Learning from Algorithm Feedback:
One-Shot SAT Solver Guidance with GNNs

Jan Tonshoff * Martin Grohe
RWTH Aachen University RWTH Aachen University

Abstract

Boolean Satisfiability (SAT) solvers are foundational to computer science, yet their
performance typically hinges on hand-crafted heuristics. This work introduces
Reinforcement Learning from Algorithm Feedback (RLAF) as a paradigm for
learning to guide SAT solver branching heuristics with Graph Neural Networks
(GNN:Ss). Central to our approach is a novel and generic mechanism for injecting
inferred variable weights and polarities into the branching heuristics of existing SAT
solvers. In a single forward pass, a GNN assigns these parameters to all variables.
Casting this one-shot guidance as a reinforcement learning problem lets us train
the GNN with off-the-shelf policy-gradient methods, such as GRPO, directly using
the solver’s computational cost as the sole reward signal. Extensive evaluations
demonstrate that RLAF-trained policies significantly reduce the mean solve times
of different base solvers across diverse SAT problem distributions, achieving more
than a 2x speedup in some cases, while generalizing effectively to larger and harder
problems after training. Notably, these policies consistently outperform approaches
based on learning handcrafted weighting heuristics, offering a promising path
towards data-driven heuristic design in combinatorial optimization.

1 Introduction

Solving computationally hard combinatorial problems, such as Boolean satisfiability (SAT), remains
a cornerstone of computer science and is critical to diverse domains such as verification, planning,
and cryptography (Biere et al.,[2021). Complete search algorithms are of particular importance, as
they are guaranteed to find a solution if one exists or prove unsatisfiability otherwise. The runtime of
these classical algorithms heavily depends on hand-crafted heuristics to navigate the solution space,
for example, by determining variable assignments during the search. Such heuristics are often rigid
and hard to adapt to specific instance distributions without extensive expert knowledge and tuning.
Machine learning offers a compelling alternative: Augmenting the heuristic components of classical
search algorithms with trainable functions allows us to construct adaptable solvers. Specifically,
reinforcement learning (RL) can train these extended solvers to learn improved, distribution-specific
heuristics in a data-driven manner without direct expert supervision.

In this work, we study how to leverage RL-trained Graph Neural Networks (GNNSs) to improve
branching heuristics of SAT solvers. Our main contributions are as follows: First, we introduce
a novel and generic method for integrating variable-wise weights into the branching heuristics of
existing SAT solvers. Secondly, we construct a GNN-based policy that assigns a weight and polarity to
each variable in one forward pass. This one-shot setting enables a single GNN pass to influence every
branching decision, avoiding costly repeat passes. Thirdly, we phrase the task of inferring weights and
polarities that reduce the solver’s cost as an RL problem. The reward signal is directly obtained from
the observed computational cost of the guided SAT solver, requiring no expert supervision. We refer
to this training paradigm as Reinforcement Learning from Algorithm Feedback (RLAF). Finally, we
demonstrate empirically that modern RL techniques, such as GRPO (Shao et al.||2024), are capable of
training effective RLAF policies for different base solvers. The learned policies substantially reduce
solver runtimes, generalize to harder problems after training and outperform supervised baselines.
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Algorithm 1 DPLL Solver Algorithm 2 Decision Heuristic

1: Input: Formula ¢ 1: Input: Formula ¢
2: function SOLVE(¢) 2: function PICK-LITERAL(¢)
# Simplify formula 3: % + argmax, SCORE(x)
4
5

3:

4: ¢ < UNIT-PROPAGATION(¢) return & if PICK-SIGN(Z) else &

5: ¢ < PURE-LITERAL-ELIMINATION(¢) : end function

6:

; gz; 6_(? ;::::: SIITIF;AT Algorithm 3 Guided Decision Heuristic
9: 1: Input: Formula ¢, Parameters W= (w, p)
10: # Decide next branching variable 2: function PICK-LITERAL-GUIDED(¢, W)
11: £ < PICK-LITERAL(¢) 3: % + argmax, w(x) - SCORE(x)

12: return SOLVE(¢A{¢}) V SOLVE(pA{—(}) 4 return £ if p(z) = 1 else =%

13: end function 5: end function

Figure 1: DPLL SAT solver and branching heuristics. Algorithm A DPLL SAT solver performs
backtracking search to solve a given CNF formula ¢. At each search step, the formula is simplified
through unit propagation and pure literal elimination before selecting the next branching literal.
Algorithm [2} Branching heuristics are often implemented by choosing the variable that maximizes
some hand-crafted scoring function. Algorithm[3} We propose to extend existing branching heuristics
by incorporating given variable weights into the branching decisions that scale the associated score
of each variable. We additionally choose the sign of each literal according to a provided polarity.

Background A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction of clauses
¢ = C1 A--- A Cpy, each clause being a disjunction of one or more literals C; = (£ 1 V -+ V £ ).
We denote by Var(¢) = {z1,...,x,} the set of Boolean variables of ¢. The Boolean SAT problem
is to decide whether or not there exists a satisfying assignment « : Var(¢) — {0, 1} that satisfies all
clauses of a given formula ¢. This problem is well-known to be NP-complete and naturally arises in
a wide range of applications (Biere et al.,[2021). Modern SAT solvers predominantly stem from the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm, a backtracking search approach enhanced
by unit propagation and pure literal elimination. Algorithm [I] provides a pseudocode description
of a DPLL SAT solver. Many extensions of this general idea have been proposed to scale SAT
solvers to larger, industrial instances. In particular, Conflict-Driven Clause Learning (CDCL) solvers
significantly extend the DPLL framework by introducing clause learning and non-chronological
backtracking. A common property of DPLL-derived solvers is the importance of the branching
heuristic that picks the next branching literal in each search step (line 11 in Algorithm(T). Various
branching heuristics have been proposed, and which heuristic performs best often depends on the
structure of the given SAT formula ¢ (Kullmann| |2021). Customizing branching heuristics towards a
specific distribution of inputs generally requires expert knowledge and significant trial and error.

Related Work Leveraging deep learning in the context of combinatorial optimization (CO) prob-
lems has emerged as a major area of research (Cappart et al.,|2021) and has been applied to a wide
range of problems such as combinatorial graph problems (Khalil et al., 2017, SAT solving (Selsam
et al., [2019), Mixed-Integer Programming (Khalil et al.| [2022), and Constraint Satisfaction Problems
(Tonshoft et al., 2023). Here, we primarily focus on work that aims to enhance SAT solvers with
(graph) neural networks. One line of work suggests using predictions of predefined variable prop-
erties to guide SAT solver branching heuristics. |Selsam and Bjgrner| (2019) train a GNN to predict
whether variables belong to an UNSAT core. The branching heuristic is then guided by periodically
resetting the solver’s VSIDS scores to the GNN’s predictions, thus making the guidance specific
to VSIDS-based CDCL solvers and dependent on careful tuning of the reset frequency. [Wang et al.
(2024)) predict whether literals occur in the backbone of satisfiable formulas and use these predictions
to set the polarity of variables. Another line of work explores purely RL-based training for enhancing
branching heuristics, eliminating the need for expert supervision. [Kurin et al.| (2020) uses Q-learning
to train GNNs end-to-end as branching policies to minimize solver runtime, and|Cameron et al.[(2024)
propose Monte Carlo Forest Search for guiding early branching decisions in SAT Solvers on UNSAT
problems. Both methods require one GNN forward pass per guided branching decision, which creates
a significant bottleneck as the GNN usually requires orders of magnitude more runtime than classical
branching heuristics.



2 RLAF-guided SAT Solvers

2.1 Guided Branching Heuristics

We modify existing SAT solvers to incorporate external variable weights into their branching heuristic.
Let some base SAT solver be given. We assume that this solver is a DPLL-derived backtracking
search algorithm. We further assume that the branching heuristic is implemented by first selecting
a variable & = argmax, Score(z) that maximizes some variable scoring function Score before
picking a literal sign according to some secondary heuristic, as illustrated in Algorithm [2| Many
existing branching heuristics, such as VSIDS and look-ahead heuristics, fit the generic algorithm
pattern while relying on different definitions of variable scores. Note that these scores usually depend
on the current partial assignment of the search as well as information extracted in previous search
steps, such as encountered conflicts. We can modify this decision heuristic to incorporate additional
variable weights w : Var(¢) — R for the given input formula ¢:

% = argmax,, w(z) - Score(x) (1)

These weights are passed to the modified solver as additional input and modulate its branching
heuristic by scaling the variable-wise scores. In this manner, we can inject prior knowledge of
variable importance into the solver’s branching decisions without sacrificing its original heuristic.
Naturally, choosing a useful variable weighting w by hand is difficult. Instead, our focus is on
learning to infer effective variable weights from the input formula’s structure using a deep neural
network. In addition to these weights, we may also specify a mapping p : Var(¢) — {0, 1} that
assigns a polarity p(x) to each variable x. When z is chosen as a decision variable, the polarity
determines which value is assigned to x first. Specifying polarities for variables is a common function
for modern SAT solvers, and well-chosen values can have a significant impact on run time, especially
on satisfiable instances. In this work, we will infer variable-wise polarities alongside the variable
weights w with a learned GNN model. Overall, the modified solver Solve (¢, W) takes as input a
CNF formula ¢ as well as a variable parameterization YW = (w, p) that assigns a weight w(z) € Rsq
and polarity p(x) € {0, 1} to each variable x € Var(¢).

2.2 Graph Representation and Architecture

Our goal is to map an instance ¢ to advantageous variable weights and polarities with a neural
network. A natural approach is to map ¢ to a suitable graph representation G(¢) = (V(¢), E(¢)) that
captures the instance’s structure. This graph can then be processed by a GNN that extracts structural
information in a trainable manner. We represent ¢ as a standard “Literal-Clause Graph” proposed in
prior work Selsam et al.|(2019). Note that this choice is modular; other graph representations have
also been suggested in the literature and could also be used. We process this graph with a trainable
GNN model Ny that performs message passing to extract latent structural embeddings for every
vertex. Here, 0 represents the vector that contains all trainable model parameters. The output of Ny
is a mapping y : Var(¢) — R? that assigns two real numbers to each variable in the input formula ¢.
The full model details are provided in Appendix [A]

2.3 Guidance Policy

For a given input formula ¢, we map the output of the GNN Ny to a policy 7y (¢) from which a
variable parameterization YW ~ 7y (¢) can be sampled. Recall that for a given SAT instance the GNN
Np outputs a mapping y : Var(¢) — R? that associates every variable x € Var(¢) with two real
numbers p(x), p(x) € R, [u(z), p(x)] = y(z). These outputs are used to parameterize variable-wise
weight and polarity distributions, respectively. Concretely, for each variable x in ¢ we define its
weight policy 7y’ () as a Log-Normal distribution over positive real weights:

7y () = LogNormal(u(z) , o) )

Here, the inferred parameter i (z) € R is used as the log-mean of the distribution, and ¢® € R+ is
a hyperparameter. Log-Normal distributions offer a simple way to model unimodal distributions over
positive real numbers and performed best in preliminary experiments. We note that we also observed
reasonable training convergence when using both Poisson and truncated normal distributions for
variable weights, and more options may be explored in future work.
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Figure 2: a) The input formula ¢ is modeled as a graph G(¢). b) The graph is processed by
a trainable GNN and outputs a parameterization policy mg(¢). ¢) The policy my(¢) consists of
independent variable-wise weight (LogNormal) and polarity (Bernoulli) distributions. d) A variable
parameterization W = (w, p) is sampled from 7y (¢), mapping each variable x in ¢ to a weight
w(z) € Rsq and polarity p(x) € {0,1}. e) A guided SAT solver incorporates the parameterization
W to guide its branching heuristic.
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Figure 3: Learning to accelerate a SAT solver with GRPO: a) For a given training formula ¢ sample
multiple variable parameterizations i.i.d. from the current policy 7y(¢). b) Run the SAT solver on ¢
with each parameterization. ¢) Map the cost of each solver run (i.e. the number of decisions) to the
normalized group-relative advantage fl(qﬁ, W). d) Optimize the model weights 6 to maximize Lppo
to shift the policy towards faster parameterizations.

Analogously, we define a variable’s polarity policy 7} (x) as a Bernoulli distribution where the
probability is obtained by applying a sigmoid function to p(z):

7y (z) = Bernoulli(Sigmoid (p(z))) . 3)

The complete variable parameterization policy 7y is then defined as the joint distribution of 7}’ (z)
and 7} () over all variables:

mo(¢) = m (w1) X 7wy (w1) X -+ X 7 () X 7 () @)
We sample a variable parameterization VW = (w, p) ~ mp from this distribution in one shot by
independently sampling a weight w(x) ~ 74 (x) and polarity p(z) ~ m}(x) for each variable x
in parallel. During training, we sample multiple W i.i.d. from 7y(¢) and use the variance of the
observed solver runtimes to compute our training signal, as explained in Section[2.4] At test time, we
do not sample randomly from 74 (¢) but simply use the mode W, which deterministically chooses
the most probable weight and polarity for each variable x. This eliminates a source of variance when
testing and, on average, yields better results than sampling at random from the learned policy.

2.4 Policy Optimization

Our aim is to learn a policy GNN that guides the SAT solver towards lower computational costs on a
given distribution of SAT instances. Formally, let {2 be some training distribution of SAT problems.
The objective is to learn model weights 6 that minimize the expected solver cost when applying the
learned policy to instances sampled from £2:

f* = argmin E Cost (¢, W)]. 5)

gmin o e COSEO W]

Here, Cost(¢, W) is defined as the number of decisions required when running Solve(¢$, W), which
is the primary target metric we aim to minimize. We can view this objective as an RL problem by
modeling the process of choosing W as a single-step Markov Decision Process (MDP) where the
input formula ¢ is viewed as the state, and a single-step episode unfolds by choosing a variable



parameterization VV as the action. Once the action is taken, the environment transitions immediately
to a terminal state, yielding a reward R(¢, W) = —Cost(¢, W) that is the negative of the solver’s
cost (e.g., number of decisions). Note that we also experimented with directly using CPU time as a
cost measure, but found this to yield less stable training due to the performance variance caused by
noisy CPU utilization.

We leverage Group Relative Policy Optimization (GRPO) (Shao et al.,|2024) to learn a policy for
this RL problem. GRPO is a simplification of Proximal Policy Optimization (PPO) (Schulman
et al., |2017) that eliminates the need for learning an additional value network. The initial model
weights 0 are sampled at random. GRPO updates these model weights in iterations k& € {1,..., K}.
In iteration k, we first sample a batch of training instances from F = {¢1,...,¢onx} ~ QV from
the given training distribution. For each such formula ¢; we sample M variable parameterizations
Wii, ..., Wim ~ mg,_,(¢;) 1.i.d. from the current policy. We then run Solve(¢;, W; ;) for all
1,7 € [N] x [M] and measure the corresponding cost and reward. The group-relative advantage is
then defined as

. R(¢;, W, ;) —mean(R;)

A?;,_] -

Std(RZ‘)

where R; = {R(¢;, W ;) | j € {1,..., M}} is the set of all rewards collected for the same instance
¢;. The main objective is to maximize the clipped policy update function for each training instance

@i

(6)

1
,Cppo(e | qﬁz) = M Z [mln (Ti,j (G)AZ'J'7 Clip(’l”i’j (9), ].—6, 1+6)Az’j):| . (7)
J

Here, € € (0,1) is a hyperparameter, and r; ;(8) = mg(W, j|¢i) /7o, , (Wi ;i|$i) is defined as the
probability ratio of the new policy and the policy learned in the previous GRPO iteration. This
objective aims to adjust the policy such that actions (e.g., variable parameterizations) with high
advantage become more likely while avoiding excessively large distribution shifts by clipping the
objective at a probability ratio determined by e. The full training objective combines Lppo With an
additional term that penalizes the KL divergence relative to the previous model weights 6;,_; to
stabilize training. Starting from the previous model weights 0, _1, we learn updated model weights
0 by performing stochastic gradient ascent for a fixed number of steps to maximize this objective
function. This overall process repeats in the next round of GRPO. In the appendix, Algorithm [4]
provides a complete formal specification of our training.

We are training with the SAT solver in-the-loop and make M- N calls to the solver per GRPO iteration.
With our default parameters (N =100, M = 40) we make 4000 SAT solver calls in each iteration.
This imposes the practical constraint to train on a distribution €2 of SAT problems where this number
of solver calls is possible in an acceptable time on the underlying hardware. The work presented
here intends to be a small-scale demonstration of RLAF as a training paradigm, and all training
is performed on machines with one (multi-core) CPU and one GPU. Therefore, the training data
in our experiments is chosen so that each instance is solvable by the given base solvers within a
fraction of a second. In future work, the hardness and size of the training problems can be scaled
up substantially by leveraging a distributed compute cluster for collecting the SAT solver feedback.
Crucially, we demonstrate in Section [3] that after training, the learned policies do generalize to
significantly harder and larger problems. The reliance on comparatively easy training problems is
therefore not a significant limitation for learning effective GNN-guidance with RLAF.

3 Experiments

In our main experiments we demonstrate that RLAF can train GNN-based guidance policies that
shorten solver runtimes and generalize to harder formulas after training. In Appendix [B.4]we provide
additional experiments that show RLAF outperforms supervised learning of handcrafted notions of
variable importance. We study three SAT problem families: Random 3SAT, Graph Coloring, and
Cryptographic problems. We denote the corresponding instance sets by 3SAT(n), 3COL(n), and
CRYPTO(n), respectively, where n is the number of variables for 3SAT, the number of vertices for
3CoL, and the number of help bits for CRYPTO. We train family-specifc guidance policies with
RLAF on 3SAT(200), 3C0oL(300), and CRYPTO(22), respectively. We test on harder instances, i.e.
larger problems for 3SAT and 3COL and fewer help bits for CRYPTO. Appendix [B] provides full
details on dataset construction and hyperparameters.



Table 1: Results on test instances. All metrics are averaged across the respective test sets. The mean
number of decisions is rounded to the nearest whole number. For results with RLAF, we include the
time required for the GNN forward pass in the total runtime. We highlight numbers in bold when
they are the best value achieved for the respective base solver.

Data Glucose Glucose + RLAF March March + RLAF

Distribution ~ Result  Count Decisions  Time (s) Decisions  Time (s) || Decisions Time (s) | Decisions Time (s)
3SAT(300) SAT 103 341,418 6.67 121,184 1.85 2,893 0.25 2,389 0.23

UNSAT 97 725,812 15.49 508,676 8.21 11,783 1.01 11,757 1.04
3SAT(350) SAT 108 1,568,289 48.76 805,035 18.88 16,546 1.64 11,702 1.19
N - UNSAT 92 3,628,268 132.28 | 3,136,552 82.84 52,287 5.14 51,846 5.16
3SAT(400) SAT 89 9,638,668 598.35 | 4,447,304 186.70 64,296 7.27 47,992 5.51

UNSAT 111 22,130,692 1,895.62 | 20,808,043 1,112.71 245,064 2749 242,499 27.51
3COLA00) SAT 77 15,519 0.36 6,988 0.22 926 0.22 598 0.21
- UNSAT 123 70,692 1.99 34,920 0.81 10,563 2.61 5,954 1.57
3COL(500) SAT 91 82,758 2.61 35,901 1.05 7,689 2.55 4,754 1.68

UNSAT 108 460,881 17.47 363,278 12.24 100,811 33.34 60,321 20.52
3COL(600) SAT 87 606,598 25.03 339,378 11.59 63,512 27.16 42,862 18.71

UNSAT 113 3,092,344 193.96 | 2,811,133 155.23 754,720 313.57 461,639 197.12
CRYPTO(20) UNSAT 100 51,294 1.16 3,541 0.15 1,203 0.82 390 0.41
CRYPTO(15) UNSAT 100 225,447 5.74 64,150 1.40 52,282 34.56 8,257 6.40
CRYPTO(10) UNSAT 100 3,753,850 162.45 1,520,075 64.95 679,864 467.38 230,905 169.22

Solvers We conduct experiments with two distinct base solvers: The well-known CDCL solver
Glucose (Audemard and Simon, 2017)) and the DPLL solver March (Heule et al.l [2005). Glucose
uses the VSIDS branching heuristic and is comparatively strong on structured problems, while March
uses a look-ahead branching heuristic and is among the best-known solvers for random instances. We
provide more technical details about how RLAF is integrated into both solvers in Appendix [A.3]

Results Table|[I] provides the main results for both Glucose and March on our test sets. The wall-
clock runtime of the GNN forward pass (around 0.1 seconds) is included in the runtime measurements
with RLAF-guidance. We observe that GNN-guidance trained with RLAF consistently accelerates
the given base solver. The margin of improvement depends on the base solver and the class of
problem instances. For 3SAT(400) problems, RLAF-guidance reduces the mean runtime of Glucose
by 69% and 41% for satisfiable and unsatisfiable instances, respectively. Similar improvements are
observed for satisfiable 3-coloring problems as well as cryptographic instances. For unsatisfiable
coloring instances with 600 vertices, the runtime of Glucose is reduced by around 24%. The smallest
margin of improvement is observed for the March solver on unsatisfiable 3SAT instances, where
the reduction of solver decisions does not compensate for the additional runtime overhead of the
GNN forward pass. It is known that lookahead DPLL solvers like March are very strong baselines
for unsatisfiable random instances, so this result is not surprising. For more structured problem
classes, RLAF is able to accelerate the March solver substantially on both satisfiable and unsatisfiable
instances. Overall, these results demonstrate that RLAF is able to train GNN-based solver guidance
and that relying on comparatively easy problems for efficient training does not prevent the learned
policy from generalizing to more complex problems at test time.

4 Discussion

We introduced RLAF as a paradigm for training GNN-based policies that guide the branching
heuristics of SAT solvers. Our work contributes (i) a generic mechanism for injecting variable weights
into branching heuristics, (ii) a formulation of weight selection as a one-shot RL problem, (iii) a way
to leverage GNNS as trainable policies in this setting, and (iv) experimental evidence that GRPO can
learn policies that reduce the computational cost of different base solvers. In our experiments, the
learned policies generalize to larger and harder instances and surpass supervised baselines that rely
on handcrafted variable properties. We note that the proposed methodology is not strictly limited
to SAT solvers. Branching heuristics are critical components not only in SAT solving but also for
Mixed-Integer Programming (MIPs) and Constraint Satisfaction Problems (CSPs). More broadly,
implementing any kind of selection heuristic as the argmax of some scoring function is a generic
pattern of algorithm design found across many domains. For any such algorithm, one can introduce
multiplicative weights that guide the heuristic and then phrase the task of inferring effective weights
as an RL problem. In this work, we have shown that this general methodology can be leveraged in
the context of SAT solving. Translating it to other domains and algorithms remains as future work.
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A Method Details

A.1 Graph Representation and Architecture

We represent a formula ¢ as a graph G(¢) = (V(¢), E(¢)). This is a standard “Literal-Clause Graph”
used in prior work, such as NeuroSAT [Selsam et al.| (2019). Formally, the vertices of this graph
V(¢) = Lit(¢) U Cls(¢) are the literals and clauses of ¢. The edges E(¢) = Erc(¢) U ErL(¢)
connect literals with the clauses they occur in and with the opposing literal of the same variable:

Erp(¢) ={(z,~z) |z € X(¢)} ®)
Erc(e)= |J {(C0]tec) ©)
CeCls(¢)

A.2 Message-Passing Neural Network
For each vertex v € Lit(¢) U Cls(¢) we obtain an initial embedding h°(v) € R:
h°(v) = Enc(log(deg(v) + 1)). (10)

Here d is the latent embedding dimension of the model, and Enc is a trainable 2-layer MLP that is
applied to the log-normalized degree of v.

The GNN model then stacks L € N message passing layers. For ¢ € {1,..., L}, the ¢-th layer takes
as input the previous embedding h*~! and outputs a refined embedding h? by performing a message
pass. This message pass is split into two phases. First, each clause ¢ € Cls aggregates information
from its associated literals:

h*(e) = Ucis <ht<c), . W)) : (11)

lec

Here, Ucys is a trainable MLP, and &b is an order-invariant aggregation. Throughout all experiments,
we use element-wise mean for aggregation. In the second phase, each literal £ € Lit aggregates the
updated embeddings from the clauses it occurs in:

W) = Upge | B(0), 11 (=0), @ b (o) | - (12)

c,lee

Here, Uy is another trainable MLP that additionally also takes the embedding of the opposing
literal —¢ as input. This model architecture is conceptually similar to that of NeuroSAT. One major
difference is that we use a more standard fixed-depth feed-forward GNN instead of a recurrent model.
Note that all MLPs used in our model have two layers, and the hidden layer is always SiL.U-activated
and has hidden dimension 2d. The final output is a variable embedding 3 : Var(¢) — R?, which
is obtained by concatenating the two literal embeddings associated with each variable x and then
applying a final 2-layer MLP Dec:

y(z) = Dec([h" (x), h" (—z)]). (13)

Note that we choose Dec as a 2-layer MLP with input dimension 2d, hidden dimension 2d, and
output dimension 2. No activation is applied to the output, and the weights and biases of the final
layer of Dec are initialized as zeros. This ensures that at the beginning of training, the initial GNN
Ny, assigns p(x) = 0 and p(x) = 0 to all variables. We found this to be a stable configuration for
initializing training. In particular, x(z) = 0 ensures that the log-normally distributed weight policy
7y () has a mode of approximately 1 for all variables while p(x) = 0 ensures that the polarity of
each variable is initially distributed uniformly.



A.3 SAT Solver Details

Glucose

Glucose (Audemard and Simon,[2009) is a popular CDCL solver based on Minisat (Eé€n and Sorensson,
2003)). Our modification is based on Glucose 4.2.1 (Audemard and Simon, 2017 Like many other
CDCL solvers, Glucose uses the Variable State Independent Decaying Sum (VSIDS) heuristic for
branching. Each variable z is assigned an activity score activity(x) that reflects its involvement in
conflicts. When a conflict occurs, the activity scores of variables involved are increased by a constant
A, ie.,

activity(z) < activity(x) + A. (14)

Periodically, all activity scores are multiplied by a decay factor 5 (where 0 < 8 < 1):
activity(x) < [ - activity(z). (15)

The activity then effectively serves as the SCORE function from Algorithm 2] Note that in practice,
CDCL solvers commonly use exponential VSIDS (EVSIDS), which is a variation that yields identical
decisions but avoids a costly loop over all variables to compute Equation (I3). Rather than decaying
the activity, the increment A is instead scaled up:

1
A+ A (16)
B
The cumulative values of the activity scores then yield the same decisions. To incorporate our variable
weights w into this process, we simply modify Equation (T4) by scaling the increment with the
variable weight:
activity(z) < activity(z) + w(z) - A. (17)

This ensures that the total activity score of each variable is scaled by a factor of w(x) at each step
of the search while still preventing loops over all variables. We found that the runtime overhead
of the additional multiplication in Equation is negligible. We use the provided polarities p(x)
to initialize the polarity (or phase) of each variable. Note that we leave phase saving on, so this
initial polarity may be overwritten by the solver in later search steps. We run all experiments without
randomized decisions (rnd-freq = 0). We further set the parameter K = 0.1 to minimize solver
restarts, which we found to improve performance on the three instance distributions considered in our
experiments. Apart from this, we use the default parameters of Glucose.

March

March (Heule et al., 2005;|Heule and Van Maaren, |2006) is a DPLL-based solver that uses a branching
heuristic based on look-ahead (Biere et al.| 2021 ) It is among the best-known solvers for purely
random SAT instances. Look-ahead branching heuristics estimate how each variable’s selection as a
branching variable would affect the instance. In March, the scoring function SCORE(X) essentially
quantifies how many new binary clauses would occur if x is picked for branching in the current search
step. Computing this score is relatively expensive when compared to activity-based approaches, and
look-ahead solvers usually make fewer decisions per time. To decrease the cost of each branching
step, March first applies a pre-selection step before each branching decision, where a reduced set
of candidate variables is selected according to a second scoring function SCORE-PRESELECT(z).
This score aims to approximate the expected look-ahead score but is cheaper to compute. In the
modified solver, we also apply the variable weight w in pre-selection, i.e. the weighted scores
w(z) - SCORE-PRESELECT(z) are used to select the candidate variables. The ratio of pre-selected
candidates is fixed at 10%. The same weights w are then applied again to the actual look-ahead
scores to obtain the branching variable. Afterwards, we use the given polarities p in each branching
to determine the sign of the branching literal. Aside from these changes, we run March in its default
configuration.

“https://github.com/audemard/glucose
*https://github.com/marijnheule/march-SAT-solver
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Algorithm 4 GRPO Training for SAT Solver Guidance

1: Input:

2:  Training formulas F = {¢1,...,¢n}

3:  Number of GRPO iterations K € N

4:  Number of samples per instance M € N

5:  Number of optimizer steps per GRPO iteration S € N

6:  Clipratio € € (0, 1), KL penalty weight 5§ > 0, learning rate > 0
7: Initialize: Random weights 6

8: fork=1,2,..., Kdo

9 fori=1,2,...,Ndo

10: forj=1,2,...,M do

11: W’ivj ~ Wak—l(qbi)

12: C;,j < Cost(¢i, W, ;)

13: R(qbl,W,,]) — —Ciyj

14: end for

15: RZ<—{R(¢Z,W17J) ‘j€{1,7M}}
16: for;=1,2,..., M do

17: Am‘ — R(m"/\?{g()gﬁean(Ri)

18: end for '

19: end for

20: 0+ Or_1
21: fors=1,2,...,5do

22: fori=1,2,..., Ndo

23: forj=1,2,...,M do

24 ’I“i’j(e) — %

25: end for

26: ﬂppo((g ‘ (/bz) < ﬁ Zj [min (ri7j(9)fli7j7clip(ri’j(Q), 1—6, 1+6)Ai7j)}
27: L(O] ¢i) < Lero(0 | ¢i) — 8- KL (m9(¢:), 70, (61))
28: end for

29: 0 04+nVgd , L(O]d:)

30: end for

31: 0, < 0.

32: end for

33: Qutput: Final model weights 0.
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B Experiment Details

B.1 Data

Table 2] provides full dataset statistics for all data distributions and splits. In the following, we provide
further details on how each instance distribution is generated.

Random 3SAT Uniformly random 3SAT instances are commonly used to benchmark SAT solvers.
Here, each clause is sampled by choosing three distinct variables uniformly at random and negating
each with a probability of 50%. Hard instances are known to occur when the number of clauses

is around m = 4.258n + 58.26n~3 where n is the number of variables (Crawford and Auton,
1996). This is approximately the critical density where the instances transition from SAT to UNSAT.
We define 3SAT(n) as the distribution of uniformly random 3SAT instances with n variables and

[4.258n + 58.26n~ 3] clauses. For training, we use 20K instances sampled from 3SAT(200), which
are filtered such that exactly 10K instances are SAT and UNSAT, respectively. Our test sets contain

larger instances with n € {300, 350, 400}, where we sample 200 instances for each size n.

Graph Coloring Combinatorial problems on graphs are commonly solved by reducing them to
Boolean SAT instances. Here, we consider the problem of finding a 3-coloring for Erd6s-Rényi graphs.
We define 3COL(n) as the distribution of SAT problems that are obtained by sampling an Erd6s-Rényi
graph with n vertices and then encoding the problem of deciding 3-colorability as a SAT instance.
We set the edge probability such that the expected vertex degree is 4.67, which is approximately the
critical density for 3-colorability where hard instances commonly occur (Zdeborova and Krzakatal
2007). We train on 20K instances sampled from 3COL(300). Again, these are filtered such that
exactly 10K instances are SAT and UNSAT, respectively. Our test sets consist of larger problems with
n € {400, 500, 600}.

Cryptographic Hard, structured SAT problems commonly arise in the context of cryptoanalysis,
for example, for SAT-based decryption attacks (Soos et al.,|2009). To generate data in this domain,
we use Grain-of-Salt (Soos}, 2010) to generate SAT instances for decrypting stream ciphers. We define
CRYPTO(n) as the distribution of SAT instances generated for decrypting the HiTag2 cipher (Courtois
et al.| [2009) with n given help bits. We use the recommended generation parameters (-outputs 56
-base-shift 8 -karnaugh 8). Note that these instances are harder for smaller values of n and
are mostly UNSAT. We train on 20K instances from CRYPTO(22) and test on harder problems with
n € {20, 15,10}.

For each of these three instance classes we formally define the corresponding training distribution €2
from Equation (3] as the uniform distribution over the set of training instances.

Table 2: Dataset Statistics

Distribution ~ Split  Number  #SAT #UNSAT [Var(¢)| |Cls(9)|

mean min max mean min max
0 3SAT(200)  Train 20,000 10,000 10,000 200.00 200 200 853.00 853 853
1 3SAT(200)  Val 200 100 100 200.00 200 200 853.00 853 853
2 3SAT(300)  Test 200 103 97 300.00 300 300 1,278.00 1,278 1,278
3 3SAT(350)  Test 200 108 92 350.00 350 350 1,491.00 1,491 1,491
4 3SAT(400)  Test 200 89 111 400.00 400 400 1,704.00 1,704 1,704
5 3Col(300) Train 20,000 10,000 10,000 900.00 900 900 3,284.75 3,009 3,618
6 3Col(300) Val 200 100 100 900.00 900 900 3,288.63 3,042 3,489
7 3Col(400) Test 200 77 123 1,200.00 1,200 1,200 4,392.31 4,144 4,603
8 3Col(500) Test 200 91 108 1,500.00 1,500 1,500 5,488.56 5,216 5,750
9 3Col(600) Test 200 87 113 1,800.00 1,800 1,800 6,597.24 6,306 6,861
10 Crypto(22)  Train 20,000 0 20,000 529.41 518 544 8,420.71 7,669 9,453
11 Crypto(22)  Val 200 0 200 529.24 523 537 8,413.41 7,937 9,075
12 Crypto(20)  Test 100 0 100 533.43 526 544 8,767.57 8,182 9,309
13 Crypto(15)  Test 100 0 100 542.89 537 552 9,622.04 9,129 10,321

0

14 Crypto(10)  Test 100 100 550.99 544 568 10,497.63 9947 11,528
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B.2 Hyperparameters

We configure the GNN with 10 layers with embedding dimension d = 256. We train for K = 2000
GRPO iterations. In every iteration, we use N = 100 training formulas and collect feedback for
M = 40 variable parameterizations for each formula. The SAT solver runs are parallelized across all
CPU cores. The model is trained for 50 steps of SGD in each GRPO iteration. Each training run uses
a machine equipped with a single H100 GPU, an Intel Xeon 8468 CPU with 48 cores, and 128GB of
RAM. The total runtime of all training runs is between 24h and 48h.

Table 3| provides an overview of all RLAF training runs from our main experiments. We tuned the
learning rate in € {0.0001,0.00005,0.00001} and schedule it to warm up over the first 5 GRPO
iterations. After warm up the the learning rate stays constant throughout training. The clip ratio was
tuned in € € {0.1,0.2} and the KL-penalty 8 € {0.1,1.0}. All other hyperparameters were given
constant default values, which we found to be stable based on preliminary experiments.

Table 3: Hyperparameters

Glucose March
3SAT 3CoL CRYPTO 3SAT 3CoL CRYPTO
K 2000 2000 2000 2000 2000 2000
M 40 40 40 40 40 40
N 100 100 100 100 100 100
S 50 50 50 50 50 50
ov 0.1 0.1 0.1 0.1 0.1 0.1
clip ratio € 0.2 0.2 0.2 0.1 0.2 0.2
KL-penalty 3 0.1 1.0 0.1 1.0 0.1 0.1
batch size 20 20 20 20 20 20
learning rate | 0.0001  0.00005  0.00005 | 0.00005 0.00001 0.0001
weight decay 0.0 0.0 0.0 0.0 0.0 0.0
hidden dim d 256 256 256 256 256 256
model depth L 10 10 10 10 10 10

B.3 Training

Figure [ provides the learning curves for the 6 RLAF-trained models in our main experiments. For
all models, the cost decreases throughout training. We found that training with the March base solver
tends to yield noisier training, particularly on 3SAT instances, where the policy does not improve
further after 700 GRPO iterations. Exploring effective strategies for reducing this noise remains
future work. Nonetheless, we are able to learn guidance policies that decrease the solver cost of both
base solvers on all three problem instances.
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Figure 4: GRPO training curves of the RLAF models from our main experiment. We plot the mean
number of decisions on the validation set against the GRPO iteration.
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B.4 Comparison to Supervised Approaches

Prior work suggests predicting predefined variable properties, such as UNSAT core|Selsam and Bjgrner
(2019) or backbone [Wang et al.|(2024) membership, in a supervised manner, and then transforming
model predictions into variable weights and polarities for solver guidance. Here, we aim to compare
how guidance learned with RLAF compares to this approach. Note that the notions of UNSAT cores
and backbones are only sensible training targets for some instance distributions. Backbones can only
be non-empty on satisfiable instances, and even for satisfiable graph coloring problems, all backbones
are empty due to the permutation symmetry of the vertex colors. Furthermore, on our UNSAT 3SAT
training instances, we observed that the UNSAT core extracted by SAT solvers contained all variables
on almost all instances, yielding a training target that is effectively constant. Due to these limitations,
we use the 3SAT instances to evaluate the effectiveness of predicting the backbone, while we use the
graph coloring and cryptographic instances to compare RLAF to core-based solver guidance. For a
fair comparison, we use the same GNN architecture used to train with RLAF and train a separate
model for each instance distribution. The used hyperparameters are specified in Table 4, In the
following, we provide a detailed description of how these models are trained and evaluated.

UNSAT-Core

Selsam and Bjgrner| (2019) propose to train supervised models that predict the UNSAT-core member-
ship of variables and then use the model prediction to guide branching heuristics. Following their
methodology, we phrase the task of predicting whether or not a variable occurs in an UNSAT-core as a
variable-level binary classification task and train a GNN for this problem in a supervised manner using
a standard cross-entropy loss. The ground-truth on training and validation instances is computed by
extracting the cores from DRAT UNSAT proofs generated by the CaDiCaL Biere et al.|(2024) solver.
Note that these cores are not minimal, as computing such would not be feasible. The extracted cores
on our unsatisfiable 3SAT training instances contain all variables for almost all instances and are
therefore not a meaningful training target. We therefore only train UNSAT-core prediction models
for 3CoL and CRYPTO. We train a separate model for each distribution and restrict training to the
unsatisfiable instances.

Note that[Selsam and Bjgrner| (2019) integrate their prediction by periodically resetting the VSIDS
scores of the guided CDCL-solver to prediction logits of the GNN. This requires careful tuning
of the reset frequency. It is also specific to solvers based on the VSIDS heuristic and would, for
example, not be applicable to the March solver. Furthermore, in later ablation experiments, |Selsam
and Bjgrner| (2019) report that the performance improvement obtained with a trained GNN is barely
distinguishable from when an untrained, randomly initialized model is used, further questioning the
effectiveness of guiding solvers with this strategy. To facilitate a direct and fair comparison with
RLAF-trained policies, we instead combine the UNSAT-core predictions with our own solver guidance
based on multiplicative weights. For a variable z, let pore () be the predicted probability of x being
in an UNSAT-core according to the trained GNN model. Then we transform these probabilities to
variable weights through the following transformation:

w(z) =14 a - Peore(). (18)
Here, o > 0 is a parameter that determines how the variable weight scales with the raw model
predictions. For this experiment, we found weights of w(z) > 1 to perform better, hence the offset
of 1 in Equation (I8). The value of « is tuneed on the corresponding validation dataset in the
range {107%,1073,1072,10~%,10°,10%, 102, 103, 10*}. We tune « separately for both Glucose and
March. The polarities are simply set to p(x) = 1 as the prediction of UNSAT-core membership has
no clear implication for the sign of the branching literal. Using this methodology, we found that the
UNSAT-core predictions can significantly accelerate both base solvers, although by a smaller margin
than RLAF-trained policies.

Backbone

Wang et al|(2024) suggests using the backbone membership of literals as a supervised training target
and then setting variable polarities using the model predictions. We follow their methodology and
train a GNN on the literal-level binary classification task using cross-entropy loss. We only train
a model for the 3SAT instances and only use the satisfiable problems for training. The backbone
of coloring problems is always empty due to the permutation symmetry of the colors, and some
distributions, such as CRYPTO, predominantly consist of UNSAT instances.
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Figure 5: Runtimes relative to the base solver Glucose for RLAF and supervised approaches based
on Backbones and UNSAT cores. Less is better.
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When evaluating, we set the polarity of a variable x as p(z) = 0 if Phackbone (TZ) > Pbackbone () and
p(z) = 1 otherwise. Here, packbone () is the predicted probability of literal £ belonging to the back-
bone. We further assign variable weights w(z) under the assumption that correctly assigning backbone
literals in early search steps positively affects the runtime. To this end, we apply the transformation
from Equation to the mean backbone probability Dy ,cxbone (€) = 0-5(Poackbone (7) + Poackbone (7))
to obtain a weight for each variable. Again, we tune the transformation parameter « for both base
solvers on the validation set.

Table 4: Hyperparameters of the supervised models.
| 3SAar  3CoL CRYPTO

batch size 50 50 50
learning rate n | 0.0001  0.0001 0.0001
weight decay 0.1 0.1 0.1
epochs 200 200 200
hidden dim d 256 256 256
model depth L 10 10 10
« Glucose 101 103 1072
a March 102 102 10t

B.4.1 Results

Figure 5| compares the results for Glucose in terms of the relative wall-clock runtime compared to
the base solver. Overall, the policy learned with RLAF significantly outperforms solver guidance
based on both UNSAT core and backbone predictions by achieving a smaller relative runtime. The
backbone-based heuristic outperforms RLAF only on satisfiable 3SAT instances with 300 variables,
but not on larger problems. On unsatisfiable 3SAT problems, the backbone-guided heuristic performs
substantially worse. RLAF also outperforms core-based guidance for both graph coloring and
cryptographic SAT problems. Overall, these results demonstrate that pure RL-based learning with
RLAF can yield more effective solver guidance than predicting handcrafted notions of variable
importance in a supervised manner.

Supervised Comparison with March

In Figure[6] we further provide the comparison with supervised baselines for the March base solver.
On satisfiable 3SAT problems, our RLAF-trained policy and the guidance based on backbone
prediction are roughly on par. However, on unsatisfiable 3SAT problems we found that backbone-
based guidance increases the solver’s runtime be approximately 10%. Backbone predictions are
therefore not a useful guidance signal on this instance type when working with a strong base solver,
such as March. Our RLAF-based policy does not share this problem. On the 3COL and CRYPTO
distributions, the RLAF-trained policy consistently outperforms the guidance based on UNSAT core
prediction, as for the Glucose base solver.
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Figure 7: Weight correlation between policies learned with different solvers. For each instance
distribution, we randomly sample 5, 000 variables = from the corresponding validation set and plot
the expected variable weight E[w(x)] for the policies learned with either base solver. The color
further indicates the backbone or UNSAT core membership of each variable.

B.5 Exploring Learned Variable Weights

We further aim to gain insights into the weight distributions learned through RLAF. In particular,
we investigate whether the policies learned with different base solvers are related and whether they
capture predefined variable properties, such as backbone and UNSAT core membership. To this
end, Figure 7| compares the weights for 5000 randomly selected variables from the corresponding
validation sets. Specifically, we plot the expected variable weight E[w(z)] for the Glucose-trained
policy on the x-axis and plot the corresponding value for the March-trained policy on the y-axis.
We also report the Pearson correlation coefficient () for these weights to quantify their correlation.
For 3SAT, we only plot variables from satisfiable instances and additionally indicate whether each
variable belongs to its instance’s backbone. Likewise, we focus on unsatisfiable instances for 3COL
and CRYPTO and indicate if a variable occurs in the UNSAT core extracted for the experiment in

Appendix [B4]

We observe that the variable weights of the two policies are generally correlated, with a Pearson
correlation coefficient r between 0.73 and 0.85. This indicates that the learned weightings capture
structural properties that are inherent to the variables and accelerate the search across different
solvers. We further observe that for the 3COL and CRYPTO instances, the variables with high weights
are predominantly members of the UNSAT core. For these problem instances, the RLAF-based
training therefore self-discovered weight policies that correlate to existing handcrafted heuristics
while performing better, as demonstrated in Appendix [B.4] For the 3SAT instances, we do not observe
a clear correlation between the learned weight policies and backbone membership, showing that in
this case, the trained models express functions that, while effective, do not resemble this particular
handcrafted heuristic.

B.6 GNN Overhead

In Table [5| we provide the results from our main experiments and additionally report the mean wall-
clock runtime of the GNN forward pass. For all instance distributions, this GNN overhead is between

17



Table 5: Full results on test instances, including the main time spent for the GNN forward pass. All
metrics are averaged across the respective test sets. The mean number of decisions is rounded to the
nearest whole number. For results with RLAF, we include the time required for the GNN forward
pass in the total runtime.

Data Glucose Glucose + RLAF March March + RLAF
Distribution ~ Result Decisions  Time (s) Decisions Time (s) GPU time (s) || Decisions Time (s) | Decisions Time (s) GPU time (s)
3SAT(300) SAT 341,418 6.67 121,184 1.85 0.0210 2,893 0.25 2,389 0.23 0.0205
3SAT(300) UNSAT 725,812 15.49 508,676 8.21 0.0209 11,783 1.01 11,757 1.04 0.0205
3SAT(350) SAT 1,568,289 48.76 805,035 18.88 0.0238 16,546 1.64 11,702 1.19 0.0233
3SAT(350) UNSAT 3,628,268 132.28 | 3,136,552 82.84 0.0237 52,287 5.14 51,846 5.16 0.0233
3SAT(400) SAT 9,638,668 598.35 | 4,447,304 186.70 0.0265 64,296 7.27 47,992 5.51 0.0272
3SAT(400) UNSAT || 22,130,692 1,895.62 | 20,808,043 1,112.71 0.0265 245,064 27.49 242,499 27.51 0.0270

3Col(400) SAT 15,519 0.36 6,988 0.22 0.0662 926 0.22 598 0.21 0.0661
3Col(400)  UNSAT 70,692 1.99 34,920 0.81 0.0662 10,563 2.61 5,954 1.57 0.0661
3Col(500) SAT 82,758 2.61 35,901 1.05 0.0853 7,689 2.55 4,754 1.68 0.0848
3Col(500)  UNSAT 460,881 17.47 363,278 12.24 0.0855 100,811 33.34 60,321 20.52 0.0849
3Col(600) SAT 606,598 25.03 339,378 11.59 0.0984 63,512 27.16 42,862 18.71 0.0988
3Col(600)  UNSAT 3,092,344 193.96 | 2811,133 155.23 0.0984 754,720 313.57 461,639 197.12 0.0990
Crypto(20)  UNSAT 51,294 1.16 3,541 0.15 0.0974 1,203 0.82 390 0.41 0.0973
Crypto(15)  UNSAT 225,447 5.74 64,150 1.40 0.1075 52,282 34.56 8,257 6.40 0.1073
Crypto(10)  UNSAT 3,753,850 162.45 1,520,075 64.95 0.1148 679,864  467.38 230,905 169.22 0.1174

0.02 and 0.1 seconds, which is negligible when compared to SAT solver runtimes on non-trivial
instances. However, we note that classical SAT solvers commonly perform over 10 branching
decisions per second. In a setting where every guided branching decision requires a separate forward
pass, as in prior RL-based work (Kurin et al., 2020} |Cameron et al., 2024)), it is therefore not possible
to guide every branching decision without incurring a massive runtime overhead. Our one-shot setup
avoids this problem as it incorporates multiplicative weights obtained in a single GNN pass in every
branching decision with minimal runtime overhead.
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