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ABSTRACT

We introduce GUIDE, a novel continual learning approach that directs diffusion
models to rehearse samples at risk of being forgotten. Existing generative strategies
combat catastrophic forgetting by randomly sampling rehearsal examples from a
generative model. Such an approach contradicts buffer-based approaches where
sampling strategy plays an important role. We propose to bridge this gap by
incorporating classifier guidance into the diffusion process to produce rehearsal
examples specifically targeting information forgotten by a continuously trained
model. This approach enables the generation of samples from preceding task
distributions, which are more likely to be misclassified in the context of recently
encountered classes. Our experimental results show that GUIDE significantly
reduces catastrophic forgetting, outperforming conventional random sampling
approaches and surpassing recent state-of-the-art methods in continual learning
with generative replay.

1 INTRODUCTION

Figure 1: Rehearsal sampling in GUIDE. We
guide the denoising process of a diffusion model
trained on the previous task (blue) toward classes
from the current task (orange). The replay sam-
ples, highlighted with blue borders, share features
with the examples from the current task, which may
be related to characteristics such as color or back-
ground (e.g., fishes on a snowy background when
guided to snowmobile). Generative rehearsal on
such samples positioned near the classifier’s deci-
sion boundary successfully mitigates catastrophic
forgetting.

A typical machine learning pipeline involves
training a model on a static dataset and deploy-
ing it to a task with a similar data distribution.
This assumption frequently proves impractical
in real-world scenarios, where models encounter
a constantly evolving set of objectives. To ad-
dress this issue, Continual Learning (CL) meth-
ods try to accumulate knowledge from sepa-
rate tasks while overcoming catastrophic for-
getting (French, 1999).

Typically, CL approaches can be divided into
two main scenarios. In the online one, data ar-
rives at the system in a continuous stream, and
each example can be used for training only once.
On the contrary, in the offline continual learn-
ing scenario, samples arrive in so-called tasks,
allowing the model to run multiple epochs over
a particular dataset before moving to the next
one. To facilitate online continual learning, nu-
merous methods (Rebuffi et al., 2017; Riemer
et al., 2019; Benjamin et al., 2019; Aljundi et al.,
2019b; Buzzega et al., 2020) utilize a memory
buffer that stores a subset of training examples
in order to replay them with every training batch.
In order for this approach to be effective, it re-
quires a well-designed sampling strategy that
selects samples approximating the true loss on
the previous task as closely as possible. Since
the optimal selection of rehearsal samples is not
possible, as it requires access to the classifier’s
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future state (Khan & Swaroop, 2021), numerous methods try to achieve this goal by employing
different heuristics. Recent approaches include selection based on the distance to the current decision
boundary (Pan et al., 2020), maximization of the diversity of samples in a buffer (Aljundi et al.,
2019b), loss increases given the estimated parameters update based on the newly arrived data (Aljundi
et al., 2019a) or hard negative mining (Jin et al., 2021).

In this work, we propose to solve this problem with the Deep Generative Replay (DGR) (Shin et al.,
2017) strategy, where the memory buffer is substituted with the generative model. In particular, we
show that by first learning the whole data distribution of the previous task with Denoising Deep
Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020), we can use the classifier
guidance technique (Dhariwal & Nichol, 2021) to steer the generation of rehearsal samples towards
examples with high cross-entropy loss value, located close to the decision boundary at the given time
of the classifier’s continual learning. The visualization of this idea is presented in Fig. 1.

In our experiments, we show that rehearsal with GUIDE outperforms other state-of-the-art generative
replay methods, significantly reducing catastrophic forgetting in class-incremental learning. On top
of our method, we thoroughly evaluate several alternative guidance strategies that generate rehearsal
samples of diverse characteristics. Our contributions can be summarized as follows:

• We introduce GUIDE - generative replay method that benefits from classifier guidance to
generate rehearsal data samples prone to be forgotten.

• We demonstrate that incorporating classifier guidance enables the generation of high-quality
samples situated near task decision boundaries. This approach effectively mitigates forget-
ting in class-incremental learning.

• We show the superiority of GUIDE over recent state-of-the-art generative rehearsal ap-
proaches and provide an in-depth experimental analysis of our method’s main contribution.

2 RELATED WORK

2.1 GUIDED IMAGE GENERATION IN DIFFUSION MODELS

Besides conditioning, controlling diffusion model outputs can be achieved by modifying the process of
sampling that incorporates additional signals from the guidance function. Classifier guidance (Dhari-
wal & Nichol, 2021) enables steering the backward diffusion process by combining the intermediate
denoising steps of conditional or unconditional diffusion with the gradient from the externally trained
classifier. To ensure the high quality of generated samples, the original method was introduced with a
classifier trained on noised images. However, such an approach can be impractical and lead to limited
performance.

Building upon the work by Bansal et al. (2023), in our method, we adapt the guidance process to
utilize a classifier trained only on clean images. To that end, in the guidance process, we first predict
a denoised image:

ẑ0(xt) =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
, (1)

and then we modify the prediction of diffusion model ϵθ(xt, t) at each time step t according to:

ϵ̂θ(xt, t) = ϵθ(xt, t) + s∇xt
ℓ (fϕ(y|ẑ0(xt)), y) , (2)

where s is gradient scale, fϕ(y|x) is classifier model with parameters ϕ, ℓ is the cross-entropy loss
function and y is class label that we guide to.

In contrast to methods utilizing a classifier, Epstein et al. (2023) introduce self-guidance based on the
internal representations of the diffusion model, while Ho & Salimans (2022) introduce classifier-free
guidance, achieving results akin to classifier-based approaches by joint training of unconditional and
conditional diffusion models.

2.2 CONTINUAL LEARNING

Continual learning methods aim to mitigate catastrophic forgetting – a phenomenon where deep
neural networks trained on a sequence of tasks completely and abruptly forget previously learned
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information upon retraining on a new task. Recent methods can be organized into three main
families. Regularization methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017)
identify the most important parameters and try to slow down their changes through regularization.
Architectural approaches (Rusu et al., 2016; Yoon et al., 2018; Mallya & Lazebnik, 2018; Mallya
et al., 2018; Verma et al., 2021) change the structure of the model for each task. Rehearsal methods
replay data samples from previous tasks and train the model on a combination of data samples from
previous and current tasks. In the most straightforward rehearsal approach, a memory buffer is used
to store exemplars from previous tasks (Prabhu et al., 2020; Rebuffi et al., 2017; Chaudhry et al.,
2018; Wu et al., 2019; Hou et al., 2019; Belouadah & Popescu, 2019; Castro et al., 2018; Aljundi
et al., 2019b). Some methods, instead of directly using exemplars, stores data representations from
previous tasks in different forms, e.g., mnemonics - optimized artificial samples (Liu et al., 2020b),
distilled datasets (Wang et al., 2018; Zhao & Bilen, 2021; Zhao et al., 2021), or addressable memory
structure (Deng & Russakovsky, 2022).

Continual learning with generative rehearsal Because of the limitations of buffer-based ap-
proaches related to the constantly growing memory requirements and privacy issues, Shin et al. (2017)
introduces Deep Generative Replay, where a GAN is used to generate rehearsal samples from previous
tasks for the continual training of a classifier. A similar approach is further extended to different
model architectures like Variational Autoencoders (VAE) (van de Ven & Tolias, 2018; Nguyen et al.,
2018), normalizing flows (Scardapane et al., 2020) or Gaussian Mixture Models (Rostami et al.,
2019).

On top of those baseline approaches, Ramapuram et al. (2020) introduce a method that benefits from
the knowledge distillation technique in VAE training in CL setup, while Wu et al. (2018) introduce
Memory Replay GANs (MeRGANs) and describe two approaches to prevent forgetting - by joint
retraining and by aligning the replay samples. Instead of replaying data samples, several approaches
propose to rehearse internal data representations instead, e.g., Brain-Inspired Replay (BIR) (Van de
Ven et al., 2020) with an extension to Generative Feature Replay (GFR) (Liu et al., 2020a), where the
rehearsal is combined with features distillation. Kemker & Kanan (2018) divide feature rehearsal
into short and long-term parts.

Continual learning with diffusion models Diffusion models excel in generative tasks, surpassing
VAEs (Kingma & Welling, 2014) and GANs, yet their adoption in CL remains limited. Deep
Diffusion-based Generative Replay (DDGR) (Gao & Liu, 2023) uses a diffusion model in a generative
rehearsal method and benefits from a classifier pretrained on previous tasks to synthesize high-quality
replay samples. Class-Prototype Conditional Diffusion Model (CDPM) (Doan et al., 2023) further
enhances the replay samples quality by conditioning the diffusion model on learnable class-prototypes.
Similarly, Jodelet et al. (2023) use an externally trained text-to-image diffusion model for the same
purpose. In this work, we extend those ideas and show that classifier guidance might be used not only
to generate high-quality images but also to introduce the desired characteristics of rehearsal samples.

3 METHOD

This section introduces GUIDE - a novel method designed to mitigate catastrophic forgetting in a
classifier trained in a generative replay scenario with a diffusion model. We benefit from the classifier
trained on the current task, referred to as the current classifier, to guide the diffusion model during the
generation of rehearsal examples from preceding tasks. With our method, we can generate rehearsal
examples close to the classifier’s decision boundary, making them highly valuable to counteract the
classifier’s forgetting in class-incremental learning (Toneva et al., 2018; Kumari et al., 2022).

3.1 INTUITION AND RATIONALE BEHIND GUIDE

Before moving to the continual-learning setup, we demonstrate the effect of guiding the diffusion
model towards classes not included in its training dataset. To that end, we propose a simplified
scenario in which we employ the unconditional diffusion model ϵθ(xt, t) trained exclusively on the
goldfish and tiger shark classes from the ImageNet100 dataset, along with a classifier fϕ(y|x) trained
on entire ImageNet dataset.

3
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Given the diffusion model’s unconditional nature, we use the classifier to steer the denoising process
toward either the goldfish or tiger shark class, represented as c1. Simultaneously, we add another
guiding signal from the same classifier fϕ(y|x) towards one of the classes from the ImageNet dataset
different than goldfish and tiger shark, denoted as c2. Formally, we modify the unconditional diffusion
sampling process as follows:

ϵ̂θ(xt, t) = ϵθ(xt, t) + s1∇xt
ℓ (fϕ(y|ẑ0(xt)), c1) + s2∇xt

ℓ (fϕ(y|ẑ0(xt)), c2) . (3)

In Fig. 2, we present generated samples, with goldfish generations in the upper row and tiger sharks
in the bottom one (additional samples are provided in Appendix G). By integrating guidance to both
c1 and c2 classes, we generate samples from the diffusion model’s training data distribution – all
of the examples are either goldfishes or sharks but with visible features from classes c2, which are
unknown to the diffusion model (e.g., oblong shape of baguette, hay or snow in the background).

Baguette Hay Mushroom Snowmobile

Figure 2: Samples from the unconditional diffusion model trained only on goldfish and tiger
shark classes from the ImageNet100 dataset. In the upper row, we present the samples guided to
the goldfish class, while in the bottom row, to the tiger shark class. At the same time, the classifier
guides the denoising process toward the class depicted above each figure that was not included in
the training set of the diffusion model. For reference, in the leftmost column, we present samples
generated without guidance toward any unknown class, setting s2 = 0. In every other column, we set
both s1 and s2 to 10. We obtain samples from the desired class with observable features of classes
unknown to the diffusion model, such as the color, background, or shape.

In this work, we propose to use this observation in the continual training of a classifier, with the
distinction that in GUIDE, we only utilize guidance toward unknown classes since we sample from a
class-conditional diffusion model. Thus, we eliminate the need for guidance toward classes from the
diffusion model’s training set.

3.2 GUIDANCE TOWARDS CLASSES FROM CURRENT TASK

In this work, we focus on class-incremental continual learning (van de Ven et al., 2022) of a classifier
fϕ(y|x) with generative replay, where we use diffusion model ϵθ(xt, t, y) as a generator of synthetic
samples from previous tasks. The data stream comprises of T distinct tasks with disjoint sets of
labels. Each task i has its associated dataset Di of labeled samples pairs (x, y).

For each i ∈ [1, . . . , T ], we train a classifier fϕi
(y|x) on all tasks up to i, using the following loss

function:

L≤i(M1, . . . ,Mi−1) =

i−1∑
k=1

∑
(x,y)∈Mk

ℓ(fϕi
(x), y) +

∑
(x,y)∈Di

ℓ(fϕi
(x), y), (4)

where ℓ is a cross-entropy loss function andMk ⊂ Dk are free parameters. We will be interested in
choosing the setsMk to minimize the error in approximating the loss in Equation (4):

L≤i(D1, . . . ,Di−1)− L≤i(M1, . . . ,Mi−1) =

i−1∑
k=1

∑
(x,y)∈Dk\Mk

ℓ(fϕi(x), y). (5)

The leading idea of this paper is to choose elements in (x, y) ∈ Mk with large ℓ(fϕi(x), y), thus
minimizing Equation (5). This demonstrates the power of using a generative replay: we can adaptively
correct the current version of the classifier, fϕi , by actively querying for data points that are being
misclassified due to continual learning procedure. This would not have been possible if memory-based
rehearsal methods were to be used.

More concretely, in the CL scenario, where we only have direct access to data from the current task
Di but to the previous tasks D1, . . . ,Di−1 only through the generative replay ϵ̂θi−1

, we generateMk

by sampling from diffusion guided towards examples with a large magnitude of cross-entropy loss:

4
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ϵ̂θi−1
(xt, t, yi−1) = ϵθi−1

(xt, t, yi−1) + s∇xt
ℓ (fϕi

(y|ẑ0(xt), yi) . (6)

Since task i can contain many classes, in each denoising step t, we select class yi from a current task
that at that moment yields the highest output from the classifier:

yi = argmax
c∈Ci

fϕi
(c|ẑ0(xt)), (7)

where Ci denotes the set of classes in current task i.

At the end of each task, we train a class-conditional diffusion model ϵθi(xt, t, y) on currently available
data Di along with synthetic data samples from preceding tasks generated by the previous diffusion
model ϵθi−1(xt, t, y).

Intuitively, in GUIDE, we steer the diffusion process towards examples from the current task, as
depicted in Fig. 1. Simultaneously, since we utilize only the previous frozen diffusion model that
is not trained on classes from the current task, we consistently obtain samples from desired class
yi−1. Rehearsal examples obtained with the modified sampling process yield lower outputs for class
yi−1 in the current classifier fϕi

(y|x) compared to the previous classifier fϕi−1
(y|x). Hence, these

examples can be interpreted as data samples that are more likely to be forgotten during continual
training. We experimentally validate this statement in Sec. 4.5.

The effect of our guidance technique resembles the idea introduced in Retrospective Adversarial
Replay (RAR) (Kumari et al., 2022), where authors show that training the classifier on rehearsal
samples similar to examples from the current task helps the model to learn the boundaries between
tasks. This is also in line with observation by Toneva et al. (2018), who show that the sample’s
distance from the decision border is correlated with the number of forgetting events.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate our approach on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) image
datasets. We split the CIFAR-10 dataset into 2 and 5 equal tasks and the CIFAR-100 dataset into
5 and 10 equal tasks. Moreover, to validate if our method can be extended to datasets with higher
resolution, we also evaluate it on the ImageNet-100 (Deng et al., 2009) dataset split into 5 tasks.

Metrics For evaluation on each task i ∈ [1, . . . , T ], we use two metrics commonly used
in continual learning: average accuracy Āi = 1

i

∑i
j=1 A

i
j and average forgetting F̄i =

1
i−1

∑i−1
j=1 max1≤k≤i(A

k
j − Ai

j), where Ai
j denotes the accuracy of a model on j-th task after

training on i tasks. We follow the definitions of both metrics from (Chaudhry et al., 2018).

Baseline methods We compare our approach with state-of-the-art generative replay methods. For
fairness, in the evaluation of BIR (Van de Ven et al., 2020), we freeze the encoder model after training
on the first task. In order to evaluate MeRGAN (Wu et al., 2018) on generative replay scenario, we
generate samples from the final generator network trained sequentially on all tasks to construct a
training dataset for the ResNet18 classifier. We also compare the results to the Joint training on all
data and simple Fine-tuning with no rehearsal. As a soft upper bound of the proposed method, we
present a Continual Joint setting, where we train the classifier continually with full access to all
previous tasks (perfect rehearsal with infinite buffer size). In all methods using the diffusion model
(including DDGR), we use the same number of denoising steps to obtain rehearsal samples. We
recalculated scores for all related methods using the code provided by the authors. Importantly, we
do not use any pre-training on external datasets.

4.2 IMPLEMENTATION DETAILS

Our training procedure is divided into two parts. First, in each task i, we train the classifier fϕi
(y|x).

In order to generate rehearsal samples, we load the diffusion model ϵθi−1
(xt, t, y) already trained

on the previous task. Then, we train a class-conditional diffusion model ϵθi(xt, t, y) in a standard

5
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Table 1: Comparison of GUIDE with other generative rehearsal methods (we mark feature replay
methods in gray color). Our approach outperforms most other methods in terms of both average
accuracy and average forgetting after the final task T .

AVERAGE ACCURACY ĀT (↑) AVERAGE FORGETTING F̄T (↓)

METHOD
CIFAR-10 CIFAR-100 IMAGENET100 CIFAR-10 CIFAR-100 IMAGENET100

T = 2 T = 5 T = 5 T = 10 T = 5 T = 2 T = 5 T = 5 T = 10 T = 5

JOINT 93.14 ± 0.16 72.32 ± 0.24 66.85 ± 2.25 - - - - -
CONTINUAL JOINT 85.63 ± 0.39 86.41 ± 0.32 73.07 ± 0.01 64.15 ± 0.98 50.59 ± 0.35 7.91 ± 0.67 2.90 ± 0.08 7.80 ± 0.55 6.67 ± 0.36 12.28 ± 0.07
FINE-TUNING 47.22 ± 0.06 18.95 ± 0.20 16.92 ± 0.03 9.12 ± 0.04 13.49 ± 0.18 92.69 ± 0.06 94.65 ± 0.17 80.75 ± 0.22 87.67 ± 0.07 64.93 ± 0.00

DGR VAE 60.24 ± 1.53 28.23 ± 3.84 19.66 ± 0.27 10.04 ± 0.17 9.54 ± 0.26 43.91 ± 5.40 57.21 ± 9.82 42.10 ± 1.40 60.31 ± 4.80 40.26 ± 0.91
DGR+DISTILL 52.40 ± 2.58 27.83 ± 1.20 21.38 ± 0.61 13.94 ± 0.13 11.77 ± 0.47 70.84 ± 6.35 43.43 ± 2.60 29.30 ± 0.40 21.15 ± 1.30 41.17 ± 0.43
RTF 51.80 ± 2.56 30.36 ± 1.40 17.45 ± 0.28 12.80 ± 0.78 8.03 ± 0.05 60.49 ± 5.54 51.77 ± 1.00 47.68 ± 0.80 45.21 ± 5.80 41.2 ± 0.20
MERGAN 50.54 ± 0.08 51.65 ± 0.40 9.65 ± 0.14 12.34 ± 0.15 - - - - - -
BIR 53.97 ± 0.97 36.41 ± 0.82 21.75 ± 0.08 15.26 ± 0.49 8.63 ± 0.19 64.97 ± 2.15 65.28 ± 1.27 48.38 ± 0.44 53.08 ± 0.75 40.99 ± 0.36
GFR 64.13 ± 0.88 26.70 ± 1.90 34.80 ± 0.26 21.90 ± 0.14 32.95 ± 0.35 25.37 ± 6.62 49.29 ± 6.03 19.16 ± 0.55 17.44 ± 2.20 20.37 ± 1.47
DDGR 80.03 ± 0.65 43.69 ± 2.60 28.11 ± 2.58 15.99 ± 1.08 25.59 ± 2.29 22.45 ± 1.13 62.51 ± 3.84 60.62 ± 2.13 74.70 ± 1.79 49.52 ± 2.52
DGR DIFFUSION 77.43 ± 0.60 59.00 ± 0.57 28.25 ± 0.22 15.90 ± 1.01 23.92 ± 0.92 26.32 ± 0.90 40.38 ± 0.32 68.70 ± 0.65 80.38 ± 1.34 54.44 ± 0.14
GUIDE 81.29 ± 0.75 64.47 ± 0.45 41.66 ± 0.40 26.13 ± 0.29 39.07 ± 1.37 14.79 ± 0.36 24.84 ± 0.05 44.30 ± 1.10 60.54 ± 0.82 27.60 ± 3.28

self-rehearsal approach, independently of the classifier. In the first task, we train both the diffusion
model and the classifier solely on real data samples.

In our method, it is essential to generate rehearsal examples progressively as the classifier is trained
on the task. This way, similarly to active learning techniques, at each step, we guide the generation
process toward the most challenging samples – those that are close to the decision boundary of
the classifier at the given moment. The mini-batches are balanced to ensure that each contains an
equal number of samples from each class encountered so far. For clarity, we present a detailed
pseudocode of the entire training procedure in Appendix C. All training hyperparameters can be
found in Appendix D and in the code repository1.

4.3 EXPERIMENTAL RESULTS
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Figure 3: Accuracy on each task during each phase
of class-incremental training on CIFAR-100 with
5 tasks - standard GR with diffusion (left), GFR
(middle), and our method (right). We observe the
stability-plasticity trade-off, where our method signifi-
cantly reduces forgetting compared to the standard GR
scenario at the cost of a slight decrease in the ability to
learn new tasks.

We evaluate our method on a set of CL
benchmarks with a comparative analysis
conducted in relation to other generative
rehearsal techniques. In Tab. 1, we present
the mean and standard deviation of results
calculated for 3 random seeds. Our method
outperforms other evaluated methods re-
garding the average accuracy after the last
task ĀT by a considerable margin on all
benchmarks. Specifically, GUIDE notably
improves upon the standard DGR with dif-
fusion model on both average incremen-
tal accuracy and forgetting. It also outper-
forms DDGR, another GR approach that
uses the diffusion model, proving the supe-
riority of our sampling technique.

We further compare our method to feature replay methods (BIR and GFR). In the case of the GFR,
we observe less forgetting on the CIFAR-100 and ImageNet100 datasets. This is the effect of the
drastically limited plasticity of GFR due to the decrease in the number of updates to the feature
extractor after the first task. For a more detailed analysis, in Fig. 3 we thoroughly benchmark
our method against the standard GR scenario and GFR method, presenting the accuracy on each
encountered task after each training phase on CIFAR-100 with 5 tasks. Our approach significantly
improved upon the standard GR scenario in terms of knowledge retention from preceding tasks. It
indicates that training on rehearsal examples generated by GUIDE successfully mitigates forgetting.
The decreased accuracy on the most recent task in our method can be interpreted through the lens of
the stability-plasticity trade-off (Grossberg, 1982), highlighting that while our approach substantially
reduces the forgetting of classifier, it does so at the expense of its ability to assimilate new information.
Although GFR can maintain the performance on the initial task notably better than our method thanks
to limited training of feature extractor on subsequent tasks, it leads to a substantial final performance
drop.

1Link hidden for review
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Table 2: Evaluation of GUIDE in the online scenario. The memory buffer size for each ER method is
set to match the size of the diffusion model used in the GUIDE method. In the DGR diffusion and
GUIDE, we use a diffusion model trained on all data samples from previous tasks.

AVERAGE ACCURACY ĀT (↑) AVERAGE FORGETTING F̄T (↓)

METHOD BUFFER SIZE m
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
T = 5 T = 5 T = 5 T = 5

JOINT - 50.34 ± 0.78 18.67 ± 0.52 - -
CONTINUAL JOINT ∞ 36.94 ± 0.48 20.57 ± 0.47 37.92 ± 1.12 17.25 ± 0.71
FINE-TUNING 0 13.68 ± 0.40 2.82 ± 0.59 71.78 ± 2.75 28.53 ± 0.68

ER 16 573 36.56 ± 2.18 13.45 ± 1.09 41.77 ± 2.64 27.77 ± 2.54
ICARL 16 573 33.48 ± 4.20 8.62 ± 0.16 31.87 ± 3.22 8.97 ± 0.38
GSS 16 573 18.70 ± 0.23 15.04 ± 3.23 83.78 ± 0.62 41.75 ± 4.06
FDR 16 573 18.46 ± 0.09 11.13 ± 0.28 82.08 ± 0.64 46.05 ± 0.67
DER 16 573 26.45 ± 3.82 8.09 ± 0.74 49.41 ± 5.03 40.17 ± 1.08
DER++ 16 573 40.73 ± 2.64 25.94 ± 1.01 24.77 ± 3.89 22.64 ± 1.32
DGR DIFFUSION* - 38.83 ± 2.50 21.55 ± 0.41 42.95 ± 6.38 16.72 ± 1.13
GUIDE* - 43.30 ± 0.57 22.78 ± 0.94 35.49 ± 0.57 11.75 ± 2.93

4.4 EVALUATION IN THE ONLINE SCENARIO

In GUIDE, we train the diffusion model, which requires multiple passes through the dataset to
achieve satisfactory performance, naturally classifying it as an offline CL method. However, to fairly
evaluate our sampling strategy against buffer-based Experience Replay (ER) approaches, we conduct
experiments where the diffusion model is trained offline on all the data from previous tasks, while
the classifier is trained in an online scenario, where each data sample is seen only once during the
training.

To ensure a fair comparison, the buffer size for each ER method is matched to the size of the diffusion
model used in our method on the CIFAR datasets. Detailed hyperparameters for each ER baseline
method are provided in Appendix B.

As baseline buffer-based methods, we evaluate ER (Riemer et al., 2019), iCaRL (Rebuffi et al., 2017),
GSS (Aljundi et al., 2019b), FDR (Benjamin et al., 2019), DER and DER++ (Buzzega et al., 2020).
As shown in Tab. 2, GUIDE, despite not being initially designed for the online scenario, performs on
par with the evaluated ER approaches. Notably, our sampling approach outperforms the Continual
Joint setup, which served as a soft upper bound in our offline evaluation. This demonstrates that in
scenarios with a very limited number of model updates, rehearsal samples produced by GUIDE are
more informative for CL purposes than real data samples stored in an infinite buffer.

4.5 ANALYSIS OF THE PROPOSED GUIDANCE

Table 3: Proportion of misclassified re-
hearsal samples after the perturbation.
Samples generated via GUIDE exhibit a
higher misclassification rate, signifying
their proximity to the classifier’s deci-
sion boundary. Moreover, rehearsal sam-
ples in our method yield lower outputs
for both previous and current classifiers.

MISCLASSIFIED CONFIDENCE
EXAMPLES PREV CURR

DGR DIFFUSION 55.13% 99.6% 90.03%
GUIDE 72.66% 86.42% 61.61%

To demonstrate that our method produces samples near the
decision boundary of a classifier, we propose to launch a
simple adversarial attack on the generated samples in order
to check how easy it is to change their class to the one
from the current task. Concretely, we adapt the method
introduced by Goodfellow et al. (2015), and modify each
rehearsal sample that was generated during training x̂ as
follows:

x̂∗ = x̂− ϵsign (∇x̂ℓ(fϕi
(y|x̂), yi)) , (8)

where ϵ = 0.1 and yi = argmax
c∈Ci

fϕi
(y = c|x̂).

Then, we calculate the proportion of cases where the clas-
sifier’s prediction for the modified sample x̂∗ differs from its prediction for the original generated
sample x̂. As shown in Tab. 3, we can change the classifier’s prediction much more frequently
when we sample the replay examples according to our method. Since rehearsal examples generated
with GUIDE are much more likely to be misclassified after a simple modification with predefined
magnitude, this indicates that the modification of diffusion’s prediction introduced in our method
successfully moves the generations closer to the classifier’s decision boundary.
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Table 4: Comparison of evaluated variants of integrating classifier guidance in CL. PREV and CURR
refers to guidance from previous and current classifier respectively. Guidance toward classes from the
previous tasks is denoted with "-" and guidance towards classes from the current task with "+". Each
of the introduced variants outperforms standard DGR with diffusion model on most of the evaluated
benchmarks and achieves state-of-the-art performance.

AVERAGE ACCURACY ĀT (↑) AVERAGE FORGETTING F̄T (↓)

VARIANT
CIFAR-10 CIFAR-100 IMAGENET100 CIFAR-10 CIFAR-100 IMAGENET100

T = 2 T = 5 T = 5 T = 10 T = 5 T = 2 T = 5 T = 5 T = 10 T = 5

DGR DIFFUSION 77.43 ± 0.60 59.00 ± 0.57 28.25 ± 0.22 15.90 ± 1.01 23.92 ± 0.92 26.32 ± 0.90 40.38 ± 0.32 68.70 ± 0.65 80.38 ± 1.34 54.44 ± 0.14
PREV + 80.03 ± 0.65 60.31 ± 0.44 31.35 ± 0.66 18.22 ± 0.52 29.13 ± 2.81 22.45 ± 1.13 40.00 ± 0.60 64.80 ± 1.00 77.60 ± 0.50 45.15 ± 3.64
PREV - 75.79 ± 1.20 57.05 ± 0.43 28.40 ± 0.04 15.79 ± 0.21 12.60 ± 0.71 27.58 ± 0.95 44.80 ± 0.90 68.34 ± 0.29 80.42 ± 0.44 59.98 ± 0.28
CURR - 78.72 ± 0.58 57.72 ± 0.95 30.57 ± 0.33 16.87 ± 0.83 23.55 ± 3.27 23.89 ± 0.44 43.31 ± 1.50 65.42 ± 0.81 78.96 ± 1.16 53.85 ± 3.60
GUIDE 81.29 ± 0.75 64.47 ± 0.45 41.66 ± 0.40 26.13 ± 0.29 39.07 ± 1.37 14.79 ± 0.36 24.84 ± 0.05 44.30 ± 1.10 60.54 ± 0.82 27.60 ± 3.28

Moreover, we present a visualization of generated samples in the latent space of a classifier (Fig. 4)
that we calculate during the training of the second task on a CIFAR-10 dataset divided into five equal
tasks. In the standard GR scenario, the rehearsal samples originate predominantly from high-density
regions of class manifolds, which is evident from their central location within each class’s manifold.
On the other hand, our method yields generations that are more similar to the examples from the
second task.

5 ADDITIONAL ANALYSIS

5.1 THE EFFECT OF CHANGING CLASSIFIER SCALE

Generation
Airplane

Automobile
Task 1

Bird

Cat
Task 2

DGR Diffusion GUIDE

Figure 4: Visualization of the classifiers embed-
ding space (umap) for training examples and
generations sampled with standard generative
replay method (left) and ours (right) at 75% of
the training on the second task. We can observe
how GUIDE sample generations are more similar
to the training examples from new classes (e.g.,
airplanes similar to birds).

An important hyperparameter of our method is
the gradient scaling parameter s that controls
the strength of the guidance signal. In this sec-
tion, we show the effect of the gradient scale s
on the effectiveness of our method. However,
our method is robust and can work well with
different values of this parameter. The detailed
results with other scaling parameters are pre-
sented in Appendix A. As we increase the scale,
we observe the inflection point, after which the
accuracy starts to drop. This is related to the
observation that with excessively large scaling
parameters, the quality of generated samples
drops significantly.

In Fig. 5, we present results averaged over 3
random seeds for different values of gradient
scale s, presenting standard deviation as error
bars. We observe that the scaling parameter in-
troduces a trade-off between the stability and
plasticity of the continually trained classifier.
When we increase s, the accuracy on the previ-
ous task increases along with a drop in accuracy
on the current task.

5.2 ALTERNATIVE VARIANTS OF GUIDANCE

In addition to our primary method, we evaluate alternative variants of incorporating classifier guidance
to generative replay setup, drawing inspiration from corresponding techniques in buffer-based
rehearsal. Each variant effectively modifies the sampling strategy from the diffusion model. In
each variant, we benefit either from the frozen classifier fϕi−1

(y|x), trained on prior tasks and
henceforth referred to as the previous classifier, or the currently trained classifier, fϕi

(y|x). In this
section, we define each variant highlighting with the blue color the distinctions from GUIDE.

Guidance towards classes from previous tasks The most straightforward adaptation of a classifier
guidance concept to a generative replay setup is to modify the diffusion sampling process using

8
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the gradients from the previous frozen classifier to refine the quality of rehearsal samples. The
modification of the previous diffusion model’s prediction can be thus defined as:

ϵ̂θi−1(xt, t, yi−1) = ϵθi−1(xt, t, yi−1) + s∇xtℓ
(
fϕi−1(y|ẑ0(xt)), yi−1

)
, (9)

where yi−1 denotes the class label from one of the previous tasks. As noted by Dhariwal & Nichol
(2021), the application of classifier guidance creates a trade-off: it enhances the quality of the
generated samples at the cost of their diversity. This approach is similar to the one introduced by Gao
& Liu (2023) except that we do not use guidance in the process of continual diffusion training but
only in the classifier’s training. Intuitively similar buffer-based methods are based on the herding
algorithm (Welling, 2009) and used in iCaRL method (Rebuffi et al., 2017), which seeks to store
samples that best represent the mean of classes in the feature space.

Guidance away from classes from previous tasks Alternatively, we can guide the diffusion-
denoising process in the opposite direction by maximizing the entropy of the classifier instead of
minimizing it. As noted by Sehwag et al. (2022), such an approach steers the denoising diffusion
process away from the high-density regions of the data manifold. Consequently, it should generate
synthetic samples that resemble the rare instances in the training dataset, which are typically more
challenging for the classifier to identify. In the first variant, we propose to use the previous classifier
fϕi−1

(y|x) to guide away from the old classes:

ϵ̂θi−1
(xt, t, yi−1) = ϵθi−1

(xt, t, yi−1)−s∇xt
ℓ
(
fϕi−1

(y|ẑ0(xt)), yi−1

)
. (10)

Analogously, we can steer the diffusion denoising process away from the desired class from the
previous task, but using the current classifier fϕi

(y|x):

ϵ̂θi−1(xt, t, yi−1) = ϵθi−1(xt, t, yi−1)−s∇xtℓ (fϕi(y|ẑ0(xt)), yi−1) . (11)

0.0 0.2 0.4 0.6 0.8 1.0
Gradient scale s

60

65

70

75

80

85

90
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Task 1 Task 2

Figure 5: Classifier scale impact on forgetting
and ability to acquire new information. Up to
s = 0.2, when we increase scale, we reduce the
forgetting but also observe a drop in the accuracy
on the second task. When we use too large scale
s, the quality of samples drops significantly, along
with the accuracy on the previous task. We further
present this effect in Appendix A.

In both approaches, we increase the diversity of
rehearsal samples under frozen or continually
trained classifiers. This variation resembles the
buffer-based method of Gradient Sample Selec-
tion (GSS) (Aljundi et al., 2019b), which seeks
to maximize the diversity of the samples stored
in the memory buffer.

Evaluation We evaluate the performance of
each proposed variant and present the mean and
standard deviation of those experiments on CL
benchmarks in Tab. 4, which are calculated for
3 random seeds. We can observe that thanks to
the improved quality of rehearsal samples, ap-
proaches integrating guidance towards selected
classes achieve higher overall performance. In
simpler scenarios, increasing the diversity of
generated samples can also yield slight improve-
ment, while in more complex settings, its per-
formance is comparable to the baseline. Nev-
ertheless, in all evaluated scenarios, our pro-
posed guidance towards forgotten examples out-
performs competing approaches.

5.3 IMPACT OF FORGETTING IN THE DIFFUSION MODEL ON GUIDE

The aim of this work is to sample from a diffusion model in the most informative way for the
continual training of a classifier. However, to continually train the diffusion model itself, we employ
a simple self-rehearsal approach. To examine the effect of forgetting in the generative model on the
performance of GUIDE, we independently train four diffusion models on all data presented up to the
ith task in the CIFAR-100/5 scenario. Using these models, we compare our method with the baseline
sampling method and the continual upper bound.

9
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Continual Joint
GUIDE*
GUIDE
DGR*
DGR

Figure 6: Average accuracy on all classes seen so
far after ith task. We highlight with asterisks (∗)
methods trained using diffusion model trained on
all previous data samples. We observe that when
eliminating the forgetting in the diffusion model,
GUIDE approaches the soft upper-bound defined
by the continual joint training.

The results of this comparison are shown in
Fig. 6, calculated across 3 random seeds with
the mean and standard deviation depicted as er-
ror bars. Our fully continual learning setup
(GUIDE) still outperforms the baseline sam-
pling approach, which uses a diffusion model
trained on all previous data samples (DGR
Diffusion*), indicating that the random sam-
pling method causes a significant drop in perfor-
mance.

Importantly, there is a significant difference be-
tween the GUIDE and GUIDE* setups, indi-
cating that forgetting in the continually trained
diffusion model is the main factor of the classi-
fier’s performance loss. We will investigate this
aspect of forgetting in future works.

5.4 COMPUTATIONAL COST OF GUIDE

A significant drawback of all generative replay approaches is the computational burden associated
with training and sampling from the diffusion model. Therefore, we explore two simple speedup
techniques that allow us to reduce computation costs notably. While all diffusion models in this work
are trained with 1000 steps, we can change the sampler to DDIM (Song et al., 2020) with fewer
sampling steps. To measure the effect of this approach, in Tab. 5, we evaluate how limiting the number
of backward diffusion steps affects the final average accuracy on the CIFAR10/5 benchmark. We can
observe an order of magnitude speedup at the expense of a slight drop in the model’s performance.
Therefore, in all of the experiments presented in this work, we limit the number of sampling steps to
50 or 100, as mentioned in Appendix D. Similarly, in Tab. 6, we measure the interval (in numbers of
batches) between which we sample new generations. We observe that sampling rehearsal examples
once every five batches yields similar results to the default version while providing a 5-times speedup.
Combining those two simple techniques allows us to achieve an 83 times faster generation process.
We provide a detailed comparison of training times in Appendix F, showing that our approach is
more computationally expensive than VAE and GAN-based techniques but, at the same time, over
25% faster than the existing state-of-the-art diffusion-based method (DDGR).

Table 5: Trade-off between the number of de-
noising steps used for the rehearsal sampling on
the effectiveness of GUIDE on CIFAR-10/5.

No steps ĀT
Time

(speedup)

10 59.7± 1.04 × 7.3
20 63.7± 0.99 × 2.3
50 64.1± 0.09 × 1
100 64.2± 0.54 × 0.51
250 63.6± 0.25 × 0.21
1000 71.8± 0.23 × 0.06

Table 6: Effect of the interval between new re-
hearsal samples generation on the effectiveness
of GUIDE on CIFAR-10/5.

Generation
interval ĀT

Time
(speedup)

1 63.1± 0.45 × 0.2
5 64.5± 0.45 × 1
10 64.1± 0.09 × 1.95
50 59.2± 0.47 × 8.49
100 56.9± 0.98 × 14.41
∞ 18.9± 0.20 × 49.59

6 CONCLUSION

In this work, we propose GUIDE: generative replay method that utilizes classifier guidance to
generate rehearsal samples that the classifier model is likely to forget. We benefit from a classifier
trained continually in each task to guide the denoising diffusion process toward the most recently
encountered classes. This strategy enables the classifier’s training with examples near its decision
boundary, rendering them particularly valuable for continual learning. Across various CL benchmarks,
GUIDE demonstrates superior performance, consistently surpassing recent state-of-the-art generative
rehearsal methods. This underscores the effectiveness of our approach in mitigating forgetting and
training a robust classifier.
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A IMPACT OF CLASSIFIER SCALE HYPERPARAMETER ON OUR METHOD

To measure the effect of changing the strength of guidance scale parameter s on the effectiveness
of our method, we sweep over each value in [0.1, 0.2, 0.5, 1.0] for each evaluated benchmark. We
present the mean and standard deviation of results in Tab. 7 calculated for 3 different values of random
seed. We see that with this hyperparameter properly tuned, we are able to improve the results of our
method further. Nonetheless, the results we achieved show that our method works well with different
values of this hyperparameter.

Table 7: Effect of gradient scale s on GUIDE. By tuning this hyperparameter, we can improve the
results further.

AVERAGE ACCURACY ĀT (↑) AVERAGE FORGETTING F̄T (↓)

SCALE s
CIFAR-10 CIFAR-100 IMAGENET100-64 CIFAR-10 CIFAR-100 IMAGENET100-64

T = 2 T = 5 T = 5 T = 10 T = 5 T = 2 T = 5 T = 5 T = 10 T = 5

0.0 77.43 ± 0.60 56.61 ± 1.85 28.25 ± 0.22 15.90 ± 1.00 23.92 ± 0.92 26.32 ± 0.90 43.79 ± 0.41 68.70 ± 0.65 80.38 ± 1.34 54.44 ± 0.14
0.1 80.66 ± 0.44 59.56 ± 0.52 31.63 ± 0.81 18.28 ± 0.93 26.48 ± 3.79 18.81 ± 0.48 39.78 ± 0.92 63.87 ± 1.35 78.01 ± 0.59 50.09 ± 5.04
0.2 81.29 ± 0.75 61.30 ± 0.10 37.51 ± 1.23 22.68 ± 0.30 31.09 ± 4.17 14.79 ± 0.36 34.98 ± 0.13 54.52 ± 1.45 70.68 ± 0.23 44.40 ± 5.02
0.5 78.30 ± 0.47 64.47 ± 0.45 41.66 ± 0.40 25.48 ± 1.16 35.82 ± 0.56 20.03 ± 1.85 29.25 ± 1.15 44.30 ± 1.10 64.06 ± 1.53 35.80 ± 0.32
1.0 73.46 ± 0.81 62.56 ± 0.52 39.55 ± 0.19 26.13 ± 0.29 39.07 ± 1.37 30.96 ± 1.93 24.05 ± 0.72 44.03 ± 0.34 60.54 ± 0.82 27.60 ± 3.29

Moreover, in Fig. 7, we present random rehearsal samples from our CIFAR-10 setup with 2 tasks
generated from the same initial noise in each column. We observe the effect of classifier scale
parameter s on the quality of rehearsal samples in GUIDE. If we set the scale to be too large, we
observe significant degradation in the quality of generations. Hence, in Tab. 7, we observe a drop in
performance on setups where the scale is too large.
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Figure 7: Sample rehearsal examples of GUIDE generated by class-conditional diffusion model
trained on the first task of CIFAR-10/2 setup. If we set the gradient scale parameter s too large,
we observe a significant drop in the quality of samples.

B EVALUATION OF ER METHODS

For each ER approach that we evaluate we choose the set of the best hyperparameters reported in
Buzzega et al. (2020) for the CIFAR-10 dataset with a buffer size equal to 5120:

• GSS (Aljundi et al., 2019b): learning rate: 0.03
• iCaRL (Rebuffi et al., 2017): learning rate: 0.03
• FDR (Benjamin et al., 2019): learning rate: 0.03, α: 0.3
• DER (Buzzega et al., 2020): learning rate: 0.03, α: 0.3
• DER++ (Buzzega et al., 2020): learning rate: 0.03, α: 0.1, β: 1.0

We run the training of each approach for 1 epoch and report the results averaged over 3 random
seeds. We do not use any data augmentations and normalize the images to the range [-1, 1]. In
each method, we use a batch size equal to 32, where half of the batch comes from the current
task and half comes from the buffer. We reproduce the results from the GitHub code repository:
https://github.com/aimagelab/mammoth.
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C PSEUDOCODE OF TRAINING PROCEDURE IN GUIDE

To clarify and enhance understanding of our continual training process, this section includes pseu-
docode for the primary components involved in our method. Alg. 1 presents a sampling of a single
rehearsal example during the continual training of a classifier in GUIDE. In Alg. 2, we present a
complete end-to-end continual training of both diffusion model and classifier in GUIDE.

Since the decision boundary changes during the training of a classifier, we sample new rehearsal
examples according to our sampling method progressively once every Ng batches. It ensures that
replayed examples are located close to the decision boundary of a classifier at the given moment.
Simultaneously, hyperparameter Ng allows us to significantly speed up our method without a
noticeable drop in accuracy. Since we do not use classifier guidance during the generation of a
dataset for diffusion training, we sample rehearsal examples all at once and merge them with real
data samples.

In the pseudocode, consistent with the terminology used in the main text, the current classifier is
denoted as fϕi(y|x) and the previous diffusion model as ϵθi−1(xt, t, y). All hyperparameters, such
as the number of training steps or the number of denoising steps, are listed in Appendix D.

Algorithm 1 Rehearsal sampling in GUIDE during training on task i

Input: Ci−1: classes from all previous tasks, Ci: classes from current task, s: gradient scale, T :
number of denoising steps
t← T
yi−1 ∼ U(Ci−1)
xt ∼ N (0, I)
while t > 0 do

ẑ0(xt)←
xt−

√
1−ᾱtϵθi−1

(xt,t,yi−1)√
ᾱt

yi ← argmax
c∈Ci

fϕi
(y = c|ẑ0(xt))

ϵ̂θi−1
(xt, t, yi−1)← ϵθi−1

(xt, t, yi−1) + s∇xt
ℓ (fϕi

(y|ẑ0(xt), yi)
xt−1 ←

√
ᾱt−1ẑ0(xt) +

√
1− ᾱt−1ϵ̂θi−1

(xt, t, yi−1)
t← t− 1

end while
Output: x0 ▷ Generated rehearsal sample from class yi−1
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Algorithm 2 Continual training in GUIDE

Input: Nc: number of classifier training steps, Nd: number of diffusion training steps, Ng: rehearsal
generation interval, T : number of tasks, B: batch size, fϕ: classifier model, ϵθ: diffusion model
for i ∈ [1, . . . , T ] do
Di ← real dataset for task i
ϵθi ← ϵθi−1

fϕi
← fϕi−1

B̂ ← ∅
for n ∈ [1, . . . , Nc] do ▷ Classifier training

if i == 1 then
B ← B real samples from Di

else
B ← B/i real samples from Di

if n mod Ng == 0 then
B̂ ← GUIDE_sample(num_samples = B/i× (i− 1), fϕi

, ϵθi−1
)

end if
end if
Bc ← B ∪ B̂
update fϕi with Bc

end for

D̂i ← ∅ ▷ Construct diffusion dataset
if i > 1 then
D̂i ← sample_without_guidance(num_samples = |D1,...,i−1|, ϵθi−1

)
end if
Dd ← Di ∪ D̂i

train ϵθi on Dd for Nd steps
end for

D TRAINING DETAILS AND HYPERPARAMETERS

D.1 DIFFUSION MODELS

In our experiments, we follow the definitions of class-conditional diffusion model architectures
described in Dhariwal & Nichol (2021). Across all setups, we train diffusion models using AdamW
optimizer with β1 = 0.9 and β2 = 0.999. The only hyperparameter that varies between tasks is the
number of iterations of training. In all setups, we train models for 100K iterations on the initial task,
and then on each subsequent task, we train either for 50K or 100K iterations, depending on the setup.
We use DDIM with 250 steps for the generation of rehearsal samples on the ImageNet100 dataset and
1000 denoising steps for every other dataset. The only augmentation that we use during the training
of diffusion models is the random horizontal flip.

We present the most important hyperparameters for diffusion models in Tab. 8.

D.2 CLASSIFIERS

As a classifier model, we use the same ResNet18 architecture as the GDumb method (Prabhu et al.,
2020) in each setup, with preactivation enabled, meaning that we place the norms and activations
before the convolutional or linear layers. We train models with an SGD optimizer. We list the most
important hyperparameters for classifiers in Tab. 9.

For CIFAR-10 and CIFAR-100 datasets, we define the same set of image augmentations, which
include cropping, rotating, flipping, and erasing. We also apply a transformation to the brightness,
contrast, saturation, and hue, followed by the normalization to the [-1, 1] range. During the training,
we apply the same augmentations for both rehearsal samples and real samples from the current task.

For the ImageNet100, we do not apply any data augmentations, but we also normalize the images to
the range of [-1, 1].
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Table 8: Hyperparameters for the training of diffusion models.

CIFAR-10/2 CIFAR-10/5 CIFAR-100/5 CIFAR-100/10 ImageNet100-64/5

Diffusion steps 1000 1000 1000 1000 1000
Noise schedule linear linear linear linear linear
Channels 128 128 128 128 192
Depth 3 3 3 3 3
Channels multiple 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2 1, 2, 3, 4
Heads 4 4 4 4
Heads channels 64
Attention resolution 16,8 16,8 16,8 16,8 32,16,8
BigGAN up/downsample ✗ ✗ ✗ ✗ ✓
Dropout 0.1 0.1 0.1 0.1 0.1
Batch size 256 256 256 256 100
Learning rate 2e-4 2e-4 2e-4 2e-4 1e-4
Iterations 1st task 100K 100K 100K 100K 100K
Iterations other tasks - 50K 50K 100K 50K
Self-rehearsal denoising steps - 1000 1000 1000 DDIM250

Table 9: Hyperparameters for the training of classifier models.

CIFAR-10/2 CIFAR-10/5 CIFAR-100/5 CIFAR-100/10 ImageNet100-64/5

Batch size 256 256 256 256 100
Learning rate 1st task 0.1 0.1 0.1 0.1 0.1
Learning rate other tasks 0.01 0.01 0.05 0.05 0.001
Iterations 1st task 5K 5K 10K 10K 20K
Iterations other tasks 2K 2K 2K 2K 20K
Rehearsal denoising steps DDIM50 DDIM50 DDIM100 DDIM100 DDIM50
Rehearsal generation interval 1 5 10 10 15

D.3 EXPERIMENTS COMPUTE RESOURCES

In this section, we list the hardware we used for our experiments and training times on each benchmark,
both for training of diffusion models in Tab. 10 and classifiers in Tab. 11. Although we use NVIDIA
A100 GPUs in our experiments due to the efficiency of training, experiments can also be reproduced
on GPUs with smaller memory, as mentioned in Appendix F.

The total compute used in a project can be estimated from the times presented in tables, considering
that each experiment is calculated with three different random seeds for statistical significance.
Furthermore, we need to take into account compute used in the development stage of the project.

Table 10: Training times of diffusion models for each benchmark.

Benchmark Time[GPU-hours] GPU used

CIFAR-10/2 5.55 4 x NVIDIA A100 40GB
CIFAR-10/5 20 4 x NVIDIA A100 40GB
CIFAR-100/5 20 4 x NVIDIA A100 40GB
CIFAR-100/10 63.75 4 x NVIDIA A100 40GB
ImageNet100-64/5 88.43 4 x NVIDIA A100 40GB

Table 11: Training times of classifiers for each benchmark.

Benchmark Time[GPU-hours] GPU used

CIFAR-10/2 4.8 1 x NVIDIA A100 40GB
CIFAR-10/5 5.8 1 x NVIDIA A100 40GB
CIFAR-100/5 5.35 1 x NVIDIA A100 40GB
CIFAR-100/10 13.53 1 x NVIDIA A100 40GB
ImageNet100-64/5 30.73 4 x NVIDIA A100 40GB
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E FORGETTING IN DIFFUSION MODELS

E.1 COVERAGE OF DATA MANIFOLD

In this analysis, we explore the forgetting behavior of a diffusion model trained continually on
CIFAR-10, divided into two tasks with 25000 training samples each. Initially, we train the model
exclusively on data from the first task (Real Task 1). Subsequently, we employ two approaches:
standard self-rehearsal training for the second task (Continual Task 2), akin to our method, and
retraining the first task’s model on the entire CIFAR-10 dataset (Upper-bound Task 2), which serves
as our upper bound. All training conditions, including architectures, training steps (100K), and
hyperparameters, remain consistent across setups. Generative metrics (FID (Heusel et al., 2017),
Precision, and Recall (Kynkäänniemi et al., 2019)) for samples generated with DDIM100 from all
models are displayed in Tab. 12.

Table 12: Comparison of FID, Recall, and Precision metrics of all three trained models. We calculate
metrics for 25000 samples generated using DDIM100. When we train the diffusion model in a
continual manner, we observe a very significant drop in the Recall.

FID (↓) RECALL (↑) PRECISION (↑)

REAL TASK 1 9 55 65

UPPER-BOUND TASK 2 13 52 64
CONTINUAL TASK 2 26 37 67

Continual training of the diffusion model leads to a noticeable reduction in its capability to cover the
training manifold of Task 1, as evidenced by a decrease in the Recall metric. However, the Precision
metric does not show a significant drop, indicating that the quality of the generated samples remains
largely unaffected. Moreover, we visualize the umap embeddings of both real data examples and
generated samples in Fig. 8. In plot (c), it’s evident that the coverage of real data samples (depicted
in blue) by the generated samples has noticeably diminished.

(a) Initial task 1 data manifold. (b) Task 1 data manifold after
training on task 2 – upper-bound.

(c) Task 1 data manifold after
training on task 2 – continual
training

Figure 8: Visualization of task 1 data manifold in the CIFAR-10 dataset. Blue points represent
embedded real data samples from task 1, and orange points represent generated samples. We see a
significant drop in coverage of training data manifold after training on the second task of continual
training.
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E.2 FORGETTING OF TRAINING DATA SAMPLES

(a) Samples from class apple remembered
by the diffusion model after training on the
second task.

(b) Samples from class apple forgotten by the
diffusion model after training on the second
task.

In our study, we further analyze what data samples the
diffusion model trained continually tends to forget. We
conducted an experiment where we sample examples from
class apple from our class-conditional diffusion model,
trained on the CIFAR-100 dataset divided into 5 tasks,
after completing the second task. Utilizing Precision and
Recall metrics definitions (Kynkäänniemi et al., 2019), we
computed representations using the Inception-v3 model
for both real and generated sample sets. This allowed
us to identify which segments of the approximated real
data manifold were covered or missed by the generated
manifold.

Figure 9a illustrates examples of remembered data sam-
ples, while Figure 9b depicts those data samples that were
forgotten by the diffusion model due to continual training.
Consistent with findings by Toneva et al. (2018), our dif-
fusion model tends to forget rare samples in the training
set, such as those with complex backgrounds, while retaining more common samples characterized
by simpler backgrounds and typical shapes. This is also connected to the drop in Recall, where from
task to task, the diffusion model loses the ability to generate samples from low-density regions of
data manifold (Sehwag et al., 2022).

F RUNTIME ANALYSIS OF GUIDE FOR CIFAR-10/5

We perform an extensive runtime analysis in order to compare the training times of GUIDE to other
existing baselines. For the training of each method, we used the same machine with a single NVIDIA
RTX A5000 GPU. Since in the training of GUIDE on CIFAR-10/5 setup, we generate new rehearsal
examples every 10 batches, for fairness, we evaluate the DDGR runtime with exactly the same
interval. We present the calculated runtimes in Tab. 13.

Table 13: Runtime analysis of all baseline methods on the CIFAR-10/5 benchmark. (*) We evaluate
the DDGR method with the same rehearsal generation interval as we use in GUIDE on this benchmark
– once every 10 batches.

Method Time [GPU-hours]

DGR VAE 1.28
DGR+distill 1.35
RTF 1.09
BIR 2.49
GFR 1.76
DDGR 111.96∗

DGR diffusion 76.1
GUIDE 82.95

Approaches that train diffusion models (DDGR, DGR diffusion, and GUIDE) require significantly
more computations. However, GUIDE does not increase much of the runtime compared to the
standard DGR with diffusion model (+9% wall time). At the same time, when comparing GUIDE to
the recently proposed DDGR (Gao & Liu, 2023) method that also uses diffusion models in generative
replay scenario, our approach needs notably less computation time (−26% wall time) while achieving
better performance in all evaluated setups.
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G SAMPLES FROM IMAGENET100 128X128
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Figure 10: Random samples generated from an unconditional diffusion model trained only
on goldfish and tiger shark classes from the ImageNet100 128x128 dataset. Each image grid
presents samples generated with guidance to the class depicted above the grid which is unknown to
the diffusion model. We generate samples using 1000 denoising steps and we set guidance scale s to
10 for both classes that we guide to.
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H SAMPLES FROM CIFAR-10

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Figure 11: Samples from unconditional diffusion model trained only on classes automobile and
airplane from the CIFAR-10 dataset. We generate those samples following the same procedure as
discussed in Sec. 3.1. On the left grid, we guide the denoising process to automobiles, while on the
right grid, to airplanes. At the same time, we add the guidance to classes depicted on the y-axis of the
figure. We generate samples using 1000 denoising steps and we set guidance scale s to 5 for both
classes that we guide to.

I BROADER IMPACTS

This paper presents work whose goal is to advance the field of continual machine learning. There are
many potential societal consequences of our work, many of which are generic to the machine learning
field in general, i.e., the DGR algorithm considered in this paper will reflect the biases present in the
dataset. Hence, it is important to exercise caution when using this technique in applications where
dataset biases could lead to unfair outcomes for minority and/or under-represented groups. In our
case, this especially concerns training a diffusion model used for replay, in which simple random
sampling can result in a different data distribution than the original dataset. It would be worthwhile to
actively monitor the model’s outputs for fairness or implement bias correction techniques to mitigate
these negative impacts.

Additionally, while diffusion models have shown promise in various generative tasks, their adaptability
through fine-tuning and continual learning remains relatively unexplored. In this early-stage research,
some potential risks can emerge while combining our proposed algorithm of guidance with malicious
models or when performing more sophisticated attacks.
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