
CoLA: Exploiting Compositional Structure for
Automatic and Efficient Numerical Linear Algebra

Andres Potapczynski∗1 Marc Finzi∗2 Geoff Pleiss3,4 Andrew Gordon Wilson1

1New York University, 2Carnegie Mellon University, 3University of British Columbia,
4Vector Institute

Abstract

Many areas of machine learning and science involve large linear algebra prob-
lems, such as eigendecompositions, solving linear systems, computing matrix
exponentials, and trace estimation. The matrices involved often have Kronecker,
convolutional, block diagonal, sum, or product structure. In this paper, we pro-
pose a simple but general framework for large-scale linear algebra problems in
machine learning, named CoLA (Compositional Linear Algebra). By combining a
linear operator abstraction with compositional dispatch rules, CoLA automatically
constructs memory and runtime efficient numerical algorithms. Moreover, CoLA
provides memory efficient automatic differentiation, low precision computation,
and GPU acceleration in both JAX and PyTorch, while also accommodating new
objects, operations, and rules in downstream packages via multiple dispatch. CoLA
can accelerate many algebraic operations, while making it easy to prototype matrix
structures and algorithms, providing an appealing drop-in tool for virtually any
computational effort that requires linear algebra. We showcase its efficacy across
a broad range of applications, including partial differential equations, Gaussian
processes, equivariant model construction, and unsupervised learning.

1 Introduction

The framework of automatic differentiation has revolutionized machine learning. Although the
rules that govern derivatives have long been known, automatically computing derivatives was a
nontrivial process that required (1) efficient implementations of base-case primitive derivatives, (2)
software abstractions (autograd and computation graphs) to compose these primitives into complex
computations, and (3) a mechanism for users to modify or extend compositional rules to new functions.
Once libraries such as PyTorch, Chainer, Tensorflow, JAX, and others [1, 8, 30, 31, 38, 47] figured
out the correct abstractions, the impact was enormous. Efforts that previously went into deriving and
implementing gradients could be repurposed into developing new models.

In this paper, we automate another notorious bottleneck for ML methods: performing large-scale
linear algebra (e.g. matrix solves, eigenvalue problems, nullspace computations). These ubiquitous
operations are at the heart of principal component analysis, Gaussian processes, normalizing flows,
equivariant neural networks, and many other applications [2, 12, 13, 17, 18, 27, 28, 34, 37, 39].
Modeling assumptions frequently manifest themselves as algebraic structure—such as diagonal
dominance, sparsity, or a low-rank factorization. Given a structure (e.g., the sum of low-rank plus
diagonal matrices) and a linear algebraic operation (e.g., linear solves), there is often a computational
routine (e.g. the linear-time Woodbury inversion formula) with lower computational complexity
than a general-purpose routine (e.g., the cubic-time Cholesky decomposition). However, exploiting

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Simple Operators Composition Operators

Base
Case D T P C S Pr

∑ ∏ ⊗ [
A 0

0 B

] [
A B

C D

]

A−1

Eigs(A)

Diag(A)

Tr(A)

exp(A)

det(A)

Table 1: Many structures have explicit composition rules to exploit. Here we show the existence
of a dispatch rule () that can be used to accelerate a linear algebraic operation for some matrix
structure over what is possible with the dense and iterative base cases. Many combinations (shown
with) are automatically accelerated as a consequence of other rules, since for example Eigs and
Diag are used in other routines. In absence of a rule, the operation will fall back to the iterative
and dense base case for each operation (shown in). Columns are basic linear operator types
such as D: Diagonal, T: Triangular, P: Permutation, C: Convolution, S:Sparse, Pr: Projection and
composition operators such as sum, product, Kronecker product, block diagonal and concatenation.
All compositional rules can be mixed and matched and are implemented through multiple dispatch.

structure for faster computation is often an intensive implementation process. Rather than having an
object A in code that represents a low-rank-plus-diagonal matrix and simply calling solve(A,b),
a practitioner must instead store the low-rank factor F as a matrix, the diagonal d as a vector, and
implement the Woodbury formula from scratch. Implementing structure-aware routines in machine
learning models is often seen as a major research undertaking. For example, a nontrivial portion of
the Gaussian process literature is devoted to deriving specialty inference algorithms for structured
kernel matrices [e.g. 7, 11, 19, 25, 29, 46, 52, 53, 24].

As with automatic differentiation, structure-aware linear algebra is ripe for automation. We introduce
a general numerical framework that dramatically simplifies implementations efforts while achieving a
high degree of computational efficiency. In code, we represent structure matrices as LinearOperator
objects which adhere to the same API as standard dense matrices. For example, a user can call A−1b
or eig(A) on any LinearOperatorA, and under-the-hood our framework derives a computationally
efficient algorithm built from our set of compositional dispatch rules (see Table 1). If little is known
about A, the derived algorithm reverts to a general-purpose base case (e.g. Gaussian elimination or
GMRES for linear solves). Conversely, if A is known to be the Kronecker product of a lower triangular
matrix and a positive definite Toeplitz matrix, for example, the derived algorithm uses specialty
algorithms for Kronecker, triangular, and positive definite matrices. Through this compositional
pattern matching, our framework can match or outperform special-purpose implementations across
numerous applications despite relying on only a small number of base LinearOperator types.

Furthermore, our framework offers additional novel functionality that is necessary for ML applications
(see Table 2). In particular, we automatically compute gradients, diagonals, transposes and adjoints
of linear operators, and we modify classic iterative algorithms to ensure numerical stability in
low precision. We also support specialty algorithms, such as SVRG [23] and a novel variation
of Hutchinson’s diagonal estimator [22], which exploit implicit structure common to matrices in
machine learning applications (namely, the ability to express matrices as large-scale sums amenable
to stochastic approximations). Moreover, our framework is easily extensible in both directions: a user
can implement a new linear operator (i.e. one column in Table 1), or a new linear algebraic operation
(i.e. one row in Table 1). Finally, our routines benefit from GPU and TPU acceleration and apply to
symmetric and non-symmetric operators for both real and complex numbers.

We term our framework CoLA (Compositional Linear Algebra), which we package in a library
that supports both PyTorch and JAX. We showcase the extraordinary versatility of CoLA with

2

a broad range of applications in Section 3.2 and Section 4, including: PCA, spectral clustering,
multi-task Gaussian processes, equivariant models, neural PDEs, random Fourier features, and
PDEs like minimal surface or the Schrödinger equation. Not only does CoLA provide competitive
performance to specialized packages but it provides significant speedups especially in applications
with compositional structure (Kronecker, block diagonal, product, etc). Our package is available at
https://github.com/wilson-labs/cola.

2 Background and Related Work

Structured matrices Structure appears throughout machine learning applications, either occurring
naturally through properties of the data, or artificially as a constraint to simplify complexity. A
nonexhausitve list of examples includes: (1) low-rank matrices, which admit efficient solves and
determinants [54]; (2) sparse matrices, which admit fast methods for linear solves and eigenvalue
problems [14, 44]; (3) Kronecker-factorizable matrices, which admit efficient spectral decompositions;
(4) Toeplitz or circulant matrices, which admit fast matrix-vector products. See Section 3 and Section 4
for applications that use these structures. Beyond these explicit types, we also consider implicit
structures, such as matrices with clustered eigenvalues or matrices with simple unbiased estimates.
Though these implicit structures do not always fall into straightforward categorizations, it is possible
to design algorithms that exploit their inherent properties (see Section 3.3).

Iterative matrix-free algorithms Unlike direct methods, which typically require dense instan-
tiations of matrices, matrix-free algorithms only access matrices through routines that perform
matrix-vector multiples (MVMs) [e.g. 44]. The most common matrix-free algorithms—such as
conjugate gradients, GMRES, Lanczos and Arnoldi iteration—fall under the category of Krylov
subspace methods, which iteratively apply MVMs to refine a solution until a desired error tolerance
is achieved. Though the rate of convergence depends on the conditioning or spectrum of the matrix,
the number of iterations required is often much less than the size of the matrix. These algorithms
often provide significant computational speedups for structured matrices that admit sub-quadratic
MVMs (e.g. sparse, circulant, Toeplitz, etc.) or when using accelerated hardware (GPUs or TPUs)
designed for efficient parallel MVMs [e.g. 10, 20, 51].

Multiple dispatch Popularized by Julia [6], multiple dispatch is a functional programming
paradigm for defining type-specific behaviors. Under this paradigm, a given function (e.g. solve)
can have multiple definitions, each of which are specific to a particular set of input types. A base-case
definition solve[LinearOperator] would use a generic matrix-vector solve algorithm (e.g. Gaus-
sian elimination or GMRES), while a type-specific definition (e.g. solve[Sum], for sums of matrices)
would use a special purpose algorithm that makes use of the subclass’ structure (e.g. SVRG, see
Section 3.3). When a user calls solve(A,b) at runtime, the dispatcher determines which definition
of solve to use based on the types of A and b. Crucially, dispatch rules can be written for composi-
tional patterns of types. For example, a solve[Sum[LowRank, Diagonal]] function will apply the
Woodbury formula to a Sum operator that composes LowRank and Diagonal matrices. (In contrast,
under an inheritance paradigm, one would need to define a specific SumOfLowRankAndDiagonal
sub-class that uses the Woodbury formula, rather than relying on the composition of general purpose
types.)

Existing frameworks for exploiting structure Achieving fast computations with structured
matrices is often a manual effort. Consider for example the problems of second order/natural gra-
dient optimization, which require matrix solves with (potentially large) Hessian/Fisher matrices.
Researchers have proposed tackling these solves with matrix-free methods [33], diagonal approx-
imations [e.g. 4], low-rank approximations [e.g. 42], or Kronecker-factorizable approximations
[34]. Despite their commonality—relying on structure for fast solves—all methods currently require
different implementations, reducing interoperability and adding overhead to experimenting with
new structured approximations. As an alternative, there are existing libraries like SciPy Sparse [50],
Spot [49], PyLops [41], or GPyTorch [20], which offer a unified interface for using matrix-free
algorithms with any type of structured matrices. A user provides an efficient MVM function for a
given matrix and then chooses the appropriate iterative method (e.g. conjugate gradients or GMRES)
to perform the desired operation (e.g. linear solve). With these libraries, a user can adapt to different
structures simply by changing the MVM routine. However, this increased interoperability comes
at the cost of efficiency, as the iterative routines are not optimal for every type of structure. (For
example, Kronecker products admit efficient inverses that are asymptotically faster than conjugate

3

https://github.com/wilson-labs/cola

gradients; see Figure 1.) Moreover, these libraries often lack modern features (e.g. GPU acceleration
or automatic differentiation) or are specific to certain types of matrices (see Table 2).

Package GPU
Support

Autograd Non-symmetric
Matrices

Complex
Numbers

Randomized
Algorithms

Composition
Rules

Scipy Sparse ✗ ✗ ✓ ✓ ✗ ✗

PyLops ❋ ❋ ✓ ✓ ✗ ✗

GPyTorch ✓ ✓ ✗ ✗ ✗ ✗

CoLA ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Comparison of scalable linear algebra libraries. PyLops only supports propagating gradients
through vectors but not through the linear operator’s parameters. Moreover, PyLops has limited GPU
support through CUPY, but lacks support for PyTorch, JAX or TensorFlow which are necessary for
modern machine learning applications.

3 CoLA: Compositional Linear Algebra

We now discuss all the components that make CoLA. In Section 3.1 we first describe the core
MVM based LinearOperator abstraction, and in Section 3.2 we discuss our core compositional
framework for identifying and automatically exploiting structure for fast computations. In Section 3.3,
we highlight how CoLA exploits structure frequently encountered in ML applications beyond well-
known analytic formulae (e.g. the Woodbury identity). Finally, in Section 3.4 we present CoLA’s
machine learning-specific features, like automatic differentiation, support for low-precision, and
hardware acceleration.

3.1 Deriving Linear Algebraic Operations Through Fast MVMs

Borrowing from existing frameworks like Scipy Sparse, the central object of our framework is the
LinearOperator: a linear function on a finite dimensional vector space, defined by how it acts on
vectors via a matrix-vector multiply MVMA : v 7→ Av. While this function has a matrix representation
for a given basis, we do not need to store or compute this matrix to perform a MVM. Avoiding the
dense representation of the operator saves memory and often compute.

Some basic examples of LinearOperators are: unstructured Dense matrices, which are represented
by a 2-dimensional array and use the standard MVM routine [Av]i =

∑
j=1Aijvj ; Sparse matrices,

which can be represented by key/value arrays of the nonzero entries with the standard CSR-sparse MVM
routine; Diagonal matrices, which are represented by a 1-dimensional array of the diagonal entries
and where the MVM is given by [Diag(d)v]i = divi; Convolution operators, which are represented
by a convolutional filter array and where the MVM is given by Conv(a)v = a ∗ v ; or JVP operators—
the Jacobian represented implicitly through an autograd Jacobian Vector Product—represented by a
function and an input x and where the MVM is given by Jacobian(f,x)v = JVP(f,x,v). In CoLA,
each of these examples are sub-classes of the LinearOperator superclass.

Through the LinearOperator’s MVM, it is possible to derive other linear algebraic operations. As
a simple example, we obtain the dense representation of the LinearOperator by calling MVM(e1),
. . ., MVM(eN), on each unit vector ei. We now describe several key operations supported by our
framework, some well-established, and others novel to CoLA.

Solves, eigenvalue problems, determinants, and functions of matrices As a base case for
larger matrices, CoLA uses Krylov subspace methods (Section 2, Appendix C) for many matrix
operations. Specifically, we use GMRES [43] for matrix solves and Arnoldi [3] for finding eigenvalues,
determinants, and functions of matrices. Both of these algorithms can be applied to any non-symmetric
and/or complex linear operator. When LinearOperators are annotated with additional structure
(e.g. self-adjoint, positive semi-definite) we use more efficient Krylov algorithms like MINRES,
conjugate gradients, and Lanczos (see Section 3.2). As stated in Section 2, these algorithms are

4

ΠM
i Ai

∑M
i Ai BlockDiag(A,B) Kron(A,B)

MVM (τ)
∑

i τi
∑

i τi τA + τB τANB + NAτB

Solve (s)
∑

i κiτi log
M
ϵ (1 + κ/M)τ log 1

ϵ sA + sB sANB + NAsB

Eigs (E) τ log M
ϵ Πiκi (1 + κ/M)τ log 1

ϵ EA + EB EA + EB

Table 3: CoLA selects the best rates for each operation or structure combination. Asymptotic
runtimes resulting from dispatch rules on compositional linear operators in our framework. Listed
operations are matrix vector multiplies, linear solves, and eigendecomposition. Here ϵ denotes error
tolerance. For a given operator of size N ×N , we denote τ as its MVM cost, s its linear solve cost,
E its eigendecomposition cost and κ its condition number. A lower script indicates to which matrix
the operation belongs to.

matrix free (and thus memory efficient), amenable to GPU acceleration, and asymptotically faster
than dense methods. See Section C.2 for a full list of Krylov methods used by CoLA.

Transposes and complex conjugations In alternative frameworks like Scipy Sparse a user
must manually define a transposed MVM v 7→ A⊺v for linear operator objects. In contrast, CoLA
uses a novel autograd trick to derive the transpose from the core MVM routine. We note that A⊺v is
the vector-Jacobian product (VJP) of the vector v and the Jacobian ∂Aw/∂w. Thus, the function
transpose(A) returns a LinearOperator object that uses VJP(MVMA,0,v) as its MVM. We extend
this idea to Hermitian conjugates, using the fact that A∗v = (A)⊺v = (A⊺v).

Other operations In Section 3.3 we outline how to stochastically compute diagonals and traces of
operators with MVMs, and in Section 3.4 we discuss a novel approach for computing memory-efficient
derivatives of iterative methods through MVMs.

Implementation CoLA implements all operations (solve, eig, logdet, transpose,
conjugate, etc.) following a functional programming paradigm rather than as methods of the
LinearOperator object. This is not a minor implementation detail: as we demonstrate in the next
section, it is crucial for the efficiency and compositional power of our framework.

3.2 Beyond Fast MVMs: Exploiting Explicit Structure Using Composition Rules

While the GMRES algorithm can compute solves more efficiently than corresponding dense methods
such as the Cholesky decomposition, especially with GPU parallelization and preconditioning, it is
not the most efficient algorithm for many LinearOperators. For example, if A = Diag(a), then
we know that A−1 = Diag(a−1) without needing to solve a linear system. Similarly, solves with
triangular matrices can be inverted efficiently through back substitution, and solves with circulant
matrices can be computed efficiently in the Fourier domain Conv(a) = F−1Diag(Fa)F (where F
is the Fourier transform linear operator). We offer more examples in Table 1 (left).

As described in Section 2, we use multiple dispatch to implement these special case methods. For
example, we implement the solve[Diagonal], solve[Triangular], and solve[Circulant]
dispatch rules using the efficient routines described above. If a specific LinearOperator subclass
does not have a specific solve dispatch rule then we default to the base-case solve rule using
GMRES. This behaviour also applies to other operations, such as logdet, eig, diagonal, etc.

The dispatch framework makes it easy to implement one-off rules for the basic LinearOperator
sub-classes described in Section 3.1. However, its true power lies in the use of compositional rules,
which we describe below.

Compositional Linear Operators In addition to the base LinearOperator sub-classes (e.g.
Sparse, Diagonal, Convolution), our framework provides mechanisms to compose multiple
LinearOperators together. Some frequently used compositional structures are Sum (

∑
i Ai),

Product (ΠiAi), Kronecker (A ⊗ B), KroneckerSum (A ⊕ B), BlockDiag [A, 0; 0,B] and
Concatenation [A,B]. Each of these compositional LinearOperators are defined by (1) the base
LinearOperator objects to be composed, and (2) a corresponding MVM routine, which is typically
written in terms of the MVMs of the composed LinearOperators. For example, MVMSum = v 7→∑

i MVMi(v), where MVMi are the MVM routines for the component LinearOperators.

5

Dispatch rules for compositional operators are especially powerful. For example, consider Kronecker
products where we have the rule (A⊗B)−1 = A−1 ⊗B−1. Though simple, this rule yields highly
efficient routines for numerous structures. For example, suppose we want to solve (A⊗B⊗C)x = b
where A is dense, B is diagonal, and C is triangular. From the rules, the solve would be split over
the product, using GMRES for A, diagonal inversion for B, and forward substitution for C. This
breakdown is much more efficient than the base case (GMRES with MVMKron).

When exploited to their full potential, these composition rules provide both asymptotic speedups
(shown in Table 3) as well as runtime improvements on real problems across practical sizes (shown in
Figure 1). Splitting up the problem with composition rules yields speedups in surprising ways even in
the fully iterative case. To illustrate, consider one large CG solve with the matrix power B = An; in
general, the runtime is upper-bounded by O(nτ

√
κn log 1

ϵ), where τ is the time for a MVM with A,
κ is the condition number of A, and ϵ is the desired error tolerance. However, splitting the product
via a composition rule into a sequence of solves has a much smaller upper-bound of O(nτ

√
κ log n

ϵ).
We observe this speedup in the solving the Bi-Poisson PDE shown in Figure 1(b).

Additional flexibly and efficiency via parametric typing A crucial advantage of multiple dis-
patch is the ability to write simple special rules for compositions of specific operators. While a
general purpose solve[Sum] method (SVRG; see next section) yields efficiency over the GMRES
base case, it is not the most efficient algorithm when the Sum operator is combining a LowRank
and a Diagonal operator. In this case, the Woodbury formula would be far more efficient. To
account for this, CoLA allows for dispatch rules on parametric types; that is, the user defines a
solve[Sum[LowRank, Diagonal]] dispatch rule that is used if the Sum operator is specifically
combining a LowRank and a Diagonal linear operator. Coding these rules without multiple dispatch
would require specialty defining sub-classes like LowRankPlusDiagonal over the LinearOperator
object, increasing complexity and hampering extendibility.

Decoration/annotation operators Finally, we include several decorator types that annotate
existing LinearOperators with additional structure. For example, we define SelfAdjoint (Her-
metian/symmetric), Unitary (orthonormal), and PSD (positive semi-definite) operators, each of
which wraps an existing LinearOperator object. None of these decorators define a specialty MVM;
however, these decorators can be used to define dispatch rules for increased efficiency. For example
solve[PSD] can use conjugate gradients rather than GMRES, and solve[PSD[Tridiagonal]]
can use the linear time tridiagonal Cholesky decomposition [see e.g., 21, Sec. 4.3.6].

Taken together Our framework defines 16 base linear operators, 5 compositional linear operators,
6 decoration linear operators, and roughly 70 specialty dispatch rules for solve, eig, and other
operations. (See Table 1 for a short summary and Appendix A for a complete list of rules.) We note
that these numbers are relatively small compared with existing solutions yet—as we demonstrate
in Section 4— these operators and dispatch rules are sufficient to match or exceed performance of
specialty implementations in numerous applications. Finally, we note that CoLA is extensible by
users in both directions. A user can write their own custom dispatch rules, either to (1) define a new
LinearOperator and special dispatch rules for it, or (2) to define a new algebraic operation for all
LinearOperators, and crucially this requires no changes to the original implementation.

3.3 Exploiting Implicit Structure in Machine Learning Applications

So far we have discussed explicit matrix structures and composition rules for which there are simple
analytic formulas easily found in well-known references [e.g. 21, 44, 48]. However, current large
systems—especially those found in machine learning— often have implicit structure and special
properties that yield additional efficiencies. In particular, many ML problems give rise to linear
operators composed of large summations which are amenable to stochastic algorithms. Below we
outline two impactful general purpose algorithms used in CoLA to exploit this implicit structure.

Accelerating iterative algorithms on large sums with SVRG Stochastic gradient descent (SGD)
is widely used for optimizating problems with very large or infinite sums to avoid having to traverse
the full dataset per iteration. Like Monte Carlo estimation, SGD is very quick to converge to a few
decimal places but very slow to converge to higher accuracies. When an exact solution is required on
a problem with a finite sum, the stochastic variance reduced gradient (SVRG) algorithm [23] is much
more compelling, converging on strongly convex problems (and many others) at an exponential rate,
with runtime O((1 + κ/M) log 1

ϵ) where κ is the condition number and ϵ is the desired accuracy.

6

0 25 50 75 100
Size (102)

10 4

10 3

10 2

10 1

100

Ru
nt

im
e

(s
ec

) Dense
Iterative
CoLA

0 25 50 75 100
Size (104)

10 2

10 1

100

101

Ru
nt

im
e

(s
ec

)

Multi-grid
Multi-grid + CoLA

0 50 100 150
Size (102)

100

101

102

Ru
nt

im
e

(s
ec

) Dense
Iterative
CoLA

(a) Multi-task GPs (⊗) (b) Bi-Poisson (Π) (c) EMLP
A 0

0 B


Figure 1: Empirically, our composition rules yield the best runtimes across applications consisting
of linear operators with different structures (more application details in Section 4). We plot mean
runtime (over 3 repetitions) for different methods (dense, iterative and ours (CoLA)) against the size
of the linear operator. (a) Computing solves on a multi-task GP problem [7] for a linear operator
having Kronecker structure KT ⊗ KX , where KT is a kernel matrix containing the correlation
between the tasks and KX is a RBF kernel on the data. For this experiment we used a synthetic
Gaussian dataset which has dimension D = 33, N = 1K and we used T = 11 tasks. (b) Computing
solves on the 2-dimensional Bi-Poisson PDE problem for the composition of the Laplacian operator
∆ composed with itself on grid of sizes up to N = 10002. We use CG with a multi-grid αSA
preconditioner [9] to solve the linear system required in this application. (c) Finding the nullspace of
an equivariant MLP of a linear operator having block diagonal structure. Here, NullF refers to the
iterative nullspace finder algorithm detailed in [16]. We ran a 5-node symmetric operator S(5) as
done in [16] with MLP sizes up to 15K. See Appendix D for further details.

0 50 100
MVMs (104)

10 6

10 4

10 2

100

102

Co
nv

er
ge

nc
e

Cr
ite

ria CoLA (SVRG)
Iterative

0 50 100 150 200
MVMs (102)

10 6

10 3

100

Re
sid

ua
l

CoLA (SVRG)
Iterative

0 50 100 150 200
MVMs

10 4

10 2

100

Re
sid

ua
l

CoLA (SVRG)
Iterative

(a) PCA (Eig) (b) GPs RFF (Solve) (c) Neural-IVP (Solve)

Figure 2: CoLA exploits the sum structure of linear operators through stochastic routines.
(a) Eigenvalue convergence criteria against number of MVMs for computing the first principal
component on Buzz (N = 430K, D = 77) using VR-PCA [45]. (b) Solve relative residual against
number of MVMs for a random Fourier features (RFFs) approximation [40] to a RBF kernel with
J = 1K features on Elevators (N = 12.5K, D = 18). (c) Solve relative residual against number of
MVMs when applying Neural-IVP [17] to the 2-dimensional wave equation equation as done in [17].
See Appendix D for further details.

When the condition number and the number of elements in the sum is large, SVRG becomes a
desirable alternative even to classical deterministic iterative algorithms such as CG or Lanczos whose
runtimes are bounded by O(

√
κ log 1

ϵ). Figure 2 shows the impact of using SVRG to exploit the
structure of different linear operators that are composed of large sums.

Stochastic diagonal and trace estimation with reduced variance Another case where we exploit
implicit structure is when estimating the trace or the diagonal of a linear operator. While collecting the
diagonal for a dense matrix is a trivial task, it is a costly algorithm for an arbitrary LinearOperator
defined only through its MVM—it requires computing Diag(A) =

∑N
i=1 ei ⊙Aei where ⊙ is the

Hadamard (elementwise) product. If we need merely an approximation or unbiased estimate of the
diagonal (or the sum of the diagonal), we can instead perform stochastic diagonal estimation [22]
Diag(A) = 1

n

∑n
j=1 zj ⊙Azj where the zj ∈ RN are any randomly sampled probe vectors with

covariance I . We extend this randomized estimator to use randomization both in the probes, and
random draws from a sum when A =

∑M
i=1 Ai:

Diag
(∑M

i=1Ai

)
:=
∑

ijzij ⊙Aizij .

7

0

0.25

0.5

0.75

1.0

Ru
nt

im
e

Tre(20K)
Solves

MHD(4.8K)
Eig

bcs18(11.9K)
Logdet

Torch CoLA CPU GPU

Figure 3: For sufficiently large problems, switching from dense to iterative algorithms provides
consistent runtime reductions, especially on a GPU, where matrix multiplies can be effectively
parallelized. We plot the ratio between the runtime of a linear algebra operation using CoLA or
PyTorch on different hardware (CPU and GPU) divided by the runtime of using PyTorch CPU. For
the linear solves, we use the matrix market sparse operator Trefethen; for the eigenvalue estimation,
we use the matrix market sparse operator mhd4800b and, finally, for the log determinant computation,
we use the matrix market sparse operator bcsstk18. We provide additional details in Section D.4.

In Section B.1 we derive the variance of this estimator and we show that it converges faster than
the base Hutchinson estimator when applied Sum structures. We validate empirically this analysis in
Figure 5.

3.4 Automatic Differentiation and Machine Learning Readiness

Memory efficient auto-differentiation In ML applications, we want to backpropagate through
operations like A−1, Eigs(A), Tr(A), exp(A), log det(A). To achieve this, in CoLA we define a
novel concept of the gradient of a LinearOperator which we detail in Appendix B. For routines like
GMRES, SVRG, and Arnoldi, we utilize a custom backward pass that does not require backproagating
through the iterations of these algorithms. This custom backward pass results in substantial memory
savings (the computation graph does not have to store the intermediate iterations of these algorithms),
which we demonstrate in Appendix B (Figure 6).

Low precision linear algebra By default, all routines in CoLA support the standard float32
and float64 precisions. Moreover, many CoLA routines also support float16 and bfloat16 half
precision using algorithmic modifications for increased stability. In particular, we use variants of the
GMRES, Arnoldi, and Lanczos iterations that are less susceptible to instabilities that arise through
orthogonalization [44, Ch. 6] and we use the half precision variant of conjugate gradients introduced
by Maddox et al. [32]. See Appendix C for further details.

Multi framework support and GPU/TPU acceleration CoLA is compatible with both PyTorch
and JAX. This compatibility not only makes our framework plug-and-play with existing implemented
models, but it also adds GPU/TPU support, differentiating it from existing solutions (see Table 2).
CoLA’s iterative algorithms are the class of linear algebra algorithms that benefit most from hardware
accelerators as the main bottleneck of these algorithms are the MVMs executed at each iteration,
which can easily be parallelized on hardware such as GPUs. Figure 3 empirically shows the additional
impact of hardware accelerators across different datasets and linear algebra operations.

4 Applications

We now apply CoLA to an extensive list of applications showing the impact, value and broad
applicability of our numerical linear algebra framework, as illustrated in Figure 4. This list of
applications encompasses PCA, linear regression, Gaussian processes, spectral clustering, and partial
differential equations like the Schrödinger equation or minimal surface problems. In contrast to
Section 3 (Figure 1 & Figure 2), the applications presented here have a basic structure (sparse,
vector-product, etc) but not a compositional structure (Kronecker, product, block diagonal, etc). We
choose these applications due to their popularity and heterogeneity (the linear operators have different
properties: self-adjoint, positive definite, symmetric and non-symmetric), and to show that CoLA

8

k=5 k=10 k=20
PCA Components

10 1

100

101

Ru
nt

im
e

(s
ec

) CoLA
sk

102 103 104 105

Dasetset Size

10 2

100

Ru
nt

im
e

(s
ec

) sk
CoLA (GPU)
CoLA (CPU)

0 10 20 30 40 50
Runtime (sec)

0

25

50

75

100

Ep
oc

hs

CoLA (ele)
GP (ele)
CoLA (kin)
GP (kin)

(a) PCA (b) Linear Regression (c) GPs

104 105 106

Edges

10 1

100

101

Ru
nt

im
e

(s
ec

) sk (B)
sk (L)
CoLA (L)
CoLA (B)

102 103

Grid Size

10 1

101

Ru
nt

im
e

(s
ec

) SciPy
CoLA

102 103 104

Grid Size

10 1

100

101

Ru
nt

im
e

(s
ec

)

SciPy
CoLA
SciPy (JAX)

(d) Spectral Clustering (e) Schrödinger Equation (f) Minimal Surface

Figure 4: CoLA is easily applied to numerous applications with competitive performance.
Here sk: sklearn, GP: GPyTorch and the tuple (N , D) denotes dataset size and dimensionality. (a):
Runtime for PCA decomposition on Buzz (437.4K, 77). (b): Linear regression runtime on Song
(386.5K, 90), where we run CoLA on both GPU and CPU. (c): Training efficiency (measure in
epochs) on exact GP inference on Elevators (14K, 18) and Kin (20K, 8) on GPU. (d): Spectral
clustering runtime on a citations graph (cit-HepPh) consisting on 34.5K nodes and 842K edges.
sk(L) denotes sklearn’s implicitly restarted Lanczos implementation and sk(A) denotes sklearn’s
LOBPCG with an algebraic multi-graph preconditioner (PyAMG) [5, 26]. CoLA(L) denotes our
Lanczos implementation and CoLA(B) our LOBPCG implementation. (e): Runtimes for finding the
smallest eigenfunctions expanding grids of a Schrödinger equation with an expanding finite difference
grid. (f): Runtimes for solving the minimal surface equation via root finding on expanding grids.
Here SciPy utilizes the ARPACK package, a highly-optimized Fortran implementation of the Arnoldi
iteration, while SciPy JAX (the SciPy version integrated with JAX) and CoLA utilize python Arnoldi
implementations. Appendix D expands on the experimental details.

performs in any application. We compare against several well-known libraries, sometimes providing
runtime improvements but other times performing equally. This is remarkable as our numerical
framework does not specialize in any of those applications (like GPyTorch) nor does it rely on Fortran
implementations of high-level algorithms (like sklearn or SciPy). Below we describe each of the
applications found in Figure 4.

Principal Component Analysis PCA is a classical ML technique that finds the directions in the
data that capture the most variance. PCA can be performed by computing the right singular vectors
of X ∈ RN×D. When the number of data points N is very large, stochastic methods like SVRG in
VR-PCA [45] can accelerate finding the eigenvectors over SVD or Lanczos, as shown in Figure 2(a).

Spectral Clustering Spectral clustering [36] finds clusters of individual nodes in a graph by
analyzing the graph Laplacian L = D−W where D denotes a diagonal matrix containing the degree
of the nodes and W the weights on the edges between nodes. This problem requires finding the
smallest k eigenvectors of L. We run this experiment on the high energy physics arXiv paper citation
graph (cit-HepPh).

Gaussian processes GPs are flexible nonparametric probabilistic models where inductive biases
are expressed through a covariance (kernel) function. At its core, training a GP involves computing
and taking gradients of the log determinant of a kernel log |K| and of a quadratic term yTK−1y
(where y is the vector of observations).

Schrödinger Equation In this problem we characterize the spectrum of an atom or molecule by
finding the eigenspectrum of a PDE operator in a Schrodinger equation Hψ = Eψ. After discretizing
ψ to a grid, we compute the smallest eigenvalues and eigenvectors of the operator H which for this
experiment is non-symmetric as we perform a compactfying transform.

9

Minimal Surface Here we solve a set of nonlinear PDEs with the objective of finding the surface
that locally minimizes its area under given boundary constraints. When applied to the graph of a
function, the PDE can be expressed as f(z) = (1+z2x)zyy−2zxzyzxy+(1+z2y)zxx = 0 and solved
by root finding on a discrete grid. Applying Newton-Raphson, we iteratively solve the non-symmetric
linear system z ← z − J−1f(z) where J is the Jacobian of the PDE operator.

Bi-Poisson Equation The Bi-Poisson equation ∆2u = ρ is a linear boundary value PDE relevant
in continuum mechanics, where ∆ is the Laplacian. When discretized using a grid, the result is a
large symmetric system to be solved. We show speedups from the product structure in Figure 1(b).

Neural PDEs Neural networks show promise for solving high dimensional PDEs. One approach
for initial value problems requires advancing an ODE on the neural network parameters θ, where
θ̇ = M(θ)−1F (θ) where M is an operator defined from Jacobian of the neural network which
decomposes as the sum over data points M = 1

N

∑
i Mi and where F is determined by the governing

dynamics of the PDE [15, 17]. By leveraging the sum structure with SVRG, we provide further
speedups over Finzi et al. [17] as shown in Figure 2(c).

Equivariant Neural Network Construction As shown in [16], constructing the equivariant layers
of a neural network for a given data type and symmetry group is equivalent to finding the nullspace
of a large linear equivariance constraint Cv = 0, where the constraint matrix C is highly structured,
being a block diagonal matrix of concatenated Kronecker products and Kronecker sums of sparse
matrices. In Figure 1(c) we show the empirical benefits of exploiting this structure.

5 Discussion

We have presented the CoLA framework for structure-aware linear algebraic operations in machine
learning applications and beyond. Building on top of dense and iterative algorithms, we leverage
explicit composition rules via multiple dispatch to achieve algorithmic speedups across a wide variety
of practical applications. Algorithms like SVRG and a novel variation of Hutchinson’s diagonal
estimator exploit implicit structure common to large-scale machine learning problems. Finally, CoLA
supports many features necessary for machine learning research and development, including memory
efficient automatic differentiation, multi-framework support of both JAX and PyTorch, hardware
acceleration, and lower precision.

While structure exploiting methods are used across different application domains, domain knowledge
often does not cross between communities. We hope that our framework brings these disparate
communities and ideas together, enabling rapid development and reducing the burden of deploying
fast methods for linear algebra at scale. Much like how automatic differentiation simplified and
accelerated the training of machine learning models—with custom autograd functions as the exception
rather than the rule—CoLA has the potential to streamline scalable linear algebra.

Acknowledgements

This work is supported by NSF Award 1922658, NSF CAREER IIS-2145492, BigHat Biosciences,
Capital One, and an Amazon Research Award.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable Second
Order Optimization for Deep Learning. Preprint arXiv 2002.09018v2, 2020.

10

https://www.tensorflow.org/
https://www.tensorflow.org/

[3] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quarterly of applied mathematics, 9(1):17–29, 1951.

[4] S Becker and Yann Lecun. Improving the convergence of back-propagation learning with
second-order methods. In Proceedings of the 1988 Connectionist Models Summer School, San
Mateo, pages 29–37. Morgan Kaufmann, 1989.

[5] Nathan Bell, Luke N. Olson, Jacob Schroder, and Ben Southworth. PyAMG: Algebraic
Multigrid Solvers in Python. Journal of Open Source Software, 2023.

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A Fresh Approach to
Numerical Computing. arXiv preprint arXiv:1411.1607, 2014.

[7] Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K. I. Williams. Multi-task Gaussian
Process Prediction. Advances in Neural Information Processing Systems (NeurIPS), 2007.

[8] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. SoftwareX, 2018. URL
http://github.com/google/jax.

[9] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive
Smoothed Aggregation (αSA) Multigrid. SIAM Review, 2005.

[10] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes, François-David Collin, and Ghislain Durif.
Kernel operations on the GPU, with autodiff, without memory overflows. Journal of Machine
Learning Research, 22(1):3457–3462, 2021.

[11] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian process methods
for point process intensity estimation. In International Conference on Machine Learning
(ICML), pages 192–199, 2008.

[12] Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Advances
in Neural Information Processing Systems (NeurIPS), 2013.

[13] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning Fast
Algorithms for Linear Transforms Using Butterfly Factorizations. International Conference on
Machine Learning (ICML), 2019.

[14] Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

[15] Yifan Du and Tamer A Zaki. Evolutional Deep Neural Network. Physical Review E, 104(4):
045303, 2021.

[16] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A Practical Method for Constructing
Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups. International Conference on
Machine Learning (ICML), 2021.

[17] Marc Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon Wilson. A Stable
and Scalable Method for Solving Initial Value PDEs with Neural Networks. International
Conference on Learning Representations (ICLR), 2023.

[18] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré.
Hungry Hungry Hippos: Towards Language Modeling with State Space Models. Preprint arXiv
2212.14052v3, 2023.

[19] Jacob Gardner, Geoff Pleiss, Ruihan Wu, Kilian Weinberger, and Andrew Wilson. Product
kernel interpolation for scalable gaussian processes. In International Conference on Artificial
Intelligence and Statistics, pages 1407–1416. PMLR, 2018.

[20] Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gordon Wil-
son. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration.
Advances in Neural Information Processing Systems (NeurIPS), 2018.

11

http://github.com/google/jax

[21] Gene H Golub and Charles F Van Loan. Matrix Computations. The Johns Hopkins University
Press, 2018. Fourth Edition.

[22] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–
1076, 1989.

[23] Rie Johnshon and Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive
Variance Reduction. Advances in Neural Information Processing Systems (NeurIPS), 2013.

[24] Sanyam Kapoor, Marc Finzi, Ke Alexander Wang, and Andrew Gordon Gordon Wilson. SKI-
ing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian
Processes. International Conference on Machine Learning (ICML), 2021.

[25] Matthias Katzfuss and Joseph Guinness. A general framework for vecchia approximations of
gaussian processes. Statistical science, 36(1):124–141, 2021.

[26] Andrew Knyazev. Toward The Optimal Preconditioned Eigensolver: Locally Optimal Block
Preconditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing, 2000.

[27] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function
Spaces. Preprint arXiv 2108.08481v3, 2021.

[28] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic
Dimension of Objective Landscapes. International Conference on Learning Representations
(ICLR), 2018.

[29] Jackson Loper, David Blei, John P Cunningham, and Liam Paninski. A general linear-time
inference method for gaussian processes on one dimension. The Journal of Machine Learning
Research, 22(1):10580–10615, 2021.

[30] Dougal Maclaurin. Modeling, inference and optimization with composable differentiable
procedures. PhD thesis, School of Engineering and Applied Sciences, Harvard University, 2016.

[31] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In International conference on machine learning, pages
2113–2122. PMLR, 2015.

[32] Wesley J. Maddox, Andres Potapczynski, and Andrew Gordon Wilson. Low-Precision Arith-
metic for Fast Gaussian Processes. Conference on Uncertainty in Artificial Intelligence (UAI),
2022.

[33] James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 735–742,
2010.

[34] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx-
imate curvature. In International conference on machine learning, pages 2408–2417. PMLR,
2015.

[35] Per-Gunnar Martinsson and Joel Tropp. Randomized Numerical Linear Algebra: Foundations
& Algorithms. arXiv 2002.01387v3, 2020.

[36] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems (NeurIPS), 2001.

[37] Eric Nguyen, Karan Goel, Albert Gu, Gordon W. Downs, Preey Shah, Tri Dao, Stephen A.
Baccus, and Christopher Ré. S4ND: Modeling Images and Videos as Multidimensional Signals
Using State Spaces. Preprint arXiv 2210.06583v2, 2022.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

12

[39] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:
Visual reasoning with a general conditioning layer. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3942–3951.
AAAI Press, 2018.

[40] Ali Rahimi and Ben Recht. Random Features for Large-Scale Kernel Machines. Advances in
Neural Information Processing Systems, 2007.

[41] Matteo Ravasi and Ivan Vasconcelos. PyLops—A linear-operator Python library for scalable
algebra and optimization. SoftwareX, 11:100361, 2020. ISSN 2352-7110. doi: https://doi.org/10.
1016/j.softx.2019.100361. URL https://www.sciencedirect.com/science/article/
pii/S2352711019301086.

[42] Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural
gradient algorithm. Advances in neural information processing systems, 20, 2007.

[43] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7
(3):856–869, 1986.

[44] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[45] Ohad Shamir. A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate.
arXiv preprint arXiv:1409.2848v5, 2015.

[46] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs.
Advances in neural information processing systems, 18, 2005.

[47] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In NeurIPS Workshop on Machine Learning Systems
(LearningSys), volume 5, pages 1–6, 2015.

[48] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

[49] Ewout van den Berg and Michael P. Friedlander. Spot – A Linear-Operator Toolbox. SoftwareX,
2013. URL http://www.cs.ubc.ca/labs/scl/spot/.

[50] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[51] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gor-
don Wilson. Exact gaussian processes on a million data points. Advances in neural information
processing systems, 32, 2019.

[52] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian
processes (kiss-gp). In International conference on machine learning, pages 1775–1784. PMLR,
2015.

[53] Andrew G Wilson, Elad Gilboa, Arye Nehorai, and John P Cunningham. Fast kernel learning
for multidimensional pattern extrapolation. Advances in neural information processing systems,
27, 2014.

[54] Max A Woodbury. Inverting modified matrices. Department of Statistics, Princeton University,
1950.

[55] Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Chris Re. Accelerated stochastic
power iteration. In International Conference on Artificial Intelligence and Statistics, pages
58–67. PMLR, 2018.

13

https://www.sciencedirect.com/science/article/pii/S2352711019301086
https://www.sciencedirect.com/science/article/pii/S2352711019301086
http://www.cs.ubc.ca/labs/scl/spot/

Appendix Outline

This Appendix is organized as follows:

• In Appendix A we describe various dispatch rules including the base rules, the composition
rules and rules derived from other rules.

• In Appendix B we provide an extended discussion of several noteworthy features of CoLA,
such as doubly stochastic estimators and memory-efficient autograd implementation.

• In Appendix C we include pseudo-code on various of the iterative methods incorporated in
CoLA and discuss modifications to improve lower precision performance.

• In Appendix D we expand on the details of the experiments in the main text.

A Dispatch Rules

We now present the linear algebra identities that we use to exploit structure in CoLA.

A.1 Core Functions

A.1.1 Inverses

We incorporate several identities for the compositional operators: product, Kronecker product, block
diagonal and sum. For product we have (AB)−1 = (B−1A−1) and for Kronecker product we have
(A⊗B)−1 = A−1 ⊗B−1. In terms of block compositions we have the following identities:

[
A 0

0 D

]−1

=

[
A−1 0

0 D−1

]
and

[
A B

0 D

]−1

=

[
A−1 −A−1BD−1

0 D−1

]
[
A B

C D

]−1

=

[
I −A−1B

0 I

][
A 0

0 D−CA−1B

]−1[
I 0

−CA−1 I

]

Finally, for sum we have the Woodbury identity and its variants. Namely, for Woodbury we have

(A+UBV)
−1

= A−1 −A−1U
(
B−1 +VA−1U

)−1
VA−1,

the Kailath variant where

(A+BC)
−1

= A−1 −A−1B
(
I+CA−1B

)
CA−1

and the rank one update via the Sherman-Morrison formula

(A+ bc⊺)
−1

= A−1 − 1

1 + c⊺Ab
A−1bc⊺A−1.

Besides the compositional operators, we have some rules for some special operators. For example,
for A = Diag (a) we have A−1 = Diag

(
a−1

)
. Also, if Q is unitary then Q−1 = Q∗ or if Q is

orthonormal then Q−1 = Q⊺.

A.1.2 Eigendecomposition

We now assume that the matrices in this section are diagonalizable. That is, Eigs (A) = ΛA,VA,
where A = VAΛAV−1

A . In terms of the compositional operators, there is not a general rule for
product or sum. However, for the Kronecker product we have Eigs(A⊗B) = ΛA⊗ΛB, VA⊗VB

and for the Kronecker sum we have Eigs(A ⊕ B) = ΛA ⊕ ΛB, VA ⊗VB. Finally, for block
diagonal we have

Eigs
([

A 0

0 D

])
=

[
ΛA 0

0 ΛD

]
,

[
VA 0

0 VD

]
.

14

A.1.3 Diagonal

As a base case, if we need to compute Diag (A) for a general matrix A we may compute each
diagonal element by e⊺i Aei. Additionally, if A is large enough we switch to randomized estimation
Diag(A) ≈ (Z⊙AZ)1/N with Z ∼ N (0, 1)d×N where N is the number of samples used to ap-
proximate the diagonal. In terms of compositional operators, we have that for sum Diag (A+B) =
Diag (A) + Diag (B). For Kronecker product we have Diag(A⊗B) = vec

(
Diag(A)Diag(B)⊺

)
and for Kronecker sum Diag(A ⊕ B) = vec

(
Diag (A)1⊺ + 1Diag (B)

⊺). Finally, for block
composition we have

Diag
([

A B

C D

])
= [Diag(A), Diag(D)].

A.1.4 Transpose / Adjoint

As explained in Section 3.1, as a base case we have an automatic procedure to compute the transpose or
adjoint of any operator A via autodiff. However, we also incorporate the following rules. For sum we
have (A+B)

∗
= A∗ +B∗ and (A+B)

⊺
= A⊺ +B⊺. For product we have (AB)

∗
= B∗A∗ and

(AB)
⊺
= B⊺A⊺. For Kronecker product we have (A⊗B)

∗
= A∗⊗B∗ and (A⊗B)

⊺
= A⊺⊗B⊺.

For the Kronecker sum we have (A⊕B)
∗
= A∗ ⊕ B∗ and (A⊕B)

⊺
= A⊺ ⊕ B⊺. In terms of

block composition we have([
A B

C D

])∗

=

[
A∗ C∗

B∗ D∗

]
and

([
A B

C D

])⊺

=

[
A⊺ C⊺

B⊺ D⊺

]
.

Finally for the annotated operators we have the following rules. A∗ = A if A is self-adjoint and
A⊺ = A if A is symmetric.

A.1.5 Pseudo-inverse

As a base case, if we need to compute A+, we may use SVD (A) = U,Σ,V and therefore set
A+ = UΣ+V∗, where Σ+ inverts the nonzero diagonal scalars. If the size of A is too large,
then we may use randomized SVD. Yet, it is uncommon to simply want A+, usually we want to
solve a least-squares problem and therefore we can use solvers that are not as expensive to run as
SVD. For the compositional operators we have the following identities. For product (AB)

+
=(

A+AB
)+ (

ABB+
)+

and for Kronecker product we have (A⊗B)
+

= A+ ⊗ B+. For block
diagonal we have ([

A 0

0 D

])+

=

[
A+ 0

0 D+

]
.

Finally, we have some identities that are mathematically trivial but that are necessary when recursively
exploiting structure as that would save computation. For example, if Q is unitary we know that
Q+ = Q and similarly when Q is orthonormal. If A is self-adjoint, then A+ = A−1 and also if it is
symmetric and PSD.

A.2 Derived Functions

Interestingly, the previous core functions allow us to derive multiple rules from the previous ones.
To illustrate, we have that Tr (A) =

∑
i Diag (A)i. Additionally, if A is PSD we have that

f (A) = VAf (ΛA)V−1
A and if A is both symmetric and PSD then f (A) = VAf (ΛA)V⊺

A.
where in both cases we used Eigs (A) = ΛA,VA. Some example functions for PSD matrices are
Sqrt (A) = VAΛ

1/2
A V−1

A or Log (A) = VA logΛAV−1
A . Which also this rules allow us to define

LogDet (A) = Tr (Log (A)).

A.3 Other matrix identities

We emphasize that there are a myriad more matrix identities that we do not intentionally include
such as Tr(A+B) = Tr(A) + Tr(B) or Tr(AB) = Tr(BA) when A and B are squared. These

15

additional cases are not part of our dispatch rules as either they are automatically computed from
other rules (as in the first example) or they do not yield any computational savings (as in the second
example).

B Features in CoLA

B.1 Doubly stochastic diagonal and trace estimation

Singly Stochastic Trace Estimator Consider the traditional stochastic trace estimator:

Tr[Base](A) = 1
n

n∑
j=1

z⊺jAzj (1)

with each zj ∼ N (0, ID) where A is a D ×D matrix. When A is itself a sum A = 1
m

∑m
i=1 Ai,

we can expand the trace as Tr[Base](A) = 1
mn

∑n
j=1

∑m
i=1 z

⊺
jAizj , with probe variables shared

across elements of the sum.

Consider the quadratic form Q := z⊺Az, which for Gaussian random variables has a cumulant
generating function of KQ(t) = logE[etQ] = − 1

2 log det(I− 2tA). From the generating function
we can derive the mean and variance of this estimator: E[Q] = K ′

Q(0) = Tr(A) and Var[Q] =

K ′′
Q(0) = 2Tr(A2). Since Tr[Base](A) is a sum of independent random draws of Q, we see:

E
[
Tr[Base](A)

]
= Tr(A) and Var

[
Tr[Base](A)

]
=

2

n
Tr(A2). (2)

Doubly Stochastic Trace Estimator For the doubly stochastic estimator, we choose probe vari-
ables which are sampled independently for each element of the sum:

Tr[Sum](A) = 1
nm

n∑
j=1

m∑
i=1

z⊺ijAizij . (3)

Separating out the elements of the sum, we can write the estimator as Tr[Sum](A) = 1
n

∑n
j=1Rj

where Rj are independent random samples of the value R = 1
m

∑m
i=1 z

⊺
i Aizi. The cumulant

generating function is merely KR(t) =
∑m

i=1KQi
(t/m) where Qi = z⊺Aiz. Taking derivatives

we find that,

E[R] = K ′
R(0) =

1
m

m∑
i=1

Tr(Ai) = Tr(A), (4)

Var[R] = K ′′
R(0) =

1
m2

m∑
i=1

2Tr(A2
i) =

2
mTr(1

m

m∑
i=1

A2
i) (5)

Assuming bounded moments on Ai, then both A = 1
m

∑
i Ai and S(A) = 1

m

∑
i A

2
i will converge

to fixed values as m→∞. Given that Tr[Sum](A) = 1
n

∑n
j=1Rj , we can now write the mean and

variance of the doubly stochastic estimator:

E
[
Tr[Sum](A)

]
= Tr(A) and Var

[
Tr[Sum](A)

]
=

2

mn
Tr(S(A)). (6)

As the error of the estimator can be bounded by the square root of the variance, showing that while
the error for Tr[Base] is O(1/

√
n) (even when applied to sum structures), whereas the error for

Tr[Sum] is O(1/
√
nm), a significant asymptotic variance reduction.

The related stochastic diagonal estimator

Diag[Sum](A) = 1
nm

n∑
j=1

m∑
i=1

zij ⊙Aizij . (7)

achieves the same O(1/
√
nm) convergence rate, though we omit this derivation for brevity as it is

follows the same steps.

In Figure 5 we empirically how our doubly stochastic diagonal estimator outperforms the standard
Hutchinson estimator.

16

10 2 100 102
Passes through dataset

10 2

10 1

100

Di
ag

on
al

 E
st

im
at

e
Re

la
tiv

e
Er

ro
r Hutchinson

Doubly Stochastic

Figure 5: Improved convergence of doubly stochastic diagonal estimator. Convergence of our
doubly stochastic diagonal estimator in evaluating the diagonal of the UCI Buzz empirical covariance
matrix (batch size = 100). Shown is the relative error of the estimate vs the number of passes through
the n data points of the dataset. Our diagonal estimator has lower variance and converges faster than
the standard Hutchinson estimator.

102 103 104

CG iters

100

101

102

Ru
nt

im
e

(s
ec

)

(A 1b)

Unrolled autodiff
CoLA vjp rules

102 103 104

CG iters

100

101

102

M
em

or
y

(M
B)

(A 1b)
Unrolled autodiff
CoLA vjp rules

102 103

Lanczos iters

100

101

Ru
nt

im
e

(s
ec

)

log|A|

Unrolled autodiff
CoLA vjp rules

102 103

Lanczos iters

100

101

102

M
em

or
y

(M
B)

log|A|

Unrolled autodiff
CoLA vjp rules

(a) Backwards pass runtime (b) Backwards pass memory

Figure 6: Our autograd rules allow for fast and memory efficient backpropagation. For two
different linear algebra operations A−1

θ b and log |Aθ|, we show the runtime and peak memory
utilization required to compute the derivatives as we increase the size of the problem. In all plots,
we compare CoLA’s autograd rules against the autograd default of backpropagating through each
iteration of the solver (unrolled autodiff). Notably, using the custom autograd rules allows us to save
substantial memory and runtime when performing the backwards pass.

17

B.2 Autograd rules for iterative algorithms

For machine learning applications, we want to seamlessly interweave linear algebra operations with
automatic differentiation. The most basic strategy is to simply let the autograd engine trace through
the operations and backpropagate accordingly. However, when using iterative methods like conjugate
gradients or Lanczos, this naive approach is extremely memory inefficient and, for problems with
many iterations, the cost can be prohibitive (as seen in Figure 6). However, the linear algebra
operations corresponding to inverse, eigendecomposition and trace estimation have simple closed
form derivatives which we can implement to avoid the prohibitive memory consumption and reduce
runtime.

Simply put, for an operation like f = CGSolve, CGSolve(A,b) = A−1b we must define a Vector
Jacobian Product: VJP(f, (A,b),v) =

(
v⊺ ∂f

∂A ,v
⊺ ∂f
∂b

)
. However, for matrix-free linear operators,

we cannot afford to store the dense matrix A, and thus neither can we store the gradients with
respect to each of its elements! Instead we must (recursively) consider how the linear operator
was constructed in terms of its differentiable arguments. In other words, we must flatten the tree
structure of possibly nested differentiable arguments into a vector: θ = flatten[A]. For example
for A = Kron

(
Diag(θ1), Conv(θ2)

)
, flatten[A] = [θ1, θ2]. From this perspective, we consider A

as a container or tree of its arguments θ, and define v⊺ ∂f
∂A := unflatten[v⊺ ∂f

∂θ] which coincides
with the usual definition for dense matrices. Applying to inverses, we can now write a simple VJP:

v⊺ ∂f
∂A = unflatten[VJP

(
θ 7→ unflatten(θ)A−1b, θ,A−1v

)
] (8)

for v⊺ ∂f
∂θ = v⊺(A−1)⊺(∂θAθ)A

−1b, and we will adopt this notation below for brevity. Doing so
gives a memory cost which is constant in the number of solver iterations, and proportional to the
memory used in the forward pass. Below we list the autograd rules for some of the iterative routines
that we implement in CoLA with their VJP definitions.

1. y = Solve(A,b) : w⊺ ∂y
∂θ = −(A−1w)⊺(∂θAθ)(A

−1b)

2. λ,V = Eigs(A) : w⊺ ∂λ
∂θ = w⊺Diag

(
V−1(∂θAθ)V

)
3. λ,V = Eigs(A) : w⊺ ∂vi

∂θ = w⊺(λiI−A)+∂θAθvi

4. y = log |A| : ∂y
∂θ = Tr

(
A−1∂θAθ

)
5. y = Diag(A) : w⊺ ∂y

∂θ = w⊺Diag (∂θAθ)

In Figure 6 we show the practical benefits of our autograd rules. We take gradients of different
linear solves A−1

θ b that were derived using conjugate gradients (CG), where each solve required an
increasing number of CG iterations.

C Algorithmic Details

In this section we expand upon three different points introduced in the main paper. For the first point
we argue why SVRG leads to gradients with reduced variants. For the second points we display all
the iterative methods that we use as base algorithms in CoLA. Finally, for the third point we expand
upon CoLA’s strategy for dealing with the different numerical precisions that we support.

C.1 SVRG

In simplest form, SVRG [23] performs gradient descent with the varianced reduced gradient

w← w − η(gi(w)− gi(w0) + g(w0)) (9)

where gi represents the stochastic gradient evaluated at only a single element or minibatch of the sum,
and g(w0) is the full batch gradient evaluated at the anchor point w0 which is recomputed at the end
of each epoch with an updated anchor.

With different loss functions, we can use this update rule to solve symmetric or non-symmetric linear
systems, to compute the top eigenvectors or even find the nullspace of a matrix. Despite the fact that
the corresponding objectives are not strongly convex in the last two cases, it has been shown that

18

Symmetric Solve Aw = b Top-k Eigenvectors AW = WΛ Nullspace AW = 0

gi(w) Aiw − b −AiW +WW⊺W [55] AiW [16]

Table 4: SVRG gradients for solving different linear algebra problems.

gradient descent and thus SVRG will converge at this exponential rate [55, 16]. Below we list the
gradients that enable us to solve different linear algebra problems: In each of the three cases listed
above, we can recognize that if the average of all the gradients g(w) is 0, then the corresponding
linear algebra solution has been recovered.

While it may seem that we need to take three complete passes through {Ai} per SVRG epoch (due to
the three terms in Equation 9), we can reduce this cost to two complete passes exploiting the fact that
the gradients are linear in the matrix object, replacing AiW −AiW0 with Ai(W −W0) where
appropriate. In all of the Sum structure experiments where we leverage SVRG, the x-axis measures
the total number of passes through {Ai}mi=1, two for each epoch for SVRG.

C.2 Iterative methods

In Table 5 we list the different iterative methods (base cases) that we use for different linear algebraic
operations as well as for different types of linear operators. As seen in Table 5, there are many
alternatives to our base cases, however we opted for algorithms that are known to be performant, that
are well-studied and that are popular amongst practitioners. A comprehensive explanation of our
bases cases and their alternatives can be found in Golub and Loan [21] and Saad [44].

Linear Algebra Op Base Case Alternatives

Ax = b (non-symmetric) GMRES BiCGSTAB, LGMRES, QMR

Ax = b (self-adjoint) MINRES GMRES

Ax = b (PSD) CG GMRES

Eigs(A) (non-symmetric) Arnoldi IRAM, Bi-Lanczos

Eigs(A) (self-adjoint) Lanczos LOBPCG

A+ CG LSQR, LSMR

A = UΣV∗ Lanczos, rSVD Jacobi-Davidson

f(A) (self-adjoint) SLQ Arnoldi

Table 5: CoLA’s base case iterative algorithm and some alternatives. We now expand on the
acronyms. GMRES: Generalized Minimum RESidual, BiCGSTAB: BiConjugate Gradient STABi-
lized, QMR: Quasi-Minimal Residual, MINRES: MINimum RESidual, CG: Conjugate Gradients,
IRAM: Implicitly Restarted Arnoldi Method, LOBPCG: Locally Optimal Block Preconditioned
Conjugate Gradients, Bi-Lanczos: Bidiagonal Lanczos, CGS: Conjugate Gradient Squared, LSQR:
Least squares QR, LSMR: Least squares Minimal Residual iteration, LGMRES: Least squares Gener-
alized Minimum RESidual, rSVD: randomized Singular Value Decomposition, and SLQ: Stochastic
Lanczos Quadrature.

C.3 Lower precision linear algebra

The accumulation of round-off error is usually the breaking point of several numerical linear algebra
(NLA) routines. As such, it is common to use precisions like float64 or higher, especially when
running these routines on a CPU. In contrast, in machine learning, lower precisions like float32 or
float16 are ubiquitously used because more parameters and data can be fitted into the GPU memory
(whose memory is usually much lower than CPUs) and because the MVMs can be done faster (the
CUDA kernels are optimized for operations on these precisions). Additionally, the round-off error
incurred on MVMs is not as detrimental when training machine learning models (as we are already

19

running noisy optimization algorithms) as when solving linear algebra problems (where round-off
error can lead us to poor solutions). Thus, it is an active area of research in NLA to derive routines
which utilize lower precisions than float64 or that mix precisions in order to achieve better runtimes
without a complete degradation of the quality of the solution.

In CoLA we take a two prong approach to deal with lower precisions in our NLA routines. First, we
incorporate additional variants of well-known algorithms that propagate less round-off error at the
expense of requiring more computation, as seen in Figure 7. Second, we integrate novel variants of
algorithms that are designed to be used on lower precisions such as the CG modification found in
Maddox et al. [32]. We now discuss the first approach.

As discussed in Section C.2, there are two algorithms that are key for eigendecompositions. The first
is Arnoldi (applicable to any operator), and the second is Lanczos (for symmetric operators) — where
actually Lanczos can be viewed as a simplified version of Arnoldi. Central to these algorithms is the
use of an orthogonalization step which is well-known to be a source of numerical instability. One
approach to aggressively ameliorate the propagation of round-off error during orthogonalization is to
use Householder projectors, which is the strategy that we use in CoLA. Given a unitary vector u, a
Householder projector (or Householder reflector) is defined as the following operator R = I− 2uu∗.
When applied to a vector x the result Rx is basically a reflection of x over the u⊺ space. To easily
visualize this, suppose that x ∈ R2 and u = e1. Hence,

Rx =

(
x1

x2

)
− 2

(
x1

0

)
=

(
−x1
x2

)
which is exactly the reflection of the vector across the axis generated by e2. Most notably, R is unitary
RR∗ = I which can be easily verified from the definition. Being unitary is crucial as under the usual
round-off error model, applying R to another matrix A does not worsen the already accumulated
error E. Mathematically, ∥R (A+E)−RA∥ = ∥RE∥ = ∥E∥, where the last equality results from
basic properties of unitary matrices. We are going to use Arnoldi as an example of how Householder
projectors are used during orthogonalization. In Figure 7 we have an example of two different variants
of Arnoldi present in CoLA. The implementations are notably different and also it is easy to see how
Algorithm 2 is more expensive than Algorithm 1. First, note that for Algorithm 2 we have two for
loops (line 6 and line 8) whereas for Algorithm 1 we only have one (line 4-6). Worse, the two for
loops in Algorithm 2 require more flops than the only for loop in Algorithm 1. Note that we do not
always favor the more expensive but robust implementation of an algorithm as in some cases, like
when running GMRES, the round-off error is not as impactful to the quality of the solution, and
shorter runtimes are actually more desirable.

D Experimental Details

In this section we expand upon the details of all the experiments ran in the paper. Such details include
the datasets that were used, the hyperparameters of different algorithms and the specific choices
of algorithms used both for CoLA but also for the alternatives. We run each of the experiments 3
times and compute the mean dropping the first observation (as usually the first run contains some
compiling time much is not too large). We do not display the standard deviation as those numbers
are imperceptible for each experiment. In terms of hardware, the CPU experiments were run on an
Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz and the GPU experiments were run on a NVIDIA
GeForce RTX 2080 Ti.

D.1 Datasets

Below we enumerate the datasets that we used in the various applications. Most of the datasets are
sourced from the University of California at Irvine’s (UCI) Machine Learning Respository that can
be found here: https://archive.ics.uci.edu/ml/datasets.php. Also, a community repo
hosting these UCI benchmarks can be found here: https://github.com/treforevans/uci_
datasets (we have no affiliation).

1. Elevators. This dataset is a modified version of the Ailerons dataset, where the goal is to
to predict the control action on the ailerons of the aircraft. This UCI dataset consists of
N = 14K observations and has D = 18 dimensions.

20

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/treforevans/uci_datasets
https://github.com/treforevans/uci_datasets

Algorithm 1 Arnoldi iteration
1: Inputs: A, q0 = ν0/ ∥ν0∥ where possibly

ν0 ∼ N (0, I), maximum number of itera-
tions T and tolerance ϵ ∈ (0, 1).

2: for j = 0 to T − 1 do
3: νj+1 ← Aqj
4: for i = 0 to j do
5: hi,j = q∗

i (Aqj)
6: νj+1 ← νj+1 − hi,jqi
7: end for
8: hj+1,j = ∥νj+1∥
9: if hj+1,j < ϵ then

10: stop
11: else
12: qj+1 = νj+1/hj+1,j

13: end if
14: end for
15: return H,Q =

(
q0| . . . |qT−1|qT

)

Algorithm 2 Householder Arnoldi iteration
1: Inputs: A, ν0 ̸= 0 where possibly ν0 ∼
N (0, I), and maximum number of iterations
T .

2: for j = 0 to T do
3: uj = GET_HOUSEHOLDER_VEC(νj , j)
4: Rj = I− 2uju

∗
j

5: hj = Rjνj

6: qj = R0 · · ·Rjej+1

7: if j < T then
8: νj+1 = Rj · · ·R0(Aqj)
9: end if

10: end for
11: return H,Q = (q0| . . . |qT)
12: function GET_HOUSEHOLDER_VEC(w, k)
13: ui = 0 for i < k and ui = wi for i > k.
14: uk = wk − ∥w∥
15: return u
16: end function

Figure 7: Different versions of the same algorithm, but the Householder variant being more numeri-
cally robust.

2. Kin40K. The full name of this UCI dataset is Statlog (Shuttle) Data Set. This dataset contains
information about NASA shuttle flights and we used a subset that consists of N = 40K
observations and has D = 8 dimensions.

3. Buzz. The full name of this UCI dataset is Buzz in social media. This dataset consists of
examples of buzz events from Twitter and Tom’s Hardware. We used a subset consisting of
N = 430K observations and has D = 77 dimensions.

4. Song. The full name of this UCI dataset is YearPredictionMSD. This dataset consists of
N = 386.5K observations and it has D = 90 audio features such as 12 timbre average
features and 78 timbre covariance features.

5. cit-HepPh. This dataset is based on arXiv’s HEP-PH (high energy physics phenomenology)
citation graph and can be found here: https://snap.stanford.edu/data/cit-HepPh.
html. The dataset covers all the citations from January 1993 to April 2003 of |V | = 34, 549
papers, ultimately containing |E| = 421, 578 directed edges. The notion of relationship
that we used in our spectral clustering experiment creates a connection between two papers
when at least one cites another (undirected symmetric graph). Therefore the dataset that we
used has the same number of nodes but instead |E| = 841, 798 undirected edges.

D.2 Compositional experiments

This section pertains to the experiments of Section 3.2 displayed in Figure 1. We now elaborate on
each of Figure 1’s panels.

(a) The multi-task GP problem exploits the structure of the following Kronecker operator
KT ⊗KX , where KT is a kernel matrix containing the correlation between the tasks and
KX is a RBF kernel on the data. For this experiment, we used a synthetic Gaussian dataset
where the train data xi ∼ N (0, ID) which has dimension D = 33, N = 1K and we used
T = 11 tasks (where the tasks basically set the size of KT). We used conjugate gradients
(CG) as the iterative method, where we set the hyperparameters to a tolerance of 10−6 and
to a maximum number of iterations to 1K. We used the exact same hyperparameters for
CoLA.

(b) For the bi-poisson problem we set up the maximum grid to be N = 10002. Since this PDE
problem involves solving a symmetric linear system, we used CG as the iterative method
with a tolerance of 10−11 and a maximum number of iterations of 10K. The previous

21

https://snap.stanford.edu/data/cit-HepPh.html
https://snap.stanford.edu/data/cit-HepPh.html

parameters also apply for CoLA. We note that PDE problems are usually solved to higher
tolerances as the numerical error compounds as we advance the PDE.

(c) For the EMLP experiment we consider solving the equivariance constraints to find the
equivariant linear layers of a graph neural network with 5 nodes. To solve this problem,
we need to find the nullspace of a large structured constraint matrix. We use the uniformly
channel heuristic from [16] which distributes the N channels across tensors of different
orders. We consider our approach which exploits the block diagonal structure, separating
the nullspaces into blocks, as opposed to the direct iterative approach exploiting only the
fast MVMs of the constraint matrix. We use a tolerance of 10−5.

D.3 Sum structure experiments

This section pertains to the experiments of Section 3.3 contained in Figure 2. We now elaborate on
each of Figure 2’s panels.

(a) In this experiment we computed the first principal component of the Buzz dataset. For the
iterative method we used power iteration with a maximum number of iterations of 300 and a
stop tolerance of 10−7. CoLA used SVRG also with the same stop tolerance and maximum
number of iterations. Additionally, we set SVRG’s batch size to 10K and the learning rate
to 0.0008. We note that a single power iteration roughly contains 43/2 = 21.5 times more
MVMs than a single iteration of SVRG. In this particular case, the length of the sum is given
by the number of observations and therefore SVRG uses 430/10 = 43 times less elements
per iteration, where 10 comes from the 10K batch size. Finally, the 2 is explained by noting
that SVRG incurs in a full sum update on every epoch.

(b) In this experiment we trained a GP by estimating the covariance RBF kernel with J = 1K
random Fourier features (RFFs). The hyperparameters for the RBF kernel are the following:
length scale (ℓ = 0.1), output scale (a = 1) and likelihood noise (σ2 = 0.1). Moreover, we
used CG as the iterative solver with a tolerance of 10−8 and 100 as the maximum number
of iterations (the convergence took much less iterations than the max). For SVRG we used
the same tolerance but set the maximum number of iterations to 10K, a batch size of 100
and learning rate of 0.004. We note that a single CG iteration roughly contains 10/2 = 5
times more MVMs than a single iteration of SVRG. In this particular case, the length of the
sum is given by the number of RFFs and therefore SVRG uses 1000/100 = 10 times less
elements per iteration, where 100 comes from the batch size.

(c) In this experiment we implemented the Neural-IVP method from Finzi et al. [17]. We
consider the time evolution of a wave equation in two spatial dimensions. At each integrator
step, a linear system M(θ)θ̇ = F (θ) must be solved to find θ̇, for a d = 12K × 12K
dimensional matrix. While Finzi et al. [17] use conjugate gradients to solve the linear
system, we demonstrate the advantages of using SVRG, as M(θ) = 1

m

∑m
i=1Mi(θ) is a

sum over the evaluation at m = 50K distinct sample locations within the domain. In this
experiment we use a batch size of 500 for SVRG, and employ rank 250 randomized Nyström
preconditioning for both SVRG and the iterative CG baseline.

D.4 Hardware speed-up comparisons

This section pertains to the experiments of Figure 3. For all these experiments we computed the
runtime reduction as a fraction between the time that it takes CoLA to run some linear algebra
operation and PyTorch using the same hardware. As an example, assume that PyTorch takes 200
seconds to compute a solve using a CPU and 100 seconds to compute the same solve but now using
a GPU. Moreover, assume that CoLA’s iterative algorithm takes 100 seconds to compute the same
solve on a CPU and 40 seconds on a GPU. Thus, the runtime reduction would be 100/200 = 0.5%
for the CPU column whereas 40/100 = 0.4 for the GPU column.

1. Solves. In this experiment we calculated the % runtime reduction when running
torch.linalg.solve on the Trefethen N = 20K matrix market sparse operator. In
this experiment, CG was run with a tolerance of 10−11 and a maximum number of iterations
equal to the operator size.

22

2. Eigenvalue estimation. In this experiment we calculated the % runtime reduction when
running torch.linalg.eigh on the mhd4800b N = 4.8K matrix market sparse operator.
In this experiment, Lanczos was run with a tolerance of 10−9 and a maximum number of
iterations equal to 100.

3. Log determinant computation. In this experiment we calculated the % runtime reduction
when running torch.linalg.logdet on the bcsstk18 N = 11.9K matrix market sparse
operator. In this experiment, the stochastic Lanczos quadrature was run using 30 Lanczos
probe estimates and 25 samples.

D.5 Applications

This section pertains to the experiments of Section 4 displayed in Figure 4. We now elaborate on
each of Figure 4’s panels.

(a) In this experiment we compute 5, 10 and 20 PCA components for the Buzz dataset. We
compared against sklearn which uses the Lanczos algorithm through the fast Fortran-based
ARPACK numerical library. In this case, CoLA uses randomized SVD [35] with a rank 3000
approximation.

(b) In this experiment we fit a Ridge regression on the Song dataset with a regularization
coefficient set to 0.1. We compared against sklearn using their fastest least-square solver
lsqr with a tolerance of 10−4. In this case, CoLA uses CG with the same tolerance and
with a maximum number of iterations set to 1K. Additionally, we ran CoLA using CPU and
GPU whereas we used only CPU for sklearn as it has no GPU support. We observe how
in the arguably most popular ML method, CoLA is able to beat a leading package such as
sklearn.

(c) In this experiment we fit a GP with a RBF kernel on two datasets: Elevators and Kin40K.
We only used up to 20K observations from Kin40K as that was the maximum number of
observations that would fit the GPU memory without needing to partition the MVMs. We
compare against GPyTorch which uses CG and stochastic Lanczos quadrature (SLQ) to
compute and optimize the negative log-marginal likelihood (loss function). Both experiments
were run on a GPU for 100 iterations using Adam as an optimizer with learning rate of
0.1 with the default values of β1 = 0.9 and β2 = 0.999. Additionally, for both GPyTorch
and CoLA, the CG tolerance was set to 10−4 with a maximum number of CG iterations of
250 and 20 probes were used for SLQ. Note that both CoLA and GPyTorch have similar
throughputs, for example GPyTorch runs a 100 iterations on Elevators on 43 seconds
whereas CoLA runs a 100 iterations on 49 seconds. When training a GP, we solve a block of
11 linear systems (1 based on y and 10 based on random probes) where one key difference
is that the CG solver for GPyTorch has a stopping criteria based on the convergence of
the mean solves whereas CoLA has a stopping criteria based on the convergence of all the
solves.

(d) In this experiment we run spectral clustering on the cit-HepPh dataset using an embedding
size of 8 and also 8 clusters for k-means (with only 1 run of k-means after estimating the
embeddings). We compare against sklearn using two different solvers, one based on
Lanczos iterations using ARPACK and another using an Algebraic Multi-Grid solver AMG. In
this case, CoLA also uses Lanczos iterations with a default tolerance of 10−6. We see how
sklearn’s AMG solver runs faster than CoLA’s but this is mostly the algorithmic constants
as they have similar asymptotical behavior (similar slopes).

(e) In this experiment we solve the Schrödinger equation to find the energy levels of the
hydrogen atom on a 3-dimensional finite difference grid with up to N = 5K points. In
order to handle the infinite spatial extent, we compactify the domain by applying the arctan
function. Under this change of coordinates, the Laplacian has a different form, and hence
the matrix forming the discretized Hamiltonian is no longer symmetric. We compare against
SciPy’s Arnoldi implementation with 20 iterations where CoLA also uses Arnoldi with the
same number of iterations. Surprisingly, CoLA’s JAX jitted code has a competitive runtime
when compare to SciPy’s runtime using ARPACK.

(f) In this experiment we solve a minimal surface problem on a grid of maximum size of
N = 1002 points. To solve this problem we have to run Netwon-Rhapson where each

23

inner step involves a linear solve of an non-symmetric operator. We compare against
SciPy’s GMRES implementation as well as JAX’s integrated version of SciPy. The main
difference between the two is that SciPy calls the fast and highly-optimized ARPACK library
whereas SciPy (JAX) has its only Python implementation of GMRES which only uses
JAX’s primitives (equally as it is done in CoLA). The tolerance for this experiment was
5e-3. We see how CoLA’s GMRES implementation is competitive with SciPy (JAX) but it
still does not beat ARPACK mostly due to the faster runtime of using a lower level GMRES
implementation.

24

	Introduction
	Background and Related Work
	CoLA: Compositional Linear Algebra
	Deriving Linear Algebraic Operations Through Fast MVMs
	Beyond Fast MVMs: Exploiting Explicit Structure Using Composition Rules
	Exploiting Implicit Structure in Machine Learning Applications
	Automatic Differentiation and Machine Learning Readiness

	Applications
	Discussion
	Dispatch Rules
	Core Functions
	Inverses
	Eigendecomposition
	Diagonal
	Transpose / Adjoint
	Pseudo-inverse

	Derived Functions
	Other matrix identities

	Features in CoLA
	Doubly stochastic diagonal and trace estimation
	Autograd rules for iterative algorithms

	Algorithmic Details
	SVRG
	Iterative methods
	Lower precision linear algebra

	Experimental Details
	Datasets
	Compositional experiments
	Sum structure experiments
	Hardware speed-up comparisons
	Applications

