in‑text snippet that substantiates
the decision; labels without a snippet do not qualify as positive.
Inclusion criteria are encoded per dataset to reflect the study’s stated endpoints. For
IDR0017 specifically, a hit is a reagent that exhibits interaction activity with any screened
cell line. In all cases, external knowledge is disallowed and every positive must be justified
by an in‑paper snippet. Outputs consist of a per‑reagent record written to a study‑specific
text file that captures the final label, a brief rationale, and a snippet of at most two sen-
tences that provides the evidentiary anchor. We additionally persist the full processing log,
the augmented text file where applicable, and a JSON file with per‑figure transcriptions and
relationship summaries. Each record includes provenance fields such as the paper identifier,
the exact matched string for the entity, model name and version, timestamps, and prompt
versions to facilitate audits and downstream benchmarking.

A.4 Metadata Columns and Descriptions

Our metadata fields are divided into six different groups, where each group corresponds to
a particular type of experiment. The metadata comes in six major groups: experiment,
biology, imaging, microscopy, geometry, and storage information. Each record in the meta-
data file points to a single channel file. The metadata is designed to facilitate grouping of
channel files according to the categories described before. For each category, we have several
metadata columns described below. If the information for an image is missing or not known,
the corresponding value will be labeled with the string “unknown”. We try not to leave NaN
or empty strings in the metadata file. If you see something, say something. A9 contains
visualization of the six groups of metadata and the 22 fields present in the metadata.
We are going to provide a detailed list with descriptions for all the different columns present
in the metadata:

1. experiment.study: Identifier of the study.
2. experiment.plate: Plate where the image was acquired. If images come from

another format (not plate-based), this identifier can indicate a major group of ex-
perimental arrangements in the study.

3. experiment.well: Well position within the plate. The format of letter and number
is preferred, but this is flexible.

4. experiment.reagent: Identifier or name of the treatment or reagent used to treat
the cells. In many cases, this is a gene name, a compound name, or a protein
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name, while in other cases it may reflect other experimental interventions (e.g.,
temperature).

5. experiment.control: Whether the image comes from a control well or not, and
what type of control they may be, for example, positive or negative control. If not
a control, use the string “no”.

6. biology.organism: Name of the organism where the cells come from. For example,
humans, mice, plants, etc.

7. biology.cell_line: Name of the cell line. Many cell lines have well-known names
(such as HeLa), other cell lines are from primary patients and have anonymized
codes, and others are from genetically modified organisms.

8. biology.cell_type: The functional type of cell, regardless of the cell line. Exam-
ples include neurons, red blood cells, cancer cells, pancreatic cells, etc.

9. imaging.multi_channel_id: This is the field that ties together multiple chan-
nels. It is a consecutive number from the original database concatenated with the
study number. A unique multi_channel_id connects the channels of an image.

10. imaging.panel: Names and dyes of the channels used to create the image. This
gives context for where the observed channel file comes from. Example: “DNA,
protein, cytoplasm”.

11. imaging.channel: Numeric value of the channel according to the panel. This value
is one-based.

12. imaging.channel_type: Biological compartment of the cell that is visible in the
channel. This is a list of standardized values that include: nucleus, cell body,
bright-field, etc.

13. microscopy.type: Name of the type of microscopy used for acquisition of the
channel file. Examples include: fluorescence, bright-field, confocal, cryoEM, etc.

14. microscopy.magnification: Numeric value of the magnification used to acquire
the image.

15. microscopy.fov: Field of view, well site, or microscope position in the well when
the channel was captured.

16. geometry.width: Channel width in pixels.

17. geometry.height: Channel height in pixels.

18. geometry.depth: Total number of z-planes this channel belongs to, if the study is
a 3D imaging assay.

19. geometry.channels: Total number of sibling channels in the same image.

20. geometry.z_slice: Number of the z-plane for this channel. It is a numerical value.

21. geometry.timepoint: Number of the frame in the timelapse sequence, if applica-
ble.

22. storage.path: File path of the PNG file in the dataset containing this channel

A.5 Metadata quality and handling inconsistencies

The construction of CHAMMI-75 involved integrating 75 heterogeneous studies, many of
which lacked standardized or complete metadata, reflecting a general deficiency in data shar-
ing practices across biology. Our approach to handling missing, inconsistent, and ambiguous
data was rigorous yet pragmatic, acknowledging that perfect retrospective standardization
is often impossible.
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Figure A9: Visualization of metadata fields in six groups and 22 fields.

Handling missing data. The vast majority of studies provided partial metadata.
For fields where information was unequivocally absent (e.g., biology.cell_type or mi-
croscopy.fov), the entry was explicitly and consistently annotated with the string ”unknown”.
This approach avoids using null values or empty strings, ensuring consistency for subsequent
programmatic access and filtering.

Resolving ambiguity and inconsistency. In cases where metadata was ambiguous
(e.g., multiple spellings for a cell line, or an overly verbose stain identity), we employed
a multi-step resolution pipeline: (1) Cross-reference: values were validated against other
metadata columns (e.g., cross-checking organism and cell line). (2) External validation: we
performed targeted web searches and reviewed the associated scientific publications to infer
the most likely accurate value. (3) LLM-assisted parsing: As noted in Appendix A.3, we
used LLMs to systematically extract and organize certain information, providing a rapid,
initial pass at resolving naming variants and extracting structured data from free-form
text descriptions. (4) Manual curation and normalization: to minimize inconsistencies, all
resulting values were manually reviewed, low-cased, and mapped to a simplified vocabulary
or ontology where possible (e.g., different fluorescence channels like ’DAPI’, ’Hoechst 33342’,
and ’Nuclear stain’ were often mapped under the canonical channel_type of ’nucleus’).

Last resource. If, after all these steps, the interpretation remained uncertain (e.g., a stain
was ambiguously described and the original publication offered no clarity), we defaulted to
preserving the original value or, more conservatively, labeling the entry as ”unknown”.
The resulting metadata table, while significantly cleaned, remains inherently noisy. We
view this noise and high sparsity (Figure 4b) not as a limitation, but as a defining feature
of the resource. Unlike highly standardized datasets produced synchronously by a single
consortium, CHAMMI-75 attempted to align data that were never intended for cross-study
integration. This noisy complexity presents the real-world challenge foundation models
for bioimaging must solve –to learn representations that are robust despite inconsistent.
Future efforts should focus on promoting standardized metadata acquisition for new studies
(Schmied et al., 2024), as retrospectively fixing metadata is computationally infeasible and
prone to subjective error. Furthermore, our dataset provides a compelling target for future
research into semi-automated, multi-modal systems capable of resolving these remaining
metadata inconsistencies.

A.6 Data Sources

The following are the official data sources or hosting platforms where we obtained microscopy
images to curate the CHAMMI-75 dataset in alphabetical order: Allen Institute (Viana et al.,
2023), AMSActa (of Bologna, 2025), BBBC (Ljosa et al., 2012), BioImage Archive (Hartley
et al., 2022), BioStudies, Cell Painting Gallery (Weisbart et al., 2024), Edmond (Society,
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2025), EMPIAR (Iudin et al., 2023), Figshare (Singh, 2011), GitHub (Kaggle, 2025), HPA
(Thul et al., 2017), IDR (Williams et al., 2017), Mendeley Data (Elsevier, 2025), OSF
(OSF, 2025), Recursion (Recursion, 2025), University of Reading Research Data Archive
(of Reading, 2025), Zenodo (CERN & OpenAIRE, 2013). Each of the 75 datasets are
listed in Table A6 with their corresponding licenses, number of channels per image, and the
number of multi-channel images sampled from the original dataset.

Table A6: Image Dataset Information

ID Dataset License Channels Images

CellPHIE CellPHIE (Broad Institute) (Kang et al., 2025) CC BY-NC 4.0 14 57,021
hpa0018 HPAv18 (HPA) (Thul et al., 2017) CC BY-SA 4.0 4 113,545
hpa0023 HPAv23 (HPA) (Thul et al., 2017) CC BY-SA 4.0 4 249,999
idr0001 IDR0001 (IDR) (Graml et al., 2014) CC BY 4.0 2 112,476
idr0002 IDR0002 (IDR) (Hériché et al., 2014) CC BY 4.0 2 27,092
idr0003 IDR0003 (IDR) (Breker et al., 2013) CC BY-NC-SA 3.0 3 43,072
idr0005 IDR0005 (IDR) (Toret et al., 2014) CC BY-NC-SA 3.0 1 34,698
idr0006 IDR0006 (IDR) (Fong et al., 2013) CC BY-NC-SA 3.0 2 125,508
idr0007 IDR0007 (IDR) (Srikumar et al., 2013) CC BY-NC-SA 3.0 2 3,213
idr0008 IDR0008 (IDR) (Rohn et al., 2011) CC BY-NC-SA 3.0 4 23,159
idr0009 IDR0009 (IDR) (Simpson et al., 2012) CC BY 4.0 3 86,116
idr0010 IDR0010 (IDR) (Doil et al., 2009) CC BY 4.0 2 44,761
idr0011 IDR0011 (IDR) (Ledesma-Fernández & Thorpe, 2015) CC BY 4.0 3 17,893
idr0012 IDR0012 (IDR) (Fuchs et al., 2010) CC BY-NC-ND 4.0 3 22,182
idr0013 IDR0013 (IDR) (Neumann et al., 2010) CC0 1.0 1 208,474
idr0017 IDR0017 (IDR) (Breinig et al., 2015) CC BY-NC-ND 4.0 2 65,048
idr0022 IDR0022 (IDR) (Koedoot et al., 2019) CC BY 4.0 1 54,690
idr0025 IDR0025 (IDR) (Stadler et al., 2012) CC BY-SA 3.0 4 564
idr0028 IDR0028 (IDR) (Pascual-Vargas et al., 2017) CC BY 4.0 4 33,707
idr0030 IDR0030 (IDR) (Sero & Bakal, 2017) CC BY 4.0 4 38,017
idr0033 IDR0033 (IDR) (Rohban et al., 2017) CC BY 4.0 5 16,024
idr0035 IDR0035 (IDR) (Ljosa et al., 2013) CC BY 4.0 3 11,403
idr0037 IDR0037 (IDR) (Vigilante et al., 2019) CC BY 4.0 5 17,617
idr0056 IDR0056 (IDR) (Stojic et al., 2020) CC BY 4.0 5 50,177
idr0069 IDR0069 (IDR) (Caldera et al., 2019) CC BY-NC 4.0 3 82,812
idr0072 IDR0072 (IDR) (Schormann et al., 2020) CC BY 4.0 2 68,642
idr0080 IDR0080 (IDR) (Way et al., 2021) CC0 1.0 5 11,425
idr0081 IDR0081 (IDR) (Georgi et al., 2020) CC BY 4.0 2 10,040
idr0086 IDR0086 (IDR) (Miron et al., 2020) CC BY 4.0 6 15,283
idr0088 IDR0088 (IDR) (Cox et al., 2020) CC BY-NC 4.0 3 151,021
idr0089 IDR0089 (IDR) (Fischl et al., 2020) CC BY 4.0 3 8,077
idr0093 IDR0093 (IDR) (Müller et al., 2021) CC BY 4.0 5 44,858
idr0094 IDR0094 (IDR) (Ellinger et al., 2021) CC0 1.0 1 65,828
idr0115 IDR0115 (IDR) (Otsuka et al., 2023) CC BY 4.0 2 13,273
idr0120 IDR0120 (IDR) (German et al., 2021) CC BY 4.0 5 33,390
idr0123 IDR0123 (IDR) (Mota et al., 2022) CC BY 4.0 7 3,157
idr0128 IDR0128 (IDR) (Olszewski et al., 2022) CC BY 4.0 2 9,539
idr0129 IDR0129 (IDR) (Olszewski et al., 2022) CC BY 4.0 2 10,441
idr0130 IDR0130 (IDR) (Olszewski et al., 2022) CC BY 4.0 2 3,785
idr0133 IDR0133 (IDR) (Dahlin et al., 2023) CC BY 4.0 5 23,149
idr0140 IDR0140 (IDR) (Ho et al., 2022) CC BY 4.0 2 16,721
idr0145 IDR0145 (IDR) (Ho et al., 2023) CC BY 4.0 2 16,338
jump0001 cpg0016-jump (Cell Painting Gallery) (Chandrasekaran

et al., 2023b)
CC0 1.0 5 146,741

nidr0001 ALFI (Figshare) (Antonelli et al., 2023) CC BY 4.0 1 2,146
nidr0002 Stomata (Mendeley Data) (Dey et al., 2023) CC BY 4.0 3 1,004
nidr0003 S-BIAD531 and S-BIAD840 (BioImage Archive) (Jones

et al., 2024)
CC0 1.0 1 15,056

nidr0004 White blood cells (Figshare) (Bodzas et al., 2023) CC BY 4.0 3 14,565
nidr0005 BriFiSeg (Zenodo) (Mathieu et al., 2022) CC BY 4.0 1 1,029
nidr0006 VirtualStaining (Figshare) (Trizna et al., 2023) CC BY 4.0 4 252
nidr0007 S-BIAD300 (BioImage Archive) (Yakimovich & Galimov,

2021)
CC0 1 31,558

nidr0008 BBBC030 (BBBC) (Koos et al., 2016) CC BY 4.0 1 60
nidr0009 Parasites (Mendeley Data) (Zhang et al., 2022) CC BY 4.0 3 297
nidr0010 DICimages (University of Reading Research Data Archive)

(Kempster et al., 2022)
CC BY 4.0 1 132

nidr0011 PerceptiLabs/bacteria (GitHub) CC0 1.0 1 366
nidr0012 DeepBacs1 (Zenodo) (Spahn et al., 2022) CC BY 4.0 1 99
nidr0013 DeepBacs2 (Zenodo) (Spahn et al., 2022) CC BY 4.0 1 60
nidr0014 DeepBacs3 (Zenodo) (Spahn et al., 2022) CC BY 4.0 1 34
nidr0015 EVICAN (Edmond) (Schwendy et al., 2020) CC BY 4.0 1 4,361
nidr0016 Fluorescent Neuronal Cells v2 (AMSActa) (Clissa et al.,

2024)
CC BY 4.0 2 1,809

nidr0017 LIVECell (Figshare) (Edlund et al., 2021) CC BY 4.0 1 5,165
nidr0018 Omnipose (OSF) (Cutler et al., 2022) CC BY-NC 3.0 1 791
nidr0019 BBBC042 (BBBC) (Suleymanova et al., 2018) CC BY 4.0 1 1,054
nidr0020 VISEM-Tracking (Zenodo) (Thambawita et al., 2023) CC BY 4.0 3 13,608
nidr0021 WBC1 (Mendeley Data) (Zheng et al., 2018) CC BY-NC 3.0 3 300
nidr0022 WBC2 (Mendeley Data) (Zheng et al., 2018) CC BY-NC 3.0 3 100
nidr0023 S-BSST265 (BioImage Archive) (Kromp et al., 2020) CC0 1.0 1 79
nidr0024 CEM500K (EMPIAR) (Conrad & Narayan, 2021) CC0 1.0 1 264,187
nidr0025 S-EPMC8322260 (BioStudies) (Khoshkenar et al., 2021) CC BY 4.0 2 81
nidr0027 Microscopic peripheral blood (Mendeley Data) (Acevedo

et al., 2020)
CC BY 4.0 3 15,710

Continued on next page
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Continued from previous page
ID Dataset License Channels Images

nidr0028 Three fold annotated potato dataset (Figshare) (Biswas &
Barma, 2020)

CC BY 4.0 3 14,269

nidr0029 RxRx19a (Recursion) (Heiser et al., 2020) CC BY 4.0 5 60,594
nidr0030 RxRx19b (Recursion) (Cuccarese et al., 2020) CC BY 4.0 6 34,787
nidr0031 RxRx1 (Recursion) (Sypetkowski et al., 2023) Recursion Custom

Commercial License
6 26,328

nidr0032 RxRx2 (Recursion) (Cuccarese et al., 2020) CC BY-NC-SA 4.0 6 30,744
wtc0001 WTC-11 (Allen Institute) (Viana et al., 2023) Allen Institute Terms

of Use
4 117,882

Total 2,849,483

A.7 Comparison to other datasets

These datasets were chosen for comparision as our dataset is not a biological study but
rather an AI-ready dataset to investigate single-cellular morphology foundation models. Our
data set is not a reference set for interactive querying because it contains diverse samples
from heterogeneous studies in a way optimized for machine learning, not for biological
discoveries. We have compared our data set against similar imaging data sets that are ready
for machine ingestion and have been used in relevant work to build foundation models in
cellular morphology. All the numbers used in Figure 2 are reported in the table A7.

Table A7: Overview of Multi-Channel Image Datasets.

Name Images Src Ch. Org. Access Cite
CHAMMI-75 2,849,483 75 25 Multi-channel Public Ours
CHAMMI 220,284 3 8 Multi-channel Public (Chen et al., 2023)
RxRx 4,168,973 6 6 Fixed-channel Public (Recursion, 2025)
Jump-CP 8,109,884 12 5 Fixed-channel Public (Chandrasekaran et al., 2023a)
HPAv23 1,138,378 1 4 Fixed-channel Public (Gupta et al., 2024)
IDRCell100k 104,093 79 10 Multi-channel Public (Bourriez et al., 2024)
Phenoprints-16M 16,000,000 1 6 Fixed-channel Private (Kenyon-Dean et al., 2024)
CytoImageNet 890,737 40 12 Mixed-channel Public (Hua et al., 2021)
Microsnoop 2,230,000 7 3 Mixed-channel Public (Xun et al., 2024)

Src refers to Source. Org. refers to the type of organization of the dataset and whether it was
multi-channel, fixed-channel or mixed-channel. Multi-channel means that it has images with
images having varied number of channelled images, Fixed-channel means that the images
only have one configuration of channels. Mixed channel mean if they originally had images
with varied number of channels but the channel order and information was not preserved
properly.

A.8 Cell segmentation and cellular scales

We used the Cyto3 model in Cellpose (Pachitariu & Stringer, 2022) to segment all the differ-
ent 75 studies in our dataset to obtain centroid coordinates of all these different microscopy
images at the single-cell level. Our goal was to segment the nucleus of the cells as that was
the most consistent channel type present in all the studies. We manually configured Cell-
pose parameters such as size, and channels used for segmentation to improve segmentation
quality. We have found 300 million cells in the small version of our dataset and almost 1.8
billion cells (1,791,151,533 cells) in the large version of our dataset. Figure A10 provides a
quantitative background about the segmentation results.
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Figure A10: Segmentation pipeline examples.

It takes 7 days on 8 NVIDIA L40s GPUs to segment all multi-channel images in CHAMMI-75.
Once all images were segmented, we found that the area taken by the segmented nucleus
on microscopy images is 19.12%, which means that 80.88% of the nucleus image is empty.
To counteract this issue, we used our single cell coordinates to do guided crops during our
model training. We also annotated average cell sizes in all 75 studies, which helped us
observe the cellular structures at different scale levels similar to how magnification levels
are discrete in microscopy.
Cell scales. We manually determined crop sizes that contain subcellular, cellular, or multi-
cellular views and created study-level annotations for the 75 sources. The resolution of some
studies may only allow access to one or two of the three scales. These annotations are helpful
to crop and resize images in a predictable way.
We have developed cellular scale annotations at the multi-cellular scale and the cellular
scale. These annotations were obtained manually for all the different cellular scale levels.
We set the cell centroid for an image in the middle and crop the scale accordingly.

Multi-cellular

Single-cellular

Studies

C
ro
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S
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Figure A11: Histogram of cellular-level annotations
Data loader. In combination, the single-cell coordinates and the scale annotations are
useful information to design data loaders that generate fixed-size crops with the desired
properties. We implemented a data loader that samples image content hierarchically in
the following way: 1) randomly select a multi-channel image, 2) randomly select a single
cell from the coordinates table, 3) randomly select an available scale size, 4) crop a region
around the cell location with the selected scale size and then resize to a standard model
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input size, 5) finally, apply any additional transformations or augmentations. This design
can be modified or expanded to explore other multi-scale learning approaches.
Content annotations. The heterogeneous images in CHAMMI-75 have different sizes, mag-
nifications, and resolutions, which departs from the standard practice of assuming a fixed
configuration for all images. This means that a random crop from an image in CHAMMI-
75 may contain multiple cells, a single cell, or a subcellular structure. This lack of alignment
in scales can be a challenge for representation learning algorithms. We created study-level,
scale annotations for the 75 sources to determine the views available in an image (subcellu-
lar, cellular, multi-cellular). We implemented a content-aware, hierarchical data loader for
training that leverages cell coordinates and scale annotations.

A.9 Evaluation Datasets and Benchmarks

IDR-0017. This benchmark aims to reproduce the findings of the IDR017 study: A
Chemical-Genetic Interaction Map of Small Molecules (Breinig et al., 2015). The study
evaluates gene-compound interactions by treating 1,280 compounds on 12 isogenic cell-lines
using high-throughput imaging techniques. It extracts image-based features at the single-cell
level to quantify phenotypic changes under a combinatorial study that aims to understand
drug mechanisms and target effects.
The biological experiment behind the images aims to determine whether a cell-line (with a
mutated gene) responds to specific chemical treatments. A control experiment consists of a
cell-line without chemical treatment, and then other treatments are applied to evaluate if
there is any difference between using the treatments or not. When a difference between the
control experiment and the effect of a treatment is large enough, the chemical treatment
is labeled as a hit. In this study, there are a total of 1,280 × 12 = 15,360 combinatorial
experiments which identified 193 hits. To identify hits, the original study used 20 manu-
ally engineered features at the single-cell level, including cell size, actin intensity, nucleus
intensity, cell shape and nuclear shape.
The dataset consists of approximately 150k two-channel images across 96 384-multi-well
plates. The two channels are: a nucleus marker and a cytoskeleton marker, and 4 fields
of view are acquired per well at 10X magnification in 2048x2048 pixel images. Each plate
contains controls followed by treated cells, and the study is performed across 2 replicates on
2 different set of plates. The original dataset was obtained from IDR (Williams et al., 2017),
and we pre-processed the images to facilitate standardized analysis as follows: 1) Performed
cell segmentation using cellpose model using nucleus and cytoskeleton channel. 2) sampled
512 x 512 patch from every image based on cell density using segmentation maps to reduce
the number of cells to analyze. This method help us to reduce the average cell count from
2300 cells to 200 cells per image. 3) Patches of 100 x 100 are sampled across single cells for
feature extraction.
To transform the original analysis into an evaluation benchmark, we start computing features
using trained models to approximate the representation of the phenotypic changes at the
single-cell level. To identify hits, we use the model embeddings from images of the same
treatment to calculate the effect size with respect to control cells. The single-cell embeddings
are aggregated by taking the mean per image and two Eucledian distance matrices are
constructed: one for the treatment vs control images, and another one for the control vs
control images. The effect size of a compound is estimated using the Wasserstein distance
between the distance matrices of control and treatment image embeddings. To avoid batch
effects, we aggregate both replicates for each compound using PCA whitening normalization.
The compounds for each cell line are ranked on the basis of the effect score. We use
Recall@50, Recall@100, and AUROC as metrics to measure how well a model ranks high-
interaction compounds above low-interaction compounds.
HPAv23 at 256x256. The HPAv23 subcellular benchmark was released with the SubCell
model(Gupta et al., 2024). The dataset was originally curated in the 23rd version of the
Human Protein Atlas Project (Thul et al., 2017). The authors of (Gupta et al., 2024) made
crops of the images to allow machine ingestion, and develop a benchmark for the same. This
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benchmark provides a granular detail needed to test whether current models can identify
meaningful subcellular differences in cellular organization.
The dataset is a collection of immunofluorescence images encoding the expression and spa-
tiotemporal distribution of 13,141 genes in 37 cell lines. The images were stained with
DAPI, a fluorescent dye that labels the nucleus, and antibodies labeling endoplasmic retic-
ulum (ER), microtubules (MT) and protein of interest (protein). The images were cropped
from FOV images to single cell images that contained 1,138,378 cells. The data set was split
by the original authors based on antibodies with a ratio of 7: 1: 2 into training, validation,
and test sets, respectively. (Gupta et al., 2024) used a multilabel stratification strategy to
ensure a similar multilabel distribution between the sets.
The protein localization task we have adapted paper is a supervised learning task using
a multi-layer perceptron (MLP) on the features obtained from a frozen backbone of all
the models. The MLP classifier uses the same three-layer classifier architecture as (Kraus
et al., 2024) and focal loss (Cho et al., 2022) to address class imbalance in the dataset.
The classifiers were trained on features extracted from the whole HPAv23 set including the
pre-training set, and the rest of the images. Unlike the original authors, we downsampled all
images from 1024×1024 to 256×256 to accelerate the benchmark, reduce its time complexity,
and decrease storage requirements. We are re-releasing this reformatted set with our dataset
to enable easy usage of this benchmark. The task has two sets of classifier: the first set us
comprised of 19 categories specified in Kaggle challenge, and the second set has a broader
range of 31 categories. We have reported the micro and macro average precision (AP) as
the classification metrics and used multilabel ranking average error and coaverage error to
evaluate multilabel performance on the test sets just like the original authors. The challenge
category results are reported in the main text in 1, 2 and D15. The results of the unique
category are reported in D16
JUMP-CP1 Compounds. In this benchmark, the quality of the replicate level and con-
sensus treatment profiles is evaluated in a subset of the JUMP-CP1 dataset (Chandrasekaran
et al., 2023b) for the compounds that were originally curated with Broad Institute’s Drug
Repurposing Hub. Cell Painting assay (Bray et al., 2016) was used, where six fluorescent
dyes highlight eight cellular compartments that are imaged in five channels at 20X magni-
fication.
From a biological perspective, the aim is to capture meaningful differences between popu-
lations of cells with respect to the perturbation and the target of this perturbation. Those
differences between cell states might be subtle and hard to detect for certain types of pertur-
bations even against negative control (unperturbed) cells. The quality of the replicate level
profiles is defined by the closeness of a given perturbation replicates against a set of negative
control replicates. The quality of treatment-level profiles is evaluated by the closeness of
profiles with the same biological label (in this case, gene target) against other perturbations.
Both metrics are introduced and implemented in copairs benchmarking suite (Kalinin et al.,
2025).
Originally, JUMP-CP1 includes many biological and experimental conditions: two cell lines
(A549 and U2OS), three perturbation types (chemical compounds, gene open reading frame
(ORF) overexpression and CRISPR-Cas9 knockouts) captured at two time points. For this
benchmark, we used only the data from the U2OS cell line and chemical compound pertur-
bations at both time points, eventually having a similar set of seven 384-well plates that
matches the one used in the evaluation of SubCell (Gupta et al., 2024). The images from
the evaluation plates are not used in the pre-training set. Original 16-bit TIFF images
(24,192 fields of view – 120,960 single-channel images in total) were normalized and com-
pressed to 8-bit PNG images with DeepProfiler (Moshkov et al., 2024) prepare option and
then single-cell crops were exported with export-sc option, using the cell locations provided
with the original CellProfiler features, resulting in 2M unmasked cell-centered crops (”cells
in context”).
In this benchmark, we start by computing features for single-cell crops that are saved at size
160x160 and that are further cropped to size 128x128. The final 128x128 input images are
resized to accommodate to the expected input size of the particular model at use. Single-
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cell feature vectors are then aggregated using mean aggregation to the well-level (replicate)
profiles. Well-level profiles are then batch corrected with ZCA-whitening from pyCytominer
package (Serrano et al., 2025) relative to negative controls with epsilon = 0.001. This data
is then used in the benchmark: copairs returns mAP and p-value for each perturbation
(phenotypic activity) and target (phenotypic consistency). We report the mean mAP for
phenotypic activity as JUMP-CP1. For treatments that did not pass the 0.05 p-value
threshold, we assume mAP = 0. We report mean mAP for phenotypic consistency as
JUMP-CP2. Similarly, for targets that did not pass 0.05 p-value threshold, we assign
mAP = 0. As phenotypic consistency is calculated only for treatments that passed p-value
threshold for phenotypic activity, some targets might not be represented in this step of
benchmark. We also assign mAP = 0 to such missing targets.
CellPHIE. This study used iPSC-derived neurons to investigate genetic and morphological
markers of Huntington’s Disease using the latest generation of pooled genetic perturbations
at the single-cell level with a multiplexed optical screen. The dataset contains a total of
57,021 images out of which 45,782 training images and 11,239 testing images. The original
images from the dataset were filtered, and we kept images from DS28 time sample, and we
removed two genes from the original set which were DGKE and GAS7 genes. Single-cell
images segmented, cropped and masked at 64x64 pixels. The imaging panel consists of 5
Cell Painting channels and 9 protein markers obtained with immunofluorescence, for a total
of 14 imaging channels. The 14 channels in the images are in the following order: DNA,
NeuN, pRPS6, RANGAP1, NFKB, TOM20, LAMP1, TDP43, G3BP1, GM130, Golgin97,
SYTO, ER, AGP. Channels 2 to 10 are protein channels.
Each single cell was perturbed with one of 19 genes, which was identified with optical
barcoding. From the 19 perturbations, one is a non-targetting control used as a reference
to determine the effect of other preturbations. The task in this benchmark is to classify
single cells in a binary classification setting: non-targeting vs perturbed gene. The dataset
has a training / validation split to evaluate performance using a linear probe. Note that
none of the images in CellPHIE were included in the CHAMMI-75 training set, representing
a fully held-out set with novel channel combinations and the largest number of channels in
the benchmark.
RBC-MC. This benchmark is based on bright-field microscopy imaging of red blood cells
(RBCs) from Doan et al. (Doan et al., 2020) containing one channel. The dataset comprises
RBC samples collected from two geographically distinct blood banks located in Switzerland
and Canada. Following the experimental protocol, we train a logistic regression classifier on
one dataset and evaluate its performance on the other to assess cross-dataset generalization.
The benchmark consists of 76,577 images from the Swiss dataset and 46,695 images from
the Canadian dataset, with all images uniformly sized at 48×48 pixels. RBC morphology is
categorized into seven distinct classes: Smooth Disc, Crenated Disc, Crenated Discoid, Cre-
nated Spheroid, Crenated Sphere, Smooth Sphere, and Side View. Images originally labeled
as ”Undecided” by expert annotators, indicating uncertainty in morphological classification,
were excluded from the benchmark to ensure label quality.

B Factors Affecting Representation Learning

B.1 Motivation

Understanding the drivers of effective representation learning in microscopic imaging is
crucial for developing robust computer vision models in this domain. We systematically
investigated how various factors influence the quality of learned representations, focusing
on cell line diversity, imaging modality variety, channel configurations, and data similarity to
the target domain. A key finding emerged during our investigation: all factors of variation
are confounded with each other. When ablating one variable, we consistently observed
substantial changes in other variables, indicating complex interdependencies. We examined
four primary factors:
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Figure B12: Showcasing Cell Line Ablations of U2OS and A-459 compared to the Specialized
Models and model trained on CHAMMI-75

• Cell Line Ablation

• Modality Ablation

• Channel Number Variation

• Data Similarity To Target Domain

B.2 Cell Line Ablation

We conducted ablation studies comparing the removal of the dominant cell line (U2OS)
versus a less prevalent line (A459) from our training data. Although our data scaling
analysis (Figure 7) confirmed that larger datasets generally improve performance, ablating
U2OS—despite reducing total training data—yielded a 2 percentage point improvement over
ablating A459.
This counterintuitive result demonstrates that greater cell line diversity provides more value
than simply maximizing data volume from a single dominant source. The findings suggest
that representation learning benefits more from exposure to varied biological contexts, even
when this comes at the cost of fewer total samples per cell line (Figure B12).

B.3 Modality Ablation

To isolate the effect of modality diversity, we trained two separate DINO Bag-of-Channels
(BoC) models. The first model was trained exclusively on two microscopy modalities—flu-
orescence and epifluorescence—comprising 790,000 images. The second model incorporated
the remaining 13 modalities, totaling 880,000 images.
Despite having only 11 percentage more data, the 13-modality model substantially outper-
formed the 2-modality model, achieving approximately 5 percentage points higher perfor-
mance on the CHAMMI benchmark. This result contradicts simple data scaling predictions,
which would favor the larger dataset. Instead, our findings underscore that modality diver-
sity is a more critical factor than raw data volume.
These results align with previous work by (Arevalo et al., 2024), who identified microscopy
type as the dominant confounding factor in batch correction studies. This convergent ev-
idence suggests that exposure to diverse imaging modalities drives the learning of robust,
generalizable representations that transfer effectively across different imaging contexts (Fig-
ure B13).
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Figure B13: Showcasing Modality Ablations of having 2 modalities versus 13 modalities
compared to the Specialized Models and model trained on CHAMMI-75

B.4 Channel Number Ablation

We investigated whether the number of imaging channels influences representation quality
by training DINO BoC models on study subsets with varying channel counts (2, 3, 4, and
5 channels). Since incorporating studies with more channels inherently increases total data
volume, naive comparisons might conflate channel count effects with data scaling effects.
To control for this confound, we fixed all models to 500,000 training iterations, ensuring
computational budget parity. Under these controlled conditions, we observed no substantial
performance variations attributable to channel count (Figure B14). This null result is ex-
pected given that the BoC architecture does not explicitly model inter-channel interactions,
treating each channel independently.
Whether modeling inter-channel dependencies could yield improvements over BoC ap-
proaches remains an open research question. While several methods have explored this
direction—including (Bao et al., 2023), (Bourriez et al., 2024), and (De Lorenci et al., 2025)
approaches—none have yet demonstrated clear superiority over BoC methods. Our dataset,
with its diverse channel configurations across studies, provides a valuable resource for future
investigations into this question.

B.5 Data Similarity To Target Domain

We systematically analyzed how training data similarity to the target evaluation set affects
representation learning. Our methodology involved extracting features from 1,000 single
cells per study and channel type, totaling 75,000 cells across our dataset. We performed
identical feature extraction on the CHAMMI-HPA test set using our best-performing DINO
BoC model.
To quantify similarity between training and test data, we computed average feature vectors
for each study and channel combination (processing each channel independently). Using
Euclidean distance between these average vectors, we identified which training studies most
closely resembled the test set. Based on this similarity metric, we selected two subsets:
the top 20 percentage most similar studies and the bottom 20 percentage most dissimilar
studies. We then trained separate self-supervised DINO BoC models on each subset.
The results revealed a nuanced relationship between data similarity and model performance.
While the model trained on similar data showed improved performance specifically on the
HPA benchmark, suggesting some benefit from domain alignment, its overall performance
across the broader evaluation suite was inferior to the model trained on dissimilar data
(Figure B15). This counterintuitive finding indicates that diverse, dissimilar training data
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Figure B14: Showcasing Channel number variations with fixed compute of 500k compared
to the Specialized Models and model trained on CHAMMI-75
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Figure B15: Showcasing Similar Data vs Dissimilar Data compared to the Specialized Models
and model trained on CHAMMI-75

promotes learning of more generalizable representations, even if it means sacrificing some
degree of specialization to the target domain.
This result reinforces our broader finding that diversity in training data is a key driver of
robust representation learning. Models trained on dissimilar data are exposed to a wider
range of biological and imaging contexts, which appears to facilitate the learning of features
that transfer more effectively across diverse microscopy tasks. While domain-specific fine-
tuning on similar data may benefit specialized applications, diverse pre-training appears
essential for building generally applicable microscopy foundation models.

C Scalability Analysis Details

To train multi-channel ViTs, prior work has explored supervised (e.g., Channel-ViT (Bao
et al., 2023)), self-supervised (e.g., CA-MAE (Kraus et al., 2024), ChADa-ViT (Bourriez
et al., 2024)), or hybrid multi-task objectives (e.g., ChA-MAEViT (Pham et al., 2025)).
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CHAMMI-75 is a pre-training dataset primarily useful for self-supervised, potentially useful
for weakly supervised, and not useful for fully supervised learning. We explore SSL algo-
rithms to train a multi-channel model using CHAMMI-75 with the goal of learning cellular
morphology representations for solving diverse downstream tasks. Here, we evaluate well-
established, representative algorithms from three major families of self-supervised learning
methods for images: (1) SimCLR (contrastive) (Chen et al., 2020), (2) Masked Autoencoders
(reconstructive) (He et al., 2022), and (3) DINO (self-distillation) (Caron et al., 2021).
To evaluate CHAMMI-75 as a pre-training resource, we compare performance by training
with varying configurations. First, we evaluate the performance of models trained with
an increasing amount of multi-channel images, which we call “dataset scaling” evaluation.
Performance is evaluated on the CHAMMI benchmark (Chen et al., 2023), which has six
out-of-distribution, phenotype matching tasks. We train models specialized on a fixed chan-
nel configuration as a baseline (1ds, 33K images per dataset; 3,4,&5 channels), and then
combine sets to increase channel types and source variation, starting with the 3 CHAMMI
subsets (3ds, 100K images, 8 channels), 10 datasets (10ds, 178K images, 14 channels), and a
sample of the images in the 74 pre-training datasets from CHAMMI-75 (74ds-small, 560K im-
ages, 25 channels). We leave the full CHAMMI-75-set (74ds-large, 2.8M images, 25 channels)
out of the scaling evaluation; we only used it for the main benchmarking experiment follow-
ing the best configuration in our analysis. We also conduct a “model scaling” evaluation,
where we keep the dataset size fixed (74ds-small) and grow model parameters.
Experimental and implementation details. We train two types of ViT models: bag
of channels (BoC) and multi-channel attention (MCA). The input size for all models is
224x224 pixels, and the number of channels is either one (BoC) or variable (MCA). Models
are trained with one of the three selected SSL algorithms (SimCLR, MAE, DINO), and we
keep hyper-parameters as constant across experiments as possible and apply relevant tweaks
to avoid optimization divergence or collapse. After a model is trained with SSL, we keep
the weights frozen and extract features in the three test sets of the CHAMMI benchmark
without any finetuning. We use the PyTorch framework and we run experiments using
multi-GPU training with 4 to 8 GPUs typically in a single node. All experiments were
conducted in academic compute clusters (Appendix G.2).
Results. Consistent with previous studies, we find that models trained with SSL benefit
from having access to more data (He et al., 2022; Oquab et al., 2023; Siméoni et al., 2025).
We compare performance against the top-line of specialized models trained for each of
the three subsets with fixed channels and with full supervision. This serves as an upper-
bound reference to assess performance of models trained with SSL. The results are presented
in Figure 8, and confirm that as we increase the dataset size and the model size, SSL
models approach the performance of specialized, supervised models. This indicates that a
single, multi-channel model trained at scale without supervision can be highly competitive
in various downstream tasks.
We observe that the top factor that determines performance is the multi-channel strategy
(BoC or MCA), followed by type of SSL algorithm, and model size. BoC models yield
better performance than MCA models in the SSL regime, indicating that cross-channel
correlations remain difficult to learn without supervision. We find BoC models easier to
scale than MCA models because the latter has longer sequences that have high memory and
compute requirements. MCA models required between 3X and 5X more GPU hours than
BoC to complete a training session with the same amount of data (Figure G21). In addition,
SSL algorithms perform comparably within multi-channel strategies (BoC or MCA), with
DINO consistently outperforming the others.
Based on these results, we trained a BoC ViT-small model with the DINO algorithm using
the full CHAMMI-75 dataset, which has 5X more data than the 74ds small set, and required
2,352 GPU hours to complete (7 days with 2x7-GPU servers). The result of this experiment
followed the performance improvement trend obtaining a 9.8% relative improvement over
the best result in the dataset scaling evaluation. The model scaling results suggest that
additional performance gains could be obtained with larger ViT architectures, which we did
not explore in this work.
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D Benchmark results

We will take a look at a larger resolution of numbers for all the benchmarks with more
related results for better analysis.

D.1 CHAMMI

CHAMMI is the benchmark for multi-channel microscopy imaging presented in (Chen et al.,
2023). Here, we show all the values for CHAMMI showcased for dataset scaling laws in D8.
We show sub-scores for WTC, HPA, and CP in D9, D10, and D11 respectively.

Table D8: Summary of IID Mean, CHAMMI Scores for WTC, HPA, and CP sets

Model IID Mean CHAMMI Score WTC HPA CP
BoC (ViT Small) ours 84.26 48.75 61.72 55.84 28.71
OpenPhenom (ViT Small) 75.55 38.23 42.80 43.15 28.74
DINOv2 (ViT Small) 73.95 37.93 46.27 39.66 27.87
IDRCell (ViT Small) 68.55 37.38 45.29 40.40 26.44

Table D9: WTC Dataset Benchmark Scores

Model Task 1 Task 2
BoC (ViT Small) ours 72.56 61.72
OpenPhenom (ViT Small) 59.72 42.80
DINOv2 (ViT Small) 63.56 46.27
IDRCell 56.33 45.29
MCA-SSL (ViT Small) ours 60.16 44.70

Table D10: HPA Dataset Benchmark Scores

Model Task 1 Task 2 Task 3
DINO (ViT Small) ours 91.31 68.55 43.13
OpenPhenom (ViT Small) 78.84 50.91 35.40
DINOv2 (ViT Small) 70.07 53.00 26.33
IDRCell (ViT Small) 70.86 49.90 30.90
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Table D11: CP Dataset Benchmark Scores

Model Task 1 Task 2 Task 3 Task 4
DINO (ViT Small) ours 88.90 51.73 21.83 12.57
OpenPhenom (ViT Small) 88.09 44.23 23.73 18.26
DINOv2 (ViT Small) 88.21 49.75 21.97 11.88
IDRCell (ViT Small) 79.29 51.43 20.63 07.25

D.1.1 Tested Configurations for SubCell

Here, we showcase the number of SubCell configurations that were tested for the CHAMMI
benchmark. Each row presents results with different models. The input channel config-
urations of four models are bg, rgb, ybg, and rybg, where each letter defines the input
channel. The general protein of interest (g) that localizes into different cellular compart-
ments is a mandatory input to all models together with nucleus (b) reference channel. The
other two reference channels, microtubules (r) and endoplasmic reticulum (y), are present
in two model configurations. The HPA benchmark uses the original channel configuration
of the SubCell paper. For the WTC benchmark, the ‘bg’ model is run twice with different
input channels (‘g’ as membrane or protein) followed by concatenation of these extracted
features. A similar approach is utilized for the CP benchmark, where three different inputs
(Syto, WGA, and Mitotracker) are used for ‘g’ input channel. We have reported all the
configurations we tested for all the different models types for WTC, HPA, and CP in D12,
D13, and D14 respectively.

Table D12: SubCell WTC Scores

Model WTC Task 1 Task 2
MAE-CellS-ProtS-Pool bg 55.06 78.22 55.06
ViT-ProtS-Pool bg 33.70 57.51 33.70

Table D13: SubCell HPA Scores

Model HPA Task 1 Task 2 Task 3
MAE-CellS-ProtS-Pool rybg 64.58 96.26 84.01 45.15
MAE-CellS-ProtS-Pool rbg 71.63 95.59 88.07 55.19
MAE-CellS-ProtS-Pool ybg 66.93 95.03 79.73 54.12
MAE-CellS-ProtS-Pool bg 65.63 93.40 79.85 51.41
ViT-ProtS-Pool rybg 76.83 99.05 91.00 62.67
ViT-ProtS-Pool rbg 76.52 97.89 88.93 64.11
ViT-ProtS-Pool ybg 74.48 97.73 83.03 65.92
ViT-ProtS-Pool bg 72.96 96.06 82.70 63.23
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Table D14: SubCell CP Scores

Model CP Task 1 Task 2 Task 3 Task 4
MAE-CellS-ProtS-Pool ybg 28.38 69.42 51.51 22.92 10.70
ViT-ProtS-Pool ybg 28.25 87.47 54.91 19.23 10.59

D.2 HPAv23 at 256x256

HPAv23 at 256x256 is a version of the original SubCell training images where the resolution
of the images has been reduced from 1024x1024 to 256x256 with a resize. This transfor-
mation was done to reduce the compute time, and storage taken by the test set. We ran
protein localization with HPAv23 at 256x256 in both of its configurations: challenge_cats
in D15 and all_unique_cats in D16.

Table D15: Protein Localization (Challenge Classification Labels)

Model Macro AP Micro AP
DINO (ViT Small) ours 58.87 80.47
OpenPhenom (ViT Small) 49.13 75.75
DINOv2 (ViT Small) 53.76 77.01
SubCell (ViT Base) 69.33 84.79
IDRCell (ViT Small) 44.05 72.86

Table D16: Protein Localization (Unique Classification Labels)

Model Macro AP Micro AP
DINO (ViT Small) ours 44.38 78.07
OpenPhenom (ViT Small) 35.98 73.13
DINOv2 (ViT Small) 39.67 74.84
SubCell (ViT Base) 52.60 82.58
IDRCell (ViT Small) 44.05 72.86

D.3 JUMP-CP1 Compounds

Original JUMP-CP1 images were published with normalized (median absolute deviation
MAD-robustize) well-level (replicate) CellProfiler features. Those features also include the
ones that were extracted from brightfield images, for fair comparison those features were
excluded. We also processed raw features by oƒurselves: the same features were selected
as in the paper version (except for features from brightfield channels) and performed ZCA-
whitening (spherize) with pyCytominer in a similar way as we did for deep learning fea-
tures. We also report the results obtained with Cell Painting CNN (Moshkov et al., 2024),
feature post-processing was the same as for other deep learning features. Alongside the
metrics JUMP-CP1 and JUMP-CP2, we also report the Active fraction, that is a fraction
of phenotypically active compounds versus negative controls and mAP-s from those active
compounds contribute to JUMP-CP1 result (Kalinin et al., 2025), otherwise mAP for non-
active compounds would be zero. We reported our numbers with active fraction in D17.
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Table D17: Phenotypic quality

Model Active fraction JUMP-CP1 JUMP-CP2
CellProfiler (paper) 81.70% 58.71 04.00
CellProfiler (ours) 99.02% 74.12 03.61
Cell Painting CNN 98.04% 77.45 06.80
DINO (ViT Small) ours 94.44% 76.32 06.79
OpenPhenom (ViT Small) 96.08% 74.26 04.99
DINOv2 (ViT Small) 94.44% 75.84 07.03
SubCell (ViT Base) 95.42% 77.60 07.44
IDRCell (ViT Small) 93.46% 72.37 04.98

D.4 IDR-17

IDR-17 is benchmarking based on a chemical–genetic interaction map of small molecules
using high-throughput imaging in cancer cells. Add all the eight different cell lines, and the
composite scores
We are going to be reporting all three metrics we have: ROC AUC scores in D20, Recall@50
in D19, Recall@100 in Table D18.

Table D18: Recall@100 Scores with Different Models

Cell Line DINOv2 SubCell OpenPhenom BoC IDRCell
HCT116 02-006 54.81 52.88 52.88 51.92 49.04
HCT116 02-008 62.79 60.47 60.47 62.79 62.79
HCT116 02-030 27.12 27.12 30.51 27.12 27.12
HCT116 02-031 54.29 57.14 54.29 54.29 51.43
HCT116 104-001 23.81 28.57 25.40 23.81 26.98
HCT116 104-004 41.10 39.73 36.99 39.73 36.99
HCT116 104-007 32.91 35.44 32.91 34.18 32.91
HCT116 104-008 39.58 40.63 39.58 39.58 34.38
Average 42.05 42.75 41.63 41.68 40.20

Table D19: Recall@50 Scores for Different Models

Cell Line DINOv2 SubCell OpenPhenom BoC IDRCell
HCT116 02-006 28.85 28.85 27.88 30.77 28.85
HCT116 02-008 46.51 46.51 46.51 44.19 44.19
HCT116 02-030 15.25 15.25 16.95 15.25 15.25
HCT116 02-031 31.43 28.57 28.57 31.43 31.43
HCT116 104-001 17.46 15.87 17.46 19.05 15.87
HCT116 104-004 23.29 20.55 21.92 23.29 20.55
HCT116 104-007 18.99 20.25 18.99 21.52 21.52
HCT116 104-008 19.79 19.79 19.79 18.75 17.71
Average 25.20 24.46 24.76 25.53 24.42
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Table D20: AUC ROC Scores for Different Models

Sample DINOv2 SubCell OpenPhenom BoC IDRCell
HCT116 02-006 82.40 82.97 81.72 83.35 81.08
HCT116 02-008 81.08 81.14 80.45 81.86 83.08
HCT116 02-030 67.43 67.37 66.71 65.76 65.74
HCT116 02-031 87.83 87.29 84.67 86.47 82.45
HCT116 104-001 64.97 65.00 63.63 63.89 61.97
HCT116 104-004 76.06 77.31 76.88 76.01 76.90
HCT116 104-007 64.91 71.04 72.66 63.77 72.40
HCT116 104-008 75.55 77.46 76.16 76.00 75.01
Average 75.03 76.20 75.36 74.64 74.83

D.5 CellPHIE

Here, we report all the statistics for the CellPHIE benchmark in Table D21
Table D21: Comparison of Neuron-Features with Different Models

Neuron-Features AUC F1 Precision Recall
CellProfiler 78.32 77.44 74.44 81.14
DINOv1 (Pretrained on NF) 73.72 72.30 74.76 70.44
DINO (ViT Small) ours 80.51 77.45 79.91 75.54
OpenPhenom (ViT Small) 77.56 75.68 77.84 74.04
DINOv2 (ViT Small) 73.95 72.27 76.29 68.97
SubCell (ViT Base) 71.24 70.60 74.26 67.78

D.6 RBC-MC
Table D22: Comparision of RBC-MC with Different Models

Model Accuracy on Swiss Accuracy on Canadian Overall Accuracy
DINO-BoC 68.34% 65.06% 66.70%
IDRCell 55.85% 51.18% 53.50%
DINOv2 59.41% 55.35% 57.40%
OpenPhenom 64.43% 61.05% 62.70%
SubCell 59.10% 53.5% 56.30%
MCA-SSL 62.35% 59.01% 60.70%
MCA-SupC 55.40% 51.20% 53.30%
ChA-MAEViT 61.5% 56.60% 59.00%
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Figure D16: Confusion Matrices for RBC-MC Classification

E Disentanglement Experiments

To quantitatively assess the quality of the learned representations in separating biological
signal from technical noise, we adopt the batch correction benchmarking framework from
Arevalo et al. (2024). This framework is designed to evaluate how well a feature set disen-
tangles batch signal (confounding variable) from biological signal (compound identity) by
measuring metrics before and after the application of state-of-the-art batch correction algo-
rithms. A high-quality feature set should: (1) require minimal correction in its raw state,
and (2) maximize biological signal post-correction.

E.1 Experimental protocol

We evaluate performance using Scenario 2 from Arevalo et al. (2024): the classification of 302
landmark compounds generated by three different laboratories using the same microscope
type. In this scenario, the batch variable is the Laboratory ID and the biological variable is
the Compound. We assess the profiles using the population-averaged well-level approach to
compute profiles. We compare three feature models: (1) CellProfiler Baseline: The original
raw morphological features extracted using the conventional image analysis pipeline. (2)
IDRCell Features: Features extracted using a ViT-Small DINO-BoC model trained on the
smaller, heterogeneous IDRCell100K dataset (∼ 100K images). (3) CHAMMI-75 Features:
Features extracted using our proposed ViT-Small DINO-BoC model trained on the full
CHAMMI-75 Large dataset. Based on the original study’s findings, we focus on Seurat CCA
as the optimal batch correction method for this scenario, which we apply to correct the
features from all three models. Following standard practice, we report the aggregate score
of four batch correction metrics, and six biological metrics, and the detail of these metrics
is also reported for all three evaluated methods.

E.2 Results

The main results reported in Figure E17 highlight the following trend: (1) baseline state (no
correction): CHAMMI-75 features exhibit the best performance at the baseline level, yielding
a higher raw biological signal, demonstrating better initial disentanglement of batch effects
compared to both baselines. This indicates that pre-training on the highly diverse and cu-
rated CHAMMI-75 dataset yields representations that are inherently more robust to cross-site
technical variation. (2) Post-correction state: after applying the Seurat CCA batch correc-
tion method, CHAMMI-75 features continue to facilitate the best performance, resulting in
the highest biological signal among all feature sets. The performance of CHAMMI-75 features
is 1.7% better than CellProfiler features, and 11.8% better than IDRCell features, all after
correction. Detailed results of batch correction metrics are reported in Figure E18 for the
CHAMMI-75 features, in Figure E19 for IDRCell features, and in Arevalo et al. (2024) for
CellProfiler features.
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A B C

A,B

Figure E17: Disentanglement of feature representations using batch-correction on the
JUMP-CP dataset, following Scenario 2 from the framework by Arevalo et al. (2024). A)
UMAP visualization of raw DINO-BoC features learned from CHAMMI-75 and aggregated
at the well-level. B) UMAP visualization of corrected DINO-BoC features from A corrected
with the Seurat CCA algorithm. C) Scatter plot of batch and biological scores (x and y
axes, respectively) for three feature representations: IDRCell in red (ViT-small trained with
IDRCell dataset), CHAMMI-75 in blue (ViT-small trained with CHAMMI-75 ), and CellProfiler
in green (classical features). In both axis, higher performance is better.
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Figure E18: Detailed report of batch correction metrics for the DINO-BoC model trained
with CHAMMI-75
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Figure E19: Detailed report of batch correction metrics for the DINO-BoC model trained
with IDRCell

This confirms that the learned CHAMMI-75 feature space is structured in a way that is
amenable to correction, allowing the batch correction algorithm to remove confounding
noise without destroying the underlying biological coherence. Importantly, features learned
with the IDRCell dataset consistently perform worse than the CellProfiler baseline in both
the raw and corrected states. This contrast highlights that simply aggregating diverse data
is insufficient; the scale, comprehensive heterogeneity, and careful curation embedded in
CHAMMI-75 are necessary factors for learning disentangled, biologically meaningful repre-
sentations.

F Qualitative analysis of feature space

To visualize the global structure of the feature space learned by models trained on CHAMMI-
75 , we performed a qualitative analysis using UMAP projection on single-channel features
extracted from a balanced, single-cell sample of all 75 source studies.

F.1 Experimental protocol

We sampled approximately 1,000 single-cell, multi-channel crops from imges in each of
the 75 source studies, resulting in 196,660 individual single-channel images. We then used
three representative pre-trained ViT models to compute fixed-length feature representations
for each individual single-channel image: (1) CHAMMI-75 DINO-BoC: our proposed model
trained with CHAMMI-75 . (2) DINOv2: the generalist vision model adapted for microscopy
features. (3) OpenPhenom: the channel-adaptive model trained on fixed-channel Cell Paint-
ing data. Given the difference in number of channels, we do not display multi-channel images
in the visualizations because the bag-of-channels approach yields a variable-length feature
representation across studies. We collect single-channel features with all models, including
the channel-adaptive OpenPhenom model.
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Figure F20: UMAP visualizations of the feature spaces obtained with three ViT-small
models: DINO-BoC trained with CHAMMI-75 , DINOv2, and OpenPhenom. The colors
indicate source study, which is the dominant factor of variation in all three cases.

F.2 Results and Discussion

The UMAP visualizations for all three models (Figure DX) show that the feature space
is primarily segregated by the source study ID (technical domain), rather than being uni-
formly mixed. This result leads to two key interpretations: (1) domain sensitivity vs. in-
variance: self-supervised models, even when trained on highly diverse data, do not produce
strictly domain-invariant representations in the raw feature space. Instead, they are domain-
sensitive, clustering the input based on technical factors (e.g., image acquisition parameters,
microscopy type, local processing) unique to each of the 75 source studies. This strong inter-
study differentiation highlights the genuine heterogeneity of CHAMMI-75 . (2) Consistency
with quantitative results: this qualitative observation aligns with our findings in the Dis-
entanglement Experiments (Appendix D.1): since the technical signature remains present,
a post-processing step like batch correction is necessary to remove this study-specific bias
and maximize the detection of subtle biological signals. The strong clustering visible in the
UMAP indicates that the high performance of CHAMMI-75 features (Section 5.1) is achieved
not by erasing the domain difference entirely, but by encoding these differences in a way
that is highly distinguishable and amenable to correction. Further qualitative exploration
by coloring the UMAP plots with other metadata fields (such as channel configuration or
biological condition) reveals strong intra-study consistency, but the inter-study structure
remains dominated by the technical source.

G Experiments

G.1 Model Configurations and parameters

All the models we trained have similar model configurations to have a fair comparison.

G.1.1 Multi-channel strategies

Multi-Channel Attention (MCA). Multi-channel attention models allow a ViT net-
work to compute attention across channels. These networks work by unraveling the channel
dimension into the sequence input of the vision transformer and use learned channel em-
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beddings in order to denote which tokens belong to which channels (similar to positional
encodings). These embeddings are learned per channel type (e.g. DNA and RNA encod-
ings) and effect all tokens in a given channel the same way. MCA was modified to use
masked attention to handle mixed sequence lengths. Channels were padded with 0 tokens
if sequences were of smaller length and an attention bias was used for the softmax to ignore
these tokens. Models were trained with a patch size or 16, for 100 epochs in total.
Bag of Channels (BoC). Bag of Channels models is a strategy where we break all multi-
channel images into single and the model learns from one single channel at a time. A
drawback of this strategy is that the model does not learn inter-channel correlations as it
only learns from one channel at a time. During evaluation, we usually concatenate the
feature embedding space of all different test evaluation channels.

G.1.2 Types of SSL Models

DINO. DINO is a self-supervised framework that employs a student-teacher network to
learn representations in imaging (Caron et al., 2021).
MAE. MAE is a self-supervised framework that masks random patches and reconstructs
the missing pixels (He et al., 2022).
SimCLR. SimCLR is a self-supervised framework that uses data augmentations to perform
contrastive learning with images. (Chen et al., 2020).

G.1.3 Model Parameters

DINO BoC. The default training parameters of the DINO model were used except - the
learning rate changed to 5e-5. Batch sizes varied according to model sizes with 256, 128,
and 32 used for ViT Small, ViT Base, and ViT Large respectively. We ran the model with
horizontal and vertical flips for augmentations.
MAE BoC. The default training parameters of the MAE model were used except - learning
rate changed to 5e-4, weight decay changed to 0.04, warm-up epochs changed to 10, and the
number of epochs changed to 100 epochs. Batch sizes varied according to model sizes with
1024, 768, and 384 used for ViT Small, ViT Base, and ViT Large respectively. We ran the
model with horizontal and vertical flips for augmentations.
SimCLR BoC. The default training parameters of the SimCLR model were used except
- learning rate changed to 5e-5, weight decay changed to 0.04, warm-up epochs changed
to 10, and the number of epochs changed to 100 epochs. The model was run with random
resized crop with scale (0.2, 1.0), RandomHorizontalFlip, RandomVerticalFlip, and Gaussian
blurring to develop two samples.
Channel-ViT DINO. Channel-ViT DINO replaces the fixed channel ViT backbone with
a MCA ViT backbone and uses the standard DINO SSL algorithm to optimize the network.
The multi channel id metadata was used to gather multi-channel images. DINO augmenta-
tions were than ran with horizontal and vertical flips with 8 local crops and 2 global crops.
DINO global crops were 224x224 and local crops were 96x96 with crop ratios of 0.4-1.0 and
0.05-0.4 respectively. Learning rate was warmed up from 1e-6 to to 0.0001 for all models
over 10 epochs. Teacher temperature was warmed up from 0.04 to 0.07 over 30 epochs.
Weight Decay was warmed up from 0.04 to 0.04 over 10 epochs. The AdamW optimizer
was used with default parameters other than those discussed previously. We trained with
standard cosine annealing schedules as defined in (Caron et al., 2021). MCA DINO was
modified to use masked attention to handle mixed sequence lengths. Channels were padded
with 0 tokens if sequences were of smaller length and an attention bias was used for the
softmax to ignore these tokens. Models were trained with a patch size or 16, for 100 epochs
in total.
Channel-ViT SimCLR. Channel-ViT SimCLR replaces the fixed channel ViT back-
bone with an MCA ViT backbone and uses the standard SimCLR SSL algorithm. The
multi_channel_id metadata was used to gather multi-channel images. The model was run
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with random resized crop with scale (0.2, 1.0), RandomHorizontalFlip, RandomVerticalFlip,
and Gaussian blurring to develop two samples. The learning rate used was 5e-5.
Channel-ViT MAE. Channel-ViT MAE replaces the fixed channel ViT backbone with
an MCA ViT backbone and uses the standard MAE SSL algorithm. The multi_channel_id
metadata was used to gather multi-channel images. The model was run with RandomHori-
zontalFlip, and RandomVerticalFlip. The learning rate used was 5e-5.

G.1.4 Supervised Baseline

ViT-small models were trained with a fixed number of channels per dataset in CHAMMI.
A drop path rate of 0.2 was used for each block in the transformer. The AdamW optimizer
was used with a learning rate of 0.001 and weight decay of 0.4. Augmentations of randomly
resized crops, horizontal flips, rotations, gaussian blurring and self-normalization were used.
A prediction head was used to go from the CLS token to the number of classes in each
dataset. This was a linear head with L1 and L2 norms applied, with lambdas of 0.01. A
cosign annealing along the learning rate was applied. No warmup was used. Standard cross
entropy loss was used to train the network with 8 L40S GPUs for 60-100 epochs, depending
on when scores stopped improving. The maximum score along the epochs was then used for
the result of each CHAMMI dataset in the score G23.

Table G23: Summary of IID Mean, CHAMMI Score for Supervised Baseline)

Model IID Mean CHAMMI Score WTC HPA CP
Supervised Baseline 78.76 54.56 65.21 71.84 26.64

G.2 Resources Used

7-10 GPUs of NVidia A6000, L40S, and L40 were used with servers having 96 CPUs and
server memory of 512 GB.

G.3 Scaling Computations

Here, we describe how the computation varies for Bag of Channels and Multi-Channel
Attention models. Figure G21 showcases how much more compute time Multi-channel
models take as compared to Bag of Channels models.

5.8X

3.7X

Figure G21: Compute time in GPU hours (vertical axis) of model training when the dataset
size is increased (horizontal axis). The dataset sizes are 3ds (100K images), 10ds (150K
images), and small (74ds with 560K images).
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G.4 Additional Experiments

G.4.1 Dataset Scaling with HPAv23 at 256x256

In our paper, we have mainly used CHAMMI as an indicator of model performance boosting
as we increase number of sampled images used for training. Table G24 showcases similar
scaling HPAv23 at 256x256 is used.

Table G24: DINO Dataset Scaling Using HPAv23 at 256x256.

Dataset Configuration Macro AP
3 Datasets 41.00
10 Datasets 53.40
CHAMMI-75 Small 54.92
CHAMMI-75 Large 59.17

G.5 Fine-Tuning Models on Downstream Tasks

While our experiments successfully utilize the pre-trained CHAMMI-75 model with only a
linear probe (frozen backbone) to achieve state-of-the-art results, researchers may explore
fine-tuning for specific, complex downstream tasks. However, based on our experience, we
caution that full fine-tuning of multi-channel models for cell phenotyping is often challeng-
ing due to the scarcity of large, high-quality supervised labels, leading frequently to poor
generalization and rapid overfitting.

When to avoid fine-tuning (default recommendation). We strongly recommend
avoiding fine-tuning when the downstream task relies on subtle phenotypic differences with-
out clean, manually validated labels (e.g., weak treatment labels in small screens). Also
when the available labeled data is small, as a ViT model (even small size) tends to quickly
overfit to the batch-specific signal in the training set. In such cases, extracting features with
a frozen CHAMMI-75 backbone and training a simple linear classifier (as done in our HPAv23
and RBC-MC benchmarks) is the most robust and computationally efficient approach.

Best practices for fine-tuning (only if necessary). If a researcher must fine-tune the
backbone (e.g., if highly clean, validated annotation sets like those in HPAv23 are avail-
able), they should follow these steps: (1) Input Standardization: the input images must
follow the same preprocessing steps applied during CHAMMI-75 training, which include in-
tensity normalization by applying 0.1% and 99.9% percentile clipping per channel, followed
by per-channel self-normalization. (2) Spatial cropping: use single-cell coordinates to ensure
crops are centered on relevant cellular content. Architecture adaptation (bag-of-channels):
for a target task with N channels, adapt the BoC architecture by fixing N . This involves
replicating the pre-trained weights of the first layer (the convolution or patch embedding
layer) N times to accept the N -channel input image. The remainder of the model architec-
ture (the transformer blocks) remains unchanged and loaded with the pre-trained weights.
(3) Training protocol: employ conservative training schedules with a very low learning rate
(e.g., 10−5 to 10−6) for the feature extractor backbone. Use strong regularization (e.g.,
high weight decay) to prevent catastrophic forgetting of the general knowledge learned from
CHAMMI-75 .
We reiterate that none of the results reported in this paper were obtained through fine-
tuning; instead, we found that linear probing yielded the most stable and generalizable
performance across all phenotyping tasks.
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