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ABSTRACT

We introduce the first metric for evaluating disentanglement at individual hierarchy
levels of a structured latent representation. Applied to object-centric generative
models, this offers a systematic, unified approach to evaluating (i) object separation
between latent slots (ii) disentanglement of object properties inside individual slots
(iii) disentanglement of intrinsic and extrinsic object properties. We theoretically
show that for structured representations, our framework gives stronger guarantees
of selecting a good model than previous disentanglement metrics. Experimentally,
we demonstrate that viewing object compositionality as a disentanglement problem
addresses several issues with prior visual metrics of object separation. As a core
technical component, we present the first representation probing algorithm handling
slot permutation invariance.

1 INTRODUCTION

A salient challenge in generative modeling is the ability to decompose the representation of images
and scenes into distinct objects that are represented separately and then combined together. Indeed, the
capacity to reason about objects and their relations is a central aspect of human intelligence (Spelke
et al., 1992), which can be used in conjunction with graph neural networks or symbolic solvers to
enable relational reasoning. For instance, (Wang et al., 2018) exploit robot body structure to obtain
competitive performance and transferability when learning to walk or swim in the Gym environments.
(Yi et al., 2019) perform state-of-the-art visual reasoning by using an object based representation in
combination with a symbolic model. In the last years, several models have been proposed to learn
compositional representations in an unsupervised fashion: TAGGER (Greff et al., 2016), NEM (Greff
et al., 2017), R-NEM (Van Steenkiste et al., 2018), MONet (Burgess et al., 2019), IODINE (Greff
et al., 2019), GENESIS (Engelcke et al., 2019), Slot Attention (Locatello et al., 2020), MulMON (Li
et al., 2020), SPACE (Lin et al., 2020). They jointly learn to represent individual objects and to
segment the image into meaningful components, the latter often being called "perceptual grouping".
These models share a number of common principles: (i) Splitting the latent representation into several
slots that are meant to contain the representation of an individual object. (ii) Inside each slot, encoding
information about both object position and appearance. (iii) Maintaining a symmetry between slots in
order to respect the permutation invariance of objects composition. These mechanisms are intuitively
illustrated in Figure 1.

To compare and select models, it is indispensable to have robust disentanglement metrics. At the
level of individual factors of variations, a representation is said to be disentangled when information
about the different factors is separated between different latent dimensions (Bengio et al., 2013;
Locatello et al., 2019). At object-level, disentanglement measures the degree of object separation
between slots. However, all existing metrics (Higgins et al., 2016; Chen et al., 2018; Ridgeway and
Mozer, 2018; Eastwood and Williams, 2018; Kumar et al., 2017) are limited to the individual case,
which disregards representation structure. To cite Kim and Mnih (2018) about the FactorVAE metric:

The definition of disentanglement we use [...] is clearly a simplistic one. It does not
allow correlations among the factors or hierarchies over them. Thus this definition
seems more suited to synthetic data with independent factors of variation than to
most realistic datasets.
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Figure 1: A compositional latent representation is composed of several slots. Each slot generates a
part of the image. Then, the different parts are composed together. Pixel-level metrics measure object
separation between slots at visual level, while our framework operates purely in latent space.

As a result, prior work has restricted to measuring the degree of object separation via pixel-level
segmentation metrics. Most considered is the Adjusted Rand (ARI) Index (Rand, 1971; Greff et al.,
2019), where image segmentation is viewed as a cluster assignment for pixels. Other metrics such
as Segmentation Covering (mSC) (Arbelaez et al., 2010) have been introduced to penalize over-
segmentation of objects. A fundamental limitation is that they do not evaluate directly the quality of
the representation, but instead consider a visual proxy of object separation. This results in problematic
dependence on the quality of the inferred segmentation masks, a problem first identified by Greff
et al. (2019) for IODINE, and confirmed in our experimental study.

To address these limitations, we introduce the first metric for evaluating disentanglement at
individual hierarchy levels of a structured latent representation. Applied to object-centric generative
models, this offers a systematic, unified approach to evaluating (i) object separation between latent
slots (ii) disentanglement of object properties inside individual slots (iii) disentanglement of intrinsic
and extrinsic object properties. We theoretically show that our framework gives stronger guarantees
of representation quality than previous disentanglement metrics. Thus, it can safely substitute to
them. We experimentally demonstrate the applicability of our metric to three architectures: MONet,
GENESIS and IODINE. The results confirm issues with pixel-level segmentation metrics, and
offer valuable insight about the representation learned by these models. Finally, as a core technical
component, we present the first representation probing algorithm handling slot permutation invariance.

2 BACKGROUND

2.1 DISENTANGLEMENT CRITERIA

There exists an extensive literature discussing notions of disentanglement, accounting for all
the different definitions is outside the scope of this paper. We chose to focus on the three criteria
formalized by Eastwood and Williams (2018), which stand out because of their clarity and simplicity.
Disentanglement is the degree to which a representation separates the underlying factors of variation,
with each latent variable capturing at most one generative factor. Completeness is the degree to
which each underlying factor is captured by a single latent variable. Informativeness is the amount of
information that a representation captures about the underlying factors of variation. Similarly to prior
work, the word disentanglement is also used as a generic term that simultaneously refers to these
three criteria. It should be clear depending on the context whether it is meant as general or specific.
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2.2 THE DCI FRAMEWORK

For brevity reasons, we only describe the DCI metrics of Eastwood and Williams (2018), which are
most closely related to our work. The supplementary material provides a comprehensive overview of
alternative metrics. Consider a dataset X composed of n observations x1, . . . , xn, which we assume
are generated by combining F underlying factors of variation. The value of the different factors for
observation xl are denoted vl1, . . . , v

l
F . Suppose we have learned a representation z = (z1, . . . , zL)

from this dataset. The DCI metric is based on the affinity matrix R = (Ri,j), where Ri,j measures
the relative importance of latent zi in predicting the value of factor vj . Supposing appropriate
normalization for R, disentanglement is measured as the weighted average of the matrix’ row entropy.
Conversely, completeness is measured as the weighted average of column entropy. Informativeness is
measured as the normalized error of the predictor used to obtain the matrix R.

3 EVALUATING STRUCTURED DISENTANGLEMENT

3.1 contains a high level description of the goals steering our framework. Our metric is formally
described in 3.2. In 3.3, we present theoretical results showing that our framework can safely substitute
to DCI since it provides stronger guarantees that the selected model is correctly disentangled.

3.1 PRESENTATION OF THE FRAMEWORK

Prior work has focused on measuring disentanglement at the level of individual factors of variation
and latent dimensions (that we will refer to as global or unstructured disentanglement). In the case of
compositional representations with several objects slots, additional properties are desirable:

1. Object-level disentanglement: Objects and latent slots should have a one-to-one matching.
That is, changing one object should lead to changes in a single slot, and vice-versa.

2. Slot disentanglement: Inside a given slot, properties of the object must be disentangled.

3. Slot symmetry: The latent dimension responsible for a given factor (e.g., color) should be
invariant across slots. This means that all slots should have the same inner structure.

Our structured disentanglement metric allows to evaluate all these criteria within a single unified
framework. Similarly to DCI, it is based on the affinity matrix (Rτ̂ ,τ ), where Rτ̂ ,τ measures the
relative importance of latent zτ̂ in predicting the value of factor vτ . The key novelty compared to DCI
is that we propose to measure disentanglement with respect to arbitrary projections of the matrix R.
Intuitively, projections correspond to a marginalization operation that selects a subset of hierarchy
levels and discards the others. The coefficients Rτ̂ ,τ that are projected together are summed to create
group affinities. Figure 2 gives an intuitive illustration of this process on a toy example.

With object-centric representations, projecting at the object/slot level allows to study the relation
of objects and slots without taking their internal structure into consideration. Ultimately this permits
to evaluate our object-level disentanglement criterion. Projecting at property level allows to study
the internal slot representation independently of the object, for evaluation of both internal slot
disentanglement and slot symmetry, with a single metric. The identity projection conserving all levels
measures flat (DCI) disentanglement. This generalizes to arbitrary hierarchies in the representation,
such as disentanglement of position and appearance, or intrinsic and extrinsic object properties.

3.2 MATHEMATICAL DEFINITION

To formalize our framework most conveniently, we propose to view the affinity matrix R = (Rτ̂ ,τ )
as a joint random variable (X,Y ), where X is a random latent dimension, and Y a random factor.
Supposing that R is normalized to have sum one, this means P[X = τ̂ , Y = τ ] = Rτ̂ ,τ . This point
of view, which is only implicit in prior work, allows to formalize the projections of R as a coupled
marginalization operation (ρ(X), ρ(Y )), where ρ(α1, . . . , αh) = (αe1 , . . . , αel

) selects a subset of
hierarchy levels. This yields a concise and elegant mathematical framework, where we can build on
standard information-theoretic identities to derive theoretical properties. In the following, HU (A|B)
denotes the conditional entropy of A with respect to B (detailed definitions in the supplementary).
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Figure 2: Overview of projections on a toy example of object-centric representation. The affinity
scores R are marginalized according to the selected hierarchy levels. In projected space, row entropy
measures disentanglement, while column entropy measures completeness. The measure of entropy
involves a renormalization by row (for completeness) or column (for disentanglement). The affinity
scores R are computed in an all-pairs manner. A mapping can be obtained (e.g. from object to slot)
by looking for the maximum of each column.

Our disentanglement criteria are the following:

Completeness with respect to projection ρ measures how well the projected factors are captured by a
coherent group of latents, by measuring column entropy in the projected space. It is measured as

C(ρ) = 1−HU (ρ(X)|ρ(Y )) ,

where U = |ρ(T̂ )| is the number of groups of latents in the projection.

Disentanglement with respect to projection ρ measures to what extent a group of latent variables
influences a coherent subset of factors, by measuring projected row entropy. It is measured as

D(ρ) = 1−HV (ρ(Y )|ρ(X)) ,

where V = |ρ (T )| is the number of groups of factors in the projection.

Informativeness does not depend on the projection. It is defined as the normalized error of a
low-capacity model f that learns to predict the factor values v from the latents z, i.e.

I =
‖f(z)− v‖2
‖v‖2

.

The changing log bases U and V aim at ensuring normalization between 0 and 1.
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3.3 ESTABLISHING TRUST IN OUR FRAMEWORK: A THEORETICAL ANALYSIS

Our disentanglement D(ρ) and completeness C(ρ) metrics depend on the subset of hierarchy levels
contained in the projection ρ. We theoretically analyze the influence of the projection choice. It is
especially interesting to study the behavior when distinct subsets of hierarchy levels are combined.
Our key results are the following: Theorem 1 shows that our framework contains DCI as a special case,
when the identity projection is chosen. Theorem 2 shows that the metrics associated to the identity
projection can be decomposed in terms of one dimensional projections along a single hierarchy level.
Together, these results formally show that one dimensional projections provide a sound substitute
for prior unstructured metrics. This is very useful to build trust in our framework.
Theorem 1 (Relation with DCI). The DCI metrics of Eastwood and Williams (2018) are a special
case of our framework, with the identity projection conserving all hierarchy levels.

Theorem 2 uses the intuitive notion of decomposition of a projection. The projection ρ is said to be
decomposed into ρ1, . . . ρk if the set of hierarchy levels selected by ρ is the disjunct union of the set of
levels selected by ρ1, . . . ρk. In the case of object-centric latent representations, the identity projection
ρid that keeps all hierarchy levels {object, property} can be decomposed as ρobject considering only
{object} and ρproperty considering only {property}.
Theorem 2 (Decomposition of a projection). Consider a decomposition of the projection ρ (with L
latent groups) into disjunct projections ρ1, . . . ρk (with respectively L1, . . . , Lk latent groups). The
following lower bound for the joint completeness (resp. disentanglement) holds

1− k +
k∑
s=1

C(ρs) ≤ 1−
k∑
s=1

1− C(ρs)
logLs(L) ≤ C (ρ) .

Suppose that all one dimensional projections verify C(ρs) ≥ 1 − ε, where ε ≥ 0. We obtain the
lower bound C(ρid) ≥ (1− k) + k(1− ε) = 1− kε for the identity projection. For object-centric
representations, this implies that when object-level completeness and property completeness are both
perfect (that is, ε = 0), then DCI completeness is also perfect. The same works for disentanglement.
The supplementary materials contains detailed proofs, a matching upper bound, as well as an explicit
formula in the special case k = 2.

4 PERMUTATION INVARIANT REPRESENTATION PROBING

Representation probing aims at quantifying the information present in each latent dimension, to
obtain the relative importance Rτ̂ ,τ of latent zτ̂ in predicting factor vτ . Traditional probing methods
either use regression feature importance or mutual information to obtain R (see the supplementary).
However, these techniques do not account for the permutation invariance of object-centric representa-
tions, in which slot reordering leaves the generated image unchanged. To address this, we propose
a novel formulation as a permutation invariant feature importance problem. As a core technical
contribution of this paper, we present an efficient EM-like algorithm to solve this task in a tractable
way. Traditional representation probing fits a regressor f to predict the factors v from latents z,
solving

arg min
f

n∑
j=1

∥∥vj − f(zj)
∥∥2

2 .

Then, the matrix R is extracted from the feature importances of f . In contrast, our formulation of
permutation invariant representation probing jointly optimizes on permutations (π1, . . . , πn) over
groups of latent dimensions (for instance slots), allowing to account for slot permutation invariance
of the representation, thus solving

arg min
(π1,...,πn),f

n∑
j=1

∥∥vj − f(πj(zj))
∥∥2

2 .

To address the combinatorial explosion created by the joint optimization, we chose an EM-like
approach and iteratively optimize f and the permutations (π1, . . . , πn), while keeping the other fixed
(Algorithm 1). This method yields satisfying approximate solutions provided a good initialization
(See Figure 5 and the supplementary).
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Algorithm 1 Permutation-invariant representation probing

Input: Latent codes z1, . . . , zn and factor values v1, . . . , vn for n input images
for i = 1 to n_iters do

# M STEP
Fit predictor fi to features z1, . . . , zn and targets v1, . . . , vn.
# E STEP
for j = 1 to n do
πmin ← arg min

π

∥∥vj − fi(π(zj))
∥∥2

2 # (π ranges on all slot permutations)

zj ← πmin(zj)
Fit ffinal to features z1, . . . , zn and targets v1, . . . , vn.
Obtain feature importances from ffinal.

5 EXPERIMENTAL EVALUATION

Models We compare three different architectures with public Pytorch implementations: MONet,
GENESIS and IODINE, which we believe to be representative of object-centric representations. We
evaluate two variants of MONet: the first one, denoted as "MONet (Att.)" follows the original design
in Burgess et al. (2019) and uses the masks inferred by the attention network in the reconstruction.
The second, denoted as "MONet (Dec.)" is a variant that instead uses the decoded masks. For all
models, we perform an ablation of the disentanglement regularization in the training loss. Ablated
models are trained with pure reconstruction loss, denoted as (R). All our final feature importances are
obtained with random forests.

Datasets We evaluate all models on CLEVR6 (Johnson et al., 2017) and Multi-dSprites (Matthey
et al., 2017; Burgess et al., 2019), with the exception of IODINE that we restricted to Multi-dSprites
for computational reasons, as CLEVR6 requires a week on 8 V100 GPUs per training. These datasets
are the most common benchmarks for learning object-centric latent representations. Both contain
images generated compositionally. Multi-dSprites has 2D shapes on a variable color background,
while CLEVR6 is composed of realistically rendered 3D scenes. We slightly modified CLEVR6 to
ensure that all objects are visible in the cropped image. Table 3 contains our experimental results at
both object and property-level, compared to pixel-level segmentation metrics (ARI and mSC). We
highlight some of these numbers in Figure 3. Figure 4 shows the different projections of the affinity
matrix R as Hinton diagrams. Figure 5 visualizes the slot permutation learned by our permutation
invariant probing algorithm.
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Figure 3: a) Ablation of disentanglement regularization tends to decrease disentanglement at object-
level (Multi-dSprites), b) Ablation of disentanglement regularization tends to increase pixel-level
segmentation (measured with ARI on Multi-dSprites). c) Object-level disentanglement vs. ARI for
different models trained on Multi-dSprites. We observe a negative correlation between both metrics.
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Figure 5: Effect of EM probing (Alg. 1) on slot ordering for a group of similar inputs. Each row
corresponds to the decomposition of a given input between slots. a) is without EM probing, b) with
EM-probing. The decomposition is compared to a reference decomposition (on the first row). We
observe that EM-probing assigns objects to slot in a way that is always consistent to the reference
input. That is, similar objects are matched to similar slots.
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Table 1: Comparison of the permutation obtained with
EM probing vs obtained with IoU matching (multi-
dSprites, averaged across models). We report (i) per-
centage of exactly matching permutations (ii) average
mismatch between both permutations.

% EXACTLY MATCHING # AVERAGE MISMATCH

MEASURED 62 % 1.08
BEST POSSIBLE 100 % 0

WORST POSSIBLE 0 % 5
CHANCE LEVEL 0.83 % 4
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5.1 RELATION TO PIXEL-LEVEL SEGMENTATION METRICS.

Our object-level metrics have the same goal as visual metrics such as ARI and mSC: quantifying
object separation between slots. Therefore, we observe a general correlation of all metrics, with
low values at initialization and improvement throughout training. The main difference is that ARI
and mSC evaluate separation at visual level, while our framework purely operates in latent space,
measuring the repartition of information (see Figure 1). Consequently, ARI and mSC tend to favor
sharp object segmentation masks, while our framework is focused on easy extraction of information
from the latent space. This fundamental difference leads to specific regimes of negative correlation.
Figure 3 c) shows that ARI and our object-level metric give very different rankings of trained model
performance for Multi-dSprites, suggesting that our framework addresses the dependence of ARI on
sharp segmentation masks identified by Greff et al. (2019). This is particularly visible for IODINE,
which achieves good disentanglement despite its low ARI.

5.2 INFLUENCE OF THE DISENTANGLEMENT REGULARIZATION

Figure 3 a) and b) shows an ablation study of the disentanglement regularization. The ablated
models are trained with pure reconstruction loss, without regularization of the latent space. For
our disentanglement metrics, we observe a consistent negative impact. This is consistent with
observations for unstructured representations (Eastwood and Williams, 2018; Locatello et al., 2019).
On the contrary, the ablation tends to improve pixel-level segmentation. This would imply that
visual object separation is only caused by architectural inductive biases, which clarifies the impact of
disentanglement regularization in prior work.

5.3 INSIGHTS ABOUT THE DIFFERENT MODELS

Qualitatively, visual inspection of the different projections of matrix R in Figures 4 and 11 shows a
near one-to-one mapping between slots and objects, except some redundancy for the background slot,
which is excluded from our metrics. Our quantitative results in Table 3 confirm a near perfect object
disentanglement of up to 90% for Multi-dSprites. For CLEVR6 we consider the value of 50% to be
decent, because the logarithmic scale of the conditional entropy tends to create a strong shift towards
0. To give a simple reference, if each object is equally influenced by 2 slots among 6, the expected
value is 1− log6(2) = 57%. Table 3 additionally shows that (i) the robust performance, of GENESIS
supports the generalization of its separate mask encoding process and GECO optimizer. (ii) that
IODINE is able to get close to the performance of MONet, despite a less stable training process
for IODINE which resulted in an outlier with bad performance. (iii) MONet (Att.) obtains better
visual separation metrics, while MONet (Dec.) has better disentanglement. This is because using the
decoded masks in MONet (Dec.) increases the pressure to accurately encode the masks in the latent
representation. On the contrary, MONet (Att.) does not use the decoded masks for reconstruction,
and thus does not need to encode them very accurately.

5.4 EXTENSION TO OTHER HIERARCHY LEVELS

Table 2: Projection along a third hierarchy
level (GENESIS, MdSprites).

EXTRINSIC INTRINSIC

MASK LATENT 0.2 0.32
COMPONENT LATENT 0 0.48

To demonstrate generalization to more than two hierar-
chy levels, we evaluate disentanglement of intrinsic and
extrinsic object properties. This specifically applies to
GENESIS, for which each slot is divided in a mask latent
and component latent. Intuitively, intrinsic properties
(such as shape and color) are related to the nature of the
object, whereas extrinsic properties (such as position and
orientation) are contextual to the scene. The projection along this third hierarchy level is given
in Table 2, for GENESIS trained on Multi-dSprites. Numbers show that extrinsic properties are
successfully captured by the mask latent. However, intrinsic properties are not satisfyingly separated.
This is because information about object shape is contained both in the segmentation mask and in
the generated image of the object. We believe that recent architectures (Nguyen-Phuoc et al., 2020;
Ehrhardt et al., 2020) performing object composition in 3D scene space might solve this problem.
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Table 3: Experimental results (stderr. over three seeds, values in %). Models with (R) have no
disentanglement regularization. ARI/mSC is slightly higher (resp. lower) than prior work for
Multi-dSprites (resp. CLEVR6,) because of minor differences in the data generation process. At
object-level, we observe that disentanglement and completeness match closely, but this is not the case
at property-level, due to the asymmetry in the number of latent factors and slot dimensions.

OBJECT-LEVEL PROPERTY-LEVEL

MODEL DIS. (↑) COMP. (↑) DIS.(↑) COMP.(↑) INF.(↓) ARI(↑) MSC (↑)

MDSPR.

MONET (ATT.) 52± 4 52± 4 39± 6 60± 5 45± 3 95± 1 83 ± 0.3
MONET (ATT.) (R) 60± 4 60± 4 29± 3 52± 1 36± 2 98 ± 0.1 86 ± 4
MONET (DEC.) 75± 7 75± 7 59± 6 74 ± 5 26± 6 80± 4 68± 2
MONET (DEC.) (R) 69± 0.3 69± 0.2 35± 1 55± 1 32± 0.8 91± 0.2 69± 2
GENESIS 90 ± 0.8 91 ± 0.6 72 ± 0.5 60± 0.4 24 ± 0.4 85± 0 70± 0.3
GENESIS (R) 64± 3 65± 3 65± 1 42± 1 30± 0.5 96± 0.6 84 ± 0.7
IODINE 70± 9 72± 10 37± 5 62± 4 37± 6 80± 8 71± 3
IODINE (R) 35± 2 36± 1 17± 2 46± 1 61± 2 75± 4 65± 1

CLEVR6

MONET (ATT.) 46 ± 5 48 ± 5 22± 4 51 ± 3 55± 5 93 ± 0.4 68 ± 6
MONET (ATT.) (R) 40± 9 41± 9 13± 5 44± 3 61± 8 93 ± 0.4 65 ± 5
MONET (DEC.) 47 ± 6 48 ± 6 21± 6 50 ± 4 55± 5 90± 2 65± 2
MONET (DEC.) (R) 40± 1 41± 0.2 13± 0.6 44± 0.1 60± 0.6 92± 0.5 69 ± 1
GENESIS 50 ± 2 52 ± 2 47 ± 2 39± 2 47 ± 0.9 91± 0.4 65± 3
GENESIS (R) 43± 1 45± 2 24± 2 21± 2 65± 1 92± 0.2 60± 3

5.5 RE-EXAMINING THE MODEL SELECTION PROCESS

These divergences between visual metrics and our framework lead us to reconsider prior model
selection processes, which were primarily centered on ARI. To give three striking examples (i) the
recent Slot Attention (Locatello et al., 2020) architecture does not use disentanglement regularization.
In light of our ablation study, we believe that this is potentially harmful for disentanglement (Section
5.2). (ii) Burgess et al. (2019) and Engelcke et al. (2019) chose to privilege MOnet (Att.) which
obtains lower disentanglement that MONet (Dec.) (Section 5.3) (iii) most prior work chose a 2D
segmentation mask approach that does not satisfyingly disentangle intrinsic and extrinsic object
properties (5.4). We believe that all related existing experimental studies would benefit from the
perspective offered by our framework.

6 RELATED WORK

Structured disentanglement metrics. Most similar to our work is the slot compactness metric
of Racah and Chandar (2020), also based on aggregation of feature importances to measure object
separation between slots. However, it only operates at one hierarchy level and does not handle
slot permutation invariance, which is essential to obtain meaningful results. Also related is the
hierarchical disentanglement benchmark of Ross and Doshi-Velez (2021), whose ability to learn the
hierarchy levels in the representation, is remarkable, but is unfortunately limited in its applicability
to toy datasets. Finally, Esmaeili et al. (2019) present a structured variational loss encouraging
disentanglement at group-level. There is a high-level connection with our work, but the objective is
ultimately different. Esmaeili et al. (2019) evaluate their structured variational loss with unstructured
disentanglement metrics.

7 CONCLUSION

Our framework for evaluating disentanglement of structured latent representations addresses a number
of issues with prior visual segmentation metrics. We hope that it will be helpful for validation and
selection of future object-centric representations. Besides, we took great care in not making any
domain specific assumption, and believe that the principles discussed here apply to any kind of
structured generative modelling.
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A ADDITIONAL RELATED WORK

A.1 OBJECT-CENTRIC REPRESENTATION LEARNING

Many models have been developed to perform unsupervised perceptual grouping and learn composi-
tional representations. A first line of work (TAGGER (Greff et al., 2016), NEM (Greff et al., 2017),
R-NEM (Van Steenkiste et al., 2018)) has focused on adapting traditional Expectation Maximization
(EM) (Dempster et al., 1977) methods for data clustering to a differentiable neural setting. Nonethe-
less, despite strong theoretical foundations, these models do not scale to more complex multi-object
datasets such as Multi-dSprites (Burgess et al., 2019) and CLEVR (Johnson et al., 2017). More
recent efforts (MONet (Burgess et al., 2019), IODINE (Greff et al., 2019), GENESIS (Engelcke et al.,
2019)), Slot Attention (Locatello et al., 2020)) have focused on application to these datasets.

These architectures differ by how exactly they segment the image between the different slots of
the representation. MONet is based on a recurrent attention network that repeatedly separates parts
of the image until it is totally decomposed. GENESIS was designed to address a key limitation of
MONet, namely that it does not learn a latent representation for the segmentation, which prevents
principled sampling of novel scenes. With GENESIS, segmentation masks are separately encoded,
and an autoregressive prior on the mask latents is enforced. IODINE uses a different strategy building
upon the framework of iterative amortized inference, where an initial arbitrary guess for the posterior
is progressively refined. However, this iterative process is very computationally expensive. Slot
Attention, as its name indicates, introduces an attention based iterative encoder that is much more
computationally efficient than Iodine. The SPACE model (Lin et al., 2020) combines the strength of
spatial attention with scene mixture models to further improve applicability. Finally, MulMON (Li
et al., 2020) extends object-centric representations to a setting with multi-view supervision.

In a parallel line of work, object-compositional generationis believed to be a promising inductive
bias for GAN-like models (van Steenkiste et al., 2018). Obtaining good representations and pro-
ducing realistic samples are connected challenges, which both require to develop suitable decoder
architectures. Very recent work has been focusing on integrating object compositionality into the
GAN framework (Nguyen-Phuoc et al., 2020; Ehrhardt et al., 2020; Niemeyer and Geiger, 2020).
The question of disentanglement is also present in this context (Nguyen-Phuoc et al., 2019), but it
remains a secondary objective.

A.2 TRADITIONAL DISENTANGLEMENT METRICS

Several metrics (Zaidi et al., 2020) have been developed to evaluate the quality of learned representa-
tions and allow comparison between models. We identify two main categories:

Classifier-based metrics The first group of metrics is based on fixing the value of a factor of
variation and generating several samples sharing this value. Intuitively, if the factors of variation are
satisfyingly disentangled in the representation, it should be possible to predict which factor was fixed
from the different latents. Inside this category, the metric differ in how they exactly identify the factor.
BetaVAE (Higgins et al., 2016) uses a linear classifier to predict the factor index, while FactorVAE
uses majority vote and takes the empirical variances as input, with the goal of addressing several
robustness issues. Despite these implementation differences, Locatello et al. (2019) have empirically
observed that both metrics are strongly correlated across a wide range of tasks and models.

Affinity-based metrics The second category of metrics is based on measuring the affinity between
each factor of variation and each latent variable, and evaluating how close these are to a one-to-one
mapping between factors and variables. Different ways of quantifying affinity have been proposed:
the Mutual Information Gap (Chen et al., 2018) and Modularity (Ridgeway and Mozer, 2018) measure
mutual information between factors and variables. The SAP score (Kumar et al., 2017) leverages the
linear coefficient of determination R2 obtained when regressing the factor from the latent. Finally,
the DCI metric is based on measuring regression feature importance, using either Lasso or random
forests. These metrics also differ on how they exactly assess the separation of factors in the latent
representation. The Mutual Information Gap and the SAP score measure the gap between the two
most relevant variables for a factor. Modularity alternatively suggests to quantify the distance to an
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ideal affinity template. Finally, the DCI metric uses the entropy of the normalized feature importances
as an indicator of entanglement.

In developing our metric, we have chosen to privilege the affinity-based approach for two reasons.
First, it does not require the ability to fix one factor while generating samples, contrary to BetaVAE
and FactorVAE. Second, the notion of affinity generalizes in a very flexible way to group of factors
and latent variables: it is sufficient to sum the scores of all pairs of factors and variables in the groups.
We use regression feature importance as a way of measuring affinity. Moreover, we privilege the
entropy measure of separation over affinity-gap methods. Indeed, we believe that entropy captures
more information about the repartition of information as it takes into account all coefficients rather
than just the top two.

A.3 PERMUTATION INVARIANT LEARNING

Developing algorithms that preserve permutation-invariance is no doubt a major challenge for the
machine learning community: similar problematics appear in a variety of applications, ranging from
speaker separation in the cocktail-party problem (Yu et al., 2017) to object detection losses (Carion
et al., 2020). Compared to the representation probing of IODINE, the Hungarian matching in Slot
Attention, and the IoU matching of MulMON (Li et al., 2020), the fundamental novelty or Algorithm
1 is that it obtains the optimal alignment directly at latent code level (that is, feature level), which is
agnostic to the input type. In contrast, the alignment in IODINE and MulMON operates at image level
using the segmentation mask, and the Hungarian matching in Slot Attention aligns factor predictions
and labels. Besides, the matching approaches used in Iodine, Slot Attention and MulMON only
identify the most important slot for each target, but the DCI framework requires an importance score
for each slot/object pair. For future work, it would be interesting to compare EM-probing with
Sinkhorn based approaches for learning latent permutations (e.g. Mena et al. (2018)).

B PROOFS AND ADDITIONAL THEORETICAL RESULTS

B.1 BACKGROUND IN INFORMATION THEORY

The description of our metric leverages concepts originating from the field of information-
theory Cover (1999). In this section, we recall some central definitions and results that we will use in
the rest of the manuscript. In all of the following, X , Y and Z denote three discrete random variables
defined on a common probability space. We denote x1, . . . , xl (resp y1, . . . , ym and z1, . . . , zn) the
potential outcomes of X (resp. Y and Z). K is a positive real number. For brevity reasons, we denote
P[xi] for P[X = xi], an similarly for Y and Z and the joint random variables.
Definition 1. The entropy of X in base K quantifies the amount of uncertainty in the potential
outcomes of X . It is defined as

HK(X) = −E[logK(P(X))] = −
l∑
i=1

P[xi] logK(P[xi]).

Definition 2. The conditional entropy of Y given X in base K quantifies the amount of information
needed to describe the outcome of Y given than the value of X is known. It is defined as

HK(Y |X) = −
∑
i,j

P[xi, yj ] logK(P[yj |xi]).

Definition 3. The mutual information ofX and Y in baseK is a measure of the amount of information
obtained about one of the two variables by observing the other. It is defined as

IK(X;Y ) =
∑
i,j

P[xi, yj ] logK
(

P[xi, yj ]
P[xi] · P[yj ]

)
.

Definition 4. The conditional mutual information IK(X;Y |Z) is, in base K, the expected value of
the mutual information of X and Y conditioned on the value of Z. Formally,

IK(X;Y |Z) =
∑
i,j,k

P[xi, yj , zk] logK
(

P[xi, yj , zk]
P[xi|zk]P[yj |zk]

)
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The following Lemmas are standard results of information theory. As these are well-known, we did
not provide a proof here and we refer to textbooks such as Cover (1999).

Lemma 1 (Change of base). Let K1 be a positive real number. The change of base formula for
entropy is

HK1(X) = HK(X)
logK1 K

.

Similarly, we have for conditional entropy that

HK1(Y |X) = HK(Y |X)
logK1 K

.

Lemma 2 (Subadditivity of entropy). Let X1, . . . , Xn be n arbitrary discrete random variables. We
have

HK(X1, . . . , Xn) ≤
n∑
i=1

HK(Xi).

The same holds for conditional entropy, i.e.

HK(X1, . . . , Xn|Y ) ≤
n∑
i=1

HK(Xi|Y ).

Lemma 3 (Nonnegativity of mutual information). The following holds

HK(X)−HK(X|Y ) = IK(X;Y ) ≥ 0.

Conditioned on a third variable, this generalizes to

HK(X|Z)−HK(X|Y,Z) = IK(X;Y |Z) ≥ 0.

Lemma 4 (Relation of joint entropy to individual entropies). Let X1, . . . , Xn be n arbitrary discrete
random variables. We have

HK(X1, . . . , Xn) ≥ nmax
i=1

HK(Xi).

The same holds for conditional entropy, i.e.

HK(X1, . . . , Xn|Y ) ≥ nmax
i=1

HK(Xi|Y ).

Lemma 5 (Joint conditional entropy). The following holds

HK(X,Y |Z) = HK(X|Z) +HK(Y |Z)− IK(X;Y |Z).

B.2 FORMALIZATION OF THE STRUCTURED SETTING

The specificity of our setting compared to the DCI metric is that the structured organization of latent
variables and factors of variations can not be accurately described by scalar indexes. We propose
to account for this structured organization via tuple indexes, in which each element of the tuple is
responsible for a hierarchy level. In general, the structure over factors of variation expresses the goal
of metric (e.g. measuring object separation), while the structure over latent dimensions depends on
the model architecture.

Formally, both structures can be defined as relations. Consider n attributes A1, . . . , An representing
levels of hierarchy. Each attribute is associated with a set of possible values (a domain) for factors
domF(Ai) and for latents domL(Ai). These domains constrain the possible values for the tuple
indexes, such that the set of tuples T describing the factors of variation is a subset of

∏n
i=1 domF(Ai),

and the set of tuples T̂ describing the latent dimensions is a subset of
∏n
i=1 domL(Ai). Thus,

the factor values for sample i can be denoted (viτ )τ∈T , and the representation zi can be written
zi = (ziτ̂ )τ̂∈T̂ . We also denote |T | = F and |T̂ | = L.
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Toy example we consider a data generating process with two objects having two properties each.
The first attribute A1 is responsible for the object hierarchy level, while A2 is responsible for the
property level. The structure over factors is formally defined as

T = {(object 1, color), (object 1, size),
(object 2, color), (object 2, size)},

Supposing that there are 2 slots with two dimensions each, the structure over latent dimensions is
defined as

T̂ = {(slot 1, dim 1), (slot 1, dim 2),
(slot 2, dim 1), (slot 2, dim 2)}

B.3 PROOFS OF MAIN PAPER

Theorem 1. With the total projection i = {1, . . . , n}, our metric captures the disentanglement and
completeness metrics of the DCI framework (Eastwood and Williams, 2018).

Proof. We will only present the proof for the completeness metric, as the situation for the disentan-
glement metric is exactly symmetric, when switching X and Y and rows and columns. With the
total projection i = {1, . . . , n}, we have ρi(Y ) = Y , ρi(X) = X , U = |ρi(T̂ )| = |T̂ | = L and
V = |ρi(T )| = |T | = F .

Therefore, completeness with respect to the total projection is defined as

C(i) = 1−HL (X|Y ) .
According to Definition 2, we have

HL (X|Y ) = −
∑

τ∈T ,τ̂∈T̂

P[X = τ̂ , Y = τ ] logL(P[X = τ̂ |Y = τ ])

= −
∑
τ∈T

P[Y = τ ]
∑
τ̂∈T̂

P[τ̂ |τ ] logL (P[τ̂ |τ ]) .

Now, let us observe that the conditional probability P[τ̂ |τ ] is exactly the term P̃τ̂ ,τ of the DCI
framework that denotes the "probability" of latent τ̂ being important to predict factor τ . Consequently,
the conditional entropy can be rewritten as follows

HL (X|Y ) = −
∑
τ∈T

P[Y = τ ]
∑
τ̂∈T̂

P̃τ̂ ,τ logL
(
P̃τ̂ ,τ

)
=
∑
τ∈T

P[Y = τ ]HL(P̃·,τ ).

This yields

C(i) = 1−HL (X|Y ) =
∑
τ∈T

P[Y = τ ](1−HL(P̃·,τ )) =
∑
τ∈T

P[Y = τ ]Cτ .

We observe that Cτ = 1−HL(P̃·,τ ) is exactly the completeness score in capturing factor τ defined
in the DCI framework. Besides, P[Y = τ ] can be rewritten as

P[Y = τ ] =
∑
τ̂∈T̂

P[Y = τ,X = τ̂ ] =
∑
τ̂∈T̂ Rτ̂ ,τ∑

i∈T̂ ,j∈T
Ri,j

,

which is exactly the relative generative factor importance used by Eastwood and Williams to construct
a weighted average expressing overall completeness. This indicates that our probabilistic view of the
affinity matrix and metric naturally captures all components of the DCI framework, including the
final weighted average step.

For the next theorem, we formally define the meaning of a decomposition of projections in Definition 5.
Note that the formalism is slightly different as our original notations were simplified for the main
paper. Despite differences in notation, union and decomposition of projections are totally equivalent.
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Definition 5 (Union of projections). Consider k disjunct projections i1 = {e1
1, . . . , e

1
l1
}, . . . , ik =

{ek1 , . . . , eklk} of the generative model. The union of these projections is defined as

i =
k⋃
s=1

is.

It is a projection of size l1 + . . .+ lk.

Theorem 2. [Lower bound] Consider k disjunct projections i1, . . . , ik of the relations. Let us
suppose that i1, . . . , ik have respectively L1, . . . , Lk groups of latents and F 1, . . . , F k groups of
factors. Moreover, assume that the joint projection i =

⋃k
s=1 i

s has L groups of latents and F groups
of factors. The following lower bound for the joint completeness holds

1− k +
k∑
s=1

C(is) ≤ 1−
k∑
s=1

1− C(is)
logLs(L) ≤ C

(
k⋃
s=1

is

)
.

Similarly, we have for the disentanglement metric

1− k +
k∑
s=1

D(is) ≤ 1−
k∑
s=1

1−D(is)
logF s(F ) ≤ D

(
k⋃
s=1

is

)
.

Proof. We only detail the proof for the completeness metric since both cases are exactly symmetric.
C(i) is defined as follows

C(i) = 1−HL (ρi(X)|ρi(Y )) .
Now, let us observe that the joint projection ρi and the concatenation of the different projections∏k
s=1 ρis are similar up to the permutation of the dimensions that originates from sorting the merged

index sequences. This permutation has no influence on the conditional entropy since it is defined as a
joint expectation on T̂ × T . Therefore we have that

C(i) = 1−HL

(
k∏
s=1

ρis(X)|
k∏
t=1

ρit(Y )
)
. (1)

According to Lemma 2, we have the following inequality for the joint conditional entropy

HL

(
k∏
s=1

ρis(X)|
k∏
t=1

ρit(Y )
)
≤

k∑
s=1

HL

(
ρis(X)|

k∏
t=1

ρit(Y )
)
.

According to Lemma 3, we also know that

HL

(
ρis(X)|

k∏
t=1

ρit(Y )
)
≤ HL (ρis(X)|ρis(Y )) .

Applying Lemma 1 to change base, we obtain

HL (ρis(X)|ρis(Y )) = HLs (ρis(X)|ρis(Y ))
logLs(L) = 1− C(is)

logLs(L) .

Together with Equation (1), this yields

1−
k∑
s=1

1− C(is)
logLs(L) ≤ C

(
k⋃
s=1

is

)
.

Since logLs(L) ≥ 1 and 1− C(is) ≥ 0, we finally get

1− k +
k∑
s=1

C(is) ≤ 1−
k∑
s=1

1− C(is)
logLs(L) ,

which concludes the proof.
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B.4 ADDITIONAL RESULTS

Theorem 3 describes an upper bound for the joint metric attempting to match Theorem 2. However,
this upper bound comes in a weaker form which is not totally controllable. Intuitively, this is due to
the fact that our metrics convey strictly more information that the unstructured DCI framework.
Theorem 3. [Upper bound] Consider k disjunct projections i1, . . . , ik of the relations. Let us
suppose that i1, . . . , ik have respectively L1, . . . , Lk groups of latents and F 1, . . . , F k groups of
factors. Moreover, assume that the joint projection i =

⋃k
s=1 i

s has L groups of latents and F groups
of factors. The following upper bound for the completeness metric holds

C

(
k⋃
s=1

is

)
≤ 1− max

1≤s≤k

(
1− C(is)
logLs L

−As
)
,

where

As = IL

ρis(X); ρ⋃
t 6=s

it(Y )|ρis(Y )

 .

Similarly, we have for the disentanglement metric that

D

(
k⋃
s=1

is

)
≤ 1− max

1≤s≤k

(
1−D(is)
logF s F

−Bs
)
.

where

Bs = IF

ρis(Y ); ρ⋃
t 6=s

it(X)|ρis(X)

 .

Proof. We only prove the bound for the completeness metric, as the case of disentanglement is
exactly symmetric. C(i) is defined as follows

C(i) = 1−HL (ρi(X)|ρi(Y )) .
Similar to the previous proof, we observe that the joint projection ρi and the concatenation of the
different projections

∏k
s=1 ρis are similar up to the permutation of the dimensions that originates

from sorting the merged index sequences. This permutation has no influence on the conditional
entropy since it is defined as a joint expectation on T̂ × T . Therefore we have that

C(i) = 1−HL

(
k∏
s=1

ρis(X)|
k∏
t=1

ρit(Y )
)
. (2)

According to Lemma 4, we have the following inequality for the joint conditional entropy

kmax
s=1

HL

(
ρis(X)|

k∏
t=1

ρit(Y )
)
≤ HL

(
k∏
s=1

ρis(X)|
k∏
t=1

ρit(Y )
)

According to Lemma 3, we also know that

HL

(
ρis(X)|

k∏
t=1

ρit(Y )
)

= HL (ρis(X)|ρis(Y ))−As,

where

As = IL

ρis(X); ρ⋃
t 6=s

it(Y )|ρis(Y )

 .

Applying Lemma 1 to change base, we obtain

HL

(
ρis(X)|

k∏
t=1

ρit(Y )
)

= 1− C(is)
logLs L

−As.

Together with Equation (2), this yields

C(i) ≤ 1− max
1≤s≤k

(
1− C(is)
logLs L

−As
)
.
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Interpretation of the upper bound The goal of Theorem 3 is to use the individual projections to
obtain an upper bound for the joint disentanglement (resp. completeness). Intuitively, the meaning of
the bound

C(i) ≤ 1− max
1≤s≤k

(
1− C(is)
logLs L

−As
)
.

is that the joint completeness can not be better than any of the individual completeness. However,
this bound is weaker than Theorem 2 because of two main restrictions. First, it is harder to get rid of
the logLs(L) term as L is greater than Ls. One possibility is to notice that L ≤ L1 · . . . · Lk. If we
make the additional assumption that L1 ∼ . . . ∼ Lk, then we obtain logLs(L) ≤ k, which gives us

C(i) ≤ 1− 1
k

+ min
1≤s≤k

(
C(is)
k

+As

)
.

This first assumption can be considered reasonable. But more importantly, we notice an additional
interaction term As in the minimum that is based on mutual information between the different
projections. This term can not be removed as it is non-negative. The intuition for this conditional
mutual information is that it measures the dependence of the different projections. It is 0 exactly
when ρis(X) and ρ⋃

t 6=s
it(Y ) are independent conditioned on ρis(Y ). Assuming that this is case,

we obtain the simplest inequality

C(i) ≤ 1− 1
k

+ min
1≤s≤k

C(is)
k

.

However, there is absolutely no guarantee that this assumption is valid. To conclude, the upper bound
is weaker than Theorem 2 because it depends on the additional terms As and Bs which account for
the degree of dependence between projections and can not be easily controlled. This can be seen as a
confirmation that our metrics convey strictly more information that the unstructured DCI framework.

In the following, we study the specific case where there are only two levels of hierarchy (k = 2). In
this case, we can actually derive an exact formula rather two matching bounds.
Theorem 4 (Case k = 2). Consider 2 disjunct projections i1 and i2, with respectively L1 and L2

groups of latents, and F 1, F 2 groups of factors. Assume that the joint projection i = i1 ∪ i2 has L
groups of latents and F groups of factors. For the completeness metric, the following identity holds

C(i) = 1− 1− C(i1)
logL1(L) −

1− C(i2)
logL2(L)

+IL(ρi1(X); ρi1(Y )|ρi2(Y ))
+IL(ρi2(X); ρi2(Y )|ρi1(Y ))
+IL(ρi1(X); ρi2(X)|ρi1(Y ), ρi2(Y )).

In a symmetric way, for the disentanglement metric,

D(i) = 1− 1−D(i1)
logF 1(F ) −

1−D(i2)
logF 2(F )

+IF (ρi1(Y ); ρi1(X)|ρi2(X))
+IF (ρi2(Y ); ρi2(X)|ρi1(X))
+IF (ρi(Y ); ρi2(Y )|ρi1(X), ρi2(X)).

Proof. Again, we only prove the result for the completeness metric as disentanglement is exactly
symmetric. In the case where k = 2, the joint completeness is defined as follows

C(i) = 1−HL (ρi(X)|ρi(Y )) = 1−HL (ρi1(X), ρi2(X)|ρi1(Y ), ρi2(Y )) .
With Lemma 5, we can rewrite this last expression as

C(i) = 1−HL (ρi1(X)|ρi1(Y ), ρi2(Y ))−HL (ρi2(X)|ρi1(Y ), ρi2(Y )) +
IL (ρi1(X); ρi2(X)|ρi1(Y ), ρi2(Y )) .

Applying Lemma 3 twice, we obtain

HL (ρi1(X)|ρi1(Y ), ρi2(Y )) = HL (ρi1(X)|ρi1(Y ))− IL (ρi1(X); ρi1(Y )|ρi2(Y ), ρi2(Y )) ,
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and

HL (ρi2(X)|ρi1(Y ), ρi2(Y )) = HL (ρi2(X)|ρi2(Y ))− IL (ρi2(X); ρi2(Y )|ρi1(Y ).ρi2(Y )) ,

Using Lemma 1 to change base for the two conditional entropies gives us the final equation

C(i) = 1− 1− C(i1)
logL1(L) −

1− C(i2)
logL2(L)

+ IL(ρi1(X); ρi1(Y )|ρi2(Y ))
+ IL(ρi2(X); ρi2(Y )|ρi1(Y ))+
+ IL(ρi1(X); ρi2(X)|ρi1(Y ), ρi2(Y )),

which concludes the proof.

C REPRODUCIBILITY

C.1 PERMUTATION INVARIANT FEATURE PROBING

Complementary to our permutation invariant probing algorithm, we use a specific algorithm for
generation of the evaluation dataset. It consists in dividing the evaluation dataset into groups of
inputs with similar factor values. First, this helps for the initialization of our EM-like approach, as the
object-to-slot assignment exhibits less variation for similar images. Second, this allows to visually
verify that the learned permutation is consistent across inputs (Figures 7, 8 and 9). Finally, it breaks
the symmetry between objects, allowing for more meaningful visualizations of the projected latent
space. To obtain a global metric, we average the values across the different groups. The method for
generating the evaluation dataset is summarized in Algorithm 2. Exact hyperparameters are given
below, and an ablation study can be found in Section D.

Algorithm 2 Generation of the evaluation dataset

for g = 1 to n_groups do
# Generate initial factor values for the group
for f in factors do

Sample initial value initial[f ] for factor f
for i = 1 to n_samples do

# Sample factor values locally
for f in factors do

Sample value image_i[f ] near initial[f ]
Generate image i from factor values image_i

C.2 MODELS

MONet We train MONet exactly as in Burgess et al. (2019), except that we set σfg = 0.1 and
σbg = 0.06 which was shown to yield better results in (Greff et al., 2019). Besides, we use
GECO (Rezende and Viola, 2018) to automatically tune the β parameter during training. The
reconstruction constraint was manually set to ensure satisfying visual results (-1.78 for Multi-dSprites,
-1.75 for CLEVR6). We found it especially important for the beginning of the training to set a
minimum value of 1 for β. Failure to do so resulted in frequent local optima for the representation
in which the network was stuck. We used the implementation provided by the authors of Engelcke
et al. (2019). Note that contrary to the latter, we do not include γ in the GECO framework. We use
the value of 0.5 given the authors of MONet. The γ parameter controls a mask reconstruction loss,
therefore we did not set it to 0 in MONet (R).

GENESIS We follow the training process described in (Engelcke et al., 2019) and use the imple-
mentation provided by the authors, under GNU General Public License. CLEVR6 is not considered
in this paper: we used the same parameters as for Multi-dSprites and changed the reconstruction
objective to −1.428.
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IODINE We use the parameters described in (Greff et al., 2019), and a third-party implementation.1
For Multi-dSprites, we had to increase the σ parameter from 0.1 to 0.14 in order to obtain satisfying
results with the slight variations in our dataset.

We train all models for 200 epochs. This corresponds to approximately 300 000 updates on Multi-
dSprites and 450 000 updates on CLEVR6. Models were trained with one to four V100 GPUs. The
training times ranges from a few hours to 1.5 days.

C.3 TRAINING DATASETS

Multi-dSprites For training, we use the dataset and preprocessing code from Engelcke et al. (2019).
Note that the datasets contains images composed of 1 to 4 objects, contrary to (Greff et al., 2019)
that goes up to 5 objects. This explains the better segmentation values in our setting compared to the
latter.

CLEVR6 We generate the training dataset similarly as in Greff et al. (2019), with the modification
that we add an additional constraint that all objects have to be visible inside the cropped 192x192
image. This modification is important for our metric. It tends to generate slightly denser scenes than
in previous work. This might partly explain why we get slightly worse ARI for MONet compared to
previous work (0.94 against 0.96). Scenes have at most 6 objects.

C.4 EVALUATION

Evaluation datasets The evaluation datasets are sampled in the same way, except that we restrict
to images with 4 objects for Multi-dSprites and images with exactly 6 objects for CLEVR6. We
sample 10 local groups (see Algorithm 2) for Multi-dSprites and 5 for CLEVR6. Each group has
5000 samples, with a 4000/500/500 split for fitting, validation and evaluation of the factor predictor.
In Table 7, we give the list of factors for each individual object in both datasets, with the possible
values for each factor.

Factor prediction For the temporary predictors in Algorithm 1 (inside the loop), we use a linear
model with Ridge regularization. For the final predictor, we use a random forest with 10 trees, and a
maximum depth of 15. This because the random forest obtains better predictions, while the linear
model permits faster iterations. The number of iterations of the loop is set to 100 for Multi-dSprites.
For computational reasons, we reduced this number to 20 for CLEVR6. This reduction does not
harm performance as the vast majority of permutations happen in the first iterations. Most factors
are continuous or ordinal: for these, we encode factor prediction as a regression task. The material
factor in CLEVR6 has only two classes and we follow the encoding used in sklearn Ridge Classifier.
On both datasets, the shape factor has three classes: we generalize the Ridge Classifier encoding
and encode the classes as -1, 0 and -1. We match the classes to these values in order to minimize
prediction error.

Max tree depth We tried different max tree depths (5, 10, 15, 20, 25, 30) on a validation set and
observed that (i) a value of 15 generally gives better validation performance than 5 and 10 (ii) values
> 15 do not significantly improve validation performance and get very slow to fit. This is why we
chose to always go with 15. Note that this optimal value might be related to the number of samples
used to fit the predictor (currently 4000). Note that the validation was done globally, and not per
factor.

Metric In order to filter out noise in the feature importances, we set to 0 to all the relative importance
coefficients that are less than 3% of the column maximum in absolute value. In our evaluation of
object-level disentanglement, we remove the factors and latent dimensions that are background
related. For Multi-dSprites, the background slot is identified as the one with higher importance in
predicting background color. For CLEVR6, there is no background color, but the background is
always reconstructed by the first slot in the benchmarked models. The global informativeness metric
is an unweighted average over all factors.

1github.com/zhixuan-lin/IODINE, no provided license.
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Table 4: Ablation study of Algorithms 1 and 2 for Multi-dSprites. We report mean and std error over
three random seeds. All values are in %. 100 is the best possible score and 0 the worst, except for the
informativeness metric where 0 is best. All models are trained with full loss.

OBJECT-LEVEL

MODEL DIS. (↑) COMP. (↑)

MONET (ATT.) 52± 4 52± 4
MONET (ATT.) (WITHOUT ALG 1) 30± 2 30± 2
MONET (ATT.) (WITHOUT ALG 2) 57± 1 57± 1
MONET (ATT.) (WITHOUT ALG 1 AND 2) 22± 0.5 22± 0.5

MONET (REC.) 75± 7 75± 7
MONET (REC.) (WITHOUT ALG 1) 40± 3 40± 4
MONET (REC.) (WITHOUT ALG 2) 64± 4 64± 4
MONET (REC.) (WITHOUT ALG 1 AND 2) 24± 1 24± 1

GENESIS 90± 0.8 91± 0.6
GENESIS (WITHOUT ALG 1) 89± 0.1 90± 0.1
GENESIS (WITHOUT ALG 2) 61± 0.4 61± 0.4
GENESIS (WITHOUT ALG 1 AND 2) 33± 0.3 33± 0.3

IODINE 70± 9 72± 10
IODINE (WITHOUT ALG 1) 32± 2 33± 2
IODINE (WITHOUT ALG 2) 66± 1 66± 1
IODINE (WITHOUT ALG 1 AND 2) 26± 0.9 26± 0.9

Table 5: Informativeness and Completeness per object property for all models trained with full loss
on Multi-dSprites.

COMPLETENESS (↑) INFORMATIVENESS (↓)
GENESIS IODINE MONET (A) MONET (DEC) GENESIS IODINE MONET (A) MONET (DEC)

R CHANNEL 91 71 88 94 9 16 5 5
G CHANNEL 90 68 81 89 10 17 6 7
B CHANNEL 90 77 86 96 9 16 4 5
SHAPE 30 49 42 50 26 45 59 34
SCALE 32 49 42 55 38 53 66 41
ORIENTATION 24 48 36 45 31 65 97 62
X 34 59 39 69 36 50 75 36
Y 33 63 39 67 35 48 74 34

Table 6: Informativeness and Completeness per object property for all models trained with full loss
on CLEVR6.

COMPLETENESS (↑) INFORMATIVENESS (↓)
GENESIS MONET (ATT.) MONET (REC.) GENESIS MONET (ATT.) MONET (REC.)

R CHANNEL 54 47 47 47 57 61
G CHANNEL 59 50 46 41 58 62
B CHANNEL 61 54 46 38 47 58
SHAPE 27 40 39 64 66 66
MATERIAL 56 56 53 28 39 41
SIZE 49 64 63 24 28 22
ROTATION NA 36 36 106 107 107
X 27 52 54 38 47 41
Y 31 61 65 30 39 32
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a) Before Algorithm 1 b) After Algorithm 1
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Figure 7: Visualization of the effect of Algorithm 1 on slot ordering for a group of similar inputs.
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Figure 8: Visualization of the effect of Algorithm 1 on slot ordering for a group of similar inputs.
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Figure 9: Visualization of the effect of Algorithm 1 on slot ordering for a group of similar inputs.
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Figure 10: Projections of the affinity matrix at object-level and property-level for all four models
trained with full loss on Multi-dSprites. (Hinton diagram)
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Figure 11: Projections of the affinity matrix at object-level and property-level for all three models
trained with fullloss on CLEVR6 (Hinton diagram).
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Table 7: Description of the factors of variation for each individual object in both datasets. For each
factor, we give the set of possible values, as well as the exact locality constraints used in Algorithm 2.
x denotes the initial value sampled in Algorithm 2. When x has values in an array, we denote i the
index such that x = a[i]. The Table indicates whether each of the considered factors is intrinsic or
extrinsic. The question of whether to consider object size as intrinsic can be debated, however this
does not change the results of our experiments.

DATASET FACTORS OF VARIATION TYPE POSSIBLE VALUES LOCAL CONSTRAINT (ALG. 2)

MDSPR.

COLOR (R CHANNEL) INTRINSIC [0, 63, 127, 191, 255] [a[i− 1], a[i], a[i+ 1]]
COLOR (G CHANNEL) INTRINSIC [0, 63, 127, 191, 255] [a[i− 1], a[i], a[i+ 1]]
COLOR (B CHANNEL) INTRINSIC [0, 63, 127, 191, 255] [a[i− 1], a[i], a[i+ 1]]
SHAPE INTRINSIC {circle, square, heart} {circle, square, heart}
SCALE INTRINSIC [0, 1, 2, 3, 4, 5] [a[i− 1], a[i], a[i+ 1]]
ORIENTATION EXTRINSIC [0, 1, . . . , 30, 39] [a[i− 3], a[i− 2], . . . , a[i+ 2], a[i+ 3]]
X COORD. EXTRINSIC [0, 1, . . . , 30, 31] [a[i− 2], . . . , a[i+ 2]]
Y COORD. EXTRINSIC [0, 1, . . . , 30, 31] [a[i− 2], . . . , a[i+ 2]]

CLEVR6

COLOR (R CHANNEL) INTRINSIC [0, 0.2, 0, 4, 0.6, 0.8, 1] [a[i− 1], a[i], a[i+ 1]]
COLOR (G CHANNEL) INTRINSIC [0, 0.2, 0, 4, 0.6, 0.8, 1] [a[i− 1], a[i], a[i+ 1]]
COLOR (B CHANNEL) INTRINSIC [0, 0.2, 0, 4, 0.6, 0.8, 1] [a[i− 1], a[i], a[i+ 1]]
SHAPE INTRINSIC {cube, sphere, cylinder} {cube, sphere, cylinder}
MATERIAL INTRINSIC {rubber,metal} {rubber,metal}
SIZE INTRINSIC [0.35, 0.7] [0.35, 0.7]
ROTATION EXTRINSIC J0, 360K J0, 360K
X COORD. EXTRINSIC J−3, 3K Jx− 0.7, x+ 0.7K ∩ J−3, 3K
Y COORD. EXTRINSIC J−3, 3K Jx− 0.7, x+ 0.7K ∩ J−3, 3K

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 VISUALIZATION OF THE PERMUTATION INFERRED BY OUR FEATURE IMPORTANCE
ALGORITHM

In this Section, we inspect the slot ordering inferred by Algorithm 1, by visualizing the masked
reconstruction for each slot. Note that Algorithm 1 does not make use of these reconstructions. In
Figures 7,8 and 9 we compare slot ordering before (on the left) and after (on the right) applying the
algorithm, for two groups of similar images (generated following Algorithm 2). We include all the
considered architectures, trained on Multi-dSprites with variational loss.

On the left, we observe that the slot ordering inferred by the models is not consistent across similar
images. This effect is particularly visible for IODINE, despite the fact that we set the model internal
noise to a deterministic value (following observations in Greff et al. (2019)). The background slot
is not even deterministic. This unpredictable ordering is extremely detrimental to the accuracy of
our metric. Applying our metric to IODINE with this initial ordering yielded extremely poor values
which do not do justice to the good representation learned by this model.

On the right, we see that Algorithm 1 successfully learns a consistent slot ordering, and puts matching
objects at the same position. We notice almost perfect alignment, except for some failure cases with
IODINE, where the background slot is switched with a missing object. We are uncertain as to the
reasons for this failure, but it has limited impact on final performance as we remove the background
factors in the object-level projection of the affinity matrix.

D.2 VISUALIZATIONS OF THE LATENT SPACE

In Figures 10 and 11, we show visualizations of the projected latent space for the different architec-
tures (trained with variational loss) for a group of inputs in both evaluation datasets. The qualitative
inspection of the object-level projection is consistent with the numerical comparison: GENESIS is
visually more disentangled, while MONet and IODINE achieve inferior but still satisfying disentan-
glement. On Multi-dSprites, the under-performance of the MONet (Att.) variant is also visible. On
Multi-dSprites, we observe that the GENESIS background slot also contains information about all
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objects. This is not surprising as the background mask is in some sense a negative of the different
object masks. However, this phenomenon is less marked with other architectures. We think that the
specific mask encoding of GENESIS somehow strengthens this duplication of information between
background and object slot. Note that this does not harm performance as we removed the background
slot in the final metric. We believe that this post-processing is fair because of the expected duplication
effect described above.

Qualitative comparison of the property-level projections is harder due to the higher number of
dimensions. Still, some observations can be made. Among object properties, color consistently obtain
the best separation in the representation. On the GENESIS model, we also notice a clear separation
between the last 16 dimensions that correspond to the component latent and the rest of the slot. Color
is almost exclusively encoded by the component latent.

D.3 DECOMPOSITION OF THE INFORMATIVENESS AND COMPLETENESS PER FACTOR

In Table 5, we decompose informativeness of the different models per property. Note that the
completeness results do not necessarily average to the global object-level completeness as our metric
involves a weighted average. On Multi-dSprites, we observe that the superior results of GENESIS
mostly comes from the group of extrinsic factors that are related to the segmentation mask. This
would support the hypothesis that the innovative mask encoding of GENESIS is at least partly
responsible for the performance increase. However, this effect is less clear on CLEVR6.

On CLEVR6, we notice particularly bad metrics for the rotation property. This is not surprising as
the rotation parameter is completely useless for two of the three shapes (sphere and cylinder) and
redundant for the last one (cube). Because of this bad identifiability and affinity scores thresholding,
we can not compute rotation completeness for GENESIS. This does not impact the final metric due
to the weighting scheme of our metric. Concerning color channels, we note very different behavior
between Multi-dSprites and CLEVR6. We believe that this is due to a particularity of CLEVR6 which
is that the set of color is restricted in the training dataset.

D.4 ABLATION OF ALGORITHMS 1 AND 2

In Table 4, we compare the object-level values given by our metric with and without Algorithms 1
and 2. We observe a significant performance drop when abalating these algorithms. This is consistent
with visual inspection of the slot ordering.
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