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Abstract

In this paper, we propose and consider the problem of cooperative language
acquisition as a particular form of the ad hoc team play problem. We
then present a probabilistic model for inferring a speaker’s intentions and
a listener’s semantics from observing communications between a team of
language-users. This model builds on the assumptions that speakers are
engaged in positive signalling and listeners are exhibiting positive listening,
which is to say the messages convey hidden information from the listener,
that then causes them to change their behaviour. Further, it accounts
for potential sub-optimality in the speaker’s ability to convey the right
information (according to the given task). Finally, we discuss further work
for testing and developing this framework.

1 Introduction

Typically, in the field of emergent communication a group of agents learn to interact with
one another through communication channels in order to facilitate coordination in a shared
environment, i.e. a Dec-POMDP (Oliehoek & Amato, 2016). The agents learn highly
effective communication strategies, but they tend to be brittle in the sense that they are
unable to coordinate with agents that they have not encountered before. This construction
does not naturally lend itself to systems that require a machine to communicate with a
human, or enter within a community of humans using language to coordinate. In this
paper, we frame this as a problem of cooperative language acquisition, where the goal is to
adopt the language of a community of agents so as to coordinate with them.
More precisely, we place the problem in the context of ad hoc team play (Stone et al.,
2010). In ad hoc team play, we are given a set of competent1 agents and a domain of
coordination tasks, and the problem is to design new agents that are capable of achieving
success when playing with randomly sampled teammates. In our problem, we assume that
there exists a community of language-users that define the pool of players who, by means
of their shared language, are all successful ad hoc team players. Therefore, the cooperative
language acquisition problem is defined as the case of designing a new agent to join this
pool of players by observing a sample of interactions from the community.

2 Background

A decentralised partially-observable Markov decision process (Dec-POMDP) is described by
a 7-tuple (S, {Ai}, T, R, {Ωi}, O, γ), where S is a set of states, {Ai} is a set of action sets,
T is a transition function, R is a reward function, {Ωi} is a set of observation sets, O is an
observation function, and γ is a discount factor. We will talk of trajectories for a given agent
i, which are sequences of state-action-reward tuples τ ∈ Ti = (S × Ai × R)∗. Each agent
i follows a policy πi that maps an observation sequence to a distribution over actions. We
denote the distribution over future trajectories that a policy induces as π(τ |.). The return
of a trajectory is computed as the discounted sum of rewards: V (τ) =

∑|τ |
k=0 γkrk

1Meaning that they can achieve some threshold of success in all environments, given a fixed
team.
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Following Lowe et al. (2019), we suppose that each agent’s action sets can be expressed as
Ai = Ac

i ∪ Ae
i , where Ac

i is a set of communicative actions and Ae
i is a set of environment

actions. Communicative actions are sent to a target agent by a dedicated cheap-talk channel
(there is no cost to communication), meaning they appear in the receiver’s observation at
the next time step. We also use Lowe et al.’s (2019) definitions of positive listening and
positive signalling:
Definition 1 (Positive Listening). An agent i with the policy πi exhibits positive lis-
tening if there exists a message generated by a signaller j, m ∈ Ac

j, such that
dτ (πi(τ |z, 0), πi(τ |z, m)) > 0 where 0 is a zero vector, z is a variable that conditions the
policy (e.g. observations and/or latent memory), and dτ is a distance metric over Ti.
Definition 2 (Positive Signalling). Let m = (m0, . . . , mT ) be a sequence of messages sent
by an agent over the course of a trajectory of length T , and similarly for observations
o = (o0, . . . , oT ), and actions a = (a0, . . . , aT ). An agent exhibits positive signalling if m is
statistically dependent on either a or o.

3 One-Way Communication Problem Formulation

We start to formulate the problem of cooperative language acquisition with the simplest
case involving two agents: a speaker A and a listener B. For a particular interaction i the
speaker emits a message mi ∈ Ac

A
∗ that is received by the listener, and then the listener

takes actions that lead it on a trajectory τi ∈ TB in a Dec-POMDP sampled from a given
domain. We are only considering the case of one-way communication with this set-up, but
we will discuss two-way communication, i.e. dialogues, in Section 6. To make this more
precise, we assume that A and B are agents sampled from a pool of players operating in an
ad hoc team, where the domain D is a set of referential games, i.e. a class of Dec-POMDPs
based on Lewis signalling games (Lewis, 1969; Lazaridou et al., 2017; Lee et al., 2018). We
will assume that the listener is exhibiting positive listening to the messages sent by the
speaker, and the speaker is positive signalling an ‘intended’ target trajectory2, τ⊙

i ∈ TB . We
can denote this by saying that the observer observes: mi ∼ πA(m | τ⊙

i ) and τi ∼ πB(τ | mi),
where πA and πB denote the policies followed by each agent respectively.3

Before moving on, let us define a running example game to illustrate the setting. Suppose
that the speaker has access to a shopping list and a map of the supermarket, and must write
a note for the listener to observe, who then must retrieve the items as quickly as possible.
The cooperative language acquisition task is to construct an agent X, who we will call
the observer, which is able to take on the roles of either the speaker or the listener and
successfully communicate with others. So, if X is taking on the role of the speaker, given
some τ that they intend for B to follow, they should emit a message that maximises the
probability that B does so. If X is acting as the listener, and receives some m ∼ πA(m | τ⊙)
they should estimate τ⊙ and follow this trajectory. With this, given a dataset of interactions
between speakers and listeners, mi, τi ∼ DAB , we can define the following sub-problems:
Problem 1 (The Forward Problem (Signalling)). Find a function β(m | τ, θβ) parameterised
by θβ, which we call the Broca function, such that m maximises the probability that the
listening agent B follows the trajectory τ upon receiving m, i.e.:

θ∗
β = arg max

θβ

∑
τ∈TB

Em∼β(m|τ,θβ)
[
πB(τ | m)

]
(1)

Problem 2 (The Backward Problem (Listening)). Find a function ν(τ | m, θν) parame-
terised by θν , which we call the Wernicke function. Given the message m is from the speak-
ing agent A and is intended to invoke the trajectory τ⊙, the function ν should maximise the
probability of τ⊙.

θ∗
ν = arg max

θν

∑
τ⊙∈TB

Em∼πA(m|τ⊙)
[
ν(τ⊙ | m, θν)

]
(2)

2This definition of positive signalling is slightly different to that of Lowe et al. (2019) as we are
referring to trajectories rather than actions/observations.

3We are also assuming that all the participants are sincere in their communications and actions,
with none trying to deceive others.
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4 Finding Broca and Wernicke

Firstly, we can directly model the forward problem with the data available. We estimate
the parameters θβ by mapping from observed trajectories to messages received by B:

θ∗
β = arg min

θβ

∑
mi,τi∈DAB

dm(mi, m̂i)

where m̂i = arg max
m

β(m | τi, θβ)
(3)

Given a distance function dm over messages. Put differently, we are aiming to find θβ such
that the Broca function can produce the message that caused a given trajectory in the data.
To place this into our running example, we have data regarding the notes that were sent
to the shopper (mi), and paths through the shop that the shopper took (τi), and we are
learning the relationship between notes and paths.
However, the backward problem is much trickier given that we are never able to directly
observe the intended trajectory τ⊙

i for the message mi sent by the speaker. If we assume
that the speaker is optimal, i.e. it always sends the perfect message to invoke the intended
actions in B, then τ⊙

i = τi and thus we can optimise the reverse mapping as in the forward
problem (i.e. messages to trajectories). But what can we do if we wish to relax this?
Instead of modelling the speaker as perfectly optimal, we can assume ‘soft-optimality’,
otherwise known as Boltzmann-rationality4. We will do this in two parts: first, we will
assume that given the target trajectory τ⊙, the speaker is more likely to send messages
that are ‘closer to optimal’, for which we need some notion of semantic distance between
messages. Secondly, we will assume that the speaker is more likely to pick target trajectories
for the listener that yield a high return in the Dec-POMDP. Put formally:

P (τ⊙) ∝ exp(V (τ⊙)) (4)
P (m|τ⊙) ∝ exp(−SB(m∗

B(τ⊙), m)) (5)
Where, V is the expected return of a given trajectory, m∗

B(τ⊙) is the optimal message to
send to B to maximise the chance that B takes the trajectory τ⊙, and SB is a measure of
the semantic distance between two messages for B. These latter two are defined as follows:

m∗
B(τ) = arg max

m
πB(τ |m) (6)

SB(m1, m2) = dτ

(
πB(τ | m1), πB(τ | m2)

)
(7)

In other words, the semantic distance is a function of the difference in actions that B takes
(characterised by the distance function over trajectories dτ ) as a result of different messages.
Thus, it is mathematically similar to Lowe et al.’s (2019) definition of positive listening,
and philosophically close to the various approaches to ‘meaning’ that couple information
and action (Haig, 2017; Wittgenstein, 1953; Peirce, 1878). Additionally, note that if we
substitute these definitions into P (m|τ⊙):

P (m|τ⊙) ∝ exp
(

− dτ

(
πB(τ | arg max

m
πB(τ⊙|m)), πB(τ | m)

))
∝ exp

(
− dτ

(
τ⊙, πB(τ | m)

)) (8)

Thus the expression involving the semantic distance captures the intuition that the more
optimal messages are the ones that, in expectation, lead to trajectories that are closer to
the target. With our assumptions in place, we now insert this into the backward problem.
For a given interaction mi, τi ∼ DAB we can express most probable target trajectory τ̂⊙

i
with the maximum a posteriori estimate:

τ̂⊙
i = arg max

τ⊙
P (τ⊙ | mi) = arg max

τ⊙
P (τ⊙)P (mi | τ⊙)

= arg max
τ⊙

(
V (τ⊙) − αdτ (τ⊙, πB(τ | mi))

)
= arg max

τ⊙

(
V (τ⊙) − αdτ (τ⊙, τi)

) (9)

4See Jeon et al. (2020) for an overview of Boltzmann-rationality and its advantages for modelling
human decision-making.
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Where α is a hyperparameter controlling our prior on the relative optimality of the speakers
ability to effectively communicate versus pick the optimal trajectory (similar to Jeon et al.
(2020)). Therefore, to estimate the parameters of the Wernicke function θν :

θ∗
ν = arg min

θν

∑
mi,τi∈DAB

(αdm(τ̂⊙
i , τi) − V (τ̂⊙

i ))

where τ̂⊙
i = arg max

τ
ν(τ | mi, θν)

(10)

Again, let us contextualise this within the example of the shoppers. If the speaker’s note
contained roughly the right set of instructions, but is perhaps slightly confusing in a way
that throws off the shopper (perhaps impossible directions), the Wernicke function will
not emulate the shoppers confusion. Instead, the estimate of the intended trajectory can
take into account the ambiguity or inconsistency and try and figure out what would be a
successful path through the supermarket. Comparatively, when we assume optimality of
the speaker, we are forced to conclude that the shoppers confusion was intended.

5 Related Work

A close area of related work is inverse reinforcement learning (Russell, 1998; Ng & Russell,
2000). Namely, the modelling of the speaker is similar to IRL, where instead of there being
a hidden reward function influencing the agents’ actions, there is a target trajectory for the
listener. Further, the Boltzmann-rational model used is very similar to approaches in IRL
(Zietbart et al., 2008; Finn et al., 2016). In the field of emergent communication, the works
of Lee et al. (2018) and Lazaridou et al. (2017) both present frameworks for grounding
learning agents in human natural language. They do this by using text annotated images
rather than data from direct human communication in a cooperative setting. Finally, outside
of AI, in the economics literature there has been work modelling how an uniformed listener
may extract information from informed debaters (Glazer & Rubinstein, 2001). But because
of markedly different assumptions, it does not tackle the problem of the current paper.

6 Discussion and Conclusion

In this paper we have presented the first steps towards constructing an agent that, given
data regarding the interactions of language-users, can find the meaning behind messages
received, as well as optimally convey a recommended trajectory to a listener. Yet, there are
still several directions of further work to be explored.
Firstly, how do we extend the system to dialogues, i.e. two-way communication? Potentially
the system naturally captures dialogues as both agents can play the roles of speakers and
listeners simultaneously (or interchangeably). For instance, suppose that in the supermarket
example the speaker and the shopper held a phone call, and the shopper asks a question
for clarification on directions. The shopper does not have an exact intended trajectory for
the speaker’s response, because if they knew this they would not need to ask the question.
However, this does not necessarily pose a problem for the framework presented in this paper.
Although we have referred to the target trajectory as “intentional” it is not necessary for
a speaker to know the full details of the trajectory. This applies so long as they help the
listener to find the closest trajectory that maximises reward, which they may do so by adding
their own private information.
Secondly, but no less critically, is the problem of empirically testing this framework by
constructing an agent. There are several suitable test environments, for example, gridworld
games that are similar to the supermarket example (Kajić et al., 2020; Leibo et al., 2017), or
more communication focused problems such as the game of Taboo. In this game, one person
has to get another to say a hidden word, but they are forbidden from revealing certain
pieces of helpful information5. Finally, this work could be extended from the passive case of
observing data, to a situation where the learner is engaged with the language-users, perhaps
for example with an active learning approach (Settles, 2009).

5Taboo has already been proposed as an interesting challenge for AI (Rovatsos et al., 2017).
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