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Abstract

Implicit Neural Representations have gained
prominence as a powerful framework for cap-
turing complex data modalities, encompassing
a wide range from 3D shapes to images and au-
dio. Within the realm of 3D shape representa-
tion, Neural Signed Distance Functions (SDF)
have demonstrated remarkable potential in faith-
fully encoding intricate shape geometry. However,
learning SDFs from sparse 3D point clouds in the
absence of ground truth supervision remains a
very challenging task. While recent methods rely
on smoothness priors to regularize the learning,
our method introduces a regularization term that
leverages adversarial samples around the shape
to improve the learned SDFs. Through extensive
experiments and evaluations, we illustrate the ef-
ficacy of our proposed method, highlighting its
capacity to improve SDF learning with respect to
baselines and the state-of-the-art using synthetic
and real data.

1. Introduction

Obtaining faith-full and intelligible neural representations
of the 3D world from limited and corrupted point clouds is a
challenge of paramount importance, that finds applications
in countless downstream computer vision and graphics tasks.
While many methods rely on data priors learned from large
fully labeled datasets, these priors can fail to generalize
to unseen shapes especially under very sparse unoriented
inputs (Chen et al., 2023a; Ouasfi & Boukhayma, 2024b).
Hence, it is important to design learning frameworks that
can lead to efficient and robust learning of implicit shape
representations under such extreme constraints.

In this context, the learning strategy introduced by (Ma et al.,
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2021) (dubbed NeuralPull) have shown to be one of the most
successful ones in learning implicit shapes from point cloud
unsupervisedly. However, upon observing the behavior of
the training and validation errors of this method under sparse
and dense input point clouds (Figure 1), we notice that the
validation error starts increasing quite early on in the train-
ing in the sparse input case, whilst the training loss keeps on
decreasing. This suggests an overfitting problem evidently
intensifying in the sparse setting. Qualitatively, this increase
in the validation error is usually synonymous to deteriora-
tion in the extracted shape with symptoms varying between
shape instances, including shape hallucinations, missing
shape parts, and shape becoming progressively wavy, bumpy
and noisy. In extreme cases, shapes can also break into sep-
arate components or clusters around input points. When
the input is additionally noisy, these phenomena are further
exacerbated.

Recent work in the field relies on various smoothness priors
(e.g. (Chen et al., 2023a; Gropp et al., 2020; Ben-Shabat
et al., 2022; Ouasfi & Boukhayma, 2024c)) to regularize
the implicit shape functions, and hence reduce overfitting.
One side of the problem that remains underexplored how-
ever is how training data is sampled during learning, and
understanding to which extent this sampling could affect
performance. This is even the more an important question
in our situation. In fact, while standard supervised learning
uses typically data/label sample pairs, fitting implicit repre-
sentations entails mapping spatial coordinates to labels or
pseudo labels, where these spatial queries can be sampled
uniformly or normally around the input point cloud. In the
case of our baseline NeuralPull, the nearest point could sam-
ple to a spatial query is a pseudo-label approximating the
unavailable nearest groundtruth surface point in the train-
ing. Hence, both inherent input point cloud noise and its
sparsity represent a noise (i.e. displacement) on the perfect
surface labels. This composite noise can affect both the SDF
function and gradient orientation. In practice, we notice the
network first produces a very smooth shape. When it tries to
refine it, it tends to overfit to the noise present in the super-
vision signal. At this stage, further fitting on easy samples
(predominant samples) means overfitting on this noise. The
samples that can benefit the implicit representation can be
drowned within easy samples.
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Figure 1. While the training loss (left) is decreasing for both our
baseline (Ma et al., 2021) and our method, the Chamfer distance
of reconstructions w.r.z. the GT starts increasing quite early on
especially in the sparse input point cloud case for the baseline.
This undesirable behaviour is remedied by our adversarial query
mining. We report here metrics for unit box normalized meshes,
using shape Gargoyle of dataset SRB (Williams et al., 2019).

Among literature interested in such a problem, active learn-
ing advocates sampling based on informativeness and diver-
sity (Huang et al., 2010). New samples are queried from
a pool of unlabeled data given a measure of these criteria.
Informative samples are usually defined as samples that can
reduce the uncertainty of a statistical model. However, sev-
eral heuristics coexist as it is impossible to obtain a universal
active learning strategy that is effective for any given task
(Dasgupta, 2005). In our setting it is not clear what samples
are the most informative for our implicit shape function and
how to sample from the uncertainty regions of the implicit
field. Recent work on distributionally robust optimization
(DRO) (Volpi et al., 2018; Rahimian & Mehrotra, 2019)
provides a mathematical framework to model uncertainty.
In this framework, the loss is minimized over the worst
case distribution in a neighborhood of the observed training
data distribution. As a special case, adversarial training
(Madry et al., 2017) uses pointwise adversaries rather than
adversarial joint perturbations of the entire training set.

Inspired by this literature, we propose to use adversarial
samples to regularize the learning of implicit shape rep-
resentations from sparse point clouds. We build on SDF
projection minimization error loss in training (See figure
2). Typically query points are pre-sampled around the in-
put point cloud to train such a method. We augment these
queries with adversarial samples during training. To ensure
the diversity of these additional samples, we generate them
in the vicinity of original queries within locally adapted
radii. These radii modulate the adversarial samples den-
sity in concordance with the input point cloud density, thus
allowing us to adapt to the local specificities of the input
during the neural fitting. Our adversarial training strategy,
focuses on samples that can still benefit the network, which
prevents the aforementioned overfitting while refining the
implicit representation.

To test our idea, we devise experiments on real and synthetic
reconstruction benchmarks, including objects, articulated

shapes and large scenes. Our method outperforms the base-
line as well as the most related competition both quantita-
tively and qualitatively. We notice that our adversarial loss
helps our model most in places where shape prediction is
the hardest and most ambiguous, such as fine and detailed
structures and body extremities. Experiments on a dense
reconstruction setting show that our method can be useful
in this setup as well. Finally, thanks to our method, and as
illustrated in Figure 1, validation stabilizes and plateaus at
convergence unlike our baseline, which makes it easier for
us to decide the evaluation model epoch, given that evalua-
tion measurements are normally unavailable in unsupervised
settings.

2. Related work

Classical shape modelling from point cloud includes com-
binatorical methods where the shape is defined through
an input point cloud based space partitioning, through e.g.
alpha shapes (Bernardini et al., 1999) Voronoi diagrams
(Amenta et al., 2001) or triangulation (Cazals & Giesen,
2006; Liu et al., 2020; Rakotosaona et al., 2021). Differ-
ently, the input samples can be used to define an implicit
function whose zero level set represents the target shape, us-
ing global smoothing priors (Williams et al., 2022; Lin et al.,
2022; Williams et al., 2021) e.g. radial basis function (Carr
et al., 2001) and Gaussian kernel fitting (Scholkopf et al.,
2004), local smoothing priors such as moving least squares
(Mercier et al., 2022; Guennebaud & Gross, 2007; Kolluri,
2008; Liu et al., 2021), or by solving a boundary condi-
tioned Poisson equation (Kazhdan & Hoppe, 2013). The
recent literature proposes to parameterise these implicit func-
tions with deep neural networks and learn their parameters
with gradient descent, either in a supervised (e.g. (Ouasfi
& Boukhayma, 2024a; 2022; Boulch & Marlet, 2022; Peng
et al., 2020; Lionar et al., 2021; Peng et al., 2021)) or un-
supervised manner. These implicit neural representations
(Mescheder et al., 2019; Park et al., 2019) overcome many
of the limitations of explicit ones (e.g. meshes (Wang et al.,
2018; Kato et al., 2018; Jena et al., 2022) and point clouds
(Fan et al., 2017; Aliev et al., 2020; Kerbl et al., 2023)) in
modelling shape, radiance and light fields (e.g. (Mildenhall
et al., 2020; Yariv et al., 2021; Wang et al., 2021; Jain et al.,
2022; Chan et al., 2022; Li et al., 2023a;b)), as they allow
to represent functions with arbitrary topologies at virtually
infinite resolution.

We are interested in unsupervised implicit neural shape
learning. In this scenario, an MLP is typically fitted to the
input point cloud without extra priors or information. Regu-
larizations can compensate for the lack of supervision. For
instance, (Gropp et al., 2020) introduced a spatial gradient
constraint based on the Eikonal equation. (Ben-Shabat et al.,
2022) introduces a spatial divergence constraint. (Liu et al.,
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2022) propose a Lipschitz regularization on the network.
(Ma et al., 2021; Ouasfi & Boukhayma, 2024c) expresses
the nearest point on the surface as a function of the neural
signed distance and its gradient. (Peng et al., 2021) pro-
posed a differentiable Poisson solving layer that converts
predicted normals into an indicator function grid efficiently.
(Koneputugodage et al., 2023) guides the implicit field learn-
ing with an Octree based labelling. (Boulch et al., 2021)
predicts occupancy fields by learning whether a dropped
needle goes across the surface or not. (Chen et al., 2023a)
learns a surface parametrization leveraged to provide addi-
tional coarse surface supervision to the shape network. Most
methods can benefit from normals if available. (Atzmon
& Lipman, 2020) proposed to supervise the gradient of the
implicit function with normals, while (Williams et al., 2021)
uses the inductive bias of kernel ridge regression. In the
absence of normals and learning-based priors, and under
input scarcity, most methods still display considerable fail-
ures. Differently from all existing work, we explore the
use of adversarial samples in training implicit neural shape
representations.

In the adversarial training literature, a trade-off between
accuracy and robustness has been observed empirically in
different datasets (Raghunathan et al., 2019; Madry et al.,
2018). This has led prior work to claim that this tradeoff
may be inevitable for many classification tasks (Tsipras
et al., 2018; Zhang et al., 2019). However, several recent
papers challenged this claim. (Yang et al., 2020) showed
theoretically that this tradeoff is not inherent. It is rather a
consequence of current robustness methods. These findings
are corroborated empirically in recent work (Stutz et al.,
2019; Xie et al., 2020; Herrmann et al., 2021). Our baseline
relies on a pseudo-labeling strategy that introduces noise as
the input gets sparser. Our method robustifies the learning
against this noise, providing regularization and additional
informative samples. The regularization helps prevent over-
fitting and enhances generalization, i.e. ensuring the loss
behavior on the “training” query points is generalized in
the 3D space, while informative samples aid in refining the
shape function during advanced training stages.

3. Method

Given a noisy, sparse unoriented point cloud P ¢ R3*Nr,
our objective is to obtain a corresponding 3D shape recon-
struction, i.e. the shape surface S that best explains the ob-
servation P. In other terms, the input point cloud elements
should approximate noised samples from S.

In order to achieve this goal, we learn a shape function f
parameterised with an MLP fy. The function represents
the implicit signed distance field relative to the target shape
S. That is, for a query euclidean space location ¢ € R?,
f(q) :== s - minyes ||v — ¢||2, where s := 1 if ¢ is inside

e Y
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Figure 2. We learn an implicit shape representation fy from a point
cloud (blue points) by minimizing the error between projection
(through fy) of spatial queries g (gray points) onto the level set
of the field (purple) and the nearest input point p. We introduce
adversarial queries g + 5 to the optimization. They are defined as
samples maximizing the loss in the vicinity of original queries.

S, and s := —1 otherwise. The inferred shape S can be
obtained as the zero level set of the SDF (signed distance
function) fy at convergence:

S={qeR?| folq) = 0}. (1)

Practically, an explicit triangle mesh for S can be obtained
through the Marching Cubes algorithm (Lorensen & Cline,
1987), while querying neural network fy. We note also
that S can be rendered through ray marching (Hart, 1996)
through the SDF field inferred by fjy.

3.1. Background: Learning an SDF by pulling queries
onto the surface.

Several state-of-the-art reconstruction from point cloud
methods (e.g. (Chen et al., 2023a; Ma et al., 2022b;a; Chen
et al., 2022; Ma et al., 2021)), including the state-of-the-art
unsupervised reconstruction from sparse point cloud method
(Chen et al., 2023a), build on the neural SDF training proce-
dure introduced in (Ma et al., 2021) named NeuralPull. The
latter is inspired by the observation that the distance field
guided projection operator ¢ — ¢ — f(q) - V f(g) ((Chibane
et al., 2020; Perry & Frisken, 2001; Wolter, 1993; Zhao
et al., 2021)) yields the nearest surface point when applied
near the surface, where V f is the spatial gradient of f.

In practice, query points ¢ € ) are sampled around the
input point cloud P, specifically from normal distributions
centered at input samples {p}, with locally defined standard
deviations {o, }:

Q= J{a~Np,oIs)}, ©)

pEP
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where o, is chosen as the maximum euclidean distance to
the K nearest points to p in P. For each query ¢, the nearest
point p in P is computed subsequently, and the following
objective is optimized in (Ma et al., 2021) yielding a neural
signed distance field fy whose zero level set concurs with
the samples in P:

_ V fo(q)
5(97Q)—Hq—fe(Q)'m—P||§a 3)

where p = argmin ||t — g|2.
teP

In the case of (Ma et al., 2021), the training procedure is
empirical risk minimization (ERM), namely:

in E £(0,q), 4
mgquQ( q) “4)

where () constitutes the empirical distribution over the train-
ing samples.

3.2. Local adversarial queries for the few shot setting

As introduced in the first section, input point cloud noise and
sparsity are akin to noisy labels for query points q. Hence,
training through standard ERM under sparse input point
clouds P leads to an overfitting on this noise (Figure 1), i.e.
useful information carried out by query samples decreasing
during training thus leading to poor convergence. Hence,
differently from existing work in the field of learning based
reconstruction from point cloud, we propose to focus on
the manner in which query points ¢ are sampled at training,
as we hypothesise that there could be a different sampling
strategy from the one proposed in NeuralPull (i.e. Equa-
tion 2) that can lead to better results. This hypothesis is
backed by literature showing that hard sample mining can
lead to improved generalization and reduced over-fitting
(Xie et al., 2020; Chawla, 2010; Ferndndez-Delgado et al.,
2014; Krawczyk, 2016; Shrivastava et al., 2016). Intuitively,
exposing the network to the worst cases in training is likely
to make it more robust and less specialized on the more
common easy queries.

We explore a different procedure from standard ERM (Equa-
tion 4). Ideally, we wish to optimize 6 under the worst
distribution @’ of query points {¢} in terms of our objective
function, meaning:

min nba/x qE;)/L(G’ q). 5)
Such a training procedure is akin to a distributionally robust
optimization (Sagawa* et al., 2020; Rahimian & Mehrotra,
2019) which is hard to achieve in essence. It was shown
however that a special more attainable case of the latter
consists in harnessing hard samples locally (Staib & Jegelka,
2017), that is looking for hard samples in the vicinity of the

original empirical samples:

in E L(O,qg+9). 6
min B pax £00,4+9) ©

Let us consider optimum perturbations 5. Using a first order
Taylor expansion on loss £(6, g + J), we can write:

6 =argmax £(0,q + 0),
[16]]2<p

~ argmax £(0,q) + 0 V,L(0,q), 7
[18]]2<p

~ argmaxd ' V,L(0,q).
[16]]2<p

Leveraging this approximation, we can obtain the optimum
value & as the solution to a classical dual norm problem,
by using the equality case of Cauchy—Schwarz inequality
applied to the scalar product § ' V,£(6, ¢) for § in a closed
ball of radius p and center 0:

Vq£(97 q)

=, Yatl0a)
PIIN L0, 9)]]2

(®)
where gradients V£ can be computed efficiently through

automatic differentiation in a deep-learning framework (e.g.
PyTorch (Paszke et al., 2019)).

Algorithm 1 The training procedure of our method.

Input: Point cloud P, learning rate o, number of iterations Nj;,
batch size Ny.
Output: Optimal parameters 6*.
Compute local st. devs. {op} (0p = maxic gmn(p,p) ||t — P|[2)-
Q < sample(P,{o,}) (Equ. 2)
Compute nearest points in P for all samples in Q.
Compute local radii {pq} (pq = 0 x 1072, p := nn(q, P)).
Initialize A1 = A2 = 1.
for Ny times do
Sample N, query points {q,q ~ Q}.
Compute losses {£(0, ¢)}. (Equ. 3)
Compute loss gradients {V,£(6, ¢)} with autodiff.
Compute 3D offsets {6}. (Equ. 8, using radii {p,})
Compute adversarial losses {£(6, ¢ + 6)}. (Equ. 3)
Compute combined losses {£(6, q) }. (Equ. 9)
(03 )‘17 )\2) <~ (07 Ala )‘2) - Oéve,/\l ,A2 242(07 q)
end for

We found empirically that using local radii {p,} in our
context improves over using a single global radius p and we
provide and ablation later on of this design choice. We recall
that each query point g has a nearest counterpart p in P. As
we want our adversarial sample q+3 to still remain relatively
close to p, we define {p,} as a fraction of local standard
deviation o, of the nearest point p (e.g. p, = o, X 1072).
Linking p, to o, also allows us to adjust the local radii to
the local input point cloud density. We remind that o, was
used for sampling query points ¢ around input point p, as
explained in the previous background section.
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To ensure the stability of our learning, we train our neural
network by backpropagating a hybrid loss combining the
original objective and the adversarial one, using the strategy
in (Liebel & Korner, 2018) for multi-task learning:

1 1 N
£(0,q) Zﬁﬁ(& q) + 27\25(9, q+9) ©)

+ln(14+X)+1In(1+ N),

where \; and )\, are learnable weights. A summary of
our training procedure is shown in Algorithm 1. A visual
illustration of our training can be seen in Figure 2.

4. Results

To evaluate our method, we assess our ability to learn im-
plicit shape representations given sparse and noisy point
clouds. We use datasets from standard reconstruction bench-
marks. These datasets highlight a variety of challenges
of fitting coordinate based MLPs to sparse data as well as
reconstruction more broadly. Following the literature, we
evaluate our method by measuring the accuracy of 3D ex-
plicit shape models extracted after convergence from our
MLPs. We compare quantitatively and qualitatively to the
the state-of-the-art in our problem setting, i.e. unsupervised
reconstruction from unoriented point cloud, including meth-
ods designed for generic point cloud densities and methods
dedicated to the sparse setting. For the former, we compare
to fully implicit deep learning methods such as NP (Ma et al.,
2021), SAP (Peng et al., 2021), DIGS (Ben-Shabat et al.,
2022), in addition to hybrid methods combining implicit
and grid based representations such as OG-INR (Koneputu-
godage et al., 2023) and GP (GridPull) (Chen et al., 2023b).
When it comes to methods dedicated to the sparse setting
we compare to NTPS (Chen et al., 2023a) which is the clos-
est method to ours as it focuses specifically on the sparse
input case. We additionally compare to NDrop (Boulch
et al., 2021). We show results for NSpline (Williams et al.,
2021) even though it requires normals. We also compare to
classical Poisson Reconstruction SPSR (Kazhdan & Hoppe,
2013). We note also that comparisons to NP (NeuralPull, our
baseline) also serves additionally as an ablation of our adver-
sarial loss through out our experiments. For comprehensive
evaluation, we also include comparisons to supervised meth-
ods including state-of-the-art feed-forward generalizable
methods, namely POCO (Boulch & Marlet, 2022), CONet
(Peng et al., 2020) and NKSR (Huang et al., 2023), along-
side the finetuning method SAC (Tang et al., 2021) and the
prior-based optimization method dedicated to sparse inputs
On-Surf (Ma et al., 2022a). Unless stated differently, we use
the publicly available official implementations of existing
methods. For sparse inputs, we experimented with point
clouds of size IV, = 1024.

4.1. Metrics

Following seminal work, we evaluate our method and the
competition w.z¢. the ground truth using standard metrics
for the 3D reconstruction task. Namely, the L1 Chamfer
Distance CD; (x10?), L2 Chamfer Distance CD (x10?),
the euclidean distance based F-Score (FS) when ground
truth points are available, and finally Normal Consistency
(NC) when ground truth normals are available. We detail
the expressions of these metrics in the appendix.

4.2. Datasets and input definitions

ShapeNet (Chang et al., 2015) consists of various instances
of 13 different synthetic 3D object classes. We follow the
train/test splits defined in (Williams et al., 2021). We gener-
ate noisy input point clouds by sampling 1024 points from
the meshes and adding Gaussian noise of standard deviation
0.005 following the literature (e.g. (Boulch & Marlet, 2022;
Peng et al., 2020)). For brevity we show results on classes
Tables, Chairs and Lamps.

Faust (Bogo et al., 2014) consists of real scans of 10 human
body identities in 10 different poses. We sample sets of
1024 points from the scans as inputs.

3D Scene (Zhou & Koltun, 2013) contains large scale com-
plex real world scenes obtained with a handheld commodity
range sensor. We follow (Chen et al., 2023a; Jiang et al.,
2020; Ma et al., 2021) and sample our input point clouds
with a sparse density of 100 per m?, and we report perfor-
mance similarly for scenes Burghers, Copyroom, Lounge,
Stonewall and Totempole.

Surface Reconstruction Benchmark (SRB) (Williams
et al., 2019) consists of five object scans, each with dif-
ferent challenges such as complex topology, high level of
detail, missing data and varying feature scales. We sample
1024 points from the scans for the sparse input experiment,
and we also experiment using the dense inputs.

4.3. Implementation details

Our MLP (fy) follows the architecture in NP (Ma et al.,
2021). We train for N;; = 40000 iterations using the Adam
optimizer. We use batches of size N, = 5000. Following
NP, we set K = 51 for estimating local standard deviations
op. We train on a NVIDIA RTX A6000 GPU. Our method
takes 8 minutes in average to converge for a 1024 sized
input point cloud. In the interest of practicality and fairness
in our comparisons, we decide the evaluation epoch for all
the methods for which we generated results (including our
main baseline) in the same way: we chose the best epoch
for each method in terms of chamfer distance between the
reconstruction and the input point cloud.
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Figure 3. ShapeNet (Chang et al., 2015) reconstructions from
sparse noisy unoriented point clouds.

CD1 CD2 NC FS
SPSR (Kazhdan & Hoppe, 2013) 234 0224 0.74 0.50
OG-INR (Koneputugodage et al., 2023) 1.36  0.051 0.55 0.55
NP (Maet al., 2021) 1.16 0.074 0.84 0.75
GP (Chen et al., 2023b) 1.07 0.032 0.70 0.74
NTPS (Chen et al., 2023a) 1.11  0.067 088 0.74
Ours 0.76 0.020 0.87 0.83

Table 1. ShapeNet (Chang et al., 2015) reconstructions from sparse
noisy unoriented point clouds.

CD1 CD2 NC FS
POCO (Boulch & Marlet, 2022)  0.308 0.002 0.934 0.981
CONet (Peng et al., 2020) 1.260 0.048 0.829 0.599
On-Surf (Ma et al., 2022a) 0.584 0.012 0.936 00915
SAC (Tang et al., 2021) 0.261 0.002 0.935 0.975
NKSR (Huang et al., 2023) 0.274 0.002 0.945 0.981
SPSR (Kazhdan & Hoppe, 2013)  0.751 0.028 0.871 0.839
GP (Chen et al., 2023b) 0.495 0.005 0.887 0.945
NTPS (Chen et al., 2023a) 0.737 0.015 0943 0.844
NP (Ma et al., 2021) 0.269 0.003 0.951 0.973
Ours 0.220 0.001 0.956 0.981

Table 2. Faust (Bogo et al., 2014) reconstructions from sparse noisy
unoriented point clouds.

NP

NTPS SPSR

Input Ours

Figure 4. Faust (Bogo et al., 2014) reconstructions from sparse
noisy unoriented point clouds.

4.4. Object level reconstruction

We perform reconstruction of ShapeNet (Chang et al., 2015)
objects from sparse and noisy point clouds. Table 1 and
Figure 3 show respectively a numerical and qualitative com-
parison to the competition. We outperform the competition
across all metrics, as witnessed by the visual superiority of
our reconstructions. We manage to recover fine structures
and details with more fidelity. Although it obtains overall
good coarse reconstructions, the thin plate spline smoothing
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Burghers Copyroom Lounge Stonewall Totemple Mean

CDI [ CD2 [NC [ CDI [ CD2 [NC [ CDI [CD2 [NC [ CDI [CD2 [NC [CDI [CD2 [NC [CDI | CD2 | NC
SPSR (Kazhdan & Hoppe, 2013) | 0.178 0.205 0.874 | 0.225 0.286 0.861 | 0280 0.365 0.869 | 0.300 0.480 0.866 | 0.588 1.673 0.879 | 0.314 0.602 0.870
NDrop (Boulch et al., 2021) 0.200 0.114 0.825 | 0.168 0.063 0.696 | 0.156 0.050 0.663 | 0.150 0.081 0.815 [ 0.203 0.139 0.844 | 0.175 0.089 0.769
NP (Ma et al., 2021) 0.064 0.008 0.898 | 0.049 0.005 0.828 | 0.133 0.038 0.847 | 0.060 0.005 0.910 | 0.178 0.024 0.908 | 0.097 0.016 0.878
SAP (Peng et al., 2021) 0.153  0.101 0.807 | 0.053 0.009 0771 | 0.134 0.033 0.813 | 0.070 0.007 0.867 | 0.474 0382 0.725 | 0.151 0.100 0.797
NSpline (Williams etal., 2021) | 0.135 0.123  0.891 | 0.056 0.023 0.855 | 0.063 0.039 0.827 | 0.124 0.091 0.897 | 0.378 0.768 0.892 | 0.151 0.209 0.88
NTPS (Chen et al., 2023a) 0.055 0.005 0.909 | 0.045 0.003 0.892 | 0.129 0.022 0.872 | 0.054 0.004 0.939 | 0.103 0.017 0.935 | 0.077 0.010 0.897
Ours 0.051 0.006 0.881 | 0.037 0.002 0.833 | 0.044 0.011 0.862 | 0.035 0.003 0.912 | 0.042 0.002 0.925 | 0.041 0.004 0.881

Table 3. 3D Scene ((Zhou & Koltun, 2013)) reconstructions from sparse point clouds.

Input

Figure 5. 3D Scene (Zhou & Koltun, 2013) reconstructions from
sparse unoriented point clouds.

prior of NTPS seems to be hindering its expressivity. We
noticed OG-INR fails to converge to satisfactory results un-
der the sparse and noisy regime despite its effective Octree
based sign field guidance in dense settings.

4.5. Real articulated shape reconstruction

We perform reconstruction of Faust ((Chang et al., 2015))
human shapes from sparse and noisy point clouds. Table 2
and Figure 4 show respectively a numerical and qualitative
comparison to the competition. We outperform the other
methods across all metrics. Visually, our reconstructions
are particularly better at body extremities. Similarly to
fine structures in the ShapeNet experiment, these are areas
where the input point cloud samples are scarce and shape
prediction is hard and ambiguous. NTPS reconstructions
tend to be coarser and less detailed on this data as well.
Notice that ShapeNet trained Generalizable methods (Top
half of the table) do not all necessarily generalize well in
this experiment.

4.6. Real scene level reconstruction

Following (Chen et al., 2023a), we report reconstruction
results on the 3D Scene ((Zhou & Koltun, 2013)) data from
spatially sparse point clouds. Table 3 summarizes numerical
results. We compiled results for methods NTPS, NP, SAP,
NDrop and NSpline as reported in state-of-the-art method
NTPS. We outperform the competition is this benchmark
thanks to our loss, as our baseline NP displays more blatant
failures in this large scale sparse setup. Figure 5 shows
qualitative comparisons to our baseline NP and SPSR. Red
boxes highlight areas where our method displays particu-
larly better details and fidelity in the reconstruction.

4.7. Varying the point cloud density

We use the SRB (Williams et al., 2019) benchmark to as-
sess the behavior of our method across different point cloud
densities. Table 4 indicates comparative results under both
1024 sized and dense input point clouds. We compiled re-
sults for the competition from OG-INR in the dense setting.
We outperform our competition in the sparse case, and we
perform on par with the state-of-the-art in the dense case.
Our improvement w.z.¢. our baseline (NP) is substantial for
both sparse and dense inputs. This can be seen visually in
Figure 6, where we show reconstructions for both sparse
and dense cases. Notice how we recover better topologies
in the sparse case and improved and more accurate details
in the dense case, as pinpointed by the red boxes. These
results showcase the utility and benefit of our contribution
even in the dense setting. We note that SPSR becomes a
very viable contestant qualitatively in the dense setting.

5. Ablation studies

The ablation of our main contribution is present through-
out all Tables and Figures. In fact while we use the com-
bined loss in Equation 9, our baseline (i.e. NP) uses solely
the query projection loss in Equation 3. The improvement
brought by our additional loss is visible across real/synthetic,
scenes/objects, sparse/dense point clouds.

Perturbation radii We perform an ablation of using local
vs.global radii p (Equation 8) and the choice of value of
local radii p, in Table 5. Results show that using local
radii (p,) is a superior strategy as it intuitively allows for
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Sparse PC

Dense PC

OG-INR  SPSR

Figure 6. SRB (Williams et al., 2019) reconstructions from unoriented sparse and dense inputs.

Sparse  Dense
SPSR (Kazhdan & Hoppe, 2013) 2.27 1.25
DIGS (Ben-Shabat et al., 2022) 0.68 0.19
OG-INR (Koneputugodage et al., 2023)  0.85 0.20
NTPS (Chen et al., 2023a) 0.73 -
NP (Ma et al., 2021) 0.58 0.23
Ours 0.49 0.19
Table 4. Ablation of point cloud density
CD1 NC
NP (Ma et al., 2021) (baseline) 1.10  0.85
Ours (local) p, = 0,,/10 092 0.86
Ours (local) p, = 0,/100 0.75 0.86
Ours (local) p, = 0,,/500 0.88 0.86
Ours (local) pg = 0,,/1000 1.02  0.84
Ours (global ) p = ¢/100 098 0.86

Table 5. Ablation of hard sample search radii.

a spatially adaptive search of hard samples (global radius
is o x 1072, where o is the average 0,). We note that our
baseline NP constitutes the special case p; = 0. A value of
o, x 1072 achieves empirically satisfactory results (p being
the nearest point to the query ¢ in the input point cloud).
Decreasing p, leads expectedly to worse results as less hard
queries are available for sampling. However, we also note
that very large values of p, can lead to spurious pseudo
supervision, as adversarial samples g + ¢ run the risk of
no longer having the same nearest point in the input point
cloud as their original sample q. We performed this ablation
on class Table of ShapeNet.

Multitask loss To guarantee the stability of our learning
process, we employ a hybrid loss that combines the original
objective with an adversarial one. This approach becomes
crucial when a shape-specific trade-off between adversarial
regularization and the original loss is required for the conver-
gence of the shape function. In practical terms, this strategy
outperformed using the adversarial loss alone, leading to
an improvement in CD1 from 0.78 to 0.75 in class Table of

—— Ours
—— NP

Performance (CD)

7 7 B 3
Training time (minutes)

Figure 7. Training time for shape Gargoyle of benchmark SRB
(Williams et al., 2019).

ShapeNet.

Increasing the number of query points We increase the
number of NP original query samples to equal the total
number of samples in our method (i.e. original queries +
adversarial queries). We find that the performance of NP
with extra queries only leads occasionally to marginal im-
provement (On average Chamfer distance goes from 0.581
to 0.576 in SRB).

Training time We provide in Figure 7 a plot showing the
best performance attained by our method and the baseline
(NP) w.rt. the training time (RTX A6000). As it can be
seen in this figure, within less than 4 minutes of training,
we already surpass the best baseline performance. NP’s
performance stagnates from that point onwards due to over-
fitting, while our performance keeps on improving. We
reach our optimal result after 8 minutes of training. The ex-
periment was conducted on the challenging shape Gargoyle
of benchmark SRB using a 1024 sized input point cloud.

6. Limitations

As can be seen in e.g. Figure 3, even though we improve on
our baseline, we still face difficulties in learning very thin
and convoluted shape details, such as chair legs and slats.
Although our few-shot problem is inherently challenging
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and can be under-constrained in many cases, we still believe
there is room for improvement for our proposed strategy in
this setting. For instance, one element that could be a source
of hindrance to our accuracy is the difficulty of balancing
empirical risk minimization and adversarial learning. In this
work, we used an off-the-shelf self-trained loss weighting
strategy, and we would like to address this challenge further
as part of our future work.

7. Conclusion

We explored in this work a novel idea for regularizing im-
plicit shape representation learning from sparse unoriented
point clouds. We showed that harnessing adversarial sam-
ples locally in training can lead to numerous desirable out-
comes, including superior results, reduced over fitting and
easier evaluation model selection.

Impact statement

This paper presents work whose goal is to advance the fields
of Machine Learning and 3D Computer Vision, specifically
implicit neural shape representation learning. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Additional visualizations

Figures 8,9,10 show more multi-view qualitative comparisons to our baseline NP.

(baseline)

Figure 10. 3D Scene (Zhou & Koltun, 2013) reconstructions from sparse unoriented point clouds (100 pts per m?).

B. Metrics

Following the definitions from (Boulch & Marlet, 2022) and (Williams et al., 2019), we present here the formal definitions
for the metrics that we use for evaluation in the main submission. We denote by S and S the ground truth and predicted
mesh respectively. All metrics are approximated with 100k samples from the groundtruth mesh S and reconstruction S.

Chamfer Distance (CD;) The L; Chamfer distance is based on the two-ways nearest neighbor distance:

CD min ||v — D||2 + min [0 — v
= gy S mial — ol 2|3|Z o=l
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Chamfer Distance (CD2) The Ly Chamfer distance is based on the two-ways nearest neighbor squared distance:

1 1
CDgy = — min |lv — 0|2 + — min |4 — v||2.
7 g = ol + i 3 gl ol

F-Score (FS) For a given threshold 7, the F-score between the meshes S and S is defined as:

2 Recall - Precision
Recall + Precision ’

FS (T,S,S) =

where
Recall (T,S,S) = {v eS8, st ming gllv—d|2(7} |,
Precision (T,S,S) =] {f/ € S, st. minyes v — f)Hg(T} | .

Following (Mescheder et al., 2019) and (Peng et al., 2020), we set 7 to 0.01.

Normal consis}ency (NC) We denote here by n, the normal at a point v in §. The normal consistency between two
meshes S and S is defined as:

1 1
NC = 2|S Z Mo nclosest(ﬂ,s) T oa Z "6 * Melosest(9,5):
‘ | vES 2|S| 2€8

where

closest(v,S) = argming ¢ [[v — 9|l2.

14



