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Abstract

Learned optimization has emerged as a promising alternative to hand-crafted optimiz-
ers, with the potential to discover stronger learned update rules that enable faster,
hyperparameter-free training of neural networks. A critical element for practically use-
ful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-
generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art
work in learned optimizers, VeLO (Metz et al., 2022b), requires a large number of highly
diverse meta-training tasks along with massive computational resources, 4000 TPU months,
to achieve meta-generalization. This makes further improvements to such learned optimizers
impractical. In this work, we identify several key elements in learned optimizer architec-
tures and meta-training procedures that can lead to strong meta-generalization. We also
propose evaluation metrics to reliably assess quantitative performance of an optimizer at
scale on a set of evaluation tasks. Our proposed approach, Celo1, makes a significant leap in
improving the meta-generalization performance of learned optimizers and also outperforms
tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being
meta-trained for just 24 GPU hours.

1 Introduction

Deep learning has advanced remarkably over the past decade by significant improvements in architectures
and training techniques, allowing us to train large neural networks on big datasets (Krizhevsky et al.,
2012; Achiam et al., 2023; Brooks et al., 2024; Kirillov et al., 2023; Jumper et al., 2021). Much of this
progress can be attributed to advancements in optimizers (Sutskever et al., 2013; Kingma & Ba, 2015;
Loshchilov, 2017; Gupta et al., 2018; Rajbhandari et al., 2020) updating the neural networks (optimizee)
over the course of training. In deep learning, the most popular optimizers are adaptive variants of stochastic
gradient descent such as Adam (Kingma & Ba, 2015; Loshchilov, 2017), AdaGrad (Duchi et al., 2011),
Adafactor (Shazeer & Stern, 2018), etc. These variants, although supported by some theoretical guarantees,
are often heuristically developed and tested on large-scale neural network tasks (Goodfellow et al., 2016;
Schmidt et al., 2021; Bottou et al., 2018; Reddi et al., 2019). In addition to being hand-designed (thus
being potentially suboptimal), these optimizers have hyperparameters that need to be tuned for every task,
which is quite compute intensive (Schmidt et al., 2021; Sivaprasad et al., 2020). Additionally, recent works
also use schedules (Goyal, 2017; You et al., 2017; Smith, 2017; Loshchilov & Hutter, 2016) which adjust
optimizer hyperparameters dynamically throughout training. These schedules introduce additional tunable
hyperparameters, making the whole training process even more computationally expensive (Metz et al.,
2020b; Dahl et al., 2023).
Deep learning advances allowed us to reduce feature engineering efforts and to greatly improve performance
by replacing hand-crafted features (Lowe, 2004) with learned ones. Inspired by the advent of deep learning,
learned optimizers present a promising avenue to make the optimization process hyperparameter free
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and also more performant (Andrychowicz et al., 2016; Wichrowska et al., 2017; Almeida et al., 2021;
Metz et al., 2022a;b). Formally, given an optimizee neural network with n parameters θt P Rn at
iteration t, an optimizer fϕ, parameterized by ϕ (e.g. hyperparameters), takes as input the gradient ∇θt,
current state st (e.g. momentum) and returns updated parameters θt`1 along with updated state st`1:
pθt`1, st`1q “ fϕpθt, ∇θt, stq. While in a hand-designed optimizer an update rule and ϕ are predefined
by the practitioner, a learned optimizer fϕ learns the entire update rule parameterized by ϕ through a
meta-training process. Learning the update rule allows learned optimizers to leverage additional meta-data
Mt, such as training loss (Metz et al., 2020a; 2022b), training progress (Almeida et al., 2021; Metz et al.,
2022a;b), neural network graph (Peebles et al., 2022; Kofinas et al., 2024)) and other relevant information.
Thus, fϕ can learn a more powerful update rule formalized as the following:

pθt`1, st`1q “ fϕpθt, ∇θt, Mt
loooooomoooooon

ψt

, stq, (1)

where ψt represents all the “features” of the optimizee network at iteration t. Hence, learned optimizers
can automatically change the update function or implement schedules by monitoring the input meta-data
over the course of training, thus removing the expensive manual tuning of optimizer hyperparameters.
Despite the potential of learned optimizers, one of their major challenges is meta-generalization: learned
optimizers once meta-trained on a distribution of optimization tasks should be able to generalize to unseen
or out-of-distribution tasks. Prior work (Metz et al., 2020a; 2022b) has shown that akin to scaling laws in
deep learning (Kaplan et al., 2020; Achiam et al., 2023), the meta-generalization of these learned optimizers
improves as meta-training is scaled up. However, the meta-training of these learned optimizers as in prior
work, VeLO (Metz et al., 2022b), is prohibitively expensive (4000 TPU months) which poses a serious
challenge in further improvements of these learned optimizers and highlights the need for more compute-
efficient approaches (Rezk et al., 2023; Metz et al., 2022b). Therefore, in this work, we keep a small fixed
meta-training set and instead identify several elements in the design and meta-training of these learned
optimizers which could lead to strong meta-generalization while using only a fraction of VeLO’s compute
budget (24 GPU hours).
Another challenge in learned optimization is quantitative evaluation, which can be used as a reliable measure
to track progress in this field. Most prior work in learned optimizers (Schneider et al., 2019; Schmidt et al.,
2021; Metz et al., 2022b;a) focus on loss curves or final performance of the trained models on selected
tasks as the primary mode of evaluation. However, it remains unclear how to obtain a reliable aggregated
performance of an optimizer across a diverse, large set of tasks, each with potentially different evaluation
metrics and loss scales. Furthermore, learned optimizers often also exhibit high variance and occasional
instability across tasks (Andrychowicz et al., 2016; Metz et al., 2022a;b) which can also significantly bias the
evaluation results due to outliers. In this work, we seek inspiration from Reinforcement Learning (Agarwal
et al., 2021), which also faces similar evaluation challenges and proposes reliable evaluation metrics which
we employ to quantitatively evaluate learned optimizers. Our contributions in this work are the following:

1. We propose a simple recipe to train meta-generalizable (versatile) learned optimizers on a limited com-
pute budget; our recipe’s main ingredients are task augmentation, simple design consisting of per-param
learned update rule with a high-level scheduler and decoupled training of the update rule and scheduler.

2. We provide reliable evaluation metrics to track aggregate performance of optimizers on a set of evaluation
tasks which are robust to outliers.

3. Our proposed approach, Celo, outperforms 15 hand-designed optimizers, including Adam (Kingma & Ba,
2015) and Shampoo (Anil et al., 2020), as well as state-of-the-art learned optimizers such as VeLO (Metz
et al., 2022b) on a diverse set of out-of-distribution tasks.

4. We conduct an exhaustive ablation study over each component in our approach with meta-generalization
as the principal focus.

5. We analyze schedules predicted by Celo and find that they are adaptive to unseen tasks and training
horizons, further highlighting the meta-generalization capabilities of Celo.

2



Published in Transactions on Machine Learning Research (06/2025)

2 Background

Learned MLP update rule. Several learned optimizer architectures have been proposed in previous
works (Andrychowicz et al., 2016; Metz et al., 2020a; Almeida et al., 2021; Metz et al., 2022a;b), each
varying in the types of inputs they digest, the elements they maintain within their state, and the functional
form of their outputs. In this section, we briefly review a learned optimizer parameterized using a multi-layer
perceptron (MLP) (Metz et al., 2022a) (Adafac MLP LOpt) that our work and recent state-of-the-art works
like VeLO (Metz et al., 2022b) also build upon. It is a simple MLP-based learned optimizer that can serve as
a drop-in replacement for hand-designed update rule such as SGD or Adam. Concretely, at a given iteration
t, Adafac MLP LOpt takes as input parameter vector θt, gradient ∇θt along with current iteration t. These
values are then used to update momentum accumulator buffers in state st. These accumulated values are
then used to build input features F for each parameter which are passed to the learned MLP rule along with
the global training progress features ωp (see (Metz et al., 2022a) for all the input features). The learned
MLP returns two outputs of the same dimensionality as θt, corresponding to direction d and magnitude m,
which are used to get parameter updates ∆θt and then parameters θt`1 as follows:

∆θt “ λ1d ¨ epλ2mq

θt`1 “ θt ´ ∆θt,
(2)

where λ1 and λ2 are fixed scalars set to low values (0.001) in order to keep meta-training stable. VeLO
maintains multiple such learned MLPs (of the same architecture) in its bank which are combined to give a
weight update at each step. In addition to learned MLPs that are applied to each parameter (per-parameter
MLP), VeLO has a per-tensor LSTM network applied to each tensor (e.g. layer weight or bias). The per-
tensor LSTM takes global features such as training progress, loss and per-tensor features such as variance
of momentum, mean of gradient RMS, etc. Furthermore, VeLO scales per-parameter updates with a tensor
norm of the corresponding layer. VeLO’s more sophisticated hierarchical design makes it more performant
than Adafac MLP LOpt while keeping it efficient at run-time due to its hierarchical design. Specifically, the
hierarchical design allows adding capacity at higher levels, such as the layer (or tensor) and global levels,
whose added computational costs scale sublinearly with the number of parameters. In this work, we also
propose a hierarchical architecture similar to VeLO but is much simpler in design and meta-generalizes
significantly better than VeLO and Adafac MLP LOpt.

Meta-training. Unlike hand-designed optimizers, learned optimizers’ update function is parametrized by
ϕ learned through a meta-training process. A standard approach to meta-training involves solving a bi-
level optimization problem that involves an inner problem which optimizes network parameters θ using the
learned optimizer update ϕ on a sampled task and an outer problem which optimizes the learned optimizer
parameters ϕ based on the feedback from the inner loop (Andrychowicz et al., 2016; Wichrowska et al., 2017;
Metz et al., 2019a; 2020a; Vicol et al., 2021). Formally, given a set of optimization tasks T , the learned
optimizer parameters ϕ are obtained by sampling an optimization task which consists of data distribution
D, initial network parameters θ0, and a training objective L and solving the bi-level problem below:

ϕ˚ “ arg min
ϕ

EpD,L,θ0q„T EXt„D

ˆ

1
T

T ´1
ÿ

t“0
L

`

Xt;θt,ϕ
˘

˙

, (3)

where the inner loop is recursively defined for t “ r0, T ´ 1] as:

pθt, stq “ pθ0, 0q if t “ 0, (4)
pθt, stq “ fϕpθt´1, ∇θt´1, Mt´1, st´1q if t ą 0; (5)

∇θt “
BL

`

Xt;θt,ϕ
˘

Bθt
; Xt „ D @t. (6)

Here T denotes the unroll length in the inner loop and X denotes sampled data from D. The outer training
objective or meta-objective is based on the mean loss as formalized above or, less common, the final loss of
the inner loop (Metz et al., 2019a; 2020a; 2022b). We compute meta-gradients for ϕ in eq. 3 using Persistent
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Evolution Strategies (PES) (Vicol et al., 2021) used in prior work (Metz et al., 2022a; Harrison et al., 2022;
Gärtner et al., 2023) since directly back-propagating through the inner loop in eq. 3 can lead to noisy gradient
estimates, especially when the unroll length T is large (Metz et al., 2019a; Vicol et al., 2021). Moreover,
PES also gives unbiased gradient estimates in the truncated unroll setting in which the learned optimizer is
updated in truncations every few steps in the inner loop instead of updating only once after the full unroll
of the inner loop. This allows frequent updates to the optimizer during meta-training, thus making it less
computationally expensive than full unrolls (Vicol et al., 2021; Metz et al., 2022b).

3 Celo: Compute-efficient learned optimizer

Algorithm 1 Celo update
Input: θt optimizee parameters

∇θt gradients
Lt current loss
st optimizer state

Require: learned scheduler flstm, learned update rule fmlp,
accumulators update function facc, fixed scalars α, λ1, λ2 P R

1: st`1 Ð faccpst, ∇θt, Lt, tq ▷ update accumulators in state
2: compute progress features ωp, loss features ωl using updated st`1
3: xs Ð concatpωp,ωlq ▷ scheduler input
4: ot Ð flstmpxsq ▷ learned scheduler forward pass
5: ηt Ð αeot ▷ scheduler output
6: initialize next params θt`1 Ð pq

7: for each tensor with params pt P θt in parallel do ▷ parallel scan over all layer weights & biases
8: prepare per-param features F for pt using updated state st`1
9: d,m Ð fmlppF q ▷ learned update rule forward pass

10: ∆pt Ð λ1d ¨ epλ2mq}pt}2 ▷ compute per-param updates
11: ∆pt Ð ηt∆pt ▷ scale by scheduler output
12: pt`1 Ð pt ´ ∆pt ▷ updated params
13: θt`1 Ð θt`1 Y pt`1 ▷ gather params

return θt`1, st`1

In this work, we treat meta-generalization as the principal component for designing and training learned opti-
mizers. We show that our proposed approach, Celo (short for “Compute-efficient learned optimizer”), incor-
porating a recipe of key algorithmic meta-training and architectural improvements yields strong generaliza-
tion to unseen tasks. Our meta-training recipe described below can be followed on small-scale compute budget
(more details in §5) and experiments in §6 show that each element is critical for strong meta-generalization:

Task augmentation. Building on the success of data augmentation strategies in deep learning (Krizhevsky
et al., 2012; Cubuk et al., 2020; Chen et al., 2020b; Laskin et al., 2020), we apply task augmentation during
meta-training to enhance the robustness of learned optimizers (Metz et al., 2022b). This approach emulates
learning dynamics across a potentially large number of tasks using a limited set of meta-training tasks (Metz
et al., 2022b). Task augmentation is done by re-scaling parameters (re-parametrizing) in the inner loop.
Recall that each meta-training iteration consists of applying an inner training loop on a randomly initialized,
optimizee network with parameters, θ0. A random scalar parameter τ is sampled in each meta-training
iteration by which the optimizee network parameters at each inner training step t are scaled by τ before the
forward pass as τθt (re-parametrization) which yields inner task loss L. At initialization, the initial weights
θ0 are also scaled by a factor of 1{τ in order to keep the underlying optimizee function output same. Modified
Eq. 3 after task augmentation is given below with task augmentation specific changes highlighted in red:

arg min
ϕ

Epτ,D,L,θ0q„T EXt„D

ˆ

1
T

T ´1
ÿ

t“0
L

`

Xt; τθt,ϕ
˘

˙

, (7)
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Figure 1: Celo meta-training and architecture.

where in the inner loop for t “ r0, T ´ 1]:

pθt, stq “ pθ0{τ , 0q if t “ 0, (8)
pθt, stq “ fϕpθt´1, ∇θt´1, Mt´1, st´1q if t ą 0; (9)

∇θt “
BL

`

Xt; τθt,ϕ
˘

Bθt
; Xt „ D @t. (10)
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Figure 2: Task augmentation. Learn-
ing curves for Adam with fixed (1e-
4) learning rate with different augmen-
tation parameters (τ) for a CIFAR-10
ConvNet task.

Overall, this task augmentation does not change the underlying
optimizee network output at initialization, but it does affect the
learning dynamics of the optimizee network in the inner loop
when it is updated with adaptive or learned optimizers, thus ef-
fectively “simulating” more tasks from a fixed amount of given
meta-training tasks (see Fig. 2 for a representative example).

Simple learned optimizer design: learned scheduler with
a learned update rule. Currently, the most performant and
dominant paradigm in the optimization of modern deep neural
networks is to use a scheduler coupled with a hand-designed op-
timizer (Goyal, 2017; You et al., 2017; Smith, 2017; Loshchilov
& Hutter, 2016). A scheduler changes globally the learning
rate of the underlying hand-designed optimizer as training pro-
gresses. Learning rate schedules have a long history in non-
adaptive stochastic gradient descent methods to address the high
variance of the gradient estimator close to the optimum (Boyd
& Vandenberghe, 2004). Deep Learning practitioners have shown
that sophisticated schedules such as warm-ups and cyclic learning
rate (Smith, 2017; Loshchilov & Hutter, 2016; Touvron et al., 2023)
help significantly in the optimization of deep neural networks and
empirically, it has been shown that schedulers are beneficial even in the case of adaptive optimizers such as
Adam (Loshchilov, 2017; Touvron et al., 2023). Inspired by this, we focus on separating the global learning
rate scheduler from the per-parameter update rule.
Several designs for learned optimizers have been proposed in prior work which extend this notion of schedulers
beyond a scalar learning rate (Andrychowicz et al., 2016; Wichrowska et al., 2017; Almeida et al., 2021;
Peebles et al., 2022; Metz et al., 2022b), see Fig. 8 in Appendix. However, in this work, we streamline the
learned optimizer design and show that a learned recurrent scheduler (LSTM in our case) which outputs a
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scalar schedule parameter coupled with learned per-parameter MLP update rule generalizes well to a large-
number of unseen tasks, when even meta-trained on a limited number of small-scale tasks. Our learned
LSTM-based scheduler takes global loss and progress features (Metz et al., 2022b;a) as input and outputs a
positive scalar ηt which is obtained by linearly projecting the LSTM output and raising it to the exponential.
We show that this exponential form in scheduler is crucial for performance in §5. The final parameter updates
are obtained by scaling the per-parameter MLP (Metz et al., 2022a;b) outputs with this scalar ηt predicted
by the scheduler. The pseudocode for forward pass of our optimizer is expressed concretely in Algorithm 1.

Stage 1: learn MLP 
update rule 

learned  
update 

rule updated  
params

θt+1

state

ψt

learned 
scheduler

ηt

Stage 2: learn scheduler 
with frozen update rule

learned  
update 

rule updated  
params

θt+1

state

per-param 
features

ψt
optimizee 
features

optimizee 
features loss + 

progress 
features

frozen

ψt {params, grads, loss, progress}
θt optimizee params at iteration t 

ηt schedule param (scalar)

Figure 3: Two-stage training of Celo.

Decoupled training of scheduler and up-
date rule. We propose to view an optimiza-
tion problem in two parts: how to control step-
size and what rule to use for parameter updates.
Current state-of-the-art hand-designed optimizers
such as Adam (Kingma & Ba, 2015) and Sham-
poo (Gupta et al., 2018) propose a hand-designed
update rule, leaving the task of controlling or
modulating global learning rate and other hyper-
parameters up to the practitioners. Following this
view, we propose to meta-train learned optimiz-
ers in a two-stage process: (1) Learn a strong pa-
rameter update rule (2) Freeze the learned update
rule and learn a step-size scheduler. Our experi-
ments show that two-stage training is crucial for
meta-generalization and avoids meta-overfitting
when training on a compute budget with fixed
amount of meta-training tasks, hence outperform-
ing single-stage training. Moreover, our simple
two-stage design allows us to contrast and com-
pare with state-of-the-art hand-designed optimiz-
ers. Our experiments show that our learned update rule outperforms hand-designed update rules like Adam
and when combined with a learned scheduler, the meta-generalization performance further improves.

4 Reliably scoring optimizers at scale

Prior work in learned optimizers often resorts to showing training or validation curves as the primary means
of evaluation (Schneider et al., 2019; Schmidt et al., 2021; Metz et al., 2022b;a). This is a common practice,
because evaluating the performance of learned optimizers quantitatively is challenging. For example, different
evaluation tasks can have different ranges and semantics of loss values. Moreover, learned optimizers also
often show unstable behaviour and evaluating them multiple times to reduce the variance can be infeasible,
since each evaluation run involves training a neural network. Therefore, metrics such as mean or median (of
loss) can be noisy. Alternatively, an aggregate speedup can be reported, as done in prior work (Dahl et al.,
2023). However, this approach requires carefully designing target scores for each task and meaningfully
aggregating speedups, which becomes cumbersome for a large and diverse set of potentially changing tasks.
Moreover, if the targets are set too high, the optimizers that fail to meet these targets receive a zero score,
disregarding improvements between the optimizers. Conversely, setting targets too low introduces a large
bias from outliers, compromising the evaluation’s reliability.
Hence, in this work, we address the following problem: How do we reliably compute aggregated score for each
optimizer at scale without hand-designing any thresholds? We find that this evaluation problem is analogous
to the one in Reinforcement Learning (RL) in which an RL agent is evaluated on several tasks, e.g. Atari
games. Agarwal et al. (2021) propose a widely adopted solution to this evaluation problem (Schwarzer et al.,
2023; Ceron et al.; Micheli et al., 2022). Specifically, they show that the inter-quartile mean (IQM) accurately
aggregates results with only a few evaluation runs and is less sensitive to outliers than other metrics. For
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evaluating optimizers, we focus on two aspects: final loss performance and speedup with respect to a tuned
baseline.

Final loss IQM. Given a fixed set of M tasks and N trials for each task, IQM (Agarwal et al., 2021)
expects M ˆ N normalized score matrix S for each algorithm. In the RL setup, Agarwal et al. (2021)
compute a scalar normalized score sm,n P S for the m-th game and n-th trial by scaling the game score in
that trial with respect to the human score on the corresponding game. This implies that, in any trial, a
normalized score sm,n ą 1 represents “Super-Human” performance. Equivalently, in optimization, we treat
the best Adam run from a fixed number of trials as the “human baseline”. The normalized score for each
run sm,n is computed as the ratio between the final loss of the best Adam run Ladam

T after optimizing for T

steps, and the final loss obtained by the optimizer being evaluated (Lopt
T ):

sm,n “
Ladam

T

Lopt
T

. (11)

where sm,n ą 1 represents “Super-Adam” performance. The M ˆ N normalized scores are then used to
compute the aggregate IQM metric. Specifically, IQM is computed by discarding top & bottom 25% scores
and calculating the (trimmed) mean of the remaining 50% of the normalized scores.

Speedup IQM. Similar to the setup described above, we first compute a normalized speedup M ˆ N
normalized score matrix S which is then used to compute the aggregate speedup IQM metric. We compute
normalized scores as follows: For a given task, we first pick the best Adam baseline out of K trials which
achieves the lowest loss at the end of training, which consists of say, T steps. Next, we check the number of
steps for the optimizer being evaluated to achieve the same loss, say, T opt and compute normalized speedup
score sm,n as below:

sm,n “
T

T opt . (12)

If an optimizer is unable to reach the final loss achieved by the best tuned Adam baseline in any run, we set
its corresponding speedup score to zero assuming T opt “ 8.

5 Experiments

5.1 Baselines

We compare our proposed optimizer, Celo, with 15 state-of-the-art hand-crafted optimizers and 4 learned
optimizers. Among the learned optimizers, we compare with: (1) NNAdam LOpt (Metz et al., 2020b), a
hybrid-optimizer using Adam as the update rule whose hyperparameters are controlled by a learned LSTM-
based module; (2) AdaFac MLP LOpt (Metz et al., 2022a) described in Section 2; (3) RNN MLP LOpt (Metz
et al., 2020a) using an LSTM-based per-tensor network that communicates with a learned MLP update rule
through embeddings; (4) VeLO (Metz et al., 2022b) with an LSTM-based per-tensor network that generates
weights of an MLP update rule through a hyper-network. Celo and other RNN-based optimizers use a hidden
size of 64 in their recurrent networks. VeLO’s default hidden size is 512, therefore to focus exclusively on
differences in architecture, as a baseline we use “VeLO-S” with hidden size reduced to 64 and accordingly
the number of MLPs in its bank reduced from 256 to 32. This scaling down does not severely impact meta-
generalization (see Appendix A.2). Among the hand-crafted optimizers, we compare with Adam (Kingma
& Ba, 2015), Shampoo (Anil et al., 2020; Gupta et al., 2018) with SGD and Adagrad grafting (default block
size 128), Nesterov accelerated AdamW (NAdamW) (Dozat, 2016; Loshchilov, 2017), RAdam (Liu et al.,
2019), Yogi (Zaheer et al., 2018), AdaBelief (Zhuang et al., 2020), LAMB (You et al., 2019), LARS (You
et al., 2017), RMSProp (Tieleman & Hinton, 2012), Adafactor (Shazeer & Stern, 2018), AdaGrad (Duchi
et al., 2011), SM3 (Anil et al., 2019), SGD with momentum (Sutskever et al., 2013) and Fromage (Bernstein
et al., 2020) for which there is released baseline data from VeLO with 15 trials per task tuning learning rate
logarithmically with half powers of 10. Morever, NAdamW, which serves as a superset of many adaptive
optimizers (Choi et al., 2019; Dahl et al., 2023), is aggressively tuned with 1000 trials searching over different
configurations of learning rate, β1, β2, ϵ and cosine learning rate schedule (Metz et al., 2020b). We pick the
best trial based on final loss for evaluation and visualization.
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Figure 4: Comparing Celo with state-of-the-art hand-crafted optimizers. Celo is our proposed
learned optimizer meta-trained on a limited budget of 24 GPU hours. Optimizers are evaluated with final
loss (left) and speedup (right) criteria with respect to Adam on a diverse set of 17 tasks which are out-of-
distribution for Celo and include image classification, language modeling, autoencoders, learned optimizer
training, etc. IQM score above 1.0 indicates “Super-Adam” performance, read more about our evaluation
methodology in §4 and meta-training/evaluation tasks in §5.

5.2 Meta-training

All the learned optimizers are meta-trained with the same setup on a fixed compute budget i.e. given a
fixed set of meta-training tasks, we study how far can we push the meta-generalization performance of
learned optimizers. We take a set of four meta-training tasks proposed by Metz et al. (2022b) for all our
experiments which contains four image-classification datasets including MNIST (LeCun & Cortes, 1998),
Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009)
paired with a one-layer MLP network with 32 hidden units and ReLU activations. Additionally, images are
resized to 8ˆ8 to keep the meta-training computationally efficient and fast like in Metz et al. (2022b). All
the learned optimizers are meta-trained with truncated PES (Vicol et al., 2021) with maximum 2K inner
unroll length for 100K meta-iterations using mean loss of the inner loop as the meta-objective following prior
work (Metz et al., 2022a; Vicol et al., 2021; Harrison et al., 2022). With this setup, all our meta-training
experiments finish in a day (<24 hours) on a single Nvidia RTX8000 GPU. Note that we intentionally did
not scale up meta-training here in order to do an exhaustive controlled study within our compute budget
and solely focus on improving the meta-generalization performance. For task augmentation (§3), we sample
τ uniformly on log scale between 0.001 and 1000 in each meta-iteration. See further implementation details
in Appendix A.3.

5.3 Evaluating on a broad spectrum of tasks

We test all the optimizers on 17 diverse unseen tasks with 3 seeds per task. These tasks span different
machine learning problems (including classification, language modeling, learned optimizer training, auto-
encoders) with different architecture types like MLPs, ConvNets, Transformers, RNNs, etc., and varying
model sizes. We pick this evaluation set from a larger VeLOdrome task set (Metz et al., 2022b) of 83 tasks
in order to fit evaluation of all the experiments within our compute budget. The tasks are described below:
Image MLPs. Total 3 image MLP tasks. Two CIFAR- 10 tasks: 3-layer MLP with 128 hidden units,
layer-norm and ReLU activations after each layer; 3-layer MLP with 128 hidden units and Tanh activations.
One FashionMNIST task with a 2-layer MLP of size 128 and ReLU activations.
CNNs. Total 4 convolutional neural network (CNN) tasks. One CIFAR-100 task with three convolution
layers having 32, 64 and 64 channels respectively. Three CIFAR-10 tasks with the same (32-64-64) layers
as in CIFAR-100, but different normalization schemes: (1) layer-norm (2) batch-norm (3) without any
normalization. All these tasks use ReLU activations.
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final loss speedup
w/ task augmentation medianÒ OGÓ IQMÒ medianÒ OGÓ IQMÒ

nnadam lopt (Metz et al., 2020b) 0.69 0.39 0.67 0.00 0.82 0.00
rnn mlp lopt (Metz et al., 2020a) 1.00 0.08 1.00 1.07 0.45 0.69
adafac mlp lopt (Metz et al., 2022a) 1.04 0.02 1.05 1.32 0.24 1.30
velo-s (Metz et al., 2022b) 0.93 0.17 1.00 0.00 0.53 0.81
celo (ours) 1.14 0.01 1.20 1.92 0.14 1.86

Table 1: Comparing Celo with learned optimizers. All the learned optimizers are meta-trained on
the same set of 4 tasks with task augmentation and evaluated on 17 diverse out-of-distribution tasks (listed
in §5). IQM score above 1.0 indicates “Super-Adam” performance (read more in §4). Our learned optimizer,
Celo, incorporating the recipe proposed in §3 significantly improves meta-generalization.

ViT. Two vision transformer (ViT) (Dosovitskiy et al., 2021) tasks on CIFAR-100: (1) “wide shallow” with
6 layers, 6 heads and hidden size 384; (2) “skinny deep” with 10 layers, 4 heads and hidden size 128. Both
ViT variants represent images as 16 ˆ 16 patches.
Transformer LM. Three transformer decoder language modeling tasks (Radford et al., 2019) on
LM1B (Chelba et al., 2013) of an increasing scale: (1) hidden size 20, 5 heads, 1 layer, sequence length 8; (2)
hidden size 32, 4 heads, 2 layer, sequence length 8; (3) hidden size 32, 4 heads, 2 layer, sequence length 32.
RNN LM. Two recurrent neural network (RNN) language modeling tasks on the LM1B32k (Brants et al.,
2007; Chelba et al., 2013) and wikipedia32k (Merity et al., 2016) datasets. Both tasks have the same RNN:
an LSTM with hidden size 256, input embedding size 128 and sequence length 32.
Auto-encoders. Two image MLP autoencoder tasks: (1) 3-layer 128-32-128 MLP on CIFAR10 and batch
size 256 (2) 3-layer 128-32-128 MLP on MNIST and batch size 128.
Learning Optimizers. One learned optimization task to test the ability of our proposed optimizer to train
new learned optimizers. This task meta-trains a learned optimizer with an MLP-based optimizer architecture
on FashionMNIST with the maximum inner unroll length 50 and PES as the meta-gradient estimator. The
optimizee network is a 1-layer MLP with 32 hidden units.

5.4 Evaluation metrics

All the 17 tasks from our suite are first optimized using Celo and the baselines for 2K iterations. We then
evaluate them using the proposed final loss and speedup IQM (Section 4). Additionally, we report aggregate
Median and Optimality Gap (OG) metrics from Agarwal et al. (2021) for both criteria, final loss and speedup,
using normalized score matrix S defined in §4. The optimality gap metric (Agarwal et al., 2021) is computed
by first clipping all the normalized scores above 1.0 (optimal baseline score) to 1.0 and then subtracting the
mean of all the clipped scores from the optimal baseline performance score 1.0.

6 Results

Celo generalizes to unseen tasks. Figure 4 and Table 1 show the evaluation performance of our Celo
on the 17 unseen tasks along two criteria: final loss and speedup. For both criteria, Celo outperforms all
the previous learned optimizer approaches as well as standard hand-crafted optimizers such as Shampoo
and NAdamW. This result is remarkable for two reasons. First, these evaluation tasks are much larger in
scale in terms of flops and parameter count and far out-of-distribution w.r.t what Celo has seen during
meta-training. Second, all the hand-crafted optimizers use 10-1000s of tuning trials per task, out of which
the best trial is picked for evaluation. Notably, for speedup, Celo achieves IQM 1.86 and outperforms all
the baselines by a significant margin. Moreover, even after applying task augmentation in all the learned
optimizer baselines, making them stronger (Table 2a), Celo leads by a large margin (Table 1) which further
highlights the generalization strength of Celo to out-of-distribution tasks from limited meta-training.
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Figure 5: Meta-generalization speedup profiles. Task augmentation improves meta-generalization
performance in terms of speedup for all the learned optimizers. Celo outperforms all the learned optimizer
baselines with and without task augmentation.

IQMÒ

optimizer w/o aug w/ aug
nnadam lopt 0.65 0.67
rnn mlp lopt 0.73 1.00
adafac mlp lopt 0.89 1.05
velo-s 0.90 1.01
celo 1.07 1.20

(a)

task aug
update rule scheduler IQMÒ OGÓ

celo w/o aug 1.07 0.04
✓ 1.16 0.04

✓ 1.10 0.08
celo ✓ ✓ 1.20 0.01

(b)

Table 2: Task augmentation. Task augmentation improves generalization across the board for all learned
optimizer architectures (a) and helps the most when it is used at both stages of Celo meta-training (b).

Task augmentation is key for generalization. Table 2a and Figure 5 show the impact of using task
augmentation for all the learned optimizer baselines and Celo. It is important to note that we use the same
meta-training dataset and algorithm for all the learned optimizers and only ablate over task augmentation.
As evident from the results, task augmentation improves generalization performance for all the approaches.
We also ablate task augmentation at different stages of training Celo, namely scheduler and parameter update
rule in Table 2b. As the results suggest, task augmentation helps the most when it is added at both stages
of meta-training and optimality gap (0.01) is close to the optimum (0.0). Moreover, most of the performance
gain comes from adding task augmentation at the parameter update rule stage (Table 2b). This suggests
that in learned optimizers, learning a robust update rule is more crucial for generalization performance than
a robust scheduler.
Learned per-parameter update rule outperforms Adam. We experiment with replacing the learned
MLP update rule in Celo with a hand-crafted rule of Adam and report its performance in Table 3a. This is
equivalent to learning a scheduler over a fixed parameter update. The results clearly indicate that Celo with
the learned update rule significantly outperforms the Celo with the Adam baseline, as evidenced by the IQM
metric (1.20 vs. 1.06). Moreover, while Celo with Adam baseline surpasses the best-tuned Adam baseline
and achieves a lower final loss (IQM > 1.0), it still lags behind the best-tuned Adam baseline on a few tasks,
judging by non-zero optimality gap (0.05). This indicates that there is potential for further improving the
scheduler, which could also enhance the performance of fully learned optimizers like Celo.
Scheduler is critical for performance. As we describe above, Celo mainly consists of two components:
(1) learned update rule (2) learned scheduler. To assess the impact of scheduler on meta-generalization
performance for unseen tasks, we evaluate our learned update rule from Stage 1 (§3) without the scheduler
and report its performance in Table 3b. The results show that our learned update rule nearly matches the
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Figure 6: Visualizing schedules predicted by Celo on unseen tasks. Celo adapts its schedules based
on the evaluation target length as shown for a ViT CIFAR-100 task (left) and also as per the given evaluation
task by varying warmup and decay phases (right). Notably, Celo discovers schedules with a warmup phase
followed by cyclic ramp-up and cosine decay-like phases throughout the training.

IQMÒ OGÓ

celo w/ adam 1.06 0.05
celo 1.20 0.01

(a) Adam vs learned update
rule. Learned parameter update
rule outperforms Adam.

celo IQMÒ OGÓ

w/o scheduler 0.99 0.12
w/ scheduler 1.20 0.01

(b) Impact of scheduler. Using
a scheduler significantly improves
meta-generalization.

IQMÒ OGÓ

1-stage training 0.89 0.16
2-stage training 1.20 0.01

(c) Two-stage training. Learn-
ing the update rule and scheduler
separately in two stages is better.

scheduler IQMÒ OGÓ

w/ tensor feats 1.19 0.02
w/o tensor feats 1.20 0.01

(d) Tensor features. Scheduler with-
out per-tensor features performs well.

functional form IQMÒ OGÓ

linear α.ot 1.07 0.12
linear + clip clip(α.ot) 1.05 0.06
exp α.exppotq 1.20 0.01

(e) Functional form. Exponential form in scheduler
works the best.

Table 3: Ablations. Celo default settings are highlighted .

final loss of the best Adam baseline across 14 trials, achieving an IQM score close to 1.0 (0.99). However, the
learned scheduler significantly improves the meta-generalization performance of Celo, resulting in an IQM
score of 1.20. This improvement can be attributed to the learned scheduler’s ability to respond dynamically
to the unseen task (see Figure 6), enabling Celo to achieve final losses that are lower than those of Adam.
Decoupling training of step-size scheduler and param update rule helps. We propose to meta-
train a learned optimizer in two stages, which consists of first learning a parameter update rule followed a
learning a scheduler which controls the step-size in the update rule keeping the learned update rule fixed
(non-trainable). We compare results of this two-stage meta-training procedure with single-stage which
all the prior works follow (Metz et al., 2022b;a; 2019b) (Table 3c). Our experiments find that single-stage
training quickly overfits on the meta-training tasks, specially in compute-limit setting we considered, without
learning a general parameter update rule or a scheduler. Two-stage training shows better meta-generalization
to unseen tasks, as indicated by the IQM in Table 3c. Two-stage training also has a superior worst-case
performance (optimality gap) compared to the single-stage learned optimizer.
Task-agnostic scheduler generalizes better. Prior work in learned optimizers (Metz et al., 2022b; 2020b)
with hierarchy uses tensor-level statistics in the scheduler to control the step size and other hyperparameters
of the per-parameter update rule. However, since tensor statistics (e.g. gradient mean, momentum, etc)
are highly specific for each task, learned optimizers that rely on such features often fail to generalize to
newer tasks with completely different statistical properties (Almeida et al., 2021). To address this, we use
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Figure 7: Training curves for selected tasks. See Appendix A.8 for detailed description of each task.

task-agnostic features such as normalized loss features and training progress which remain similar between
small meta-training tasks and large-scale evaluation tasks. Table 3d compares a learned scheduler with per-
tensor statistical features with Celo, which does not use any per-tensor features. The results show that our
task-agnostic scheduler without any per-tensor statistics gives comparable (in fact, slightly better) results
to the one which uses per-tensor statistics, at the same time being computationally cheaper. Therefore, we
make it our default choice in Celo.
Functional form of scheduler matters for generalization. Learned scheduler plays an important
during training by modulating the step-size of parameter update rule. We test different functional form for
the learned scheduler in Table 3e which guides how the step-size is predicted and find that it is crucial for
generalization performance. Our experiments show that exponential form performs the best and allows the
scheduler to rapidly alter step-size on exponential scale which is also in line with our modern hand-designed
schedulers which use cosine/exponential decays.

7 Related work

Learned optimizer architectures. Learned optimizer architectures can be broadly classified into three
categories: (1) Flat learned optimizers (2) Hierarchical learned optimizers (3) Hybrid optimizers. Flat
optimizers (Andrychowicz et al., 2016; Chen et al., 2020a; Metz et al., 2022a; Harrison et al., 2022) use the
same update rule for every parameter in the optimizee neural network without considering any additional
context such as structure of the underlying optimizee network. Hence, their parameter update computation
is non-hierarchical or in other words “flat”. These flat learned optimizers can be thought of as a drop-in
replacement for hand-crafted update rules such as SGD or Adam. Hierarchical optimizers (Wichrowska
et al., 2017; Metz et al., 2020a; 2022b; Peebles et al., 2022; Moudgil et al., 2023), unlike flat optimizers, have
a hierarchical structure in their update function. They take additional meta-data of the optimizee neural
network such as tensor shapes, neural graph (Kofinas et al., 2024), etc as input and utilize it in their parameter
update function. These hierarchical optimizers can not only capture inter-parameter dependencies for faster
optimization but also be scaled in memory-efficient manner without significantly increasing the runtime
overhead since their runtime cost scale sub-linearly with the number of parameters due to hierarchy (Metz
et al., 2022b;a). Hybrid optimizers (Almeida et al., 2021; Jang et al., 2023; Knyazev et al., 2024; Kristiansen
et al., 2024) combine hand-crafted and learned modules in their update function. Using statistics of the
underlying optimization task such as loss, gradient norms, momentum, etc, learned modules in hybrid
optimizers control hyperparameters of the hand-crafted update rules such as SGD (Kristiansen et al., 2024),
Adam (Metz et al., 2020b; Kristiansen et al., 2024) or LAMB (Almeida et al., 2021). Jang et al. (2023);
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Knyazev et al. (2024) alternate between Adam updates and updates performed by a learned function taking
only the past parameters as input showing promising results, but limited scalability. In this work, we focus
on enhancing the meta-generalization capabilities of fully learned optimizers while maintaining memory and
compute efficiency for practical use. Hence, our proposed approach, Celo, has a hierarchical architecture.
Meta-generalization of learned optimizers. Several learned optimizers have been proposed for specific
settings such as physics-based motion reconstruction (Gärtner et al., 2023), reinforcement learning (Goldie
et al., 2024), material design (Merchant et al., 2021), etc. Although these approaches are quite performant,
their applicability to broad range of Machine Learning (ML) tasks that practitioners care about is limited.
Since meta-training a learned optimizer for each setting is computationally expensive, optimizers that meta-
generalize to multiple tasks after being meta-trained are more desirable. A few recent works have explored
this direction. Almeida et al. (2021) proposed a hybrid optimizer with LAMB update rule that is trained on
small-scale tasks and generalize to 3 orders of magnitude higher tasks. VeLO (short for “Versatile Learned
Optimizer”) is a fully learned optimizer, meta-trained using an extensive computational budget of 4000 TPU-
months across diverse ML tasks. VeLO has demonstrated the ability to generalize effectively to new, unseen
tasks and successfully optimize neural networks with parameters up to 600M. In this work, we propose a
recipe to meta-train fully learned optimizers on a limited compute budget that meta-generalize to wide range
of unseen tasks. Thérien et al. (2024) recently proposed another approach to tackle meta-generalization by
developing learned optimizers within the Maximal Update Parametrization (Yang et al., 2021) framework.
This enables meta-generalization to wider and deeper models as well as to longer unrolls of a meta-training
task. Their approach is complementary to ours, so combining it with our recipe is a promising direction to
further improve meta-generalization.
Benchmarking optimizers. A few works have attempted to benchmark and compare optimizers (Schneider
et al., 2019; Schmidt et al., 2021; Dahl et al., 2023) on standard ML. Schneider et al. (2019) proposed the
DeepOBS benchmark that contains a set of realistic 8 ML tasks and compares standard (hand-crafted)
optimizers using training curves, test curves and learning rate sensitivity analysis. Schmidt et al. (2021)
benchmarked 15 hand-crafted optimizers on 8 ML tasks from DeepOBS by varying tuning budget and learning
rate schedules, leading to more than 50K optimization runs from all the combinations. The optimizers are
compared relative to each other by using final loss/test accuracy. Dahl et al. (2023) proposed another
benchmark that evaluates standard optimizers on 8 large-scale ML-Perf tasks and a methodology to score
optimizers by using speedup. Speedups for each task are computed using fixed task-specific metric targets
that are hand-designed. In this work, we propose evaluation metrics that can capture aggregate performance
of an optimizer using both speedup and final performance criteria. Unlike prior work, our evaluation metrics
are specifically designed to be robust to outliers, especially when the number of evaluation tasks is large
and doesn’t require hand-designing any cut-offs/thresholds. Hence, our proposed evaluation methodology is
scalable with respect to number of evaluation tasks.

8 Limitations and future work

Our work focuses on a recipe to train learned optimizers that meta-generalize well from a limited training set.
However, this work is leaving out a lot of “free” performance gains which could be obtained by trivially mod-
ifying or expanding the meta-training set, using better/faster architectures like state-space models instead of
LSTMs. We intentionally kept our architecture and meta-training setup simple without any bells and whistles
to do a fair head-to-head comparison with prior work and focus solely on the improvements from our recipe.
Moreover, although our work significantly improves generalization performance of fully learned optimizers
and we firmly believe this work is the right step towards making learned optimizers more practical, it is not
focused on delivering the most-performant optimizer for all kinds of large-scale workloads. Additional work
needs to be done to make these learned optimizers ready for production use cases like analyzing the impact
of meta-training data distribution on generalization properties, which is out of scope for this work. Further-
more, given the amount of compute resources we had, we tried our best to include as diverse and large number
of tasks as possible for evaluating all the learned optimizers and ablations with multiple seeds and hyperpa-
rameters. This resulted in hundreds of evaluation runs for each optimizer ablation. However, there is a scope
for larger scale study just focused on evaluation using our proposed metrics which we leave for future work.

13



Published in Transactions on Machine Learning Research (06/2025)

9 Conclusion

We propose a recipe to train versatile fully learned optimizers on a limited computed budget by identifying
three key elements in meta-training and architecture: (1) task augmentation (2) a simple design consisting
of a learned scheduler with a learned per-parameter update rule and (3) decoupled training of scheduler and
per-parameter update rule. We show that our proposed learned optimizer, Celo, outperforms state-of-the-
art hand-crafted and learned optimizers on unseen tasks, despite being meta-trained on a limited compute
budget of 24 GPU hours, demonstrating its strong meta-generalization capabilities. Moreover, we propose
evaluation metrics that can reliably capture aggregate performance of an optimizer on an evaluation set
inspired from RL literature. Furthermore, we perform exhaustive ablations with meta-generalization as the
principal axis of evaluation. Finally, we analyze the schedules proposed by Celo on unseen tasks and find
that they are adaptive to unseen training tasks and target length horizons. Overall, we believe that this work
serves as a significant stepping stone towards the development of fully learned optimizers that are efficient,
hyperparameter-free, and practically applicable to large-scale unseen tasks.
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A Appendix

A.1 Notation table

θ Optimizee network parameters

ϕ Learned optimizer parameters

∇θ Gradient of optimizee network parameters

θt Optimizee network parameters at iteration t

st Optimizer state at iteration t

M Meta-data input to optimizer such as current loss,
training progress, etc.

ψt Optimizee features

fϕ Function parameterized by ϕ

F Per-param features

S Normalized score matrix

T Set of meta-training tasks

D Inner task data

L Inner task objective

Lt Loss value at iteration t

ηt Scheduler scale parameter at iteration t

τ Task augmentation parameter

A.2 Additional ablations

Results without task augmentation. Table 4 shows results for Celo and all the learned optimizer
baselines without task augmentation as in prior work (Metz et al., 2022a; Harrison et al., 2022; Metz et al.,
2020a; 2022b). As evident from the results, all the learned optimizers perform much worse for both speedup
and final loss criteria when task augmentation is not used (refer to Table 1 for baseline results with task
augmentation). Interestingly, VeLO-S performs better than Adafac MLP LOpt when task augmentation is
not used. Moreover, VeLO-S median speedup score is 0.0 with and without task augmentation. However, it
improves when task augmentation is used with respect to IQM and optimality gap metrics further highlighting
the importance of our proposed metrics for tracking improvements which are not obviously captured by
standard metrics like median. Except Celo, none of the learned optimizer baselines from prior work are able
to achieve a final loss lower than Adam when evaluated on the 17 tasks as evident from their IQM results
(final loss IQM ă 1 and speedup = 0).

VeLO ablations. In order to be fair in comparison with all the RNN-based learned optimizer baselines
which use, we scale the hidden size of VeLO from 512 to 64 and accordingly the MLP bank size from 256
to 32 as mentioned in §5. In Table 5, we show meta-generalization results with original VeLO’s original
architecture (denoted by “velo”) meta-trained with the same setup as other baselines (§5). Moreover, we
also show results for the released pre-trained VeLO model Metz et al. (2022b) (denoted by “pretrained-velo”
in Table 5) which is meta-trained using 4000 months on large collection of tasks. Note that for pre-trained
VeLO, our evaluation task set is actually in-distribution (Metz et al., 2022b) but for VeLO, VeLO-S and also
our proposed Celo optimizer, they are out-of-distribution. The meta-generalization performance of VeLO
is slightly better with the bigger hidden size (512) than VeLO-S (IQM 0.96 vs 0.90) but still lags behind
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final loss speedup
w/o task augmentation medianÒ OGÓ IQMÒ medianÒ OGÓ IQMÒ

nnadam lopt (Metz et al., 2020b) 0.62 0.40 0.65 0.00 0.90 0.00
rnn mlp lopt (Metz et al., 2020a) 0.77 0.32 0.77 0.00 0.88 0.00
adafac mlp lopt (Metz et al., 2022a) 0.93 0.18 0.89 0.00 0.78 0.00
velo-s (Metz et al., 2022b) 0.90 0.14 0.90 0.00 0.71 0.13
celo (ours) 1.14 0.01 1.20 1.92 0.14 1.86

Table 4: Additional results without task augmentation. All the learned optimizer baselines are meta-
trained on a fixed set of 4 tasks without task augmentation (§3) as in prior work and evaluated on 17 diverse
out-of-distribution tasks (refer to §5). Our proposed approach, Celo, consisting of all the three ingredients
proposed in §3, significantly outperforms all the learned optimizer baselines.

our proposed approach Celo (IQM 1.20). This result shows that returns from architecture and algorithmic
improvements in learned optimizers can be much higher than simply scaling optimizer sizes.

compute budget IQMÒ OGÓ

velo-s 24 GPU hours 0.90 0.14
velo 24 GPU hours 0.96 0.12
velo-4000 4000 TPU months 1.41 0.00
celo 24 GPU hours 1.20 0.01

Table 5: VeLO ablations. IQM and optimality gap (OG) metrics for final loss criteria on our 17 evaluation
task set (§5) are reported along with meta-training compute budget. Note that our evaluation task set is
in-distribution for pretrained-velo but out-of-distribution for celo and all the other velo baselines.

Task augmentation level ablations. Task augmentation i.e. re-parametrization can be applied at differ-
ent hierarchical levels of neural network during meta-training: (1) Global level, where a single augmentation
parameter is sampled for the entire network; (2) Tensor level, where an augmentation parameter is sampled
for each tensor or layer in the network; (3) Per-parameter level, where an augmentation parameter is sampled
individually for each parameter in the network; and (4) Mixed strategy, where the augmentation parameter
is sampled uniformly from a combination of the previous three approaches. In our experiments, for mixed
augmentation strategy, we first randomly sample a strategy from the list ["none", "none", "global", "global",
"tensor", "tensor", "parameter"] and then randomly select an augmentation range from the list [[0.001, 1000.0],
[0.01, 100.0], [0.1, 10.0]]. Additionally, different augmentation strategies can used in the two stages for our
approach presented in §3. We present results for all the ablations in Table 6. Overall, we find that global
augmentation performs the best closely followed by tensor augmentation.

task aug level
stage 1 stage 2 IQMÒ OGÓ

tensor global 1.13 0.04
global tensor 1.13 0.04
mix mix 1.14 0.03

tensor tensor 1.18 0.04
celo global global 1.20 0.01

Table 6: Task augmentation level ablations. IQM and optimality gap (OG) metrics for final loss criteria
on our 17 evaluation task set (§5) are reported. Task augmentation is applied at different levels during two-
stage meta-training proposed in §3. "mix" refers to randomly sampling from a mixture of level list, see § A.2
for more details.

21



Published in Transactions on Machine Learning Research (06/2025)

RNN MLP LOpt
Metz et al. (2020a)

VeLO
Metz et al. (2022b)

Celo
(Ours)

per tensor 
LSTM

hypernet

per-param 
features

next 
params

per param 
MLP

tensor + global 
progress features

global aggregation

linear

  
tensor 
norm

×

ηt

tensor i

per tensor 
LSTM

 

per tensor
conditioning 
embedding

per-param 
features

param 
embeddings

global aggregation

aggregate

per param 
MLP

next 
params

tensor + global 
progress features tensor i

global 
LSTM

ηt

per-param 
features

next 
params

per param 
MLP

global progress 
features

linear

  
tensor
norm

×

tensor i

Figure 8: Comparing Celo architecture with VeLO and RNN MLP LOpt. Our proposed approach,
Celo, not only simplifies learned optimizer architecture from prior work as shown above but also vastly
outperforms in meta-generalization performance (see §1).

A.3 Implementation details

We meta-train and evaluate all the learned optimizers in this work in JAX (Bradbury et al., 2018) using the
open-sourced learned optimization2 library. For fair comparison, all the learned optimizers are meta-trained
with exactly same PES setup: maximum inner unroll length 2000 with unroll lengths sampled logarithmically
sampled between 100 and 2000, standard deviation 0.01, truncation length 50 and mean inner training loss
as the meta-objective. We use Adam (Kingma & Ba, 2015) as the meta optimizer and meta-train for 100K
iterations on a single Nvidia RTX8000 GPU. Following prior work (Metz et al., 2022a; Harrison et al., 2022),
we meta-train each learned optimizer using AdamW as the meta-optimizer by sweeping over 3 seeds and
5 learning rates [3e-5, 5e-5, 1e-4, 3e-4, 1e-3]. We find that higher and lower learning rates often result in
unstable training with PES, hence learning rates such as 1e-4 and 3e-4 work the best for all learned optimizers
(except NNAdamW LOpt for which lower learning rates, 3e-5 and 5e-5, work better). Meta-training jobs
for all the learned optimizers in this work finish within 24 hours. In order to keep learned optimizers
hyperparameter-free and do fair comparison, we do not use weight decay in learned optimizers although it
has been shown to help for some tasks (Metz et al., 2022b; Harrison et al., 2022) but requires additional
tuning. We evaluate all the learned optimizers in this work on our 17 task evaluation set with 3 seeds
per task. For task augmentation in meta-training, we sample a random parameter logarithmically between
0.001 and 1000 in each meta-iteration and use it to re-parametrize optimizee network weights at the global
level in inner-training (Metz et al., 2022b). As noted in prior work (Metz et al., 2022b), this augmentation
can simulate even more tasks when it is applied at different levels in the optimizee neural network: global
level, tensor level and per-parameter level by sampling global (one τ for all parameters), per-tensor or per-
parameter augmentations (τs) respectively. In our experiments, we find out that global-level augmentation
performs the best with respect to meta-generalization and hence we use it as the default. Moreover, in order
to decrease the impact of noise and loss fluctuations during training (e.g. lucky batches with low loss values
or loss spike at the end of training), we smooth the loss curves for Adam baseline and optimizers being
evaluated using exponential moving average with coefficient 0.9 before computing the normalized scores. We
compute final loss by taking average over multiple batches (10) as in prior work (Metz et al., 2022b;a). We
use the official code rliable3 open-sourced by (Agarwal et al., 2021) for computing IQM and other metrics.

2https://github.com/google/learned_optimization/
3https://github.com/google-research/rliable/
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A.4 Scaling study
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In our main paper, learned optimizers are meta-trained with a 2K
unroll length. To study scaling behavior of our proposed approach,
we meta-train Celo and VeLO-S with unroll lengths of 1K, 2K, and
5K, then meta-test them on all tasks in our evaluation set using a
10K unroll length, assessing generalization to longer unrolls. We re-
port the IQM metric with the final loss criterion and show scaling
trends in the right Figure. Celo performance scales predictably with
the meta-training budget and gets IQM 1.85 on 10K unroll length
with 5K meta-train unroll length, hence demonstrating strong gener-
alization performance with respect to unroll length. VeLO-S, on the
other hand, gets IQM 0.34 with 5K meta-train length. These results clearly demonstrate that Celo scales
significantly better than VeLO, achieving much better performance under a fixed meta-training budget,
thereby highlighting its compute efficiency.

A.5 Runtime analysis

Celo updates the parameters of a given optimizee network using a per-parameter MLP. Since the number of
FLOPs for a forward pass of a linear layer with weights nˆm is 2nm, the cost of a 2-layer MLP update rule in
Celo with 30 input features, 2 hidden layers with 4 units and 2 outputs units is 2ˆp30ˆ4`4ˆ4`4ˆ2q “ 288
FLOPs per parameter. For an optimizee linear layer with n ˆ m parameters and batch size B, the total
amount of FLOPs to perform a forward and backward pass is 6nmB. Hence, the ratio of FLOPs of our
learned optimizer’s update w.r.t. to forward+backward FLOPs is 288nm{6nmB “ 48{B. This shows
that the overhead of our optimizer decreases as the tasks get larger with more inputs flowing through the
optimizee network with larger batch size B which also makes sense intuitively because as the tasks become
computationally expensive, the cost of forward and backward pass dominates optimizer update cost. In
this analysis, we omitted the cost of LSTM scheduler but as noted by prior work (Metz et al., 2022b;a),
the overhead of any tensor or global-level computation in the learned optimizer decreases as the number
of parameters increase in the optimizee network since the cost of per-parameter updates dominate and
tensor/global computation overhead asymptotically reduces to a fixed constant (Metz et al., 2022b). We
compare wall-clock time of Celo with Adam and other learned optimizer baselines in Table 7. We benchmark
runtime on a NVIDIA V100 GPU with 10 seeds per optimizer.

A.6 MLCommons AlgoPerf evaluation

We additionally evaluate on a few standard ML Commons tasks from AlgoPerf benchmark (Dahl et al., 2023)
which are much larger and completely out-of-distribution for meta-trained optimizers in this work. Figures 9
and 10 show training and validation curves respectively, comparing Celo-Adam (Celo scheduler with Adam
update rule discussed in Table 3) with Schedule-Free AdamW, the winning entry in the self-tuning track of
AlgoPerf 2024 competition as well as tuned NAdamW baseline provided by the AlgoPerf team (Kasimbeg
et al., 2025). For baselines, we directly use the results data from the AlgoPerf 2024 competition. AlgoPerf
is a time-to-result benchmark, where runs are halted either upon reaching the task’s validation target or
upon timing out. As evident from the results, Celo-Adam manages to optimize these relatively large-scale
unseen workloads despite being meta-trained on small image MLP tasks (§A.7). However, the final validation
performance of Celo-Adam still lags behind the tuned baselines and it fails to hit validation targets earlier
as evident from the validation curves (Figure 10). Morever, we find that Celo, pre-trained on simple image
MLP tasks considered in this work, is unstable for MLCommons tasks, hence we omit it from Figures 9
and 10. This highlights that learning a robust update rule is critical to scale fully learned optimizers to
large-scale workloads since learned schedulers can generalize, as evident from Celo-Adam results, even from
limited meta-training. We defer the scaling up of meta-training for Celo to future work, which we believe
is the right direction to make it ready for standard use-cases especially given that our proposed recipe is
compute-efficient and scalable (A.4).
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runtime per step (ms)
evaluation tasks adam velo-s velo celo
ImageMLP_FashionMnist_Relu128x128 0.20 1.69 1.76 1.31
ImageMLP_Cifar10_128x128x128_LayerNorm_Relu 0.31 3.41 3.83 2.69
ImageMLP_Cifar10_128x128x128_Tanh_bs128 0.24 2.74 3.05 2.20
Conv_Cifar10_32x64x64 1.12 2.80 3.02 2.44
Conv_Cifar10_32x64x64_batchnorm 1.29 3.68 4.10 3.22
Conv_Cifar10_32x64x64_layernorm 1.41 3.78 4.11 3.21
Conv_Cifar100_32x64x64 1.11 2.70 3.09 2.55
VIT_Cifar100_wideshallow 6.73 43.89 46.00 39.47
VIT_Cifar100_skinnydeep 4.52 29.09 32.69 23.70
ImageMLPAE_Cifar10_128x32x128_bs256 0.44 4.29 4.28 4.16
ImageMLPAE_Mnist_128x32x128_bs128 0.19 2.54 2.70 2.22
RNNLM_lm1b32k_Patch32_LSTM256_Embed128 23.96 53.42 53.38 52.86
RNNLM_wikipediaen32k_Patch32_LSTM256_Embed128 24.29 53.47 53.81 53.38
TransformerLM_LM1B_MultiRuntime_0 0.71 8.30 8.71 7.10
TransformerLM_LM1B_MultiRuntime_2 0.99 14.50 15.46 12.94
TransformerLM_LM1B_MultiRuntime_5 1.26 10.93 11.42 9.88
LOpt_AdafacMLPLOpt_FashionMnist_50 65.12 67.31 68.16 67.06

Table 7: Runtime per step for each task (ms). Celo is faster in terms of wallclock time per step than
previous state-of-the-art learned optimizers such as VeLO (Metz et al., 2022b) as well as VeLO with smaller
hidden size (VeLO-S from §5). However, compared to Adam, Celo has additional overhead depending on
the evaluation task. Notably, as tasks become more computationally expensive, this overhead diminishes, as
discussed in §A.5.

A.7 Meta-training tasks

We meta-train all the learned optimizers in this work on a set of small image MLP tasks from prior work (Metz
et al., 2022b) in order to keep the meta-training fast and perform all the ablation experiments within
our compute budget. The same task set is also used by VeLO to compare different learned optimizer
architectures (Metz et al., 2022b). It consists of the 4 tasks with different datasets namely, Fashion MNIST,
CIFAR-10, MNIST and SVHN. All the tasks share the same configuration which consists of a 1-layer MLP
network with 32 hidden units, 8 ˆ 8 single channel image input, batch size 64 and ReLU activations. Link
to code snippets here.

A.8 Evaluation tasks

We evaluate Celo and all the optimizer baselines on the following 17 tasks. Each task name contains link to
its associated code snippet.

1. ImageMLP_FashionMnist_Relu128x128: Image classification task with Fashion MNIST dataset, MLP
network with 2 hidden layers each containing 128 hidden units and ReLU activations, batch size
128, cross-entropy loss.

2. ImageMLP_Cifar10_128x128x128_LayerNorm_Relu: Image classification task with CIFAR-10 dataset,
MLP network with 3 hidden layers each containing 128 hidden units with layer-norm followed by
ReLU in each hidden layer, batch size 128, cross-entropy loss.

3. ImageMLP_Cifar10_128x128x128_Tanh_bs128: Image classification task with CIFAR-10 dataset, MLP
network with 3 hidden layers each containing 128 hidden units with Tanh activations, batch size
128, cross-entropy loss.

4. Conv_Cifar10_32x64x64: Image classification task with CIFAR-10 dataset, convolutional neural net-
work with 3 hidden layers containing 32, 64 and 64 channels with ReLU activations, stride 2 in first
layer and stride 1 in rest of the layers, batch size 128, cross-entropy loss.
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Figure 9: MLCommons AlgoPerf train curves.
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Figure 10: MLCommons AlgoPerf validation curves. We compare Celo-Adam with winner in the self-
tuning track of AlgoPerf 2024 competition Schedule-Free AdamW and prize qualification baseline NAdamW
which is heavily tuned (Kasimbeg et al., 2025; Dahl et al., 2023). Although Celo-Adam is just meta-trained
on small image MLP tasks (§A.7), it manages to optimize much larger tasks, in some cases, even better than
Schedule-Free AdamW (ImageNet ResNet tasks). However, it still lags behind baselines in terms of final
performance, a gap that can be potentially covered by improving and scaling up meta-training.

5. Conv_Cifar10_32x64x64_batchnorm: Image classification task with CIFAR-10 dataset, convolutional
neural network with 3 hidden layers containing 32, 64 and 64 channels with ReLU activations and
batch-norm, stride 2 in first layer and stride 1 in rest of the layers, batch size 128, cross-entropy loss.

6. Conv_Cifar10_32x64x64_layernorm: Image classification task with CIFAR-10 dataset, convolutional
neural network with 3 hidden layers containing 32, 64 and 64 channels with ReLU activations and
layer-norm, stride 2 in first layer and stride 1 in rest of the layers, batch size 128, cross-entropy loss.
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7. Conv_Cifar100_32x64x64: Image classification task with CIFAR-100 dataset, convolutional neural
network with 3 hidden layers containing 32, 64 and 64 channels with ReLU activations and layer-
norm, stride 2 in first layer and stride 1 in rest of the layers, batch size 128, cross-entropy loss.

8. VIT_Cifar100_wideshallow: Image classification task with CIFAR-100 dataset, vision transformer
model with 6 transformer layers each containing 6 attention heads, 16ˆ16 patch input, hidden size
384, MLP expand factor 4, batch size 128, cross-entropy loss.

9. VIT_Cifar100_skinnydeep: Image classification task with CIFAR-100 dataset, vision transformer
model with 10 transformer layers each containing 4 attention heads, 16ˆ16 patch input, hidden size
128, MLP expand factor 4, batch size 128, cross-entropy loss.

10. TransformerLM_LM1B_MultiRuntime_0: Language modeling task with LM1B dataset, transformer de-
coder model with 1 layer containing 5 attention heads, hidden size 20, sequence length 8, vocabulary
size 32K, batch size 4, cross-entropy loss.

11. TransformerLM_LM1B_MultiRuntime_2: Language modeling task with LM1B dataset, transformer de-
coder model with 2 layers each containing 4 attention heads, hidden size 32, sequence length 8,
vocabulary size 32K, batch size 8, cross-entropy loss.

12. TransformerLM_LM1B_MultiRuntime_5: Language modeling task with LM1B dataset, transformer de-
coder model with 1 layers each containing 4 attention heads, hidden size 32, sequence length 32,
vocabulary size 32K, batch size 8, cross-entropy loss.

13. ImageMLPAE_Cifar10_128x32x128_bs256: Auto-encoder task with CIFAR-10 dataset, MLP network
with shape 128-32-128 and ReLU activations, batch size 256, MSE loss.

14. ImageMLPAE_Mnist_128x32x128_bs128: Auto-encoder task with MNIST dataset, MLP network with
shape 128-32-128 and ReLU activations, batch size 128, MSE loss.

15. RNNLM_lm1b32k_Patch32_LSTM256_Embed128: Language modeling task with LM1B dataset, LSTM re-
current network with embedding size 128, hidden size 256, sequence length 32, vocabulary size 32K,
batch size 128, cross-entropy loss.

16. RNNLM_wikipediaen32k_Patch32_LSTM256_Embed128: Language modeling task with wikipedia dataset,
LSTM recurrent network with embedding size 128, hidden size 256, sequence length 32, vocabulary
size 32K, batch size 128, cross-entropy loss.

17. LOpt_AdafacMLPLOpt_FashionMnist_50: Learned optimizer meta-training task using Fashion MNIST
dataset, MLP-based learned optimizer (Adafac MLP LOpt), 1-layer optimizee network with 32
hidden units, 8 ˆ 8 image input, maximum inner unroll length 50, outer batch size 2, inner loss
cross-entropy, mean loss of inner loop as the meta-objective.
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A.9 Evaluation plots
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Figure 11: All train curves.
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Figure 12: All test curves.
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A.10 Evaluation plots with task augmentation
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Figure 13: RNN MLP LOpt augmentation training curves.
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Figure 14: Adafac MLP LOpt augmentation training curves.
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Figure 15: Velo-S augmentation training curves.
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Figure 16: Celo augmentation training curves.
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A.11 Celo schedules
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Figure 17: Celo learned schedules for all tasks.
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