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Abstract

Several recent unsupervised learning methods use probabilistic approaches to solve
combinatorial optimization (CO) problems based on the assumption of statistically
independent solution variables. We demonstrate that this assumption imposes
performance limitations in particular on difficult problem instances. Our results
corroborate that an autoregressive approach which captures statistical dependen-
cies among solution variables yields superior performance on many popular CO
problems. We introduce subgraph tokenization in which the configuration of a
set of solution variables is represented by a single token. This tokenization tech-
nique alleviates the drawback of the long sequential sampling procedure which is
inherent to autoregressive methods without sacrificing expressivity. Importantly,
we theoretically motivate an annealed entropy regularization and show empirically
that it is essential for efficient and stable learning. 1

1 Introduction

Combinatorial optimization (CO) problems are of central interest to a wide range of fields, including
operations research, physics, and computational complexity [Papadimitriou and Steiglitz, 1998].
Since CO problems are typically NP-hard one would not expect that one can find the solutions
to all arbitrarily large CO problem instances in polynomial time. However, these restrictions are
concerned with worst case scenarios over entire problem families. For instance finding the Minimum
Independent Set of any graph. Consequently, it is not surprising that a large body of work is focused
on the design of solution strategies that yield a particularly good performance on a restricted subset
of all possible instances. There is growing interest in exploring deep learning approaches to this
restricted CO setting [Bello et al., 2017]. These methods aim to learn how to efficiently generate high
quality solutions for CO problems and rely primarily on learned algorithmic components rather than
on problem-specific, hand-crafted ones [Bengio et al., 2021]. Importantly, practicable methods should
not rely on supervised training with solutions from other solvers since this limits the achievable
performance of the learned model to that of the solver used to generate the training data [Yehuda
et al., 2020]. As a result the development of unsupervised methods [Karalias and Loukas, 2020,
Wang et al., 2022, Qiu et al., 2022, Karalias et al., 2022, Min et al., 2022, Wang and Li, 2023] and of
Reinforcement Learning (RL) methods [Bello et al., 2017, Khalil et al., 2017, Kool et al., 2019, Ahn
et al., 2020, Böther et al., 2022, Mazyavkina et al., 2021] for CO is an active field of research. In this
work we are interested in training models that generate solutions at inference in contrast to approaches
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37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ml-jku/VAG-CO


that require problem instance specific training. A popular approach is to take a representation of the
CO problem instance as input to a deep learning model and to output the parameters of a distribution
over solutions that has its probability mass concentrated on regions with high solution quality. This
probabilistic optimization approach to CO is used in the recent works of e.g. [Karalias and Loukas,
2020, Min et al., 2022, Qiu et al., 2022, Sun et al., 2022]. In these works the distribution over solutions
is built on the assumption of mutual statistical independence of the individual solution parameters and
can, consequently, be represented by a product of Bernoulli distributions for the the individual solution
variables. This simplification is typically refereed to as a mean-field approximation (MFA) and is
frequently used in various fields including e.g. statistical mechanics [Parisi, 1988], Bayesian statistics
[Wainwright and Jordan, 2008], and the analysis of neural networks [Mei et al., 2019]. However,
the simplifying assumption of the MFA restricts the expressivity of the corresponding distributions
which limits its applicability when the target distribution represents strong correlations [Jaakkola
and Jordan, 1998]. However, replacing MFA with more expressive approaches is computationally
expensive and requires careful regularization to ensure efficient and stable training. Based on these
consideration our contributions can be summarized as follows.

We demonstrate that the frequently used MFA imposes limits on the attainable solution quality
for CO problems. Importantly, we introduce Variational Annealing on Graphs for Combinatorial
Optimization (VAG-CO) a method that achieves new state-of-the-art performances on popular CO
problems by combining expressive autoregressive models with annealed entropy regularization. We
provide a theoretical motivation for this entropy regularization via considerations of the sample
complexity of related density estimation problems. By introducing sub-graph tokenization VAG-CO
drastically reduces the number of necessary steps to generate solutions and therein significantly
improves the training and inference efficiency.

2 Problem Description

Ising Formulation of CO. To introduce VAG-CO it is convenient to adopt a point of view on CO
that is motivated by statistical mechanics. As shown in Lucas [2014] many frequently encountered
NP-complete CO problems can be reformulated in terms of a particular class of models known as
Ising models which therefore allow the representation of different CO problem types in a unified
manner. In this context the CO problem is equivalent to finding the minimum of an energy function
E : t´1, 1uN ÞÑ R. This function assigns an energy Epσq to an N-tuple of discrete solution variables
σ “ pσ1 . . . σN q P t´1, 1uN which are often referred to as spins. The family of aforementioned
Ising models is characterized by the following form of the energy function:

Epσq “
ÿ

iăj

Jijσiσj `

N
ÿ

i

Biσi, (1)

where the first term represents the interaction between spins σi P t´1, 1u through couplings Jij P R,
while the second term determines the magnitude Bi P R of the contribution of an individual spin to
the energy of the system. For brevity we will denote the parameters of the energy function pJij , Biq

simply as E. Hence, E will represent a CO problem instance while Epσq will denote the energy of
a solution σ under an energy function with parameters E. The Ising formulation for the four CO
problem types studied in this work is given in Tab. 1.
Variational Learning. Next, we specify how we approach the learning problem of approximating
the optimal solution for a given problem instance. We follow the frequently taken variational
learning approach of using a neural network with parameters θ to obtain for a given CO problem
instance E an associated probability distribution pθpσ|Eq over the space of possible solutions
t´1, 1uN . The problem instances E are assumed to be independently sampled from a probability
distribution qpEq with Ω “ supppqq. In this setting the learning problem can be formulated as finding
argminθ

ř

Ω qpEq
ř

σ pθpσ|EqEpσq. Here
ř

σ is a shorthand for the sum over all σ P t´1, 1uN .
In practice both sums are approximated by empirical averages over samples from the corresponding
distributions q and pθ. In CO Epσq is typically characterized by many local minima. Therefore,
directly approaching the learning problem described above via gradient descent methods is prone to
getting stuck at sub-optimal parameters. As we demonstrate in Fig. 1 (Right) this problem can be
alleviated by adding a regularization term to the optimization objective Eq. 1 which encourages pθ to
avoid a collapse to local minima. The resulting loss function L : t´1, 1uN Ñ R associated to the
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learning problem is given by:

Lpθ;βq “
1

M

M
ÿ

m“1

F̂ pθ;β,Emq, (2)

where M is the number of CO problem instances Em in one batch and β plays the role of a
regularization coefficient which is frequently referred to as the inverse temperature 1{T . The loss for
an individual problem instance Em is based on the so-called free-energy F pθ;β,Emq:

F pθ;β,Emq “
ÿ

σ

pθpσ|Emq
`

Empσq ` 1{β log pθpσ|Emq
˘

. (3)

In practice, we approximate the expectation value F pθ;β,Emq with an empirical sample average
F̂ pθ;β,Emq that is based on nS samples σ „ pθpσ|Emq. The term Empσq on the right-hand side
of Eq. 3 encourages the concentration of pθpσ|Emq on low-energy solutions. Small values of the
regularization parameter β P Rą0 encourage pθpσ|Emq to have a large entropy. For a given value of
β the free-energy in Eq. 3 is known to be minimized by the Boltzmann distribution associated to Em

(see e.g. [MacKay, 2003]):

pBpσ|Em, βq “
exp´βEmpσq

ř

σ1 exp´βEmpσ1q
. (4)

Thus by minimizing L the model learns to approximate pBpσ|Em, βq for a given Em and β. For
β Ñ inf the pBpσ|Em, βq has its mass concentrated on the global minima of Em and for β Ñ 0 it
approaches the uniform distribution [Mézard and Montanari, 2009]. It is, therefore, to be expected
that the minimization of L becomes harder at low temperatures, i.e. as β Ñ inf , which opens the
opportunity to a principled curriculum learning approach (Sec. 4). Based on these considerations
we reformulate CO problems as the variational problem of approximating pBpσ|Em, βq in the limit
β Ñ inf with a variational ansatz pθ that has the variational parameters θ. This problem can be
formalized as argminθ limβÑinf Lpθ;βq.

3 Variational Annealing on Graphs

Our method VAG-CO addresses CO as a variational learning problem on graphs. In particular,
given a set of CO problem instances it learns to approximate the Boltzmann distribution of the
corresponding Ising models (Sec. 2) with an autoregressive distribution. To obtain efficient training
with this expressive model we apply an annealed entropy regularization. We formulate this learning
problem in an RL setting and use PPO to train our model. To alleviate the lengthy sampling process of
autoregressive approaches we introduce sub-graph tokenization which allows us to generate multiple
solution variables at in a single step without loosing expressive power. We further improve the
memory efficiency of our approach by dynamically pruning the graph which represents the CO
problem instance.

Autoregressive Solution Generation. In the following we specify how we represent pθpσ|Eiq and
how to sample it, i.e. how to generate solutions σ.

1. Draw a problem instance E “ pBi, Jijq „ qpEq from the data distribution q and construct
a graph G “ pV, Eq based on E. The nodes νi P V correspond to the spins σi and the
set of edges E represents the non-zero components of Jij . The graph G is equipped with
node features xi “ rBi, tis that are associated to its nodes νi. Here ti is a four dimensional
one-hot encoding which indicates the four possible states (I-IV) of a node νi namely whether
the corresponding spin σi is set to the value `1 (I) or ´1 (II) or whether it is to be generated
in the current step (III) or afterwards (IV). The edges between nodes νi and νj are associated
with the scalar edge features Jij .

2. Order the graph nodes according to the breadth-first search (BFS) algorithm. The i-th node
in this ordering is denoted as σi. Now i “ 1 and ti is set to the state (III) and all tąi are set
to (IV).

3. A GNN is used to parameterize a Bernoulli distribution pθpσi|Gq “ GNNθpGq from which
the value ˘1 of σi is sampled. The state encoding variables of G are updated by setting
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ti associated to the graph is now updated accordingly and ti`1 is set to (III). Now i is
incremented.

4. The previous step is repeated until the values of all σi are set.

We note that at each step i the graph G depends on the problem instance E and the already generated
spins σăi. Therefore this procedure represents an autoregressive parametrization of a distribution
over the space of possible solutions t´1, 1uN . By denoting the graph G at step i as Gi we get:

pθpσ|Eq “

N
ź

i“1

pθpσi|σăi, Eq “

N
ź

i“1

pθpσi|Giq. (5)

This approach is more expressive than MFA and can therefore be expected to be better suited to
approximate the typically complex Boltzmann distributions (Eq. 4) encountered in CO. Next we
specify how we realize a stable training procedure by employing RL methods. The model architecture
and hyperparameters are detailed in App. A.10.

Reinforcement Learning Setting. To explain how we train our model it is convenient to adopt an
RL perspective where an episode corresponds to the solution generation procedure described above.
For this we consider a Markov Decision Process (MDP) that is given by pS,A, P,Rq. Here, S is the
set of possible states and the state at step i is denoted by si P S. At each step si is represented by the
graph Gi. Given a state si an action ai that represents the assignments of the spin value σi P t´1, 1u

is sampled from a probability distribution which is parameterised by the policy pθpσi|Giq. After
sampling an action the reward RipGi, βq is computed according to an objective that is based on Eq. 3.
We use the relation F pθ;β,Eq “ ´Eσ„pθ

r
řN

i“1 RipGi, βqs and define the reward at step i as

RipGi, βq “ ´

„

∆Ei `
1

β
log pθpσi|σăi, Eq

ȷ

, (6)

where ∆Ei “ σi

”

ř

jăi Jijσj ` Bi

ı

. With this definition maximising the reward is equivalent
to minimizing the free-energy in Eq. 3. We approximate F pθ;β,Eq with the empirical mean of
´

řN
i“1 RipGi, βq based on nS samples σ „ pθpσi|σăi, Eq. Finally, the state is changed determin-

istically, i.e. the spin σi is set according to the sampled action ai. The state update corresponds to the
updated of ti and ti`1 as described in step 3 of the solution generation procedure. Our model learns
to solve this MDP via the popular PPO algorithm [Schulman et al., 2017] which is described in more
detail in App. A.9.

Annealing. As discussed in Sec. 2 our training objective is based on Eq. 3 which contains an entropy
regularization term. The strength of this regularization is determined by temperature T . At first, the
temperature is kept constant at T ą 0 for Nwarmup steps. Then, the temperature is slowly adapted for
Nanneal steps by following a predefined annealing schedule (see App. A.14) that converges to T “ 0
as the end of training is reached. This reduction of the temperature throughout training is motivated
from a theoretical point of view in Sec. 4.

Subgraph Tokenization. By introducing subgraph tokenization we decrease the number of forward
passes per CO problem instance without sacrificing expressivity. Instead of modelling the probability
for the two possible values ˘1 of a single spin, we let the policy represent a probability distribution
pθpσi:i`k|σăi, Eq over all 2k possible configurations of k consecutive spins in the BFS ordering
(step 2 of the solution generation procedure). We represent pθpσi:i`k|σăi, Eq with a softmax function
of a 2k dimensional vector that is output by the GNN (App. A.10). Subgraph tokenization represents
a modification of step 3 of the solution generation procedure and yields an improvement of the
performance (Sec. 6).

Dynamic Graph Pruning. We note that once the spin value of σi is sampled its interaction with
adjacent spins σj is fixed. Therefore, assuming that we have sampled the first spin σ1, its interaction
with an adjacent spin σj , that is yet to be generated, can be expressed as Bp1 ÞÑ jqjσj , where we
introduce Bp1 ÞÑ jqj “ J1jσ1. Therefore, we can immediately remove generated spins from the
graph and update the node embeddings xj “ rBj , tjs of adjacent nodes with Bj Ð Bj `Bpi ÞÑ jqj .
Reducing the graph size during the solution generation process has the benefit of reducing the memory
requirements when processing graphs with a GNN as in step 3 of the solution generation procedure.
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4 Theoretical Motivation of Annealing

In the following we show that the concept of an annealed entropy regularization in Eq. 3 can be
motivated based the sample complexity of density estimation for Boltzmann distributions.
Consider the problem of approximating the probability density function of a Boltzmann distribution
pBps;E, βq, where E : RN Ñ r0, 1s is a suitably normalized energy function. To solve this task we
are given a set of samples S “ ts1, . . . , smu which are independently drawn from the corresponding
target Boltzmann distribution pBps;E, β˚q at a fixed inverse temperature β˚. For brevity we will
denote the distribution associated to pBps;E, βq from now on as ppβq where E is suppressed since
it is a fixed function. The empirical distribution corresponding to S will be denoted as p̂. Further
assume that we can evaluate Epsiq for all si P S.
In the present context a natural feasibility criterion for the estimated distribution is that the expectation
value of the energy function for the estimated distribution should be compatible with the corresponding
value Eppβ˚qEpsq of the target distribution. We approach this problem with the maximum entropy
principle [Jaynes, 1957]. Informally, this principle prescribes that among all feasible distributions
one should prefer the one that yields the highest entropy. Since S contains only a finite number of
samples we cannot determine Eppβ˚qEpsq with arbitrary accuracy. As already stated in a similar
form in [Dudík et al., 2007] one obtains with Hoeffding’s inequality that with a probability of 1 ´ δ:

|Eppβ˚qEpsq ´ Ep̂Epsq| ă
a

lnp2{δq{p2mq. (7)

As shown in [Kazama and Tsujii, 2003] the resulting maximum entropy optimization problem with the
inequality constraint Eq. (7) is equivalent to the following regularized maximum likelihood problem
over the family of Boltzmann distributions: minβ Lp̂pβq ` λβ, where Lp̂pβq “ ´Ep̂ log ppβq is the
cross-entropy between p̂ and ppβq. Based on a closely related result in [Dudík et al., 2007] we obtain
the following bound for the approximation of maximum entropy distributions:

Remark 1. Assume a bounded energy function E : RN Ñ r0, 1s and let β̂ minimize Lp̂pβq ` λ|β|

where λ “
a

lnp2{δq{p2mq. Then with a probability at least 1 ´ δ:

DKL

`

ppβ˚q||ppβ̂q
˘

ď
|β˚|
?
m

a

2 lnp2{δq. (8)

See App. A.15.2 for further details. According to Eq. 8 the sample complexity of approximating a
maximum entropy distribution at an inverse temperature β is in Opβ2q.
Curriculum learning is a machine learning paradigm in which the difficulty of training tasks is
gradually increased as training proceeds [Bengio et al., 2009]. In view of Theorem 1 the entropy
annealing in VAG-CO (Sec. 3) can be regarded as a principled curriculum learning approach if an
increased sample complexity is regarded as an indication of a more difficult learning problem. In
supervised learning tasks Wu et al. [2021] find that the application of curriculum learning results in
more resource efficient training but not necessarily in better performance. As we demonstrate in
Sec. 6 our entropy annealing does actually yield better performing models.

5 Related Work

As pointed out in [Yehuda et al., 2020] supervised training of CO solvers faces the problem of
expensive data generation and that data augmentation cannot circumvent this problem. Consequently,
there is a growing interest in RL and unsupervised methods. In the following we focus on methods
that attempt to learn how to generate solutions rather than how to improve existing ones.

Unsupervised Learning and Reinforcement Learning. The work of [Bello et al., 2017] proposes
to use an actor-critic approach to learn how to solve CO problems. They were the first to show that
deep RL is a promising approach for CO. Their method represents an autoregressive distribution over
solutions. However, in their setting rewards are sparse since they are only available for complete
solutions. In our approach rewards are dense since they are available after every state transition.
Another influential work is [Khalil et al., 2017] who were the first to exploit the graph structure of
CO problems by learning problem representations with GNNs. Applying GNNs to CO problem has
become a common choice since then [Cappart et al., 2021]. In [Tönshoff et al., 2020] the method
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RUN-CSP is introduced. The work of [Karalias and Loukas, 2020] proposes Erdős Goes Neural
(EGN) in which the goal is to minimize a loss that can be regarded as a certificate of the existence of
a CO problem solution whose cost is upper bounded by the loss. By relying on an MFA they can
calculate this loss efficiently. Also [Qiu et al., 2022] use an MFA to optimize a distribution over the
solution space and optimize the corresponding parameters with gradient estimates that are obtained by
REINFORCE. The work of [Min et al., 2022] uses the same MFA-based concept as EGN and focuses
on alleviating the oversmoothing problem of GNNs by using modified Graph Convolutional Networks
[Kipf and Welling, 2017]. An approach based on an entry-wise concave continuous relaxation of the
discrete CO loss and a subsequent rounding procedure for integral solution generation is introduced in
[Wang et al., 2022]. Here the concept of [Karalias and Loukas, 2020] is generalized to a wider class
of problems and rather simple rounding procedure is introduced to generate solutions efficiently. This
approach is further extended by [Wang and Li, 2023] to a meta-learning setting called Meta-EGN in
which network parameters are updated for individual CO problem instances. They also argue that
RL based CO methods suffer from unstable training. We call this claim into question by finding no
stability issues with our RL-based method. Further VAG-CO outperforms EGN and even Meta-EGN
despite not updating any parameters on test problem instances. The approach of extending functions
on sets to continuous supports is taken in Neural Set Function Extensions (NSFE) [Karalias et al.,
2022]. In NSFE the discrete CO loss function is replaced with a convex combination of the discrete
loss function values at certain integral solutions. These extensions can be regarded as expectation
values that can be calculated in closed form without sampling. Whether the lack of sampling noise in
NSFE is beneficial for the optimization procedure is not obvious.

Variational Annealing. The concept of using autoregressive models in the variational problem of
approximating Boltzmann distributions of Ising models was introduced by [Wu et al., 2019]. They
show that variational annealing (VA), i.e. the combination of the variational approach and temperature
annealing, is a highly performant method. The work of [Hibat-Allah et al., 2021] compares VA
to other ones like Simulated Annealing (SA) [Kirkpatrick et al., 1983] and confirms its strong
performance on problems related to spin glasses. In [Khandoker et al., 2023] the strong performance
of VA compared to SA is confirmed on CO problems. A crucial aspect of these works on VA with
respect to ours and the ones in the previous paragraph is that they optimize the parameters of their
models only for individual problem instances. They do not attempt to learn how to generalize over
a family of problems. The work of [Sun et al., 2022] aims at a generalizing application of VA in
CO by using an MFA. Our experiments indicate that the simplicity of MFA-based methods leads to
performance limitations in particular on hard CO problem instances.

6 Experiments

We evaluate VAG-CO on various CO problems that are studied in the recent literature. Additionally,
we evaluate VAG-CO on synthetic datasets where solving the corresponding CO problem is known
to be particularly hard. Finally, we discuss experiments on the impact of entropy regularization and
subgraph tokenization. Our result tables also include inference runtimes. A quantitative runtime
comparison is, however, difficult since the runtimes reported from other works and for Gurobi 10.0.0
[Gurobi Optimization, LLC, 2023] were obtained with differen setups. See App. A.12 for details on
the runtime measurements. For Gurobi we report results for various different runtime limits.

Maximum Independent Set. In the following we will compare VAG-CO on the Maximum Inde-
pendent Set (MIS) problem to recently published results from [Karalias et al., 2022], where the
graph datasets COLLAB, ENZYMES and PROTEINS Morris et al. [2020] are used. In the MIS
problem the task is to find the largest subset of independent, i.e. unconnected, nodes in a graph. As an
optimization objective for VAG-CO we use Eq. 2 with the Ising energy function for MIS (see Tab. 1).
Here, the energy function Epqq consists of two terms EApqq and EBpqq, that depend on the binary
representation of the solution q “ σ`1

2 with q P t0, 1uN . When qi “ 1 the corresponding node is
defined to be included in the set and it is excluded otherwise. The first term EApqq is proportional to
the number of nodes that are in the set, whereas EBpqq is proportional to the number of independence
violations, i.e. the number of connected nodes within the set. By selecting A,B P R` such that
A ă B we ensure that all minima satisfy EB “ 0 since in this case excluding a violating node from
the set always reduces the energy. In our experiments, we choose A “ 1.0 and B “ 1.1.
We follow the procedure of [Karalias et al., 2022] and use a 0.6{0.1{0.3 train/val/test split on the
aforementioned datasets and use only the first 1000 graphs on the COLLAB dataset. The results
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Problem Type Ising formulation: minq Epqq where Epqq “ EApqq ` EBpqq

MVC Epqq “ A
řN

i qi ` B,
ř

pi,jqPEp1 ´ qiq ¨ p1 ´ qjq

MIS Epqq “ ´A
řN

i qi ` B
ř

pi,jqPE qi ¨ qj

MaxCl Epqq “ ´A
řN

i qi ` B
ř

pi,jqRE qi ¨ qj

MaxCut Epσq “ ´
ř

pi,jqPE
1´σiσj

2
where σi “ 2 qi ´ 1

Table 1: Ising formulations of the MVC, MIS, MaxCl and MaxCut problem ([Lucas, 2014]). The
term that includes the constant A corresponds to EApqq and the term that includes the constant B
corresponds to EBpqq.

ENZYMES PROTEINS IMDB-BINARY COLLAB MUTAG

Evaluation metric A.1 AR˚ (s{graph ) AR˚ (s{graph ) AR˚ (s{graph ) AR˚ (s{graph ) AR˚ (s{graph )
EGN (r) 0.821 ˘ 0.124 pN{Aq 0.903 ˘ 0.114 pN{Aq 0.515 ˘ 0.310 pN{Aq 0.886 ˘ 0.198 pN{Aq 0.939 ˘ 0.069 pN{Aq

NSFE (r) 0.775 ˘ 0.155 pN{Aq 0.729 ˘ 0.205 pN{Aq 0.679 ˘ 0.287 pN{Aq 0.392 ˘ 0.253 pN{Aq 0.854 ˘ 0.132 pN{Aq

REINFORCE (r) 0.751 ˘ 0.301 pN{Aq 0.725 ˘ 0.285 pN{Aq 0.881 ˘ 0.240 pN{Aq 1.000 pN{Aq 0.781 ˘ 0.316 pN{Aq

Straight-through (r) 0.725 ˘ 0.268 pN{Aq 0.722 ˘ 0.26 pN{Aq 0.917 ˘ 0.253 pN{Aq 0.856 ˘ 0.221 pN{Aq 0.965 ˘ 0.162 pN{Aq

DB-Greedy 0.9810 ˘ 0.0009 p0.008q 0.9848 ˘ 0.0003 p0.008q 1.000 p0.007q 0.9968 ˘ 0.0001 p0.033q 0.994 ˘ 0.001 p0.005q

MFA: CE 0.9875 ˘ 0.001 p0.036q 0.9883 ˘ 0.0007 p0.037q 1.000 p0.022q 0.9985 ˘ 0.0004 p0.054q 1.000 p0.019q

MFA-Anneal: CE 0.9880 ˘ 0.0014 p0.036q 0.9881 ˘ 0.0007 p0.037q 1.000 p0.022q 0.9991 ˘ 0.0004 p0.054q 1.000 p0.019q

VAG-CO (ours) 0.9960 ˘ 0.0007 p0.026q 0.9977 ˘ 0.0005 p0.032q 1.000 p0.017q 0.9988 ˘ 0.0002 p0.064q 1.000 p0.015q

Gurobi (tmax “ 0.01) 1.000 p0.001q 0.9996 ˘ 0.0001 p0.001q 1.000 p0.0003q 0.997 ˘ 0.001 p0.002q 1.000 p0.0001q

Gurobi (tmax “ 0.1) 1.000 p0.001q 1.000 p0.001q 1.000 p0.0003q 1.000 p0.002q 1.000 p0.0001q

Evaluation metric A.1 yAR (s{graph ) yAR (s{graph ) yAR (s{graph ) yAR (s{graph ) yAR (s{graph )
MFA 0.9635 ˘ 0.0014 p0.0029q 0.9705 ˘ 0.0012 p0.0025q 0.990 ˘ 0.002 p0.0028q 0.960 ˘ 0.007 p0.0024q 0.970 ˘ 0.003 p0.0028q

MFA-Anneal 0.968 ˘ 0.001 p0.0029q 0.973 ˘ 0.002 p0.0025q 0.994 ˘ 0.001 p0.0028q 0.917 ˘ 0.045 p0.0024q 0.975 ˘ 0.002 p0.0028q

VAG-CO (ours) 0.9863 ˘ 0.0007 p0.026q 0.9908 ˘ 0.0005 p0.032q 0.995 ˘ 0.001 p0.017q 0.993 ˘ 0.001 p0.064q 0.994 ˘ 0.002 p0.015q

Table 2: Results on the MIS Problem (see Sec. 1). We show test set results on the best approximation
ratio AR˚ and the average approximation ratio yAR across different methods and datasets. Values
that are closer to one are better. (r) indicates that these are results as reported in [Karalias et al., 2022].
The time for each algorithm is reported in round brackets as seconds per graph.

are shown in Tab. 2 where the test set average of the best approximation ratio AR˚ out of nS “ 8
sampled solutions per graph is reported (see App. A.1). This metric was originally proposed in
[Karalias and Loukas, 2020]. We also report results of our own implementation of an MFA-based
method that is trained with REINFORCE. This method is used with (MFA-Anneal) and without
(MFA) annealing (App. A.5). As in Wang and Li [2023] and Karalias and Loukas [2020] we use the
conditional expectation procedure (CE, App. A.5.5) to sample solutions and report the corresponding
results as (MFA: CE) and (MFA-Anneal: CE). We also add results obtained by the Degree Based
Greedy (DB-Greedy) algorithm [Wormald, 1995] that is proposed by [Angelini and Ricci-Tersenghi,
2023] as a baseline for machine learning algorithms on MIS. For VAG-CO we greedily sample
different states for a given problem instance by using different BSF orderings of the corresponding
graph nodes. Our results show that VAG-CO significantly outperforms all competitors including the
MFA on ENZYMES and PROTEINS. On IMDB-BINARY and MUTAG the MFA-based approaches
and VAG-CO outperform all other machine learning methods and achieve an optimal AR˚. On
COLLAB MFA-Anneal and VAG-CO exhibit the best results with insignificantly better results for
MFA-Anneal. We also report results based on the test set average of the approximation ratio with
nS “ 30 yAR (App. A.1). This metric shows the performance of the learned probability distribution
for each model, when no post processing is applied. Our results show that VAG-CO always achieves
a significantly better performance in terms of yAR than MFA-based approaches.

Minimum Vertex Cover. We compare VAG-CO to results from Wang and Li [2023] where the
Minimum Vertex Cover (MVC) problem is solved on the TWITTER [Leskovec and Krevl, 2014],
COLLAB and IMDB-BINARY Morris et al. [2020] graph datasets. The MVC problem is the task
of finding the smallest subset of vertices such that each edge has at least one node in the subset.
As for the MIS problem we formulate this CO problem in terms using the Ising energy function
that is defined in Tab. 1 and set A “ 1.0 and B “ 1.1. We follow the procedure of Wang and Li
[2023] and use a 0.7{0.1{0.2 train/val/test split on these datasets. Their method Meta-EGN uses meta
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learning in combination with the EGN method. They apply CE to generate solutions and report the
best out of nS “ 8 sampled solutions. Additionally, they report fine tuning results denoted by (f-t),
where they apply one step of fine tuning individually for each CO problem instance in the test dataset.
Our results in Tab. 3 show that VAG-CO improves upon the results reported in Wang and Li [2023]
across all datasets. We also show that the MFA with and without annealing performs remarkably well
on the TWITTER and COLLAB dataset and even outperforms VAG-CO on the COLLAB dataset.
The results in terms of yAR show that the strong performance of the MFA can be attributed to the
post-processing method CE rather than to the learned MFA-based model.

TWITTER COLLAB IMDB-BINARY

Evaluation metric A.1 AR˚ (s{graph) AR˚ (s{graph) AR˚ (s{graph)
EGN (r) 1.033 ˘ 0.023 p0.29q 1.013 ˘ 0.022 p0.15q 1.000 p0.08q

EGN f-t (r) 1.028 ˘ 0.021 p0.80q 1.008 ˘ 0.015 p0.38q 1.000 p0.32q

RUN-CSP (r) 1.180 ˘ 0.435 p0.16q 1.208 ˘ 0.198 p0.19q 1.188 ˘ 0.178 p0.08q

Meta-EGN (r) 1.019 ˘ 0.017 p0.29q 1.003 ˘ 0.010 p0.15q 1.000 p0.08q

Meta-EGN f-t (r) 1.017 ˘ 0.017 p0.80q 1.002 ˘ 0.010 p0.38q 1.000 p0.32q

Greedy (r) 1.014 ˘ 0.014 p1.95q 1.209 ˘ 0.198 p1.79q 1.180 ˘ 0.077 p0.02q

MFA: CE 1.0064 ˘ 0.0004 p0.08q 1.00021 ˘ 0.00003 p0.05q 1.000 p0.02q

MFA-Anneal: CE 1.0041 ˘ 0.0001 p0.08q 1.00023 ˘ 0, 00004 p0.05q 1.000 p0.02q

VAG-CO (ours) 1.0024 ˘ 0.00006 p0.15q 1.0017 ˘ 0.0002 p0.16q 1.000 p0.016q

Gurobi (tmax “ 0.01) 1.054 ˘ 0.001 p0.008q 1.0002 ˘ 0.0001 p0.002q 1.000 p0.0003q

Gurobi (tmax “ 0.1) 1.0015 ˘ 0.00001 p0.025q 1.000 p0.004q 1.000 p0.0003q

Gurobi (tmax “ 0.2) 1.0001 ˘ 0.0001 p0.028q 1.000 p0.004q 1.000 p0.0003q

Evaluation metric A.1 yAR ps{graphq yAR ps{graphq yAR ps{graphq

MFA: 1.0106 ˘ 0.0002 p0.004q 1.00106 ˘ 0.00001 p0.003q 1.0014 ˘ 0.0004 p0.003q

MFA-Anneal: 1.0090 ˘ 0.0004 p0.004q 1.0048 ˘ 0.0002 p0.003q 1.0011 ˘ 0.0002 p0.003q

VAG-CO (ours) 1.0079 ˘ 0.0003 p0.15q 1.0056 ˘ 0.0002 p0.16q 1.0011 ˘ 0.0006 p0.016q

Table 3: Results on the MVC problem (see Sec. 1). We show test set
results on the best approximation ratio AR˚ and the average approxi-
mation ratio yAR across different methods and datasets. Values that are
closer to one are better. (r) indicates that these results are reported in
[Wang and Li, 2023].

Maximum Clique. The
Maximum Clique (MaxCl)
Problem is the problem of
finding the largest set of
nodes, in which each node
is connected to all other
nodes that are contained in
the set. The MaxCl prob-
lem is equivalent to solv-
ing the MIS problem on
the complementary graph.
The complementary graph
can be obtained by con-
necting nodes that are not
connected in the original
graph and by disconnecting
nodes that are connected.
We evaluate our method on
the ENZYMES and IMDB-
BINARY datasets with the
same train/val/test splits
that are used in the MIS problem (see Sec. 6). Results are shown in Tab. 4, where we compare
to results that are reported in [Karalias et al., 2022] and to our own implementation of MFA and
MFA-Anneal. Here, we see that VAG-CO is always among the best performing method in therms of
AR˚ and always the single best method in therms of yAR.

Maximum Cut. The Maximum Cut (MaxCut) problem is the problem of finding two sets of nodes so
that the number of edges between these two sets is as high as possible. We evaluate our method on BA
graphs [Barabási and Albert, 1999], where we follow [Zhang et al., 2023] and generate 4000/500/500
train/val/test graphs between the size of 200-300 nodes and set the generation parameter m to 4.
Results on this dataset are shown in Tab. 4, where we compare our method to MaxCut Values
(MCut “

ř

pi,jqPE
1´σiσj

2 ) that are reported in [Zhang et al., 2023]. Our method achieves the best
{MCut results among all learned methods.

Figure 1: Left: Comparison of AR˚ for the MIS problem on the RRG-100 dataset with different
degrees d. Middle: Results for the MVC problem in terms of AR˚ on the RB-200 dataset at different
generation parameters p. Left, Middle: Values closer to one are better. The runtime t is given in
s/graph and tmax is the time limit for Gurobi. Right: Ablation on annealing and subgraph tokenization
(ST). The ϵ̂rel on the RB-100 MVC is plotted over the number of gradient update steps. Lower values
are better.
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ENZYMES IMDB-BINARY

Evaluation metric A.1 AR˚ (s{graph) AR˚ (s{graph)
EGN (r) 0.883 ˘ 0.156 pN{Aq 0.936 ˘ 0.175 pN{Aq

NSFE (r) 0.933 ˘ 0.148 pN{Aq 0.961 ˘ 0.143 pN{Aq

REINFORCE (r) 0.751 ˘ 0.301 pN{Aq 0.881 ˘ 0.240 pN{Aq

Straight-through (r) 0.725 ˘ 0.268 pN{Aq 0.917 ˘ 0.253 pN{Aq

DB-Greedy 0.9485 ˘ 0.0034 (0.025) 0.9875 ˘ 0.0008 (0.01)
MFA: CE 0.9766 ˘ 0.001 (0.04) 0.999 ˘ 0.009 (0.025)

MFA-Anneal: CE 0.9921 ˘ 0.0017 (0.04) 0.999 ˘ 0.0001 (0.025)
VAG-CO (ours) 0.987 ˘ 0.004 (0.029) 0.9981 ˘ 0.0013 (0.017)

Gurobi (tmax “ 0.01) 0.983 ˘ 0.002 (0.004) 0.996 ˘ 0.0002 (0.001)
Gurobi (tmax “ 0.1) 1.000 (0.005) 1.000 (0.002)

Evaluation metric A.1 yAR (time in rs{graphs) yAR (time in rs{graphs)
MFA 0.764 ˘ 0.013 (0.001) 0.983 ˘ 0.009 (0.001)

MFA-Anneal 0.806 ˘ 0.004 (0.001) 0.974 ˘ 0.004 (0.001)
VAG-CO (ours) 0.943 ˘ 0.012 (0.029) 0.993 ˘ 0.0013 (0.017)

BA 200 ´ 300

{MCut (s{graph)
Gurobi (r) 732.47 (1.57)
SDP (r) 700.36 (4.29)

Greedy (r) 688.31 (0.026)
EGN (r) 693.45 (0.092)

Anneal (r) 696.73 (0.09)
GFlowNet (r) 704.30 (0.35)

VAG-CO (ours) 722.31 (0.17)
Gurobi (tmax “ 0.1) 731.34 (0.1)
Gurobi (tmax “ 1.) 731.79 (1.)
Gurobi (tmax “ 2.) 732.00 (2.)

Gurobi (tmax “ 10.) 732.01 (10.)

Table 4: Left: Results on the Maximum Clique Problem (see Tab. 1). We show test set results on
the best approximation ratio AR˚ and the average approximation ratio yAR across different methods
and datasets. Values that are closer to one are better. (r) indicates that these are results as reported
in [Karalias et al., 2022]. The time for each algorithm is reported in round brackets as seconds per
graph. Right: Results on the Maximum Cut Problem (see Tab. 1) on BA 200 ´ 300 graphs. We show
test set results on the average maximum cut value {MCut across different methods. Values that are
larger are better. (r) indicates that these are results as reported in [Zhang et al., 2023].

Evaluation on Synthetic Problems for MIS. On many of the benchmarks above nearly optimal
results are obtained. Therefore, we conduct additional experiments on synthetic graph datasets that
yield hard CO problems.
For graphs with a degree d larger than 16 the MIS problem on random regular graphs (RRGs) is
known to be particularly hard [Barbier et al., 2013]. Therefore, we generate RRGs with an average
size of 100 nodes (RRG-100), where we sample 4100 RRGs between the size of 80 to 120 with
different degrees d P r3, 7, 10, 20s. For training, validation and testing we use 3000{100{1000 graphs.
Results for the MIS problem on the RRG-100 dataset are shown in Fig. 1 (Left), where we plot the test
set average of the best relative error ϵ˚

rel out of nS “ 8 sampled solutions per problem instance. Here
the relative error is calculated with respect to exact solutions that are obtained with the commercial
solver Gurobi. Error bars indicate the standard error over graphs with the corresponding node degree.
As expected we find that for all methods ϵ˚

rel increases for larger degrees. MFA and MFA-Anneal
outperform the DB-Greedy method. Furthermore, VAG-CO is the best performing method for all
graph degrees. We also show Gurobi performance for each d at different time limits tmax. On this
dataset VAG-CO outperforms Gurobi with the given compute budged (see App. A.12) by a high
margin on hard instances.

Figure 2: Study on the advantages of
larger ST configuration sizes k for VAG-
CO on the RB-100 MVC dataset. On
the left y-axis we plot AR˚ (lower val-
ues are better) for VAG-CO models that
are trained for values of k. The left y-
axis shows the inference time per graph.

Evaluation on Synthetic Problems for MVC. We also
conduct experiments on graphs that are generated by the
so-called RB method [Xu et al., 2005]. This method allows
the generation of graphs that are known to yield hard MVC
problem instances [Wang and Li, 2023]. The RB model has
three distinct generation parameters: n, k1, and p. Adjust-
ing the values of n and k1 allows us to control the expected
size of the generated graphs, while p serves as a parameter
to regulate the hardness of the graph instances. Specifi-
cally, when p is close to one, the generated graphs tend to
be easier, whereas reducing p leads to increased difficulty.
To ensure diversity in the RB dataset, we generate graphs
with varying levels of hardness by randomly sampling p
from the range of 0.25 to 1.0. For our experiments, we
utilize the RB-200 dataset, consisting of RB graphs with
an average size of 200 nodes with a train/val/test split of
2000{500{1000 graphs. Following [Wang and Li, 2023]
each graph in this dataset is generated by randomly select-
ing values for n from the range of 20 to 25, and k1 from the
range of 9 to 10. Figure 1 (Middle) shows the corresponding results in terms of AR˚ in dependence
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of p. We find that the DB-Greedy algorithm outperforms both MFA approaches. The MFA with
annealing tends to perform worse than the MFA without annealing on this dataset. Here, we also add
our own implementation of EGN and EGN-Anneal [Sun et al., 2022] and find that EGN performs
similarly to MFA and EGN-Anneal achieves a similar performance as DB-Greedy. VAG-CO out-
performs all other methods for all values of p on this dataset. We also show Gurobi performance
for each p at different time limits tmax. Here, we see that at high p values Gurobi achieves close to
optimal results within a very small time budged and is the best performing method. Whereas for low
p values Gurobi performance drops by a high margin and VAG-CO achieves similar results within a
comparable time.

Ablation on Annealing. In the following we investigate whether the annealed entropy regularization
in Eq. 3 is indeed beneficial. These experiment are conducted for the MVC problem on RB-100
graphs that are generated with n P r9, 15s, k

1

P r8, 11s and p P r0.25, 1s. We compare VAG-CO
test set learning curves with three different initial temperatures T0 P t5 ¨ 10´2, 5 ¨ 10´3, 0u. The
run with T0 “ 0 is equivalent to VAG-CO without annealing (App. A.14). Figure 1 (right) shows
the average relative error ϵ̂rel for nS “ 30 sampled solutions per problem instance on the test set
over the number of gradient update steps. We find that the run without annealing starts to converge
rather quickly but at a comparably bad relative energy. In contrast to that, the runs with annealing
(T0 P t5 ¨ 10´2, 5 ¨ 10´3uq keep improving over more steps and achieve a better final performance.

Ablation on Subgraph Tokenization. Next we study the impact of subgraph tokenization (see
Sec. 3) on the performance of VAG-CO. The same problem setting as in the annealing ablation above
is used. Figure 1 (right) compares VAG-CO with the default k “ 5 subgraph tokenization (w/ ST) to
VAG-CO without subgraph tokenization (w/o ST). For a fair comparison the numbers of gradient
update steps and the annealing schedules are set to be equal. We find that with subgraph tokenization
we achieve a considerably better ϵ̂rel. These results underpin that subgraph tokenization does indeed
yield an improved efficiency in terms of gradient update steps.

We additionally provide a more detailed investigation on ST, where we compare VAG-CO with four
different values of k P t1, 2, 5, 10u on the RB-100 MVC dataset. In our experiments we keep the
number of gradient update steps constant and iteratively tune for the best learning rate and the best
initial temperature in each setting of k. Results are shown in Fig. 2, where AR˚ and the average
time per graph are plotted over k. As k increases the performance in terms of AR˚ does improve
and the inference time is reduced considerably. This experiment underscores the performance and
scalability improvement due to ST.

7 Limitations

While MFA-based approaches typically generate a solution to a CO problem in a single forward pass
VAG-CO requires a number of forward passes that is proportional the problem size N . However,
methods with solution generation in a single forward pass frequently rely on post-processing proce-
dures like CE that have a time complexity which is also linear in N . In our approach the nodes in the
graph are always processed in an order that is determined by a BFS. Therefore studying the impact
of other node orderings or making the algorithm invariant to such orderings might be an interesting
future research direction. For the annealing schedule we report comparisons for VAG-CO with three
different initial temperatures but a comprehensive study on the optimization of the annealing schedule
is left to future investigations.

8 Conclusion

Our results show that learning to solve hard CO problems requires sufficiently expressive approaches
like autoregressive models. With VAG-CO we introduce a method that enables stable and efficient
training of such a model through an annealed entropy regularization. We provide a theoretical
motivation for this regularization method and demonstrate its practical benefit in experiments. In
addition, we demonstrate that by systematically grouping solution variables VAG-CO achieves
an improved performance with respect to a naive autoregressive model. Importantly VAG-CO
outperforms recent approaches on numerous benchmarks and exhibits superior performance on
synthetic CO problems that are designed to be hard.
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A Appendix

A.1 Evaluation Metrics

We use different metrics to evaluate the performance of models on CO problems. We assess the quality of an
individual solution σ by the associated value of the energy function Empσq which represents the size of the
solution sets in MIS and MVC. Here m refers to the problem instance under consideration. Optimal solutions
σopt are obtained with the Gurobi solver [Gurobi Optimization, LLC, 2023]. For models that generate solutions
indeterministically we sample nS different solutions σj per problem instance and calculate the test dataset
average of the best relative error ϵ˚

rel:

ϵ˚
rel “

1

M

M
ÿ

m“1

min
j

|Empσoptq ´ Empσjq|

|Empσoptq|
, (9)

where M denotes the number of problem instances in the test dataset. In case of deterministic algorithms only
one sample is generated, i.e. nS “ 1. In several experiments it is insightful to investigate the average relative
error ϵ̂rel for which we take the average instead of the minimum in Eq. 9. Analogously, we also define the best
approximation ratio AR˚ by

AR˚
“

1

M

M
ÿ

m“1

min
j

|Empσjq|

|Empσoptq|
, (10)

The average approximation ratio yAR is defined by taking the average instead of the minimum operation in
Eq. 10. For VAG-CO we calculate the average over the ordered greedy (OG) sampling method (See. App A.7).
We always report the evaluation metric together with the standard error over three different seeds except for the
experiment on RRG-100 MIS, where only results on one seed are reported.

A.2 Linear Integer Program Formulations

For Gurobi we formulate the CO Problems studied in this paper in Linear Integer Program Formulation (LIP)
(see Tab. 5).

Problem Type ILP formulation q P t0, 1u
N

MVC min
q

N
ÿ

i“1

qi s.t. qi ` qj ě 1 if pi, jq P E

MIS min
q

´

N
ÿ

i“1

qi s.t. qi ` qj ď 1 if pi, jq P E

MaxCl min
q

N
ÿ

i“1

qi s.t. qi ` qj ď 1 if pi, jq R E

MaxCut
max

ePt0,1u|E|,q

N
ÿ

pi,jqPE

eij

s.t. eij ď qi ` qj if pi, jq P E
eij ď 2 ´ pqi ` qjq if pi, jq P E

Table 5: Integer Linear Program (ILP) formulations of MIS, MVC, MaxCl and MaxCut.

A.3 Ensuring Feasible Solutions

Since there is no rigorous guarantee that the model samples only feasible solutions that satisfy the constraints,
we use a fast post processing procedure to make sure that only feasible solutions are sampled. Here, we make use
of our choice of the relative weighting of the energy terms A and B (see Tab. 1) in the Ising formulation, which
ensures that only feasible solutions are minima in the energy landscape. Therefore, we can detect violations
when EB ą 0 and search for the spin that causes the largest amount of violations. Subsequently, we change the
spin value of the node with the highest number of violations to satisfy the constraint and repeat the process until
EB “ 0. We observe in our experiments that this post-processing step is typically unnecessary, since only in
rare cases violating solutions are sampled.
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A.4 Standardization of the Energy Scale

Since the energy scale of CO problems can vary significantly, a good choice of hyperparameters like the
initial temperature T0, learning rate and relative weighting between the policy and value loss can vary between
different CO problem instances. Therefore, we standardize the energy scale that makes the choice of good
hyperparameters easier. For this purpose we first express the binary energy function Epqq (see. Tab 1) in terms
of spins, i.e. as Epσq by substituting qi with σi`1

2
. We then sample states for CO problem instances from the

training set by using a Random Greedy Algorithm (RGA, see App. A.6.2). Since we use only a few RGA steps
(see App. A.6.2), this algorithm performs only slightly better than a completely random algorithm. From these
states the mean energy ÊRGA and the standard deviation stdpERGAq over the training dataset is computed.
Subsequently, we standardize the energy scale by:

Êpσq “
Epσq ´ ÊRGA

stdpERGAq
. (11)

A.5 Baseline Methods

We compare VAG-CO with our own implementation of a Mean Field Approximation (MFA) and to Erdos Goes
Neural (EGN). In both of these approaches we consider the case with and without annealing. In both methods
the probability of a state σ factorizes into a product of independent Bernoulli probabilities. Therefore, the state
probability is given by:

pθpσ|Eq “

N
ź

i“1

pθpσi|Eq. (12)

While EGN and MFA both use the same probability distribution they differ in how the energy, or in case of
annealing the free energy, is calculated. This is described in the following.

A.5.1 Mean Field Approximation

We estimate the energy by sampling states from the parameterized probability distribution and apply REIN-
FORCE with variance reduction to update the network parameters. The network parameter gradients for one CO
Problem Instance are then calculated with

∆θpEq “ E
σ„pθpσ|Eq

rpEpσq ´ bq∇θ log pθpσ|Eqs ,

where b “ Eσ„pθpσ|EqrEpσs. For a batch of CO Problem Instances ∆θpEq is averaged over multiple E.

A.5.2 MFA with Annealing

In MFA-Anneal we estimate the free energy instead and again update the network parameters with REINFORCE
with variance reduction as explained above.

A.5.3 EGN

Since we consider cases, where the energy function is known in Ising formulation (see Sec. 1) the expectation
Eσ„pθpσ|EqrEpσs can be written down in closed form by substituting σi Ñ 2 ¨ pθpσi|Eq ´ 1 [Karalias and
Loukas, 2020]. Therefore, the loss function for one CO Problem Instance can be computed with

LpEq “ Eppθpσ|Eqq

and the network parameters can be updated directly by computing the gradients of this loss function.

A.5.4 EGN with Annealing

In case of EGN-Anneal [Sun et al., 2022] the entropy of the parameterized probability distribution is calculated
in closed form with the following formula:

Hppθpσ|Eqq “ ´

N
ÿ

i

rpθpσi|Eq ¨ log pθpσi|Eq ` p1 ´ pθpσi|Eqq ¨ logp1 ´ pθpσi|Eqs
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A.5.5 Conditional Expectation

To obtain good samples from the MFA approach in a deterministic way, we adopt the Conditional Expectation
(CE) method [Raghavan, 1988] as described in Karalias and Loukas [2020].

To introduce randomness into the CE-based solution generation procedure we initialize the random node features
(which are processed by the GNN) of every node with a random vector with six binary entries that are drawn
from a uniform distribution. Unless stated otherwise, we follow the procedure in [Wang and Li, 2023] and report
the best CE result of eight different random node feature initializations.

A.6 Greedy Algorithms

A.6.1 Degree Based Greedy Algorithm

The Degree Based Greedy (DB-Greedy) algorithm [Wormald, 1995] is a polynomial time algorithm for the MIS
problem. The DB-Greedy algorithm works in the following way: At first all nodes are sorted according to their
degrees. Then, starting from the smallest degree the node is chosen to be part of the independent set. In the next
step this node, its neighbors and their corresponding edges are deleted from the graph. These steps are repeated
until the graph is empty.

This algorithm can also be applied to the MVC problem by using the fact that the complement of an independent
set is a vertex cover. In other words, nodes in the independent set are excluded from the vertex cover and nodes
that are not part of the independent set are included into the vertex cover.

A.6.2 Random Greedy Algorithm

The Random Greedy Algorithm (RGA) is a general approach that can be utilized for solving a broad range of
CO problems that can be mapped to the Ising model. Initially, the algorithm randomly samples spin values with
uniform probability. Then, for a fixed number of iterations a spin is randomly selected and its value is changed if
it decreases the energy value. We set the number of iterations to N ¨ nR, where N is the number of nodes in the
graph and nR is the number of repetitions per node.

For the purpose of the standardization the energy scale (see. App. A.4), we employ this algorithm with nR set to
one.

A.7 Study on Sampling Methods

In order to find out, how the best samples can be obtained with VAG-CO we study in Fig. 3 three different
sampling methods on the RRG-100 MIS and RB-200 MVC dataset. Here we evaluate ϵ˚

rel on the test dataset
and plot it over the number of samples nS that are used for each graph in the dataset. We also add MFA and
DB-Greedy results, where we show for MFA how the method improves when more solutions are sampled. Since
DB-Greedy is a deterministic algorithm, we draw a horizontal line that indicates the solution quality of the
algorithm. To draw a relation to results that are presented in Fig. 1 (Left, Middle) we also add a vertical dotted
line at nS “ 8 samples. For VAG-CO we denote the first method as sampling (S), where for each graph nS

solutions are sampled according to the corresponding probability distribution. In the second VAG-CO sampling
method called ordered sampling (OS), we use for each graph nO different BFS node orderings and sample
nS{nO states per graph ordering. Finally, we sample VAG-CO solutions with a method called ordered greedy
(OG), where we generate solutions greedily for each BFS ordering with nO “ nS . Results in Fig. 3 show
that the sampling strategy OG always outperforms all other sampling strategies that we proposed for VAG-CO.
Additionally, we see that as we increase nO in the OS sampling strategy, the performance improves consistently.
Remarkably, DB-Greedy exhibits the best solution quality when MFA and VAG-CO are allowed only one sample
(nS “ 1). However, DB-Greedy is outperformed by VAG-CO OG already with a modest amount of nS ą 1
samples.

A.8 Experimental Details

In this section we provide additional details to experiments that are presented in Sec. 6.

Parameter Checkpointing. With VAG-CO we checkpoint over the course of training the parameters that obtain
the best ϵ˚

rel and the best ϵ̂rel on the validation set. For testing we always use the checkpoint with the best ϵ̂rel,
except for the results in Fig. 3 when the sampling strategies (S) and (OS) are used. Here we use the checkpoints
with the best ϵ˚

rel.

Hyperparameter Tuning. For MFA-Anneal, the learning rate and initial temperature are tuned on the validation
dataset of Enzymes MIS via a grid search. We considered learning rates (lr P r5 ˆ 10´4, 1 ˆ 10´4, 5 ˆ 10´5

s)
and initial temperatures (T0 P r0.5, 0.25, 0.1, 0.05s). With that, the number of GNN layers (L P r6, 8, 12s) are
tuned. Finally, the annealing duration (Nanneal) is increased until we observe that longer annealing does not lead
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Figure 3: Ablation on different sampling strategies for VAG-CO on the RRG-100 MIS dataset (Left)
and on the RB-200 MVC Dataset (Right). The averaged best relative error ϵ˚

rel on the test dataset is
plotted over the number of solutions nS per graph. Error bars indicate the standard error over the test
dataset.

to improvements. For MFA, we tested on ENZYMES MIS the learning rates (lr P r5 ˆ 10´4, 1 ˆ 10´4, 5 ˆ

10´5, 1 ˆ 10´5
s) and with that tuned the number of GNN layers (L P r6, 8, 10, 12s) and stop training when no

significant improvement on the validation set is observed. In MFA and MFA-Anneal, when training on the other
datasets we started with the optimal ENZYMES MIS parameters and further tested different learning rates (lr),
initial temperatures (T0) and number of GNN layers (L) individually on each dataset. For experiments on the
RRG-100 MIS and RB-200 MVC we make a more extensive hyperparameter search. In RRG-100 MIS for MFA-
Anneal we first tuned the initial temperature in the range of T0 P r0.25, 0.1, 0.05, 0.035, 0.025, 0.015, 0.01s

and in RB-200 MVC we search for the best initial temperature within the range of T0 P r0.5, 0.25, 0.1, 0.05s.
For MFA and MFA-Anneal, we then iteratively search for the best learning rate in the range of lr P r5 ˆ

10´4, 1 ˆ 10´4, 5 ˆ 10´5
s and then for the best number of GNN layers L P r6, 8, 12s.

In the experiments with EGN on RB-200 MVC we also performed a extensive hyperparameter seach, where first
the best temperature T0 was tuned within the range of T0 P r0.25, 0.1, 0.05s. Then we tuned the best learning
rate within the range of lr P r5 ¨ 10´4, 1 ¨ 10´1, 5 ¨ 10´5, 1 ¨ 10´5

s. Then we tuned for the best number of GNN
layers withing the range of L P r8, 10, 12, 14s. In EGN without annealing the same hayperparameter search was
performed but at T0 “ 0. The best hyperparameters of all methods are listed in App. A.13.

On VAG-CO we iteratively tuned the learning rate (lr P r5 ¨ 10´4, 1 ¨ 10´3
s), initial temperature (T0 P

r0.05, 0.7, 0.1s), number of GNN layers (L P r3, 4s) and number of annealing steps (Nanneal P r3000, 6000s)
on the ENZYMES MIS validation dataset. We then initially test these hyperparameters on other datasets and
adapt the number of annealing steps and the initial temperature. The choice of all hyperparameters in VAG-CO
is listed in Tab. 7.

Ablation on Subgraph Tokenization. In the ablation on subgraph tokenization in Fig. 1 we keep all hyperpa-
rameters the same ,except for the time horizon T (see Sec. A.9) and the hyperparameter λ in the PPO algorithm
(see App. A.9). For the subgraph tokenization run we chose T “ 20, λ “ 0.95 and k “ 5. Therefore, the time
horizon includes the generation of T ¨ k “ 100 spins per graph during the data collection phase (see App. A.9).
If we would keep T the same, when we chose k “ 1 for the run without subgraph tokenization only T ¨ k “ 20
spins would be generated for each graph. Therefore, we use T “ 100 when no subgraph tokenization is used.
As we always set λ “ 1 ´ 1

T this hyperparameter is adapted accordingly.

Experiments on Random Regular Graphs. Since GNNs suffer from node ambiguity on Random Regular
Graphs (RRGs) Wang and Li [2023] using random node features Abboud et al. [2021] can resolve this issue.
Therefore, for the VAG-CO experiment in Fig. 1 (Left) we sample standard Gaussian random node features with
the dimension of six and concatenate them to the graph representation of VAG-CO. For MFA and MFA-Anneal
random node features are already used (see App. A.5.5) and had not to be added for the RRG experiments.

Averaged results on hard instances. In Fig. 1 (Left, Middle) only show results for specific generation parameters
p on the RB-200 dataset and for specific values of d on the RRG-100 dataset. Here we report the corresponding
averaged results on the RRG-100 MIS and RB-200 MVC dataset in Tab. 6. VAG-CO significantly outperforms
all other methods for nS “ 8.

A.9 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [Schulman et al., 2017] is a popular RL algorithm that has two main
components. The policy is represented by the network pθpσi|Giq with parameters θ. The expected future reward
is estimated by the value network VϕpGiq which is parameterized by ϕ.
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RB-200 MVC RRG-100 MIS

Evaluation metric A.1 AR˚
ps{graphq AR˚

ps{graphq

DB-Greedy 1.0088 ˘ 0.006 0.01 0.931 0.003

MFA: CE 1.0111 ˘ 0.0002 0.10 0.947 0.06

MFA-Anneal: CE 1.0098 ˘ 0.0001 0.10 0.955 0.06

EGN: CE 1.012 ˘ 0.0001 0.10 N/A N/A
EGN-Anneal: CE 1.0087 ˘ 0.0002 0.10 N/A N/A
VAG-CO (ours) 1.0059 ˘ 0.0001 0.20 0.975 0.08

Gurobi (tmax “ 0.08) 1.0092 ˘ 0.0001 0.06 0.945 0.07

Gurobi (tmax “ 0.1) 1.0073 ˘ 0.0001 0.07 0.954 0.09

Gurobi (tmax “ 0.15) 1.0052 ˘ 0.0001 0.09 0.974 0.12

Gurobi (tmax “ 0.2) 1.0037 ˘ 0.0001 0.11 0.987 0.16

Gurobi (tmax “ 0.3) 1.0017 ˘ 0.0001 0.13 0.995 0.22

Gurobi (tmax “ 0.5) 1.0006 ˘ 0.0001 0.176 0.998 0.31

Gurobi (tmax “ 1.) 1.0001 ˘ 0.0001 0.26 1.000 0.37

Table 6: Best approximation ratio AR˚ on the test dataset of the RB-200 MVC and RRG-100 MIS
dataset. Results where the AR˚ is closer to one is better.

Data Collection. In PPO the policy is rolled out through the environment in order to collect and store the
states, actions, probabilities and the output of the value function into the rollout buffer. The data collection
procedure is completed after going through T steps, where T is the so-called time horizon. Then, the advantages
Ai :“ Apσi, Giq and value targets V T

i :“ V T
pGiq are calculated by making use of the Generalised Advantage

Estimation (GAE, Schulman et al. [2016]), where Ai is given by

Ai “ δi ` pγλqδi`1 ` ... ` pγλq
T ´t`1δT ´1, (13)

with δi “ Ri ` γV pGi`1q ´ V pGiq and V T
i “ Ai ` V pGiq. In our experiments the reward Ri is given by

Eq. 6. In our experiments we chose γ “ 1.0 and λ “ 1 ´ 1
T . We set T to be approximately equal to the average

graph size in the dataset. During the data collection phase we always collect data from H “ 30 different CO
problem instances and for each instance we sample nS “ 30 solutions.

Rollout Buffer. For the gradient updates in PPO, the loss is estimated with minibatches that are randomly
sampled from the rollout buffer. As the rollout buffer contains data of size H ˆ nS ˆ T we chose to sample
data by first sampling Hminib graphs and then for each graph, we chose to sample Nminib solutions and for each
solution Sminib time steps are sampled. We report the minibatch settings of each experiment in Tab. 7.

Training. As described before, during training minibatches of data Dminib is randomly sampled from the
replay buffer. In PPO the overall loss that depends on the Lpθ, ϕ;Dminibq is given by Lpθ, ϕ;Dminibq “

L1pθ;Dminibq ` cV L2pϕ;Dminibq, where the first term depends on the policy and the second term on the value
function. To specify a minibatch sample from Dminib, we will use the index n.

The policy loss for one minibatch sample is then defined as

L1pθqn “ ´min pInpθqAn, clippInpθq, 1 ´ ϵ, 1 ` ϵqAnq , (14)

where the importance sampling ratio Inpθq “
pθpσn|Gnq

pθ1 pσn|Gnq
is used to compute a weighted Monte Carlo estimate

of An. Here, θ1 represents the old policy parameters that were used to fill the rollout buffer during the data
collection phase and θ are the new parameters that are used in gradient descend. In Eq. 14 the clipping function
is used to prevent that the probability of the current policy pθpσn|Gnq differs by more than a factor 1 ˘ ϵ from
the old policy pθ1 pσn|Gnq.

Similarly, the value function loss for one sample is given by L2pϕqn “ pVϕpGnq ´ V T
ϕ1 pGnqq

2.

The loss Lpθ, ϕ;Dminibq is then updated for each minibatch in the rollout buffer so that each sample is used at
least once. This procedure is overall repeated nrepeat times, before we increment the epoch step Nepoch and
new data is collected with the updated set of parameters. In our experiments we always chose ϵ “ 0.1, cV “ 0.5
and nrepeat “ 2.
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A.10 Model Details and GNN Architectures

Before processing the graph representation with GNNs, we encode its node features with an encoder MLP. To
obtain node embeddings N⟩

l
P Rdplq with l P r1, . . . , Ls that depend on the graph structure, the encoded node

features are processed by L layers of GNNs. Afterwards, we apply a global sum aggregation to compute a global
graph embedding. The global graph embedding is then concatenated to the node embedding NL

i , where i is the
index of the spin whose value is to be generated (see Sec. 3). We then use this embedding to calculate the policy
and value function outputs (see App. A.9) with two separate MLPs.

In our experiments, we employ two distinct message passing architectures. The first one is a Message-passing
Neural Network (MPNN) [Battaglia et al., 2018] but with linear message functions. The second architecture also
includes skip connections (MPNN-skip) [Battaglia et al., 2018] which we use when more than three GNN layers
are used.

Message Passing Neural Network. Our MPNN layer is defined by the following update for node embeddings:

NL`1
i “ ln

»

–Ψ

¨

˝NL
i ,

ÿ

jPNpiq

ΦpN l
j ,N l

i , Eijq

˛

‚` Wskip NL
i

fi

fl , (15)

where ΦpN l
j ,N l

i , Eijq is a message update MLP that computes messages with pairwise interactions between
nodes. Skip connection are implemented by adding the term Wskip NL

i after the node update, where Wskip P

Rdpl`1qˆdplq is a weight matrix. Finally, layer normalization lnr¨s [Ba et al., 2016] is applied as it is commonly
done in Neural Network architectures when skip connections are used [Liu et al., 2021].

In VAG-CO we use a policy and value MLP with three layers. Both MLPs have 120 neurons in the first two
layers. The value MLP has only one neuron in the output layer and the policy MLP has 2k output neurons. For
the encoder MLP we use a two layer MLP with 40 neurons in each layer. In case of the node update MLP Ψ
and the message update MLP Φ we use 2 layers with 64 neurons in each layer. Layer normalization lnr¨s is
applied after every layer within a MLP except in the output layer of the policy and value MLP. We use Rectified
Linear Unit (ReLU) activation functions Agarap [2018] except in the output of the policy MLP, where a softmax
activation is used and except of the output of the value MLP where no activation is used.

In MFA with and without annealing the model uses an encoder MLP with one layer and 64 neurons. The node
update MLP Ψ and the message update MLP Φ have the same number of neurals as in VAG-CO. The output
MLP that is applied on each node after n GNN message passing steps the has three layers with 64 neurons each
and the final output layer has 2 neurons with a softmax activation.

A.10.1 Subgraph Tokenization

For subgraph tokenization we have to make changes to the one-hot encoding as described in Sec. 3 and also to
the model architecture as described in App. A.10. The one-hot encoding in the graph representation is adapted so
that spins σi:i`k that are going to be generated receive an enumeration that indicates their position in the sliced
list of BFS-ordered (see Sec. 3]) indices i : i ` k. Then, the graph Gi is processed by a GNN that provides
a node embedding GNNθpxiq for each node. Along with a global sum aggregation, the node embeddings
of the spins that are going to be generated are then concatenated according to their BFS order (Sec. 3) and
further processed by the policy MLP that calculates the probability for each of the 2k spin configurations using a
softmax output layer.

When the number of nodes N in the graph is not dividable by k, the number vertices in the CO problem instance
description has to be increased without changing the inherent optimization objective. This can be realised by
adding a sufficient amount of spins into the Ising model (see Sec. 2) with zero spin weight B and no connections
to other spins.

A.11 Training Time and Computational Resources

All runs with VAG-CO were conducted either on A100 Nvidia GPU with 40 GB Memory or an A40 Nvidia
GPUs with 48 GB Memory. In case of COLLAB MVC an A100 with 80 GB Memory is used.

The training time of our algorithm depends hyperparameters like the number of annealing steps Nanneal (see
App. A.14), the number of edges and nodes of graphs in the dataset, on the GPUs that are used during training,
on the time horizon and on the minibatch size that is used for gradient updates in PPO (see App. A.9). For
example the TWITTER MVC run with Nanneal “ 4000, T “ 30, Hminib “ Nminib “ Sminib “ 10 takes one
day, when trained on an A100 40 GB Nvidia GPU. The run on ENZYMES MIS trained on a A40 GPU takes ten
hours, when trained with Nanneal “ 6000, T “ 20, Hminib “ Nminib “ 15 and Sminib “ 10.
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A.12 Time measurement

Gurobi. All Gurobi results are conductedon a Intel Xeon Platinum 8168 @ 2.70GHz CPU with 24 cores. All
Problems expect for MaxCut are formualted as LIP and we set the number of threads for Gurobi to 26.

Learned Methods. For all learned methods (EGN, MFA, VAG-CO) we present the time per graph as if the
algorithm are implemented in a parallelized manner, where each sampling process runs on a separate thread. We
always report runtimes by using the jit compiled performance of the Graph Neural Network.

A.13 Hyperparameters

VAG-CO Hyperparameters.

All hyperparameters that change across datasets are listed in Tab. 7, whereas hyperparameters that stay the same
are specified in the corresponding section (e.g. App. A.10, A.14).

Dataset CO Problem Instance learning rate Nanneal T0 L Nminib Hminib Sminib T k

TWITTER MVC 1 ˆ 10´3 4000 0.05 3 10 10 10 30 5
COLLAB MVC 1 ˆ 10´3 12000 0.05 3 10 10 6 35 5

MIS 1 ˆ 10´3 4000 0.05 3 10 10 10 30 5
IMDB-BINARY MVC 1 ˆ 10´3 2000 0.05 3 10 10 10 5 5

MIS 5 ˆ 10´4 2000 0.05 3 10 10 10 5 5
MaxCl 5 ˆ 10´4 0.03 6000 3 6 10 7 20 6

ENZYMES MIS 5 ˆ 10´4 6000 0.07 4 15 15 15 25 5
MaxCl 5 ˆ 10´4 6000 0.03 3 6 10 7 20 6

PROTEINS MIS 5 ˆ 10´4 10000 0.1 3 15 15 10 35 5
MUTAG MIS 1 ˆ 10´3 2000 0.05 3 10 10 10 7 5
RB-100 MVC 1 ˆ 10´3 2000 5 ¨ 10´2, 5 ¨ 10´3, 0.0 3 10 10 5 20 5
RB-200 MVC 5 ˆ 10´4 20000 0.05 3 15 10 10 30 5

RRG-100 MIS 5 ˆ 10´4 20000 0.1 4 10 10 10 20 5
BA 200-300 MaxCut 1 ˆ 10´3 7000 0.08 4 10 10 10 30 8

Table 7: Hyperparemeters that are used in VAG-CO on different datasets.

MFA Hyperparameters.

All runs with MFA used a batch size H of 32 and we sampled nS “ 30 solutions. Furthermore, we used 8 GNN
layers, and 6 random node features per node. In the RB-200 MVC experiment 10 GNN layers were used. For
MFA-Anneal we used a learning rate of 1 ˆ 10´4, 2000 annealing steps Nanneal and a start temperature T0 of
0.1 except for RRG-100 MIS and for RB-200 MVC. In RRG-100 MIS a T0 of 0.015 is used and in RB-200
MVC T0 “ 0.05. For MFA with and without annealing we trained for 2000 epochs and used a learning rate of
5 ˆ 10´5 except for ENZYMS MIS and RB-200 MVC, where a learning rate of 1 ˆ 10´4 is used.

EGN Hyperparameters.

All runs with EGN on RB-200 MVC have a batch size of H “ 32. Here, in EGN-Anneal we use 12 GNN
layers and in EGN without annealing 10 GNN layers performes best. In EGN-Anneal the initial temperature of
T0 “ 0.1 with the learning rate of 5 ˆ 10´5 obtained the best results. With EGN without annealing the same
learning rate is used. Both methods are trained for 2000 epochs.

A.14 Annealing Schedule

As described in Sec. 3, we change the temperature in the reward Eq. 6 according to a predefined annealing
schedule. During the warm-up phase of Nwarmup epochs the temperature is held constant at the initial temperature
T0. Afterwards the following temperature schedule is applied:

T pNepochq “ TannealpNepochq ¨

„

cos

ˆ

2πpλ `
1

2
q
Nepoch ´ Nwarmup

Nanneal

˙

` 1

ȷ

. (16)

Here, TannealpNepochq is the gradually decreasing amplitude of the temperature oscillations:

TannealpNepochq “
T0

1 ` c ¨
Nepoch´Nwarmup

Nanneal

. (17)
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Figure 4: Illustration of the cosine modulated annealing schedule. The plot depicts the annealing
schedule with Nwarmup “ 200 and Nanneal “ 1000 steps. The vertical red line marks the end of the
warmup phase.

Here c is a scaling factor that determines the slope of TannealpNepochq. The parameter λ determines the number
temperature oscillations in the schedule and Nanneal is the total number of epochs that follow after the warmup
phase. We use λ “ 3, Nwarmup “ 400 and c “ 6. The course of the annealing schedule is illustrated in Fig. 4.
One reason for the usage of cosine modulation function is rather practical, namely that T “ 0 is reached multiple
times during training, which allows an assessment of the training success at an earlier stage for a given set of
hyperparmeters. In the absence of cosine modulation, we found it harder to assess the final performance before
the entire annealing was finished. Similar periodic schedules for learning rates have been proposed as variants of
Stochastic Gradient Descent [Loshchilov and Hutter, 2017].

A.15 Derivations

A.15.1 Free-Energy Decomposition into Rewards

In the following we show that using the reward defined in Eq. 6 is consistent with the goal of minimizing the
free-energy defined in Eq. 2.
The right-hand side of Eq. 2 contains the expectation of the energy Epσq and a term that is proportional to the
entropy of pθpσq. For the energy we obtain the following decomposition into individual steps i of the solution
generation process (Sec. 3):

Epσq “

N
ÿ

i“1

«

ÿ

jăi

Jijσjσi ` Biσi

ff

“

N
ÿ

i“1

σi

«

ÿ

jăi

Jijσj ` Bi

ff

“

N
ÿ

i“1

∆Ei (18)

By using an autoregressive factorization the entropy can also be decomposed in the following way:

S
`

pθpσ|Eq
˘

“ ´
ÿ

σ

pθpσ|Eq log pθpσ|Eq “ ´
ÿ

σ

pθpσ|Eq

«

N
ÿ

i“1

log pθpσi|σăi, Eq

ff

“ ´ E
σ„pθ

«

N
ÿ

i“1

log pθpσi|σăi, Eq

ff (19)

Therefore, we can use this decomposition by using the reward RipGi, βq “ ´

”

∆Ei ` 1
β
log ppσi|σăi, Eq

ı

.

By the relation F pθ;β,Eq “ ´Eσ„pθ r
ř

i RipGi, βqs, maximizing this reward will then be equivalent to
minimizing the free-energy.

A.15.2 Details on Remark 1

We first restate Corollary 5 of [Dudík et al., 2007] in our notation. In the context of this Corollary our energy
function E can be regarded as a single feature and, therefore, we use their result for n “ 1. In addition, we
consider the case in which the samples S are drawn from the target distribution, i.e. π “ ppβ˚

q. Since the terms
Boltzmann distribution and Gibbs distribution can be used interchangeably we obtain:
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Corollary 1 (Corollary 5 of [Dudík et al., 2007]). Assume that E is bounded in r0, 1s. Let β̂ minimize
Lp̂pβq ` λ|β| with λ “

a

lnp2{δq{p2mq. Then with probability at least 1 ´ δ for every Boltzmann distribution
ppβq,

Lppβ˚qpβ̂q ď Lppβ˚qpβq `
|β|

?
m

a

2 lnp2{δq.

Now we consider the result for the case β “ β˚ and subtract Lppβ˚qpβ˚
q. Remark 1 follows by applying the

definition of the Kullback-Leibler divergence DKL to the left-hand side.
We note that an equivalent statement, however, with a consideration the Rademacher complexity of E can be
derived from Theorem 2 in Cortes et al. [2015].
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