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Abstract

We propose ID-to-3D, a method to generate identity- and text-guided 3D human
heads with disentangled expressions, starting from even a single casually captured
in-the-wild image of a subject. The foundation of our approach is anchored
in compositionality, alongside the use of task-specific 2D diffusion models as
priors for optimization. First, we extend a foundational model with a lightweight
expression-aware and ID-aware architecture, and create 2D priors for geometry and
texture generation, via fine-tuning only 0.2% of its available training parameters.
Then, we jointly leverage a neural parametric representation for the expressions of
each subject and a multi-stage generation of highly detailed geometry and albedo
texture. This combination of strong face identity embeddings and our neural
representation enables accurate reconstruction of not only facial features but also
accessories and hair and can be meshed to provide render-ready assets for gaming
and telepresence. Our results achieve an unprecedented level of identity-consistent
and high-quality texture and geometry generation, generalizing to a “world” of
unseen 3D identities, without relying on large 3D captured datasets of human
assets.

Figure 1: ID-to-3D leverages identity conditioning and score distillation sampling on large diffusion
models, achieving high-quality 3D human asset generation from “in-the-wild” images, without
training on large scanned datasets. From left to right: a) renderings, b) input images, c) normals.

1 Introduction

The remarkable ability of humans to discern facial characteristics and emotional cues in others makes
the development of high-quality 3D head avatars a challenging yet foundational task for a diverse
array of emerging applications, including digital telepresence, game character generation, and the
creation of virtual and augmented reality experiences. However, the acquisition of such 3D human
assets remains a daunting task, that requires either manual work typically performed by graphic
artists, or expensive and laborious scanning. High-quality 3D facial scanning, achieved initially
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Figure 2: (Left) Overall pipeline. ID-to-3D generates expressive 3D head avatars via ArcFace yid
and textual ytext conditioning. It uses as prior geometry-oriented ϕg and albedo oriented ϕa pretrained
models. Training) The training phase uses SDS to optimize 3D geometry ψg , texture ψa, and a set of
expressions latent codes kexp. It also leverages random lighting l and random expression conditioning
yexp. Inference) At deployment time, ID-to-3D extracts high-quality identity-aware expressive 3D
meshes. (Right) ID-consistent expressive 3D heads generated by our method. ID-to-3D creates 3D
assets that support relighting, ID-consistent editing, and physical simulation.

by hardware with controlled polarized illumination [15, 51, 23], has been simplified tremendously
using simpler devices, color-space methods, and inverse rendering [25, 39, 3]. Nevertheless, the
requirements for expert knowledge, hardware, and computational time do not allow wide adoption or
mass usage.

Consequently, statistical modeling and the rise of deep learning investigated techniques to reconstruct
3D face assets from casually captured images of a subject in arbitrary poses, lighting conditions,
and occlusions (referred to as “in-the-wild”). 3D Morphable Models (3DMMs) and Generative
Adversarial Networks (GANs) can be used to model facial geometry [4, 19, 56, 24], while GANs and
diffusion models have achieved state-of-the-art modeling and reconstruction of facial appearance [40,
22, 92, 60].

However, a common denominator in all the above is the requirement for vast datasets of scanned facial
shapes and appearances, in order to avoid limited generalization, ethnicity under-representation, and
oversmoothed geometries, requiring up to 10, 000 scans for 3DMMs training [6] or facial appearance
modeling [22]. Moreover, the requirement for aligned data in 3D, and also in UV texture maps,
limits the utilized area to the facial region, and introduces registration errors and additional costs.
Our proposed method bypasses these significant issues by utilizing large 2D generative models,
pre-trained on vast and easy-to-acquire 2D images, and using only a small set of rasterized 3D data
for finetuning, while achieving state-of-the-art 3D head generation.

More recently, the use of Score Distillation Sampling (SDS) [63] and large-scale diffusion models
explored the automatic generation of 3D content thanks to text [85, 10, 45, 44, 31, 92, 37, 26] or
image prompts [66, 91, 64, 79, 80]. Despite promising results, leveraging 2D priors to generate
realistic 3D head avatars remains challenging: (1) Large text-to-image foundational models are
usually trained to generate realistic RGB images, where geometry, texture, and lighting cannot be
individually segregated. This narrow “rendering knowledge" in the 2D guidance compromises the
3D fidelity, texture quality, and consistency of the generated assets, leading to unrealistic geometries
and distorted textures with recognizable artifacts such as Janus problems, incorrect proportions,
oversaturated albedo, and mismatching texture and geometry details. (2) It is difficult to precisely
control facial attributes solely using typical prompting methods [13, 59, 88, 84]. Textual prompts lack
the granularity to single out the specificity of a subject’s identity and facial expression that might be
lengthy and complex to convey in natural language. Moreover, methods that leverage image prompts
lack the capability to capture features that represent the facial identities of a subject independently of
pose, expression, or contextual scene information (i.e., ID embeddings). The lack of reliable control
over identity and facial expression prevents the personalization of 3D head avatars, resulting in a
limited range of possible output expressions or custom attributes without incurring identity drifting.
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In this work, we present ID-to-3D, a new method to generate expressive and identity-consistent 3D
human heads using a text prompt and a small set of 1-5 casually captured, in-the-wild, images of a
subject. ID-to-3D creates a variety of separated yet ID-consistent expressions in a single optimization,
leveraging as priors compositionality and task-specific 2D diffusion models. To ensure consistency,
the identity of each subject is encoded via facial embedding features and, to encourage expressivity,
emotions are disentangled via a novel ID-specific neural parametric representation. The generation of
each 3D asset leverages score distillation sampling and a two-stage pipeline to create shape details,
texture features, and materials. During optimization, the guidance is given by a foundational model
extended into an a) identity-aware, b) task-aware and c) expression-aware variant, working as 2D
prior for either geometry or texture generation. Each stage guidance is trained only once for all the
potential identities, with a lightweight fine-tuning strategy changing only 0.2% of all the available
training parameters.

Overall, we present the following contributions: (1) ArcFace-Conditioned 3D Head Asset Generation:
we introduce the first method for arcface-conditioned generation of 3D head assets using SDS. (2)
Novel ID-Conditioned Expressive Model: our model creates an identity-conditioned expressive repre-
sentation for each subject, enabling the generation of up to 13 unique and ID-consistent expressions
captured by latent codes and associated with a set of 3D assets with separate geometric, albedo, and
material information. (3) Novel Text-to-2D-Normals and Text-to-2D-Albedo Models: we present a
novel approach to creating ID-conditioned and expression-conditioned text-to-image models capable
of generating realistically plausible normals and albedo images from a small set of 3D assets. Exten-
sive experiments confirm that our method outperforms text-based and image-based SDS baselines by
producing relight-able 3D head assets with unprecedented geometric details, superior texture quality,
and able to exhibit a wide variety of expressions. Fig. 1 displays 3D heads generated with ID-to-3D.

2 Related Work

3D Human Generation and Reconstruction. Human modelling and reconstruction in the 3D
domain is typically based on 3D Morphable Models (3DMMs) [4, 6, 43, 78], which model variations
in human shape and appearance using PCA. The advent of deep learning enabled very expressive
reconstructions [14, 68], but also extended this line of research beyond linear spaces. Neural
Parametric Head models [24] explored the use of signed distance function and deformation field
to generate expressive geometries. Generative Adversarial Networks have also been proposed to
generate [42, 21] and reconstruct faces from “in-the-wild” images [22, 50, 40]. Diffusion models
showed impressive results in modeling skin textures [92, 60] especially when paired with large-scale,
high-quality datasets of real scans.

Text-to-3D Human Generation. The creation of 3D human assets via text conditioning has seen
significant progress, building on the foundations laid by advances in text-to-2D generation [65, 69,
72, 67]. Initial attempts [86, 29, 54, 73, 55, 32, 11] utilized the CLIP language model to optimize
implicit or explicit 3D representations. The seminal work of DreamFusion [63] introduced the Score
Distillation Sampling (SDS) loss, which uses a pre-trained 2D diffusion as prior for 3D generation.
This work led to a revolution in text-to-3D generation [53, 57, 27, 85, 45, 48, 52, 47, 12] and text-to-
3D human generation [9, 76, 45, 53, 26, 46, 49]. DreamAvatar [8], TADA [44] and Headevolver [82]
build upon the use of a template [61, 43, 5] to create 3D human avatars with controllable shapes and
poses. Fantasia3D [10] separated geometry and texture training, employing DMTET [77] and PBR
texture [58] for the 3D representation. HumanNorm [31] introduced the idea of training a normal
diffusion model to guide high-quality geometry generation. Despite promising results, these models
face challenges in generating highly detailed and expressive 3D heads, due to the inherent limitations
of natural language conditioning.

Personalized Generation with Diffusion Models. Controllable generation is crucial to develop
widely applicable generative models. Work in this domain includes the costumization of GANs [74,
33, 35, 36, 34] and research dedicated to steer the generation of large-scale foundation models with
additional control signals [20, 70, 30, 93, 88, 71]. The use of ID embeddings as an alternative to text
prompts showed promising results in 2D generation [62, 87, 84, 59], but remains underexplored in
the creation of 3D human avatars with SDS. Related research supplements traditional text prompts in
SDS pipelines with image-based prompts. DreamBooth3D [66] and Avatarbooth [91] proposed to
train an ad hoc model to use as a guide in the generation of 3D objects or avatars. Magic123 [64]
incorporate 3D and 2D priors in SDS generation. DreamCraft3D [79] proposed a hierarchical 3D
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content pipeline to generate textured 3D meshes from a single unposed image. Despite encouraging
results, the creation of high-quality head assets with these methods remains challenging, due to the
difficulty of extracting appropriate facial features using only naive image prompting.

3 ID-to-3D

We propose a novel method for identity-driven human head generation, which utilizes a pre-trained
2D model to distill expressive head avatars with high geometric details and high-fidelity textures,
avoiding the need for large-scale training on 3D datasets. As illustrated in Figure 2, starting from
a subject’s identity embeddings, our method trains a set of latent expression representations using
a two-stage SDS pipeline. After convergence, the learned 3D representation can be used to create
ID-driven expressive heads, that are ready to be used in common rendering engines.

3.1 3D Head Optimization Objective

A Score Distillation Sampling generation pipeline optimizes a 3D representation θ using a pre-trained
2D diffusion model ϕ as guidance. The pipeline optimization objective is to align the distribution
of 3D asset renderings with the target distribution p(x0|ytext), created by the 2D diffusion model
conditioned on an input text ytext. Given the distribution of renderings under various camera conditions
qθ(x0|ytext) =

∫
qθ(x0|ytext, c)p(c)dc, the optimization objective reads:

min
θ
DKL(q

θ(x0|ytext) ∥ p(x0|ytext)). (1)

The target distribution p(x0|ytext) is typically estimated by a foundational text-to-image diffusion
model that approximates the distribution of natural RGB images [69] (i.e., trained over large and
uncurated datasets such as LAION-5B [75]). Despite its indisputable success in creating a variety of
assets, using the above objective and guidance to generate detailed 3D heads remains a complicated
task. First, this target distribution might drift significantly from the distribution of natural heads
rendered in realistic light and camera conditions. Second, a general one-shot guidance model does
not have explicit ways to differentiate texture and geometric characteristics, which makes the creation
of light-independent texture and high-quality geometry extremely challenging. Third, the naive use
of text prompts limits the control over the generated head assets, since textual prompts cannot easily
or exhaustively capture facial and expression features. In our pipeline’s generation, we decompose
the Obj. 1 into two smaller and more controllable objectives:

min
θg,θa

DKL(q
θg (zn0 |c, ytext, yexp, yid) ∥ p(zn0 |c, ytext, yexp, yid))︸ ︷︷ ︸

geometry generation objective

+DKL(q
θa(za0 |c, l, ytext, yexp, yid) ∥ p(za0 |c, ytext, yexp, yid))︸ ︷︷ ︸

texture generation objective

.
(2)

In the above equation, θg represents the parameterization of the 3D geometry, zn0 denotes normal
maps, θa denotes the parameterization of the 3D textures and za0 albedo textures. Conditioning is
introduced in the form of textual prompt ytext, identity condition yid, and expression condition yexp.
The letter l denotes the lighting condition of the rendered image. The target distributions for geometry
and texture generation refer to the ideal distribution of head-specific normal and texture maps, which
are in practice estimated via geometry-oriented and albedo-oriented models guided by face-specific
conditioning.

3.2 2D Guidance

To initiate the 3D head reconstruction, we start from the development of 2D priors capable of
accurately separating texture and geometric details while, at the same time, consistently representing
the facial characteristic of a subject under various expressions, conveying different emotional states.
The difficulty of this task lies in its nuanced nature, exacerbated by the lack of large-scale 3D
human scan datasets, which makes the capture of detailed face features and the generalization to new
identities particularly difficult when training from scratch or even when naively fine-tuning from a
large-scale model. To solve this challenge, we propose to explicitly model geometry and appearance
domains, identity conditioning yid and expression conditioning yexp, achieving a modular separation
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of otherwise entangled-together information. To overcome the need for a large-scale dataset, we
leverage a small dataset of human heads with different expressions (NHPM) [24], a pre-trained stable
diffusion model (SD) [69], and a selective fine-tuning strategy that affects only a minimal number of
parameters, needed to accommodate these new conditionings. In practice, we use rasterized normals
as a 2D proxy for geometric information and rasterized albedo as a representation of appearance
information. We treat the shift from the natural image distribution towards normal maps and albedo
textures as “style-transfer” tasks, aiming to leave the content of the SD features unchanged while
modifying their self-similarity information. We use Low-Rank adaptation matrices (LoRA) [30] to
adjust Query Q, Key K and Value V features of the self-attention to work in the adjusted normal and
albedo domains. The normal-adapted self-attention equation becomes the following:

Zn
SA = Att(Qn,Kn,Vn),Qn = XWQ+XWn

Q,K
n = XWK+XWn

K ,V
n = XWV +XWn

V
(3)

while the albedo-adapted self-attention can be read by changing the superscript n to a. As identity
representation we select the identity embeddings yid, from a state-of-the-art face recognition network
[17, 16, 94], a compact vector of facial features extracted from “in-the-wild” images of a subject. As
expression conditioning, we use yexp CLIP embeddings [65] for the textual descriptor of the 23 FACS
coded expressions proposed in FaceWareHouse [7]. To ensure control over the generated head and
face representation during deployment, we treat the integration of identity and expression information
in the baseline architecture as “multimodal conditioning”, by including their contribution in the SD
cross-attention layers via IP-Adapter [88] strategy:

Zn
CA = Att(Q,Ktext,Vtext) + λid · Att(Q,Kid,Vid) + λexp · Att(Q,Kexp,Vexp) (4)

In the above equation, λid and λexp control the contribution of identity and expression conditioning.
The Q=XWQ term represents the Query extracted from SD features, Kexp=yexpW

exp
K and Vexp=yexpW

exp
V

the Key and Values extracted from the expression embedding, and Kid=yidW
id
K and Vid=yidW

id
V the

Key and Values extracted from the identity embedding. We train only our additional parameters,
leaving the rest of the model frozen, targeting 0.2% of the overall trainable parameters. We separately
optimize a 2D prior for geometry ϕg and textures ϕa, using image-conditioning pairs created from the
renders of the NHPM dataset under various camera poses c. The training objective for the geometric
2D prior follows the same training objective as a traditional SD model [69]:

Lsimple = Ezn
0 ,ϵ,c,t,ytext,yid,yexp∥ϵ− ϵϕg

(
znt , t, c,ytext,yid,yexp

)
∥2. (5)

while the analogous training objective for the 2D texture prior can be derived by changing both
superscript n and subscript g to a. Note that in Equation 5, yexp indicates CLIP embeddings for
the textual descriptor of the renders (i.e., camera view and subject’s attributes) and does not convey
face-identity. znt indicates zn0 noised at timestep t. Examples of generated prompt-to-images can be
seen in Figure 2 as well as additional materials.

3.3 Geometry Generation

We represent an identity-specific geometry as a neural parametric head model composed of a deep
marching tetrahedra (DMTET [77]) representation, additionally coupled with a set of identity-
dependent facial expression latent codes. Our lightweight geometric representation produces highly
detailed geometry and a broad range of expressions without notable identity drift, as shown by our
experiments. Compared to explicit template-based approaches [92, 44, 43], it has the flexibility to
dynamically modulate the local resolution of the mesh to capture high-frequency geometrical details.
In other words, it adjusts the mesh resolution of specific regions of the face to adapt to the given
subject and expression.

The DMTET geometry representation uses a deformable tetrahedral grid Γ and a network Ψg to
generate a 3D asset [77]. We extend DMTET to learn multiple expressions at the same time. We
model each facial expression with a learnable latent code kn

exp ∈ Rdexp and design the network
Ψg(Γ,k

n
exp) as a Transformer [81], parameterized by ψg learnable parameters, that processes both

the deformable grid and the expression information. During the training phase, we randomly select
one of the potential expressions, estimate the signed distance function (SDF) for the underlying
head, and use a differentiable marching tetrahedra layer to convert the implicit representation into
the explicit surface mesh for that ID and expression, compelling the Ψg model to learn a diverse set
of expressions that are consistent with the identity at hand. We supervise optimization through an
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Figure 3: Qualitative results for text-to-3D (*) and image-to-3D methods. Methods are evaluated
under the same text prompt and rendering conditions. DreamCraft3D is reported as DC3D. Geometry
is displayed via normal maps in camera coordinates. Using only a small set of 5 images as condition-
ing, ID-to-3D achieves high geometric quality and realistic textures.

SDS loss [63], computed using the rasterized geometry model ϕg as 2D prior. We optimize the 3D
representation θg as follows:

∇LSDS(θg) = Ec,t,ϵ

[
ω(t)(ϵϕg

(znt ,yid,yexp,ytext, t)− ϵ)
∂g(θg, c)

∂θg

]
; θg =

[
kn

exp, ψg

]
. (6)

In the above equation, g(θg, c) represents the normals of the rendered image, created using the
differentiable render g and the camera pose c, and kn

exp is the randomly sampled expression code.
Lastly, we combine the SDS loss with a Laplacian regularizer, to encourage smooth surfaces.

3.4 Texture Generation

Given a trained geometry model θg, we model the texture appearance θa. To ensure ID-aligned
expression generation, we follow an analogous parameterization for the expressions in the texture
domain. We represent an identity-specific appearance as a neural parametric head model composed of
a pseudo-albedo prediction network Ψa, coupled with a set of ID-dependent facial expression latent
codes. We instantiate each expression as a learnable latent code ka

exp ∈ Rdexp and model Ψa(k
a
exp) as

a Transformer trained to predict the spatially-varying reflectance in a UV-map representation [89],
namely the albedo, roughness and specularity, for each ID and expression-specific texture. We use an
off-the-shelf physically-based renderer [38]. Reflectance disentanglement is an ill-posed problem,
and in the absence of prior data, we use camera and illumination randomization as a regularization
constraint [18, 41]. On each iteration, we sample random environment illumination maps, augmented
with random Y-axis rotations. During training, we randomize the sampling of the latent expression
and deploy the albedo model ϕa SDS loss to optimize θa:

∇LSDS(θa) = Ec,t,ϵ

[
ω(t)(ϵϕa(z

a
t ,yid,yexp,ytext, t)− ϵ)

∂g(θa, c, l)

∂θa

]
; θa =

[
ka

exp, ψa

]
. (7)
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Figure 4: (Left) Identity Similarity Distribution between
“in-the-wild” images and renderings of 3D heads. (Right)
Comparative Preference Survey on texture quality (outside)
and geometry quality (in). We report % of preferences.

Texture ↓ Geometry↓

Fantasia3D* [10] 252 159
DreamFace* [92] 188 145
TADA* [44] 215 118
HumanNorm* [31] 164 98
Magic123 [64] 162 180
DreamCraft3D [79] 205 165
Ours 153 85

Table 1: Frechet Inception
Distance measures the geomet-
ric and texture quality for the
generated 3D heads. “*” indi-
cates text-to-3D SDS pipelines.

where g(θa, c, l) represents the pseudo-albedo maps created using a differentiable render g and a
sample camera pose and lighting condition.

4 Experiments

We assess the efficacy of ID-to-3D as a specialized method for ID-driven expressive human face
generation in different scenarios and report comparative analysis against state-of-the-art text-to-3D
and image-to-3D generation pipelines. Further analysis, implementation details and discussion can
be found in additional material.

4.1 Identity Generation

We benchmark ID-to-3D against several state-of-the-art methods in the domain of SDS-based 3D
face asset generation. Specifically, we consider Fantasia3D [10], three recent and similar methods
specialized in text-to-human avatar generation (i.e., Human-Norm [31], TADA [44], DreamFace [92])
and two methods that leverage both text and images to create 3D assets (i.e., Magic123 [64],
DreamCraft3D [79]). In order to compare together text-to-3D and image-to-3D methods, we select a
test benchmark of 40 celebrity names, suggested by ChatGPT, covering actors, sports, and media
personalities. We automatically download 25 images for each identity from BingImages [1]: 5 images
to use as input and 20 to use as references for our comparisons. For all methods, we use the same
textual prompt “a DSLR face portrait of...” and the same input images.

Qualitative Comparisons. Results of existing methods are reported in Figure 3 under the same
lighting and rendering conditions. The 3D assets created by ID-to-3D show realistic texture, sharp
fine-grained details, and ID fidelity, capturing facial characteristics of the input identity without
relying heavily on often ambiguous text prompts or naively lifting 2D images in the 3D domain.

Quantitative Comparisons: Identity Similarity Distribution. We perform a quantitative evaluation
on all the evaluated models using similarity ID. We assess the ID fidelity of the 3D assets using the
CosFace similarity metric [83, 40]. We center and align the 3D objects and collect renders in a wide
range of camera positions (i.e. elevation [−15◦,+15◦] and rotation [−65◦,+65◦]). We measure the
cosine similarity between the ID features of each render and a set of 20 in-the-wild images of the
same identity, used as reference. We report the distribution of the identity similarity for each method
in Figure 4 (Left). Note that the variance of the distribution correlates with the ID consistency of
the 3D object across viewpoints. Despite being able to generate realistic skin textures, DreamFace
cannot create hair or eyes by design, resulting in the lowest average similarity score. DreamCraft3D
and Magic123 leverage the input image to achieve a photorealistic front-facing camera render, but
struggle to create 3D consistent heads, resulting in distributions associated with the highest variance.
As clearly visible from Figure 4, ID-to-3D is capable of creating realistic and consistent 3D heads,
reporting the lowest variance and the highest similarity score.

Quantitative Comparisons: FID and User-Study. The evaluation of the generated 3D geometries
and textures is performed using the Frechet Inception Distance (FID) metric [28]. For texture quality,
the FID is calculated between the renderings and the images from Stable Diffusion V1.5 [69]. For
geometry quality, FID is determined by comparing normal maps with those extracted from the NHPM
test set [24]. To further substantiate our analysis, we conduct two user preference surveys, comparing
our method with the 4 strongest baselines for the generation of texture and geometry. We compare
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Figure 5: ID-to-3D expression diversity. Renderings and normal maps in camera coordinates
are taken for 3 identities: Will Smith, Anya Taylor Joy, and Kanye West. Our method achieves
fine-grained geometry carving and high-quality texture generation, realistically reproducing
various skin tones.

the best 2 performing text-to-3D and image-to-3D methods against ID-to-3Din the user survey, as
this enabled us to gather more responses. As shown in Table 1 and Figure 4 (Right), FID metrics and
user evaluations report aligned results. Our model achieves the lowest FID scores and the highest
user preference in both geometry and texture generation, showcasing together the overall stronger
performance of ID-to-3Das a human-specific geometry and texture generator.

4.2 Expressive ID-conditioned Generation

ID-to-3D is specifically designed to create complex, uncommon, and subtle expressions with a level
of details not previously achievable using existing SDS methods. In Figure 5 we showcase the
unique ability of our method to generate a wide range of expressions that remain identifiable and yet
identity-consistent.

Quantitative Analysis: Identity Similarity Distribution Across Expressions. We test the ID
consistency across views and expressions by reporting the cosine similarity between the ID features
of a reference render (i.e., neutral expression and front-facing camera) and the ID features captured
across the remaining expressions and view points. Figure 6 (Right) shows the distribution of ID
similarity computed for a set of 10 subjects. ID-to-3D consistently produces 3D assets with high ID
similarity and low variance.

Quantitative Analysis: Expression Variety Visualization. A core characteristic of ID-to-3D is its
robust ability to produce a wide range of unique and vivid expressions. In this section, we provide
a visualization of this expression diversity. We select a subset of 13 expressions and 10 subjects,
extracting for each 3D head a set of renders in a range of 9 camera poses. Then we extract the ID
features for each render and project them into 2D points using t-SNE. As visible in Figure 6 (Middle),
plotting these points clearly shows the heterogeneity of the generated expressions and identities.
Firstly, renders associated with the same identity are grouped in distinct clusters. Furthermore, within
each cluster, we observe how there is a local variation of ID features as they adapt their response to
different expressions.

4.3 ID-conditioned Text-based Customization

The unique characteristics of our model allow for the customization of 3D objects without identity or
expression drift. Figure 7 and 2 (Right) showcase how a variety of alterations can be imposed on the
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Figure 6: Expressions analysis. ID-to-3D creates a variety of expressions with robust ID consistency.
(Left) Visualizations of different expressions for 2 identities (i.e. Bill Gates, Alexander Skarsgard).
(Middle) Expression diversity. t-SNE plot visualizing the ID embeddings computed considering
different camera poses, expressions, and subjects. Different identities and expressions are clustered
separately. (Right) Identity similarity distributions between neutral-pose and remaining expres-
sions. Rendered with [2].

Figure 7: Identity-Consistent Editing. (Left) De-aged 3D heads generated using different identity
conditioning and the textual prompt: “...as a cute baby”. Normal maps are displayed in world
coordinates next to photorealistic renderings. (Right) Geometry and texture editing with text
prompts. ID-to-3D edits appearance and geometric features in an ID-consistent manner.

object’s geometry, given the appropriate text conditioning while maintaining the subject’s general
physiognomy. In particular, ID-to-3D displays aligned geometry and appearance even after editing,
preserving the ability to convey different expressions (e.g. from “eyes closed” to “brow lowerer”,
from “neutral” to “squeeze”) even after facial hair textures have been altered via textual prompt.

Figure 8 provides evidence on the text-guided editing capability of our model for richer and more
complex textual prompts. In particular, we showcase text prompts associated with various hairstyles,
head accessories, and face shape changes driven by different ethnic backgrounds. Note that our
method can interpret and exploit text-based inputs not addressed in previous works (e.g. id-driven
changes in “aging”, “gender”, “heritage”). Even when using the exact same text prompt (e.g. “A
woman with African-American heritage, ... 70’s hairstyle.”) our model generates unique identity-
consistent assets that simultaneously align with the text and retain the characteristic facial features of
the input ID. Our approach is able to address practical scenarios and opens new avenues for expressive
text-guided editing of 3D assets.

5 Conclusion and Ethical Considerations

Limitations. Despite setting a new state-of-the-art, we acknowledge ID-to-3D limitations: (1) The
generalization capacity is constrained by the employed face embedding network [17], the pretrained

9



Figure 8: Identity-Consistent Editing with Rich Textual Prompts. ID-to-3D generates ID-
consistent assets that reflect both subtle and significant changes in geometry and appearance described
in a detailed textual input. Normal maps are displayed in world coordinates next to photorealistic
renderings and input prompts.

large-scale diffusion models [69, 88], and the finetuning of the 2D guidance models on a dataset of
relatively small size, which might result in inaccurate representation biases and biases due to dataset
imbalances; (2) the texture-guidance model results might come short of photorealism. The generated
textures mimic the albedos from the [24] dataset, which contains expression-rich data but only
low-resolution UV diffuse albedo maps; (3) the lack of specific optimization for physically bounded
textures and geometries might occasionally produce unnatural exaggerated facial characteristics,
hence we call them pseudo-albedo, despite producing render-ready assets; (4) the computational
resources needed for PBR rendering hinder potential applications in video-driven problems.

Societal Impact. Technological advancements in automatic 3D human generation have various
beneficial applications, but also raise important ethical considerations about representation and
potential misuses. We advocate for responsible research and take the following steps to mitigate
unauthentic reconstructions: (1) we restrict training data to the facial region only. (2) we advocate for
the replacement of text-based prompts with larger ID embeddings that are sometimes lacking [90]
but entail significantly less bias than methods trained only on celebrity datasets and text [65].

Conclusion. In this work, we present ID-to-3D , a novel method for expressive 3D head asset
generation from one or more face images. Our method deploys a novel human parametric expression
model in tandem with specialized geometry and albedo guidance, not only to create intricately
detailed head avatars with realistic textures but also to achieve strikingly ID-consistent results across
a wide range of expressions, setting a new benchmark in comparison to existing SDS techniques.
Without having to rely on 3D captured datasets that are expensive to collect and typically biased, and
without being constrained on a specific geometry template, our method can be employed by a broad
range of subjects, with different features such as skin tone and hairstyle.
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information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included the above details in the supplemental materials.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification:

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: Yes
Justification: We discuss both in the Conclusion and Ethical Considerations section.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We discuss both in the Conclusion and Ethical Considerations section.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
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