
Published in Transactions on Machine Learning Research (March/2023)

Bridging performance gap between minimal and maximal
SVM models

Ondrej Šuch ondrejs@savbb.sk
Mathematical institute of Slovak Academy of Sciences
Ďumbierska 1
Banská Bystrica, 974 01, Slovakia

René Fabricius rene.fabricius@fri.uniza.sk
Faculty of Management and Informatics
Žilinská Univerzita v Žiline
Univerzitná 8215/1 Žilina, 010 26, Slovakia

Reviewed on OpenReview: https: // openreview. net/ forum? id= SM1BkjGePI

Abstract

Multi-class support vector machine (SVM) models are typically built using all possible
pairs of binary SVM in a one-against-one fashion. This requires too much computation
for datasets with hundreds or thousands of classes, which motivates the search for multi-
class models that do not use all pairwise SVM. Our models correspond to the choice of
the model graph, whose vertices correspond to classes and edges represent which pairwise
SVMs are trained. We conduct experiments to uncover metrical and topological properties
that impact the accuracy of a multi-class SVM model. Based on their results we propose a
way to construct intermediate multi-class SVM models. The key insight is that for model
graphs of diameter two, we can estimate missing pairwise probabilities from the known
ones thus transforming the computation of posteriors to the usual complete (maximal) case.
Our proposed algorithm allows one to reduce computational effort by 50-80% while keeping
accuracy near, or even above that of a softmax classifier. In our work we use convolutional
data sets, which have multiple advantages for benchmarking multi-class SVM models.

1 Introduction

With ever-increasing computational capacity requirements needed for training deep neural networks, transfer
learning has emerged as a cost-effective alternative for constructing classification models for computer vision
and related application areas (Bengio, 2012; Niu et al., 2020). One method and the one that motivates our
work, to prepare a transfer learning model is to start with a neural network pre-trained on a computer vision
dataset D such as Imagenet (Huh et al., 2016), extract activations of neurons from the penultimate layer on
the target dataset D′ and use these features to train a classifier model M ′ for D′.

If it is reasonable to assume that the boundaries among classes are linear, then one may opt to build M ′ by
training a multinomial regression (softmax) model. The main potential drawback to softmax classifiers is
that location of class boundaries may be skewed by the presence of outliers in the dataset. This drawback
could be addressed by instead choosing a support vector machine model (SVM) for building classifier M ′.
For SVM the presence of outliers does not affect the learned boundary since outliers do not contribute to the
loss function of SVM (Cortes & Vapnik, 1995). Moreover, while vanilla SVM learns linear class boundaries,
more general kernel SVM is capable of learning a diversity of nonlinear class boundaries.

The underlying geometric concept of SVM, the division of space by a hyperplane into two halfspaces, is a
natural fit for two-class classification problems. To apply SVM to multi-class classification problems one
usually constructs an ensemble of SVM for multiple two-class problems and classifies by combining the

1

https://openreview.net/forum?id=SM1BkjGePI

Published in Transactions on Machine Learning Research (March/2023)

predictions of the ensemble’s elements. For smaller datasets with a few tens of classes, SVM is a suitable
alternative to softmax for building M ′ (see e.g. Maitra et al. (2015); Raghu et al. (2020)).

It is increasingly common to have datasets with hundreds or thousands of different classes. For such datasets,
building an SVM model using common SVM software libraries may become prohibitively expensive in terms
of computational cost. The focus of our work is to investigate the possibility to reduce the computational
cost to build an SVM model for a dataset where the number of classes C is large (say C ≥ 50). Although
motivated by transfer learning, we are seeking a general method applicable to datasets unrelated to neural
networks, and more general SVM kernels, notably the popular radial (RBF) kernel. Also, we aim to build
probabilistic models which are more flexible in applications, and were shown to perform better than voting
ensembles (Wu et al., 2004; Duan & Keerthi, 2005).

Previous works successfully investigated the more specialized problem of coopting SVM with a neural net-
work (Tang, 2013; Passricha & Aggarwal, 2019). Thousand class Imagenet classification using an SVM
modification on 2048 features from a convolutional network was achieved by Do (2021). Speeding up of
SVM training by finding an approximate solution was proposed by Cao & Boley (2006). For linear kernels,
the work of Fan et al. (2008) specifically aims for large datasets SVM classification.

1.1 Complexity of building SVM models

The computational cost of multiclass SVM for larger datasets is driven by two factors. The first is the
number of individual SVM problems that need to be solved. For some approaches, the number of required
models grows quadratically with the number of classes. The second factor is the cost to train each SVM. The
training time of binary SVM scales superlinearly with the number of training samples (Rifkin & Klautau,
2004). Therefore it may well be beneficial to train a larger number of binary SVM for smaller datasets
than to train a smaller number of binary SVM for larger datasets. Let us briefly examine this tradeoff
by comparing the complexity of four popular approaches implemented in libraries LIBSVM (Chang & Lin,
2011), scikit-learn (Pedregosa et al., 2011), LIBLINEAR (Fan et al., 2008), and cvx-opt (Andersen et al.,
2020). In the discussion below we will use the estimated time complexity of training a single SVM with the
radial kernel as reported in Table 2.

A very common approach is to train SVM classifiers for all pairs of classes, which entails building C(C−1)/2
models. This approach is called one-vs-one (OVO), or sometimes all-vs-all (AVA). This yields an ensemble of
classifiers, and proposed methods to combine its elements into a final classification include voting, building
Directed Acyclic Graph (Hsu & Lin, 2002), or pairwise coupling (Chang & Lin, 2011; Hastie & Tibshirani,
1998).

Another common approach is to train SVM classifiers separating each class from the rest of the training
dataset, which requires training C SVM classifiers. This approach is called one-vs-all (OVA), or one-vs-rest.
It yields models of similar accuracy to OVO (Rifkin & Klautau, 2004; Galar et al., 2011). For the 50 class
subset of Imagenet studied in this paper, we found that the training complexity of each SVM for radial kernel
may be approximated as ∼ C1.5, which makes this method asymptotically slower (complexity ∼ C2.5) than
the one-vs-one model, which has complexity ∼ C2. A similar conclusion was reported by Fürnkranz (2002).

A method by Crammer and Singer (Crammer & Singer, 2001) modifies SVM to directly solve the multiclass
problem without resorting to an ensemble. Documentation of the scikit-learn library notes however “while
crammer-singer is interesting from a theoretical perspective as it is consistent, it is seldom used in practice
as it rarely leads to better accuracy and is more expensive to compute [than OVA]” (scikit-learn, 2023).

Finally, let us mention error-correcting output codes (ECOC) which is a method inspired by coding theory
(Dietterich & Bakiri, 1994). It chooses a fixed-length code of length L and assigns a codeword to each class.
A binary classifier is then trained for each bit, resulting in the need to train L classifiers. ECOC models
encompass a wide range of models depending on the code chosen, including the OVA model for L = C. We
will analyze one variant of ECOC for the code achieving the lower bound on L which is ⌈log2 C⌉. Suppose
C = 2L. A decision by a single ECOC SVM provides at most one bit of information. It provides exactly
one bit of information, if and only if the number of classes for both negative and positive samples is C/2.
For the 50 class Imagenet dataset, we model that the complexity of building such an SVM model is ∼ C2.1,

2

Published in Transactions on Machine Learning Research (March/2023)

which translates to the overall complexity of ∼ C2.1 log(C), thus being approximately equal to the quadratic
cost of the OVO model. Given that training SVM for this ECOC model involves many more samples than
the OVO model, on computers or graphic cards with limited memory, the OVO method will likely be much
faster.

Despite OVO being asymptotically the fastest algorithm, its quadratic complexity makes it impractical
for larger values of C. To make it faster, we propose to construct a multi-class SVM model by training
only a subset of all possible pairwise SVMs. We will refer to the subset as the model graph with vertices
corresponding to the classes.

1.2 Minimal, maximal, and intermediate models

The starting point of our investigation is the observation (see Section 2.5), that an SVM model can be
built by training just C − 1 binary SVMs, each trained in a one-vs-one fashion, and then converted to a
probabilistic model using Platt’s method (Platt et al., 1999). We refer to these models as minimal models.
There are many minimal models since minimal models are in one-to-one correspondence with spanning trees
on C vertices. Minimal models are faster to train than other multi-class SVM algorithms. The training
time advantage comes at a cost of decreased accuracy of minimal models, as we show in Section 3.1. As a
benchmark, we compare the minimal models with a commonly used coupling methodology that requires all(

C
2
)

pairwise binary SVMs trained in a one-vs-one fashion. We refer to the latter as maximal models.

Guided by the Pareto principle, we investigate the possibility to increase the accuracy of minimal models
by incrementally adding a moderate amount of additional binary SVMs to capture most of the accuracy
advantage of the maximal model. We will answer the following key questions needed to formulate a viable
algorithm to construct such intermediate models:

Q1. how to choose the initial set of C − 1 binary SVMs,

Q2. how to make a multi-class prediction using a non-complete set of probabilistic binary SVMs trained
in a one-vs-one fashion,

Q3. how to choose which binary SVM to incrementally train and add to the multi-class model.

2 Experimental methodology

2.1 Software used for experiments and analysis

For computations of SVM, we use R package e1071 (R Core Team, 2021; Meyer et al., 2020). For data
processing, we use tidyverse (Wickham et al., 2019) and for visualizations package ggplot2 (Wickham, 2016).
The source repository can be found on https://github.com/ondrej-such/svm3.

2.2 Datasets

In this work, we use datasets for classifying images based on input features to the final softmax layer of a
convolutional neural network. This class of problems has several compelling attributes for benchmarking
SVM algorithms, namely

• the set of classes is well defined (e.g. in comparison with much less clear phoneme classes in speech
processing),

• benchmark image datasets have been thoroughly examined for the correctness of annotation; more-
over, the correctness of annotation can be easily assessed by a layperson,

• convolutional neural networks are trained with the softmax layer to high classification accuracy,
which suggests that inter-class boundaries are close to linear,

3

https://github.com/ondrej-such/svm3

Published in Transactions on Machine Learning Research (March/2023)

Dataset name Classes # samples
when

training
a neural
network

(per class)

samples
when

training
SVM

(per class)

samples
in the
testing
dataset

(per class)

Image
resolution

of SVM
features

CIFAR-10 10 6000 10000 1000 32x32 512
Imagenette 10 ≈ 1000 10000 50 variable 512
Imagewoof 10 ≈ 1000 10000 50 variable 512

Imagenet-50 50 ≈ 1000 10000 50 variable 512

Table 1: Summary of datasets used in the experiments. Train samples for SVM include augmented data
samples.

• digital image classification has widespread applications, and any potential improvements would be
quite valuable.

An overview of the datasets used throughout the paper is summarized in Table 1. The number of classes
was selected to balance the requirements of being able to run multiple experiments to get error bounds and
to represent a large-class SVM problem while being within our computational capacity.

In sections 3 and 4 we have used three datasets each having ten classes: CIFAR-10 (Krizhevsky et al., 2009),
Imagenette, and Imagewoof (Howard, 2022), the latter two being subsets of the well-known Imagenet 2012
dataset (Russakovsky et al., 2015). In section 4 we have used a subset of Imagenet created by choosing 50
classes at random among the thousand classes in ImageNet 2012. We refer to the set as Imagenet-50. Its
classes are listed in the subdirectory imagenet_subsets of the code repository. We have tried to model the
time complexity T of fitting a single radial SVM depending on the number of classes C encompassing two
binary classes. We use the simple linear regression model

log(T) = α + β log(C) + ϵ. (1)

Values of C were taken at random between 10 and 21, and we tried two kinds of groupings of C classes into
positive and negative samples - OVA and ECOC. For the latter, only even values of C were considered. The
results are summarized in Table 2.

Grouping # of positive classes # of negative classes β Std. error of β Adjusted R2

OVA 1 C − 1 1.5 0.1 0.94
ECOC C/2 C/2 2.1 0.08 0.99

Table 2: Parameters of linear models (1) fitted to timing data.

2.3 Neural networks

For CIFAR-10 we have used a custom architecture by David C. Page, which can be quickly trained to
94% accuracy (Page, 2019). For Imagenette and Imagewoof datasets, we used the Resnet-18 network (He
et al., 2016). This architecture was designed to solve the Imagenet classification problem, which has 1000
classes. We have trained 20 instances of each architecture on CIFAR-10 and Imagenet respectively. From
the networks, we extracted convolutional features in experiments in this paper (the exception being the
experiment in section 3.5).

2.4 Pairwise models for convolutional data sets

Given a convolutional neural network trained, we proceed by extracting the activations of the penultimate
layer on a chosen dataset. All network architectures in this paper use 512 neurons in this layer. These 512

4

Published in Transactions on Machine Learning Research (March/2023)

activations constitute features of our convolutional data sets. Each training matrix had 10000 entries per
class, which included all training samples and also augmented data samples.

The next step is the computation of pairwise likelihoods for each pair of classes. One could do this by
simply training an SVM model and applying Platt’s method to estimate the likelihoods on the test data.
However, we employ a slight modification akin to the procedure used in the foundational study of Wu et al.
(2004). Namely, we divide 10000 samples into four equal-sized subsets and train an SVM for each subset.
We apply Platt’s method to derive pairwise likelihoods for each of the four models and then average resulting
probabilities using geometric mean. An immediate advantage is the reduction of training time, since the
training time of SVM scales superlinearly with training size (Abdiansah & Wardoyo, 2015). Moreover, by
averaging, one may expect to arrive at more precise likelihoods.

We used default parameters for the svm function from the e1071 library. In particular, data were scaled,
and we used default kernel and cost parameters.

2.5 Probabilistic prediction for minimal and maximal models

Consider a general multi-class classification problem of assigning to a given sample a probabilistic distribution
p = (p1, . . . , pC) among C classes. For simplicity, we will index the C classes by integers from one to C.

Suppose pairwise SVM models are trained for some subset E of edges of the complete graph on C vertices
1, 2, . . . , C. We assume that for any edge (i, j) in E the corresponding model Mi,j gives a probabilistic
prediction i.e. predicts that with probability rij the sample belongs to class i, and with probability 1− rij

it belongs to the class j. We note that throughout this paper rij will always be positive which allows us to
avoid degenerate cases.

If the model Mi,j were the Bayesian classifier then the so-called Bradley-Terry equation would hold (Hastie
& Tibshirani, 1998):

rij = pi

pi + pj
, (2)

which we can rewrite as

pj = 1− rij

rij
pi (3)

The last equation shows that if any pi is known, then we can deduce the value of any other pj for j’s that
are connected to i by a path in E.

If E forms a spanning tree then, then all probabilities pi are uniquely determined by the total probability
requirement

C∑
i=1

pi = 1.

The case when E forms a spanning tree is the minimal subset of SVM models required to deduce multi-class
probability distribution (pi).

It is more common to consider the maximal case when E corresponds to all edges of the complete graph on
C vertices. Since pairwise models Mi,j will be only approximations to Bayesian classifiers, one may expect
that Bradley-Terry equations will not be consistent and thus the complete set of Bradley-Terry equations
will be over-determined.

There are multiple ways to solve the equations, but the most common is (the second) method of Wu-Lin-Weng
(Wu et al., 2004), which we abbreviate as WLW2. It estimates p by minimizing the quadratic form

min
p

1
2

C∑
i=1

∑
j:j ̸=i

(rjipi − rijpj)2.

5

Published in Transactions on Machine Learning Research (March/2023)

3 Comparisons of methods to construct SVM models

In this section, we present the results of targeted experiments that compare different methods to construct
SVM models to discern the optimal one. We start by confirming that there is indeed a performance gap
between the minimal and maximal models and proceed with experiments that suggest answers to the three
questions Q1–Q3 from the introduction: which model graph to start with, how to combine predictions in
a non-complete model graph, and which edges to add to a graph. We will use 3–6 class subsets of ten
class subsets CIFAR-10, Imagenette, and Imagewoof, mainly because using smaller datasets allows to repeat
experiments. All results reported in this section are averaged over 20 different networks.

3.1 The performance gap between minimal and maximal models

We start by comparing minimal and maximal models on three class problems. Our hypothesis is that
maximal models perform better than minimal ones.

Suppose there are classes C1, C2, and C3 that we want to classify. We can train three pairwise SVM models:
M12 discriminating C1 from C2, and similarly M13 and M23. From these we can construct three minimal
models: the first MM1 by combining {M12, M13}, the second MM2 by combining {M12, M23}, and the third
MM3 by combining {M13, M23}. Finally, we can construct the maximal model by using the WLW2 coupling
method which combines predictions of M12, M13, and M23. Denote the test error rate of model MMi by mi

and the test error rate of the maximal model by w. Finally, set

m = m1 + m2 + m3

3 (4)

b = min(m1, m2, m3) (5)

We evaluated mean values and standard errors of m, w, and b for each ten class dataset when C1, C2, and
C3 varied over all

(10
3

)
possible triples of classes. The results are shown in Table 3.

Dataset Kernel m w b
cifar10 linear 2.1 (1.5) 1.9 (1.4) 1.9 (1.4)
cifar10 radial 2.0 (1.4) 2.0 (1.4) 2.0 (1.4)

imagenette linear 1.0 (0.8) 0.6 (0.6) 0.5 (0.6)
imagenette radial 0.6 (0.6) 0.6 (0.6) 0.5 (0.5)
imagewoof linear 3.2 (3.5) 2.5 (3.3) 2.3 (3.3)
imagewoof radial 2.7 (3.2) 2.5 (3.2) 2.3 (3.1)

Table 3: Comparison of test errors for average minimal, maximal models, and the best minimal models
trained on triplets of classes. The mean values are reported before parentheses, the standard errors are
inside parentheses.

The results confirm our hypothesis, since the maximal model outperforms the mean minimal models four out
of six times, with the other two cases being tied (both for radial kernel). Somewhat surprisingly, the best
minimal model is better that the maximal model four out of six times, with the other two cases (cifar-10)
being tied. This indicates that there are cases when the maximal model may be inferior not only due to the
expensive quadratic complexity with respect to the number of classes but also in terms of the accuracy of
the resulting classifier.

3.2 Selecting the best initial minimal model

We will now investigate the answer to question Q1, namely what is the best minimal model to start building
larger ones.

The model graphs of minimal models correspond to spanning trees on the set of vertices. With a growing
number of classes the number of spanning trees grows quickly. In fact, for C classes there are CC−2 different

6

Published in Transactions on Machine Learning Research (March/2023)

trees. It is infeasible to try every out of them even for moderate values of C, even though the final result of
the previous section indicated it may yield performance superior to the maximal model.

Our intuition is that deduction of likelihoods along longer paths using (3) compounds errors, and therefore
it would be better to have a spanning tree where paths are as short as possible. Based on this intuition we
formulate the hypothesis that it is best to use a spanning tree of diameter two. To verify this hypothesis we
consider five class classification problems. For five classes there are three isomorphism classes of spanning
trees as shown in Figure 1.

G4

G2

G3

Figure 1: Trees on five vertices

In Table 4 we report on average errors made by the various models for 200 randomly selected 5-class subsets
of ten classes datasets.

Dataset Kernel G4 G3 G2
cifar10 linear 4.7 (2.4) 4.4 (2.1) 4.1 (1.6)
cifar10 radial 3.6 (1.4) 3.6 (1.3) 3.5 (1.3)

imagenette linear 2.9 (2.2) 2.5 (2.0) 2.2 (1.6)
imagenette radial 1.2 (0.7) 1.2 (0.7) 1.1 (0.7)
imagewoof linear 7.4 (4.1) 6.9 (3.9) 6.4 (3.8)
imagewoof radial 5.2 (3.2) 5.1 (3.2) 5.0 (3.1)

Table 4: Comparison of error rates of minimal and maximal models on five class subsets. Mean values are
reported before parentheses, standard errors inside parentheses.

Among the minimal models, the one corresponding to a star on five vertices (G2) is the most accurate in all
six cases. Graph G3 was more accurate than G4 in four out of six cases, with the remaining two (both for
radial kernel) being tied.

This experiment indicates that it is advantageous to use a spanning tree of diameter two. There is up to
isomorphism only one such tree for any value of C, namely the star. Therefore we propose to use the star
graph (with a randomly chosen center) as the starting point for building incremental SVM models.

3.3 How to make predictions for non-complete model graphs

Now we turn to the second question from the introduction, namely suppose we are given a non-complete
set of SVM trained in a one-vs-one fashion, how to build from them a classification model. Our solution is
the most direct one, namely, manufacturing pairwise likelihood for the missing pairs and using a standard
WLW2 coupling method to deduce predicted distribution over the classes. The key insight is that if we have

7

Published in Transactions on Machine Learning Research (March/2023)

an estimate oik of pi/pk and an estimate okj of pk/pj then we can estimate

pi

pj
= pi/pk

pk/pj
≈ oik

okj
. (6)

Now if, we start building an incremental model with a star centered at K, then when a model discriminating
class i and j is missing we can always use (6) with k = K to get an estimate of pi/pj . There may be however
other values of k for which both pi/pk and pk/pj are known from binary SVM models. The question is how
to combine them. We provide evidence that simple averaging is sufficient with two experiments.

In the first experiment, we select four classes C1, C2, C3, and C4 from a ten-class dataset and use four pairwise
SVM: the one discriminating C1 from C2, the one discriminating C2 from C3, the one discriminating C3
from C4 and the one discriminating C4 from C1. Then we compute the correlation of estimates of log(p1/p3)
using k = 2 and k = 4, as well as the correlation of estimates of log(p2/p4) using k = 1 and k = 3. We
repeat this 200 times for each dataset and kernel. The results are shown in Table 5.

Dataset Kernel Mean correlation Standard deviation
cifar10 linear 0.986 0.009
cifar10 radial 0.992 0.004

imagenette linear 0.973 0.017
imagenette radial 0.994 0.005
imagewoof linear 0.963 0.029
imagewoof radial 0.992 0.005

Table 5: Correlation between estimates of log odds of pairwise likelihoods using different k in (6).

We can see that estimates are highly correlated, which means fitting even a simple linear model would be
unstable. This suggests using the average of log odds to combine predictions. Another alternative, possibly
more robust, would be the median, and we evaluate it in our second experiment. For this experiment, we
choose a six-class subset of ten class dataset and assume the model graph is the complete bipartite graph
K3,3. For each missing SVM, we can estimate it using three different choices of k. We repeat it 200 times
for each dataset and kernel. The results are shown in Table 6.

Dataset Kernel median mean
cifar10 linear 4.3 (1.3) 4.2 (1.3)
cifar10 radial 4.1 (1.2) 4.1 (1.2)

imagenette linear 1.5 (0.6) 1.4 (0.6)
imagenette radial 1.2 (0.5) 1.2 (0.5)
imagewoof linear 5.9 (3.1) 5.8 (3.0)
imagewoof radial 5.6 (2.8) 5.6 (2.8)

Table 6: Comparison of error rates of models on six class subsets of ten class datasets when mean versus
median are used for aggregation of estimates using (6). Mean values are reported before parentheses, standard
errors inside parentheses.

We can see that the results are very close, with the mean edging the median by a minimal margin in the case
of the linear kernel. We conclude that averaging of predictions appears to be a suitable way of aggregating
multiple estimates using (6). Explicitly we will use the estimate

pi

pj
≈

(∏
k∈Oij

oik

okj

)1/|Oij |

, (7)

where Oij is the set of classes k for which estimates of both pi/pk and pk/pj are known from a pairwise
model.

8

Published in Transactions on Machine Learning Research (March/2023)

3.4 Choosing which model to incrementally add

In this section we tackle the third question Q3 posed in the introduction, that is which models to incrementally
add to maximize accuracy. Our intuition is that it is most valuable to add the SVM corresponding to the
hardest unsolved one-vs-one classification problem. We conducted an experiment on four-class subsets of ten
class datasets aiming to confirm this hypothesis.

We started with a star graph on four vertices which has 3 edges. We selected 200 samples from the training
set for each class. We computed the confusion matrix X corresponding to the star graph for the chosen
samples and let Y = X +X ′ be the symmetrized confusion matrix. Then we measured accuracy after adding
each of the remaining three edges in the complete graph on 4 vertices. We named the three possible models
A1, A2, and A3, with A1 corresponding to adding an edge having the smallest entry in Y , while A3 having
the largest entry in Y . We did this for all possible arrangements and computed averages and error rates
which are shown in Table 7. In five out of six cases, model A3 turned out to be best, with the remaining
case tied. We conclude that our hypothesis turned out to be true in these cases.

Dataset Kernel A1 A2 A3
cifar10 linear 3.1 (1.6) 3.0 (1.6) 2.8 (1.4)
cifar10 radial 2.8 (1.4) 2.8 (1.4) 2.8 (1.4)

imagenette linear 1.6 (1.3) 1.4 (1.2) 1.0 (0.7)
imagenette radial 0.9 (0.7) 0.9 (0.6) 0.8 (0.6)
imagewoof linear 4.8 (3.7) 4.6 (3.7) 3.8 (3.3)
imagewoof radial 3.9 (3.2) 3.8 (3.2) 3.6 (3.2)

Table 7: Comparison of error rates of intermediate SVM model depending on which edge was added to the
minimal one. Mean values are reported before parentheses, standard errors are inside parentheses.

3.5 Proposed algorithm

Let us explicate our proposed algorithm based on the experiments in the previous section.

Algorithm 1 Incremental multi-class SVM model creation
1: procedure Grow_SVM(T , V)
2: # Argument T is a training dataset with N classes
3: # Argument V is a validation dataset (possibly V ⊂ T)
4:
5: Choose a spanning tree with star topology at random. Denote by E the set of its edges.
6: for e := (i, j) ∈ E do
7: Train the probabilistic pairwise SVM model on S distinguishing classes i and j

8: Set step← 1
9: Set F to be the complement of E in the set of edges of the complete graph on N vertices.

10: while F is nonempty do
11: yield(tuple(step = i, model graph = E))
12: Compute confusion matrix X on V using (7) to fill missing pairwise odds
13: Set Y = X + X ′

14: Choose an edge f = (i, j) in F such Yij = max(m,n)∈F Ymn

15: Train probabilistic pairwise SVM model on S distinguishing classes i and j
16: Set F ← F − {f}
17: Set E ← E ∪ {f}

One possible concern about the algorithm is the need for a validation dataset. In the previous section,
we used a subset of the train set. We devised an experiment to verify that the choice does not have a
significant impact on the accuracy of the model. For the imagenette dataset, we trained 20 networks, but

9

Published in Transactions on Machine Learning Research (March/2023)

linear

im
agenette

10 20 30 40

0.87

0.88

0.89

number of edges

ac
cu

ra
cy

model

max1−edge
max3−edge
max2−edge

Figure 2: Comparison of mean accuracy of GROW_SVM algorithm depending on the choice of validation
dataset. The dotted line indicates the accuracy of the neural network.

before training, we set aside 200 extra samples for each class from the train dataset. Then we compared
three different choices of validation dataset V :

• max1-edge uses for V samples data from the training dataset without extra samples, namely 200
samples per class,

• max2-edge uses for V the test dataset,

• max3-edge uses for V used the extra samples omitted from the training dataset.

Figure 2 shows that the accuracy of the first and the third algorithm is very close. This bodes well for
applications, which often cannot set aside a special validation dataset. Although algorithm max2-edge
performed best, one should note that this is not a valid choice, because using a test dataset in model
building represents a form of test leakage.

4 Evaluation of intermediate SVM models

In this section, we will evaluate the performance of intermediate models based on accuracy and robustness.
Accuracy evaluation will investigate the following questions:

• how does an intermediate model compare to the accuracy of the neural network,

• how does the expected accuracy increase (or possibly decrease) with the increasing number of edges,

• how does an the accuracy of max1-edge model compare to the alternatives.

For the third point, we considered the following alternatives:

• random-edge We start with a random star graph, and at each step add a random edge.

• random-star We start with a random star graph and at each step add a randomly chosen star.

• vertex-transitive graphs of diameter 2: complete bipartite graph Kn,n on 2n vertices, Petersen
graph on 10 vertices, and Hoffman-Singleton graph on 50 vertices (Hoffman & Singleton, 1960).

All of these alternatives yield model graphs of diameter 2, which means we can apply (7) to estimate missing
pairwise likelihoods. Compared to the max1-edge algorithm, these alternatives do not require a validation
dataset, although the resulting speed-up is inconsequential.

10

Published in Transactions on Machine Learning Research (March/2023)

For ten-class datasets, we averaged over 20 different networks and ten possible centers of the initial star. For
Imagenet-50 we used a single network, but tried all 50 possible centers of the initial star.

4.1 Discussion

The plots of average accuracy versus the number of edges in the model graph are shown in Figure 3.

Neural networks are more accurate than SVM except for the imagewoof dataset. For Imagenet-50, the
performance of neural networks and SVM models is very similar.

Dependence on the number of edges in the experiments turned out monotonic, meaning maximal models
showed the best performance. For 10 class datasets, most of the accuracy was achieved by including about
half of all possible edges. For Imagenet-50 only about 250 edges sufficed to capture most of the accuracy of
the maximal model, which is about 20% of the total.

Compared to alternative intermediate models, max1-edge outranked the rest. The second best was the
random-star algorithm, but with the increasing number of edges its performance suffered and approached
that of random-edge algorithm. Among vertex transitive graphs only K5,5 showed performance above the
random-edge algorithm, but still well below max1-edge.

For the radial kernel, the accuracy gap between minimal and maximal models is much smaller compared to
the linear kernel mirroring results in section 3.1.

We have plotted the standard deviation of predictions on Imagenet-50 for the various methods in figure 4.
The key point is that max1-edge was again the best, and the error stabilized with ∼ 250 edges, which is about
the same number of edges as when its accuracy reached the plateau. Remarkably, the Hoffman-Singleton
graph showed very stable behavior on par with max1-edge. This is surprising since its accuracy was lagging.

5 Conclusion

We exhibited a variety of intermediate multi-class SVM models trading accuracy for training time complexity.
Our experiments uncovered key properties improving their accuracy. The max1-edge variant of the proposed
GROW_SVM algorithm showed superior accuracy across diverse datasets. It achieved near-optimal accuracy
while requiring only 20-50% of the computational cost of maximal models. This improvement is meaningful
for large values of C, when model construction can take hours or days. The method crucially uses a confusion
matrix in the training phase, rather than relegating it to a mere tool for model evaluation. The algorithm is
quite general; it is neither restricted to problems arising from neural networks nor to a specific kernel. The
efficacy of the method will vary according to a dataset, but the incremental approach allows for monitoring
of model-building progress and early stopping when incremental accuracy gains stall.

Our investigation reaffirms the efficacy of established methods. Softmax outperformed SVM models except
for the challenging imagewoof dataset. This shows the benefit of whole model optimization employed in
training neural networks which contrasts the bottom-up approach of SVM. We also confirmed that commonly
used maximal SVM models are very accurate. In our experiments, they were on average more accurate than
models with smaller model graphs. Finally, the radial kernel proved surprisingly versatile, since it achieved
near optimal accuracy on tasks, for which interclass boundaries were expected to be very close to linear.

Our work underscores the crucial choice of model graph for intermediate probabilistic SVM. One may hy-
pothesize that special classes of graphs, such as Cayley graphs or expander graphs (Hoory et al., 2006), could
be useful for building multi-class SVM models. For that to happen, we would need a new way to conduct
multi-class inference using intermediate graphs, unlike the one we used in the paper, which is limited to
graphs of diameter two.

6 Acknowledgments

The first author was supported by VEGA grant 2/0172/22 "Classification using ensembles of neural networks"
and by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: "InoCHF

11

Published in Transactions on Machine Learning Research (March/2023)

linear radial

cifar10
im

agenette
im

agew
oof

10 20 30 40 10 20 30 40

0.925

0.930

0.935

0.940

0.96

0.97

0.98

0.99

0.87

0.88

0.89

0.90

0.91

0.92

number of edges

ac
cu

ra
cy

model

Petersen

K5−5

max1−edge

random−edge

random−star

linear radial

im
agenet−

50

0 250 500 750 1000 1250 0 250 500 750 1000 1250

0.80

0.84

0.88

0.92

number of edges

ac
cu

ra
cy

model

Hof−Sing

K25−25

max1−edge

random−edge

random−star

Figure 3: Average accuracy plotted against the size of the model graph for Imagenet-50. Hof-Sing denotes
results for the Hoffman-Singleton graph, K5-5 stands for the complete bipartite graph K5,5 and K25-25
stands for K25,25. The dotted horizontal line indicates the mean accuracy of neural networks.

– Research and development in the field of innovative technologies in the management of patients with CHF",
co-financed by the European Regional Development Fund.

12

Published in Transactions on Machine Learning Research (March/2023)

linear radial

im
agenet−

50

0 250 500 750 1000 1250 0 250 500 750 1000 1250

0.00

0.02

0.04

0.06

number of edges

st
d.

 d
ev

ia
tio

n

model

Hof−Sing

K25−25

max1−edge

random−edge

random−star

Figure 4: Mean standard deviation of the accuracy of intermediate models plotted against the size of the
model graph for Imagenet-50. Hof-Sing denotes results for Hoffman-Singleton graph, and K25-25 stands for
K25,25.

The second author was supported by Operational Program "Integrated Infrastructure" of the project "Inte-
grated strategy in the development of personalized medicine of selected malignant tumor diseases and its
impact on life quality", ITMS code: 313011V446, co-financed by resources of European Regional Develop-
ment Fund.

Authors would like to thank anonymous reviewers for their valuable suggestions.

References
Abdiansah Abdiansah and Retantyo Wardoyo. Time complexity analysis of support vector machines (SVM)

in LibSVM. International Journal of Computer Applications, 128:975–8887, 10 2015. URL https://doi.
org/10.5120/ijca2015906480.

Martin Andersen, Joachim Dahl, and Lieven Vandenberghe. CVXOPT: Convex optimization. Astrophysics
Source Code Library, pp. ascl–2008, 2020. URL https://ui.adsabs.harvard.edu/abs/2020ascl.
soft08017A.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceedings
of ICML workshop on unsupervised and transfer learning, pp. 17–36. JMLR Workshop and Conference
Proceedings, 2012. URL https://proceedings.mlr.press/v27/bengio12a.

Dongwei Cao and Daniel Boley. On approximate solutions to support vector machines. In Proceedings
of the 2006 SIAM International Conference on Data Mining, pp. 534–538. SIAM, 2006. URL https:
//doi.org/10.1137/1.9781611972764.55.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):1–27, 2011. URL https://doi.org/10.1145/1961189.
1961199.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995. URL
https://doi.org/10.1007/BF00994018.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of machine learning research, 2(Dec):265–292, 2001. URL https://www.jmlr.org/
papers/volume2/crammer01a/crammer01a.pdf.

13

https://doi.org/10.5120/ijca2015906480
https://doi.org/10.5120/ijca2015906480
https://ui.adsabs.harvard.edu/abs/2020ascl.soft08017A
https://ui.adsabs.harvard.edu/abs/2020ascl.soft08017A
https://proceedings.mlr.press/v27/bengio12a
https://doi.org/10.1137/1.9781611972764.55
https://doi.org/10.1137/1.9781611972764.55
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/BF00994018
https://www.jmlr.org/papers/volume2/crammer01a/crammer01a.pdf
https://www.jmlr.org/papers/volume2/crammer01a/crammer01a.pdf

Published in Transactions on Machine Learning Research (March/2023)

Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of artificial intelligence research, 2:263–286, 1994. URL https://doi.org/10.1613/jair.
105.

Thanh-Nghi Do. Multi-class bagged proximal support vector machines for the ImageNet challenging problem.
In International Conference on Future Data and Security Engineering, pp. 99–112. Springer, 2021. URL
https://doi.org/10.1007/978-3-030-91387-8_7.

Kai-Bo Duan and S Sathiya Keerthi. Which is the best multiclass SVM method? An empirical study. In
International workshop on multiple classifier systems, pp. 278–285. Springer, 2005. URL https://doi.
org/10.1007/11494683_28.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library
for large linear classification. the Journal of machine Learning research, 9:1871–1874, 2008. URL https:
//www.jmlr.org/papers/volume9/fan08a/fan08a.pdf.

Johannes Fürnkranz. Round robin classification. The Journal of Machine Learning Research, 2:721–747,
2002. URL https://www.jmlr.org/papers/volume2/fuernkranz02a/fuernkranz02a.pdf.

Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. An
overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-
vs-one and one-vs-all schemes. Pattern Recognition, 44(8):1761–1776, 2011. URL https://doi.org/10.
1016/j.patcog.2011.01.017.

Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. Annals of Statistics, pp. 451–471,
1998. URL https://doi.org/10.1214/aos/1028144844.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778, 2016. URL https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_
Learning_CVPR_2016_paper.pdf.

Alan J Hoffman and Robert R Singleton. On Moore graphs with diameters 2 and 3. IBM Journal of Research
and Development, 4(5):497–504, 1960. URL https://doi.org/10.1147/rd.45.0497.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bul-
letin of the American Mathematical Society, 43(4):439–561, 2006. URL https://doi.org/10.1090/
S0273-0979-06-01126-8.

Jeremy Howard. Imagenette, 2022. URL https://github.com/fastai/imagenette.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector machines. IEEE
Transactions on Neural Networks, 13(2):415–425, 2002. URL https://doi.org/10.1109/72.991427.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes ImageNet good for transfer learning?
arXiv preprint arXiv:1608.08614, 2016. URL https://arxiv.org/abs/1608.08614.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, cs.utoronto.ca, 2009. URL http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.
pdf.

Durjoy Sen Maitra, Ujjwal Bhattacharya, and Swapan K Parui. CNN based common approach to handwrit-
ten character recognition of multiple scripts. In 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pp. 1021–1025. IEEE, 2015. URL https://doi.org/10.1109/ICDAR.2015.
7333916.

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich Leisch. e1071: Misc
Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2020.
URL https://CRAN.R-project.org/package=e1071. R package version 1.7-4.

14

https://doi.org/10.1613/jair.105
https://doi.org/10.1613/jair.105
https://doi.org/10.1007/978-3-030-91387-8_7
https://doi.org/10.1007/11494683_28
https://doi.org/10.1007/11494683_28
https://www.jmlr.org/papers/volume9/fan08a/fan08a.pdf
https://www.jmlr.org/papers/volume9/fan08a/fan08a.pdf
https://www.jmlr.org/papers/volume2/fuernkranz02a/fuernkranz02a.pdf
https://doi.org/10.1016/j.patcog.2011.01.017
https://doi.org/10.1016/j.patcog.2011.01.017
https://doi.org/10.1214/aos/1028144844
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://doi.org/10.1147/rd.45.0497
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://github.com/fastai/imagenette
https://doi.org/10.1109/72.991427
https://arxiv.org/abs/1608.08614
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/ICDAR.2015.7333916
https://doi.org/10.1109/ICDAR.2015.7333916
https://CRAN.R-project.org/package=e1071

Published in Transactions on Machine Learning Research (March/2023)

Shuteng Niu, Yongxin Liu, Jian Wang, and Houbing Song. A decade survey of transfer learning (2010–2020).
IEEE Transactions on Artificial Intelligence, 1(2):151–166, 2020. URL https://doi.org/10.1109/TAI.
2021.3054609.

David Page. cifar10-fast, 2019. URL https://github.com/davidcpage/cifar10-fast.

Vishal Passricha and Rajesh Kumar Aggarwal. Convolutional support vector machines for speech recogni-
tion. International Journal of Speech Technology, 22(3):601–609, 2019. URL https://doi.org/10.1007/
s10772-018-09584-4.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
URL https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers, 10(3):61–74, 1999. URL https://www.researchgate.net/
publication/2594015.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

Shivarudhrappa Raghu, Natarajan Sriraam, Yasin Temel, Shyam Vasudeva Rao, and Pieter L Kubben.
EEG based multi-class seizure type classification using convolutional neural network and transfer learning.
Neural Networks, 124:202–212, 2020. URL https://doi.org/10.1016/j.neunet.2020.01.017.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal of Machine Learning
Research, 5:101–141, 2004. URL https://www.jmlr.org/papers/volume5/rifkin04a/rifkin04a.pdf.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
URL https://doi.org/10.1007/s11263-015-0816-y.

scikit-learn. scikit-learn linearsvc documentation, 2023. URL https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.html.

Yichuan Tang. Deep learning using support vector machines. CoRR, abs/1306.0239, 2:1, 2013. URL
https://doi.org/10.48550/arXiv.1306.0239.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. URL
https://ggplot2.tidyverse.org.

Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain
François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn, Thomas Lin Pedersen,
Evan Miller, Stephan Milton Bache, Kirill Müller, Jeroen Ooms, David Robinson, Dana Paige Seidel,
Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke, Kara Woo, and Hiroaki Yutani. Welcome
to the tidyverse. Journal of Open Source Software, 4(43):1686, 2019. URL https://doi.org/10.21105/
joss.01686.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for multi-class classification by
pairwise coupling. Journal of Machine Learning Research, 5:975–1005, Dec 2004. URL https://www.
jmlr.org/papers/volume5/wu04a/wu04a.pdf.

15

https://doi.org/10.1109/TAI.2021.3054609
https://doi.org/10.1109/TAI.2021.3054609
https://github.com/davidcpage/cifar10-fast
https://doi.org/10.1007/s10772-018-09584-4
https://doi.org/10.1007/s10772-018-09584-4
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.researchgate.net/publication/2594015
https://www.researchgate.net/publication/2594015
https://www.R-project.org/
https://doi.org/10.1016/j.neunet.2020.01.017
https://www.jmlr.org/papers/volume5/rifkin04a/rifkin04a.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://doi.org/10.48550/arXiv.1306.0239
https://ggplot2.tidyverse.org
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://www.jmlr.org/papers/volume5/wu04a/wu04a.pdf
https://www.jmlr.org/papers/volume5/wu04a/wu04a.pdf

	Introduction
	Complexity of building SVM models
	Minimal, maximal, and intermediate models

	Experimental methodology
	Software used for experiments and analysis
	Datasets
	Neural networks
	Pairwise models for convolutional data sets
	Probabilistic prediction for minimal and maximal models

	Comparisons of methods to construct SVM models
	The performance gap between minimal and maximal models
	Selecting the best initial minimal model
	How to make predictions for non-complete model graphs
	Choosing which model to incrementally add
	Proposed algorithm

	Evaluation of intermediate SVM models
	Discussion

	Conclusion
	Acknowledgments

