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ABSTRACT

Mixup augmentation has emerged as a widely used technique for improving the
generalization ability of deep neural networks (DNNs). However, the lack of stan-
dardized implementations and benchmarks has impeded recent progress, resulting
in poor reproducibility, unfair comparisons, and conflicting insights. In this paper,
we introduce OpenMixup, the first mixup augmentation codebase and benchmark
for visual representation learning. Specifically, we train 18 representative mixup
baselines from scratch and rigorously evaluate them across 11 image datasets of
varying scales and granularity, ranging from fine-grained scenarios to complex non-
iconic scenes. We also open-source our modular codebase including a collection
of popular vision backbones, optimization strategies, and analysis toolkits, which
not only supports the benchmarking but enables broader mixup applications be-
yond classification, such as self-supervised learning and regression tasks. Through
experiments and empirical analysis, we gain observations and insights on mixup
performance-efficiency trade-offs, generalization, and optimization behaviors, and
thereby identify preferred choices for different needs. To the best of our knowledge,
OpenMixup has facilitated several recent studies. We believe this work can further
advance reproducible mixup augmentation research and thereby lay a solid ground
for future progress in the community. The source code will be publicly available.

1 INTRODUCTION
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Figure 1: Radar plot of top-1 accuracy for represen-
tative mixup baselines on 11 classification datasets.

Data mixing, or mixup, has proven effective in
enhancing the generalization ability of DNNs,
with notable success in visual classification
tasks. The pioneering Mixup (Zhang et al.,
2018) proposes to generate mixed training ex-
amples through the convex combination of two
input samples and their corresponding one-
hot labels. By encouraging models to learn
smoother decision boundaries, mixup effec-
tively reduces overfitting and thus improves
the overall performance. ManifoldMix (Verma
et al., 2019) and PatchUp (Faramarzi et al.,
2020) extend this operation to the hidden space.
CutMix (Yun et al., 2019) presents an alter-
native approach, where an input rectangular
region is randomly cut and pasted onto the
target in the identical location. Subsequent
works (Harris et al., 2020; ha Lee et al., 2020;
Baek et al., 2021) have focused on designing
more complex hand-crafted policies to gener-
ate diverse and informative mixed samples, which can all be categorized as static mixing methods.

Despite efforts to incorporate saliency information into static mixing framework (Walawalkar et al.,
2020; Uddin et al., 2020; Qin et al., 2023), they still struggle to ensure the inclusion of desired
targets in the mixed samples, which may result in the issue of label mismatches. To address this
problem, a new class of optimization-based methods, termed dynamic mixing, has been proposed, as
illustrated in the second row of Figure 2. PuzzleMix (Kim et al., 2020) and Co-Mixup (Kim et al.,
2021) are two notable studies that leverage optimal transport to improve offline mask determination.
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Figure 2: Visualization of mixed samples from representative static and dynamic mixup augmentation
methods on ImageNet-1K. We employ a mixing ratio of λ = 0.5 for a comprehensive comparison.
Note that mixed samples are more precisely in dynamic mixing policies than these static ones.

More recently, TransMix (Chen et al., 2022), TokenMix (Liu et al., 2022a), MixPro (Zhao et al.,
2023), and SMMix (Chen et al., 2023) are specifically tailored for Vision Transformers (Dosovitskiy
et al., 2021). The AutoMix series (Liu et al., 2022d; Qin et al., 2024) introduces a brand-new mixup
learning paradigm, where mixed samples are computed by an online-optimizable generator in an
end-to-end manner. These emerging dynamic approaches represent a promising avenue for generating
semantically richer training samples that align with the underlying structure of input data.

Why do we call for a mixup augmentation benchmark? While dynamic methods have shown signs
of surpassing the static ones, their indirect optimization process incurs significant computational
overhead, which limits their efficiency and applicability. Therefore, without a systematic understand-
ing, it is uncertain if dynamic mixup serves as the superior alternative in vision tasks. Moreover, a
thorough and standardized evaluation of different dynamic methods is also missing in the community.
Benchmark is exactly the way to establish such an understanding, which plays a pivotal role in driving
research progress by integrating an agreed-upon set of tasks, impartial comparisons, and assessment
criteria. To the best of our knowledge, however, there have been no such comprehensive benchmarks
for mixup augmentation to facilitate unbiased comparisons and practical use in visual recognition.

Why do we need an open-source mixup codebase? Notably, most existing mixup techniques are
crafted with diverse settings, tricks, and implementations, each with its own coding style. This lack
of standardization not only hinders user-friendly reproduction and deployment but impedes further
development, thus imposing costly trial-and-error on practitioners to determine the most appropriate
mixup strategy for their specific needs in real-world applications. Hence, it is essential to develop a
unified mixup visual representation learning codebase for standardized data pre-processing, mixup
development, network architecture selection, model training, evaluation, and empirical analysis.

In this paper, we present OpenMixup, the first comprehensive benchmark for mixup augmentation in
vision tasks. Unlike previous work (Naveed, 2021; Lewy & Mańdziuk, 2023), we train and evaluate
18 methods that represent the foremost strands on 11 diverse image datasets, as illustrated in Figure 1.
We also open-source a standardized mixup codebase for visual representation learning, where the
overall framework is built up with modular components for data pre-processing, mixup augmentation,
network backbone selection, optimization, and evaluations. The codebase not only powers our bench-
marking but supports broader relatively under-explored mixup applications beyond classification,
such as semi-supervised learning (Berthelot et al., 2019), self-supervised learning (Kalantidis et al.,
2020; Shen et al., 2022), and dense prediction tasks (He et al., 2017; Bochkovskiy et al., 2020).

Furthermore, insightful observations are obtained by incorporating multiple evaluation metrics and
analysis toolkits in our codebase, including GPU memory usage (Figure 4), loss landscape (Fig-
ure 5(c)), Power Law (PL) exponent alpha metrics (Figure 6), robustness and calibration (Table A8),
etc. For instance, despite the key role static mixing plays in today’s deep learning systems, we surpris-
ingly find that its generalizability over diverse datasets and backbones is significantly inferior to that
of dynamic algorithms. By ranking the performance and efficiency trade-offs, we reveal that recent
dynamic methods have already outperformed the static ones. This may suggest a promising break-
through for mixup augmentation, provided that the dynamic computational overhead can be further
reduced. Overall, we believe these insights can facilitate better evaluation and comparisons of mixup
methods, enabling a systematic understanding and thus paving the way for further advancements.

Since such a first-of-its benchmark can be rather time- and resource-consuming and most current
advances have focused on and stemmed from visual classification tasks, we centralize our benchmark-
ing scope on classification while extending it to broader mixup applications with transfer learning.
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Meanwhile, we have already supported these downstream tasks and datasets in our open-source
codebase, allowing practitioners to customize their mixup algorithms, models, and training setups in
these relatively under-explored scenarios. Our key contributions can be summarized as follows:

• We introduce OpenMixup, the first comprehensive benchmarking study for mixup augmentation,
where 18 representative baselines are trained from scratch and rigorously evaluated on 11 visual
classification datasets, ranging from non-iconic scenes to gray-scale, fine-grained, and long tail
scenarios. By providing a standard testbed and a rich set of evaluation protocols, OpenMixup
enables fair comparisons, thorough assessment, and analysis of different mixup strategies.

• To support reproducible mixup research and user-friendly method deployment, we provide an
open-source codebase for visual representation learning. The codebase incorporates standardized
modules for data pre-processing, mixup augmentation, backbone selection, optimization policies,
and distributed training functionalities. Beyond the benchmark itself, our OpenMixup codebase
is readily extensible and has supported semi- and self-supervised learning and visual attribute
regression tasks, which further enhances its utility and potential benefits to the community.

• Observations and insights are obtained through extensive analysis. We investigate the general-
ization ability of all evaluated mixup baselines across diverse datasets and backbones, compare
their GPU memory footprint and computational cost, visualize the loss landscape and PL expo-
nent alpha metrics to understand optimization behavior, and evaluate robustness against input
corruptions and calibration performance. Furthermore, we establish comprehensive rankings in
terms of their performance and applicability (efficiency and versatility), offering clear method
guidelines for specific requirements. These findings not only present a firm grasp of the current
mixup augmentation landscape but shed light on promising avenues for future advancements.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM DEFINITION

Mixup Training. We first consider the general image classification tasks with k different classes:
given a finite set of n image samples X = [xi]

n
i=1 ∈ Rn×W×H×C and their corresponding ground-

truth class labels Y = [yi]
n
i=1 ∈ Rn×k, encoded by a one-hot vector yi ∈ Rk. We attempt to seek the

mapping from input data xi to its class label yi modeled through a deep neural network fθ : x 7−→ y
with parameters θ by optimizing a classification loss ℓ(.), say the cross entropy (CE) loss,

ℓCE(fθ(x), y) = −y log fθ(x). (1)

Then we consider the mixup classification task: given a sample mixing function h, a label mixing
function g, and a mixing ratio λ sampled from Beta(α, α) distribution, we can generate the mixed
data Xmix with xmix = h(xi, xj , λ) and the mixed label Ymix with ymix = g(yi, yj , λ), where α is
a hyper-parameter. Similarly, we learn fθ : xmix 7−→ ymix by the mixup cross-entropy (MCE) loss,

ℓMCE = λℓCE(fθ(xmix), yi) + (1− λ)ℓCE(fθ(xmix), yj). (2)

Mixup Reformulation. Comparing Eq. (1) and Eq. (2), the mixup training has the following
features: (1) extra mixup policies, g and h, are required to generate Xmix and Ymix. (2) the
classification performance of fθ depends on the generation policy of mixup. Naturally, we can
split the mixup task into two complementary sub-tasks: (i) mixed sample generation and (ii) mixup
classification (learning objective). Notice that the sub-task (i) is subordinate to (ii) because the final
goal is to obtain a stronger classifier. Therefore, from this perspective, we regard the mixup generation
as an auxiliary task for the classification task. Since g is generally designed as a linear interpolation,
i.e., g(yi, yj , λ) = λyi + (1 − λ)yj , h becomes the key function to determine the performance of
the model. Generalizing previous offline methods, we define a parametric mixup policy hϕ as the
sub-task with another set of parameters ϕ. The final goal is to optimize ℓMCE given θ and ϕ as:

min
θ, ϕ

ℓMCE

(
fθ
(
hϕ(xi, xj , λ)

)
, g(yi, yj , λ)

)
. (3)

2.2 SAMPLE MIXING

Within the realm of visual classification, prior research has primarily concentrated on refining the
sample mixing strategies rather than the label mixing ones. In this context, most sample mixing
methods are categorized into two groups: static policies and dynamic policies, as presented in Table 1.
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Table 1: Overview of all supported vision Mixup augmentation methods in OpenMixup. Note that
Mixup and CutMix in label mixing indicate mixing the labels of two samples by linear interpolation
or computing cut squares. The Perf., App., and Overall denote the performance, applicability, and
overall rankings of all methods, which are derived from average rankings across baselines (view B.5).
Method Category Publication Sample Mixing Label Mixing Extra CostViT onlyPerf.App.Overall
Mixup (Zhang et al., 2018) Static ICLR’2018 Hand-crafted Interpolation Mixup ✗ ✗ 15 1 10
CutMix (Yun et al., 2019) Static ICCV’2019 Hand-crafted Cutting CutMix ✗ ✗ 13 1 8
DeiT (CutMix+Mixup) (Touvron et al., 2021) Static ICML’2021 CutMix+Mixup CutMix+Mixup ✗ ✗ 7 1 3
SmoothMix (ha Lee et al., 2020) Static CVPRW’2020 Hand-crafted Cutting CutMix ✗ ✗ 18 1 13
GridMix (Baek et al., 2021) Static PR’2021 Hand-crafted Cutting CutMix ✗ ✗ 17 1 12
ResizeMix (Qin et al., 2023) Static CVMJ’2023 Hand-crafted Cutting CutMix ✗ ✗ 10 1 5
ManifoldMix (Verma et al., 2019) Static ICML’2019 Latent-space Mixup Mixup ✗ ✗ 14 1 9
FMix (Harris et al., 2020) Static arXiv’2020 Fourier-guided Cutting CutMix ✗ ✗ 16 1 11
AttentiveMix (Walawalkar et al., 2020) Static ICASSP’2020 Pretraining-guided Cutting CutMix ✓ ✗ 9 3 6
SaliencyMix (Uddin et al., 2020) Static ICLR’2021 Saliency-guided Cutting CutMix ✗ ✗ 11 1 6
PuzzleMix (Kim et al., 2020) Dynamic ICML’2020 Optimal-transported Cutting CutMix ✓ ✗ 8 4 6
AlignMix (Venkataramanan et al., 2022) Dynamic CVPR’2022 Optimal-transported Interpolation CutMix ✓ ✗ 12 2 8
AutoMix (Liu et al., 2022d) Dynamic ECCV’2022 End-to-end-learned Cutting CutMix ✓ ✗ 3 6 4
SAMix (Li et al., 2021) Dynamic arXiv’2021 End-to-end-learned Cutting CutMix ✓ ✗ 1 5 1
AdAutoMix (Qin et al., 2024) Dynamic ICLR’2024 End-to-end-learned Cutting CutMix ✓ ✗ 2 7 4
TransMix (Chen et al., 2022) Dynamic CVPR’2022 CutMix+Mixup Attention-guided ✗ ✓ 5 8 7
SMMix (Chen et al., 2023) Dynamic ICCV’2023 CutMix+Mixup Attention-guided ✗ ✓ 4 8 6
DecoupledMix (Liu et al., 2022c) Static NeurIPS’2023 Any Sample Mixing Policies DecoupledMix ✗ ✗ 6 1 2

Static Policies. The sample mixing procedure in all static policies is conducted in a hand-crafted
manner. Mixup (Zhang et al., 2018) first generates artificially mixed data through the convex combina-
tion of two selected input samples and their associated one-hot labels. ManifoldMix variants (Verma
et al., 2019; Faramarzi et al., 2020) extend the same technique to latent space for smoother feature
mixing. Subsequently, CutMix (Yun et al., 2019) involves the random replacement of a certain
rectangular region inside the input sample while concurrently employing Drop Patch throughout the
mixing process. Inspired by CutMix, several researchers in the community have explored the use of
saliency information (Uddin et al., 2020) to pilot mixing patches, while others have developed more
complex hand-crafted sample mixing strategies (Harris et al., 2020; Baek et al., 2021).

Dynamic Policies. In contrast to static mixing, dynamic strategies are proposed to incorporate
sample mixing into an adaptive optimization-based framework. PuzzleMix variants (Kim et al.,
2020; 2021) introduce combinatorial optimization-based mixing policies in accordance with saliency
maximization. SuperMix variants (Dabouei et al., 2021; Walawalkar et al., 2020) utilize pre-trained
teacher models to compute smooth and optimized samples. Distinctively, AutoMix variants (Liu et al.,
2022d; Li et al., 2021) reformulate the overall framework of sample mixing into an online-optimizable
fashion where the model learns to generate the mixed samples in an end-to-end manner.

2.3 LABEL MIXING

Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019) are two widely-recognized label mixing
techniques, both of which are static. Recently, there has been a notable emphasis among researchers
on advancing label mixing approaches, which attain more favorable performance upon certain sample
mixing policies. Based on Transformers, TransMix variants (Chen et al., 2022; Liu et al., 2022a;
Choi et al., 2022; Chen et al., 2023) are proposed to utilize class tokens and attention maps to adjust
the mixing ratio. A decoupled mixup objective (Liu et al., 2022c) is introduced to force models to
focus on those hard mixed samples, which can be plugged into different sample mixing policies.
Holistically, most existing studies strive for advanced sample mixing designs rather than label mixing.

2.4 OTHER APPLICATIONS

Recently, mixup augmentation also has shown promise in more vision applications, such as semi-
supervised learning (Berthelot et al., 2019; Liu et al., 2022c), self-supervised pre-training (Kalantidis
et al., 2020; Shen et al., 2022), and visual attribute regression (Wu et al., 2022; Bochkovskiy et al.,
2020). Although these fields are not as extensively studied as classification, our OpenMixup codebase
has been designed to support them by including the necessary task settings and datasets. Its modular
and extensible architecture allows researchers and practitioners in the community to effortlessly adapt
and extend their models to accommodate the specific requirements of these tasks, enabling them to
quickly set up experiments without building the entire pipeline from scratch. Moreover, our codebase
will be well-positioned to accelerate the development of future benchmarks, ultimately contributing
to the advancement of mixup augmentation across a diversity of visual representation learning tasks.

3 OPENMIXUP

This section introduces our OpenMixup codebase framework and benchmark from four key aspects:
supported methods and tasks, evaluation metrics, and experimental pipeline. OpenMixup provides a
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Figure 3: Overview of codebase framework of OpenMixup. (1) benchmarks provide benchmarking
results and corresponding config files for mixup classification and transfer learning. (2) openmixup
contains implementations of all supported methods. (3) configs is responsible for customizing
setups of different mixup methods, networks, datasets, and training pipelines. (4) docs & tools
contains paper lists of popular mixup methods, user documentation, and useful tools.

unified framework implemented in PyTorch (Paszke et al., 2019) for mixup model design, training,
and evaluation. The framework references MMClassification (Contributors, 2020a) and follows
the OpenMMLab coding style. We start with an overview of its composition. As shown in Fig-
ure 3, the whole training process here is fragmented into multiple components, including model
architecture (.openmixup.models), data pre-processing (.openmixup.datasets), mixup
policies (.openmixup.models.utils.augments), script tools (.tools) etc. For instance,
vision models are summarized into modular building blocks (e.g., backbone, neck, head etc.) in
.openmixup.models. This modular architecture enables practitioners to easily craft models
by incorporating different components through configuration files in .configs. As such, users
can readily customize their specified vision models and training strategies. In addition, benchmark-
ing configuration (.benchmarks) and results (.tools.model zoos) are also provided in the
codebase. Additional benchmarking configurations and details are discussed below.

3.1 BENCHMARKED METHODS

OpenMixup has implemented 17 representative mixup augmentation algorithms and 19 convolutional
neural network and Transformer model architectures (gathered in .openmixup.models) across
12 diverse image datasets for supervised visual classification. We summarize these mixup methods
in Table 1, along with their corresponding conference/journal, the types of employed sample, and
label mixing policies, properties, and rankings. For sample mixing, Mixup (Zhang et al., 2018) and
ManifoldMix (Verma et al., 2019) perform hand-crafted convex interpolation. CutMix (Yun et al.,
2019), SmoothMix (ha Lee et al., 2020), GridMix (Baek et al., 2021) and ResizeMix (Qin et al., 2023)
implement hand-crafted cutting policy. FMix (Harris et al., 2020) utilizes Fourier-guided cutting.
AttentiveMix (Walawalkar et al., 2020) and SaliencyMix (Uddin et al., 2020) apply pretraining-
guided and saliency-guided cutting, respectively. Some dynamic approaches like PuzzleMix (Kim
et al., 2020) and AlignMix (Venkataramanan et al., 2022) utilize optimal transport-based cutting and
interpolation. AutoMix (Liu et al., 2022d) and SAMix (Li et al., 2021) perform end-to-end online-
optimizable cutting-based approaches. As for the label mixing, most methods apply Mixup (Zhang
et al., 2018) or CutMix (Yun et al., 2019), while the latest mixup methods for visual transformers
(TransMix (Chen et al., 2022), TokenMix (Liu et al., 2022a), and SMMix (Chen et al., 2023)), as well
as DecoupledMix (Liu et al., 2022c) exploit attention maps and a decoupled framework respectfully
instead, which incorporate CutMix variants as its sample mixing strategy. Such a wide scope of
supported methods enables a comprehensive benchmarking analysis on visual classification.

3.2 BENCHMARKING TASKS

We provide detailed descriptions of the 12 open-source datasets as shown in Table 2. These
datasets can be classified into four categories below: (1) Small-scale classification: We conduct
benchmarking studies on small-scale datasets to provide an accessible benchmarking reference.
CIFAR-10/100 (Krizhevsky et al., 2009) consists of 60,000 color images in 32×32 resolutions.
Tiny-ImageNet (Tiny) (Chrabaszcz et al., 2017) and STL-10 (Coates et al., 2011) are two re-scale
versions of ImageNet-1K in the size of 64×64 and 96×96. FashionMNIST (Xiao et al., 2017) is
the advanced version of MNIST, which contains gray-scale images of clothing. (2) Large-scale
classification: The large-scale dataset is employed to evaluate mixup algorithms against the most
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Table 2: The detailed information of supported visual classification datasets in OpenMixup.
Datasets Category Source Classes Resolution Train images Test images
CIFAR-10 (Krizhevsky et al., 2009) Iconic link 10 32×32 50,000 10,000
CIFAR-100 (Krizhevsky et al., 2009) Iconic link 100 32×32 50,000 10,000
FashionMNIST (Xiao et al., 2017) Gray-scale link 10 28×28 50,000 10,000
STL-10 (Coates et al., 2011) Iconic link 10 96×96 50,00 8,000
Tiny-ImageNet (Chrabaszcz et al., 2017) Iconic link 200 64×64 10,000 10,000
ImageNet-1K (Russakovsky et al., 2015) Iconic link 1000 469×387 1,281,167 50,000
CUB-200-2011 (Wah et al., 2011) Fine-grained link 200 224×224 5,994 5,794
FGVC-Aircraft (Maji et al., 2013) Fine-grained link 100 224×224 6,667 3,333
iNaturalist2017 Horn et al. (2018) Fine-grained & longtail link 5089 224×224 579,184 95,986
iNaturalist2018 Horn et al. (2018) Fine-grained & longtail link 8142 224×224 437,512 24,426
Places205 (Zhou et al., 2014) Scenic link 205 224×224 2,448,873 41,000

standardized procedure, which can also support the prevailing ViT architecture. ImageNet-1K (IN-
1K) (Russakovsky et al., 2015) is a well-known challenging dataset for image classification with
1000 classes. (3) Fine-grained classification: To investigate the effectiveness of mixup methods in
complex inter-class relationships and long-tail scenarios, we conduct a comprehensive evaluation
of fine-grained classification datasets, which can also be classified into small-scale and large-scale
scenarios. (i) Small-scale scenarios: The datasets for small-scale fine-grained evaluation scenario are
CUB-200-2011 (CUB) (Wah et al., 2011) and FGVC-Aircraft (Aircraft) (Maji et al., 2013), which
contains a total of 200 wild bird species and 100 classes of airplanes. (ii) Large-scale scenarios: The
datasets for large-scale fine-grained evaluation scenarios are iNaturalist2017 (iNat2017) (Horn et al.,
2018) and iNaturalist2018 (iNat2018) (Horn et al., 2018), which contain 5,089 and 8,142 natural
categories. Both the iNat2017 and iNat2018 own 7 major categories and are also long-tail datasets
with scenic images (i.e., the fore-ground target is within large backgrounds). (4) Scenic classification:
Scenic classification evaluations are also conducted to investigate the performance of different mixup
augmentation methods in complex non-iconic scenarios on Places205 (Zhou et al., 2014).

3.3 EVALUATION METRICS AND TOOLS

We comprehensively evaluate the beneficial properties of mixup augmentation algorithms on the
aforementioned vision tasks through the use of various metrics and visualization analysis tools in a
rigorous manner. Overall, the evaluation methodologies can be classified into two distinct divisions,
namely performance metric and empirical analysis. For the performance metrics, classification
accuracy and robustness against corruption are two performance indicators examined. As for empirical
analysis, experiments on calibrations, CAM visualization, loss landscape, the plotting of training loss,
and validation accuracy curves are conducted. The utilization of these approaches is contingent upon
their distinct properties, enabling user-friendly deployment for designated purposes and demands.

Performance Metric. (1) Accuracy and training costs: We adopt top-1 accuracy, total training
hours, and GPU memory to evaluate all mixup methods’ classification performance and training
costs. (2) Robustness: We evaluate the robustness against corruptions of the methods on CIFAR-
100-C and ImageNet-C (Russakovsky et al., 2015), which is designed for evaluating the corruption
robustness and provides 19 different corruptions, e.g., noise and blur etc. (3) Transferability to
downstream tasks: We evaluate the transferability of existing methods to object detection based on
Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al., 2017) on COCO train2017 (Lin et al.,
2014), initializing with trained models on ImageNet. We also transfer these methods to semantic
segmentation on ADE20K (Zhou et al., 2018). Please refer to Appendix B.4 for details.

Empirical Analysis. (1) Calibrations: To verify the calibration of existing methods, we evaluate
them by the expected calibration error (ECE) on CIFAR-100 (Krizhevsky et al., 2009), i.e., the
absolute discrepancy between accuracy and confidence. (2) CAM visualization: We utilize mixed
sample visualization, a series of CAM variants (Chattopadhyay et al., 2018; Muhammad & Yeasin,
2020) (e.g., Grad-CAM (Selvaraju et al., 2019)) to directly analyze the classification accuracy
and especially the localization capabilities of mixup augmentation algorithms through top-1 top-2
accuracy predicted targets. (3) Loss landscape: We apply loss landscape evaluation (Li et al., 2018)
to further analyze the degree of loss smoothness of different mixup augmentation methods. (4)
Training loss and accuracy curve: We plot the training losses and validation accuracy curves
of various mixup methods to analyze the training stability, the ability to prevent over-fitting, and
convergence speed. (5) Quality metric of learned weights: Employing WeightWatch (Martin
et al., 2021), we plot the Power Law (PL) exponent alpha metric of learned parameters with mixup
algorithms to study their properties on different scenarios, e.g., acting as the regularizer to prevent
overfitting or expanding more data as the augmentation technique to learn better representations.
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Table 3: Top-1 accuracy (%) on CIFAR-
10/100 and Tiny-ImageNet (Tiny) based
on ResNet (R), Wide-ResNet (WRN),
and ResNeXt (RX) backbones.

Datasets CIFAR-10 CIFAR-100 Tiny
Backbones R-18 WRN-28-8 RX-50
Epochs 800 ep 800 ep 400 ep
Vanilla 95.50 81.63 65.04
Mixup 96.62 82.82 66.36
CutMix 96.68 84.45 66.47
ManifoldMix 96.71 83.24 67.30
SmoothMix 96.17 82.09 68.61
AttentiveMix 96.63 84.34 67.42
SaliencyMix 96.20 84.35 66.55
FMix 96.18 84.21 65.08
GridMix 96.56 84.24 69.12
ResizeMix 96.76 84.87 65.87
PuzzleMix 97.10 85.02 67.83
Co-Mixup 97.15 85.05 68.02
AlignMix 97.05 84.87 68.74
AutoMix 97.34 85.18 70.72
SAMix 97.50 85.50 72.18
AdAutoMix 97.55 85.32 72.89
Decoupled 96.95 84.88 67.46

Table 4: Top-1 accuracy (%) on ImageNet-1K using
PyTorch-style, RSB A2/A3, and DeiT settings based on
CNN and Transformer architectures, including ResNet (R),
MobileNet.V2 (Mob.V2), DeiT-S, and Swin-T.

Backbones R-50 R-50 Mob.V2 1x DeiT-S Swin-T
Epochs 100 ep 100 ep 300 ep 300 ep 300 ep
Settings PyTorch RSB A3 RSB A2 DeiT DeiT
Vanilla 76.83 77.27 71.05 75.66 80.21
Mixup 77.12 77.66 72.78 77.72 81.01
CutMix 77.17 77.62 72.23 80.13 81.23
DeiT / RSB 77.35 78.08 72.87 79.80 81.20
ManifoldMix 77.01 77.78 72.34 78.03 81.15
AttentiveMix 77.28 77.46 70.30 80.32 81.29
SaliencyMix 77.14 77.93 72.07 79.88 81.37
FMix 77.19 77.76 72.79 80.45 81.47
ResizeMix 77.42 77.85 72.50 78.61 81.36
PuzzleMix 77.54 78.02 72.85 77.37 79.60
AutoMix 77.91 78.44 73.19 80.78 81.80
SAMix 78.06 78.64 73.42 80.94 81.87
AdAutoMix 78.04 78.54 - 80.81 81.75
TransMix - - - 80.68 81.80
SMMix - - - 81.10 81.80

3.4 EXPERIMENTAL PIPELINE OF OPENMIXUP CODEBASE

OpenMixup provides a unified training pipeline that offers a consistent workflow across various
computer vision tasks, as illustrated in Figure A1. Taking image classification as an example,
we can outline the overall training process as follows. (i) Data preparation: Users first select the
appropriate dataset and pre-processing techniques from our supported data pipeline. (ii) Model
architecture: The openmixup.models module serves as a component library for building desired
model architectures. (iii) Configuration: Users can easily customize their experimental settings
using Python configuration files under .configs.classification. These files allow for the
specification of datasets, mixup strategies, neural networks, and schedulers. (iv) Execution: The
.tools directory not only provides hardware support for distributed training but offers utility
functionalities, such as feature visualization, model analysis, and result summarization, which can
further facilitate empirical analysis. We also provide comprehensive online user documents, including
detailed guidelines for installation and getting started instructions, all the benchmarking results, and
awesome lists of related works in mixup augmentation, etc., which ensures that both researchers and
practitioners in the community can effectively leverage our OpenMixup for their specific needs.

4 EXPERIMENT AND ANALYSIS

4.1 IMPLEMENTATION DETAILS

We conduct essential benchmarking experiments of image classification on various scenarios with
diverse evaluation metrics. For a fair comparison, grid search is performed for the shared hyper-
parameter α ∈ {0.1, 0.2, 0.5, 1, 2, 4} of supported mixup variants while the rest of the hyper-
parameters follow the original papers. Vanilla denotes the classification baseline without any mixup
augmentations. All experiments are conducted on Ubuntu workstations with Tesla V100 or NVIDIA
A100 GPUs and report the mean results of three trials. Appendix B provides full visual classifica-
tion results, Appendix B.4 presents our transfer learning results for object detection and semantic
segmentation, and Appendix C conduct verification of the reproduction guarantee in OpenMixup.

Small-scale Benchmarks. We first provide standard mixup image classification benchmarks on
five small datasets with two settings. (a) The classical settings with the CIFAR version of ResNet
variants (He et al., 2016; Xie et al., 2017), i.e., replacing the 7× 7 convolution and MaxPooling by
a 3 × 3 convolution. We use 32 × 32, 64 × 64, and 28 × 28 input resolutions for CIFAR-10/100,
Tiny-ImageNet, and FashionMNIST, while using the normal ResNet for STL-10. We train vision
models for multiple epochs from the stretch with SGD optimizer and a batch size of 100, as shown in
Table 3 and Appendix B.2. (b) The modern training settings following DeiT (Touvron et al., 2021)
on CIFAR-100, using 224× 224 and 32× 32 resolutions for Transformers (DeiT-S (Touvron et al.,
2021) and Swin-T (Liu et al., 2021)) and ConvNeXt-T (Liu et al., 2022b) as shown in Table A7.
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Figure 4: Trade-off evaluation with respect to accuracy performance, total training time (hours), and
GPU memory (G). The results in (a) are based on DeiT-S architecture on ImageNet-1K. The results
in (b) and (c) are based on DeiT-S and ConvNeXt-T backbones on CIFAR-100, respectively.

Table 5: Rankings of various mixup augmentations as take-home messages for practical usage.
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Standard ImageNet-1K Benchmarks. For visual augmentation and network architecture commu-
nities, ImageNet-1K is a well-known standard dataset. We support three popular training recipes:
(a) PyTorch-style (He et al., 2016) setting for classifical CNNs; (b) timm RSB A2/A3 (Wightman
et al., 2021) settings; (c) DeiT (Touvron et al., 2021) setting for ViT-based models. Evaluation is
performed on 224×224 resolutions with CenterCrop. Popular network architectures are consid-
ered: ResNet (He et al., 2016), Wide-ResNet (Zagoruyko & Komodakis, 2016), ResNeXt (Xie et al.,
2017), MobileNet.V2 (Sandler et al., 2018), EfficientNet (Tan & Le, 2019), DeiT (Touvron et al.,
2021), Swin (Liu et al., 2021), ConvNeXt (Liu et al., 2022b), and MogaNet (Li et al., 2024). Refer to
Appendix A for implementation details. In Table 4 and Table A2, we report the mean performance of
three trials where the median of top-1 test accuracy in the last 10 epochs is recorded for each trial.

Benchmarks on Fine-grained and Scenic Scenarios. We further provide benchmarking results on
three downstream classification scenarios in 224×224 resolutions with ResNet backbone architectures:
(a) Transfer learning on CUB-200 and FGVC-Aircraft. (b) Fine-grained classification on iNat2017
and iNat2018. (c) Scenic classification on Places205, as illustrated in Appendix B.3 and Table A10.

4.2 OBSERVATIONS AND INSIGHTS

Empirical analysis is conducted to gain insightful observations and a systematic understanding of the
properties of different mixup augmentation techniques. Our key findings are summarized as follows:

(A) Which mixup method should I choose? Integrating benchmarking results from various perspec-
tives, we provide practical mixup rankings (detailed in Appendix B.5) as a take-home message for
real-world applications, which regards performance, applicability, and overall capacity. As shown in
Table 1, as for the performance, the online-optimizable SAMix and AutoMix stand out as the top two
choices. SMMix and TransMix follow closely behind. However, regarding applicability that involves
both the concerns of efficiency and versatility, hand-crafted methods significantly outperform the
learning-based ones. Overall, the DeiT (Mixup+CutMix), SAMix, and SMMix are selected as the
three most preferable mixup methods, each with its own emphasis. Table 5 shows ranking results.

(B) Generalization over datasets. The intuitive performance radar chart presented in Figure 1,
combined with the trade-off results in Figure 4, reveals that dynamic mixup methods consistently yield
better performance compared to static ones, showcasing their impressive generalizability. However,
dynamic approaches necessitate meticulous tuning, which incurs considerable training costs. In
contrast, static mixup exhibits significant performance fluctuation across different datasets, indicating
poor generalizability with application scenarios. For instance, Mixup and CutMix as the static
representatives perform even worse than the baseline on Place205 and FGVC-Aircraft, respectively.
Moreover, we analyze how mixup methods improve on different datasets in Figure 6 and Figure A4.
On small-scale datasets, mixup methods (dynamic ones) tend to prevent the over-parameterized
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Figure 5: (a)(b) Training epoch vs. top-1 accuracy (%) plots of different mixup methods on CIFAR-
100 to analyze training stability and convergence speed. (c) 1-D loss landscapes for mixup methods
with ResNet-50 (300 epochs) on ImageNet-1K. The results show that dynamic approaches achieve
deeper and wider loss landscapes than static ones, which may indicate better optimization behavior.
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(c) DeiT-S on ImageNet-1K
Figure 6: Visualization of PL exponent alpha metrics (Martin et al., 2021) of learned models by
different mixup based on DeiT-S or Swin-T on (a)(b) CIFAR-100 and (c) ImageNet-1K. In each
figure, the bars are sorted with the top-1 accuracy from left to right. Holistically, the alpha metric
measures the fitting degree of the learned model to a certain task. A smaller alpha indicates better
task fitting. Empirically, values less than 2 or larger than 6 run the risk of overfitting and underfitting.
Therefore, this could serve as a favorable toolkit to evaluate the impact of different mixups on models.

backbones (Vanilla or with some static ones) from overfitting. On the contrary, mixup techniques are
served as data augmentations to encourage the model to fit hard tasks on large-scale datasets.

(C) Generalization over backbones. As shown in Figure 4 and Figure 5(c), we provide extensive
evaluations on ImageNet-1K based on different types of backbones and mixup methods. As a
result, dynamic mixup achieves better performance in general and shows more favorable generaliz-
ability against backbone selection compared to static methods. Noticeably, the online-optimizable
SAMix and AutoMix exhibit impressive generalization ability over different vision backbones, which
potentially reveals the superiority of their online training framework compared to the others.

(D) Applicability. Figure A2 shows that ViT-specific methods (e.g., TransMix (Chen et al., 2022)
and TokenMix (Liu et al., 2022a)) yield exceptional performance with DeiT-S and PVT-S yet exhibit
intense sensitivity to different model scales (e.g., with PVT-T). Moreover, they are limited to ViTs,
which largely restricts their applicability. Surprisingly, static Mixup (Zhang et al., 2018) exhibits
favorable applicability with new efficient networks like MogaNet (Li et al., 2024). CutMix (Yun
et al., 2019) fits well with popular backbones, such as modern CNNs (e.g., ConvNeXt and ResNeXt)
and DeiT, which increases its applicability. As shown in Figure 4, although AutoMix and SAMix are
available in both CNNs and ViTs with consistent superiority, they have limitations in GPU memory
and training time, which may limit their applicability in certain cases. This also provides a promising
avenue for reducing the cost of well-performed online learnable mixup augmentation algorithms.

(E) Robustness & Calibration. We evaluate the robustness with accuracy on the corrupted version
of CIFAR-100 and FGSM attack (Goodfellow et al., 2015) and the prediction calibration. Table A8
shows that all the benchmarked methods can improve model robustness against corruptions. However,
only four recent dynamic approaches exhibit improved robustness compared to the baseline with
FGSM attacks. We thus hypothesize that the online-optimizable mixup methods are robust against
human interference, while the hand-crafted ones adapt to natural disruptions like corruption but are
susceptible to attacks. Overall, AutoMix and SAMix achieve the optimal robustness and calibration
results. For scenarios where these properties are required, practitioners can prioritize these methods.

(F) Convergence & Training Stability. As shown in Figure 5, wider bump curves indicate smoother
loss landscapes (e.g., Mixup), while higher warm color bump tips are associated with better conver-
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Figure 7: Visualization of class activation mapping (CAM) (Selvaraju et al., 2019) for top-1 and top-2
predicted classes of supported mixup methods with ResNet-50 on ImageNet-1K. Comparing the first
and second rows, we observe that saliency-guided or dynamic mixup approaches (e.g., PuzzleMix
and SAMix) localize the target regions better than the static methods (e.g., Mixup and ResizeMix).

gence and performance (e.g., AutoMix). Evidently, dynamic mixup algorithms own better training
stability and convergence than static mixup in general while obtaining sharp loss landscapes. They
are likely to improve performances through exploring hard mixup samples. Nevertheless, the static
mixup variants with convex interpolation, especially vanilla Mixup, exhibit smoother loss landscape
and stable training than some static cutting-based methods. Based on the observations, we assume
this arises from its interpolation that prioritizes training stability but may lead to sub-optimal results.

(G) Downstream Transferability & CAM Visualization. To further evaluate the downstream
performance and transferability of different mixup methods, we conduct transfer learning experiments
on object detection (Ren et al., 2015), semantic segmentation (Kirillov et al., 2019), and weakly
supervised object localization (Choe et al., 2020) with details in Appendix B.4. Notably, Table A11,
Table A12, and Table A13 suggest that dynamic sampling mixing methods like AutoMix indeed
exhibit competitive results, while recently proposed ViT-specific label mixing methods like TransMix
perform even better, showcasing their superior transferability. The results also show the potential for
improved online training mixup design. Moreover, it is commonly conjectured that vision models
with better CAM localization could potentially be better transferred to fine-grained downstream
prediction tasks. As such, to gain intuitive insights, we also provide tools for class activation mapping
(CAM) visualization with predicted classes in our codebase. As shown in Figure 7 and Table A13,
dynamic mixup like SAMix and AutoMix shows exceptional CAM localization, combined with
their aforementioned accuracy, generalization ability, and robustness, may indicate their practical
superiority compared to the static ones in object detection and even borader downstream tasks.

5 CONCLUSION AND DISCUSSION

Contributions. This paper presents OpenMixup, the first comprehensive mixup augmentation
benchmark and open-source codebase for visual representation learning, where 18 mixup algorithms
are trained and thoroughly evaluated on 11 diverse vision datasets. The released codebase not only
bolsters the entire benchmark but can facilitate broader under-explored mixup applications and
downstream tasks. Furthermore, observations and insights are obtained through different aspects of
empirical analysis that are previously under-explored, such as GPU memory usage, loss landscapes,
PL exponent alpha metrics, and more, contributing to a deeper and more systematic comprehension
of mixup augmentation. We anticipate that our OpenMixup benchmark and codebase can further
contribute to fair and reproducible mixup research and we also encourage researchers and practitioners
in the community to extend their valuable feedback to us and contribute to OpenMixup for building a
more constructive mixup-based visual representation learning codebase together through GitHub.

Limitations and Future Works. The benchmarking scope of this work mainly focuses on visual
classification, albeit we have supported a broader range of tasks in the proposed codebase and have
conducted transfer learning experiments to object detection and semantic segmentation tasks to draw
preliminary conclusions. We are aware of this and have prepared it upfront for future work. For
example, our codebase can be easily extended to other computer vision tasks and datasets for further
mixup benchmarking experiments and evaluations if necessary. Moreover, our observations and
insights can also be of great value to the community for a more comprehensive understanding of
mixup augmentation techniques. We believe this work as the first mixup benchmarking study is
enough to serve as a kick-start, and we plan to extend our work in these directions in the future.
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SUPPLEMENT MATERIAL

In supplement material, we provide implementation details and full benchmark results of image
classification, downstream tasks, and empirical analysis with mixup augmentations implemented in
OpenMixup on various datasets.

A IMPLEMENTATION DETAILS

A.1 SETUP OPENMIXUP

As provided in the supplementary material or the online document, we simply introduce the
installation and data preparation for OpenMixup, detailed in “docs/en/latest/install.md”. Assuming
the PyTorch environment has already been installed, users can easily reproduce the environment with
the source code by executing the following commands:
conda activate openmixup
pip install openmim
mim install mmcv-full
\# put the source code here
cd openmixup
python setup.py develop \# or "pip install -e ."

Executing the instructions above, OpenMixup will be installed as the development mode, i.e., any
modifications to the local source code take effect, and can be used as a python package. Then,
users can download the datasets and the released meta files and symlink them to the dataset root
($OpenMixup/data). The codebase is under Apache 2.0 license.

START
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Model Design Config Designation

Train & Eval

Downstream Heads

Necks

Backbones

Data Pipeline

Dataset Selection

Data Pre-processing Optimization Policies

Mixup Strategies

Auto Train Config
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Distributed Test

Result Summary
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Figure A1: Overview of the experimental pipeline in OpenMixup codebase.

A.2 TRAINING SETTINGS OF IMAGE CLASSIFICATION

Large-scale Datasets. Table A1 illustrates three popular training settings on large-scaling datasets
like ImageNet-1K in detail: (1) PyTorch-style (Paszke et al., 2019). (2) DeiT (Touvron et al., 2021).
(3) RSB A2/A3 (Wightman et al., 2021). Notice that the step learning rate decay strategy is replaced
by Cosine Scheduler (Loshchilov & Hutter, 2016), and ColorJitter as well as PCA lighting
are removed in PyTorch-style setting for better performances. DeiT and RSB settings adopt advanced
augmentation and regularization techniques for Transformers, while RSB A3 is a simplified setting
for fast training on ImageNet-1K. For a fare comparison, we search the optimal hyper-parameter α in
Beta(α, α) from {0.1, 0.2, 0.5, 1, 2, 4} for compared methods while the rest of the hyper-parameters
follow the original papers.

Small-scale Datasets. We also provide two experimental settings on small-scale datasets: (a)
Following the common setups (He et al., 2016; Yun et al., 2019) on small-scale datasets like CIFAR-
10/100, we train 200/400/800/1200 epochs from stretch based on CIFAR version of ResNet vari-
ants (He et al., 2016), i.e., replacing the 7× 7 convolution and MaxPooling by a 3× 3 convolution.
As for the data augmentation, we apply RandomFlip and RandomCrop with 4 pixels padding for
32×32 resolutions. The testing image size is 32×32 (no CenterCrop). The basic training settings
include: SGD optimizer with SGD weight decay of 0.0001, a momentum of 0.9, a batch size of 100,
and a basic learning rate is 0.1 adjusted by Cosine Scheduler (Loshchilov & Hutter, 2016). (b) We
also provide modern training settings following DeiT (Touvron et al., 2021), while using 224× 224
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Table A1: Ingredients and hyper-parameters used for ImageNet-1K training settings.
Procedure PyTorch DeiT RSB A2 RSB A3
Train Res 224 224 224 160
Test Res 224 224 224 224
Test crop ratio 0.875 0.875 0.95 0.95
Epochs 100/300 300 300 100
Batch size 256 1024 2048 2048
Optimizer SGD AdamW LAMB LAMB
LR 0.1 1× 10−3 5× 10−3 8× 10−3

LR decay cosine cosine cosine cosine
Weight decay 10−4 0.05 0.02 0.02
Warmup epochs ✗ 5 5 5
Label smoothing ϵ ✗ 0.1 ✗ ✗
Dropout ✗ ✗ ✗ ✗
Stoch. Depth ✗ 0.1 0.05 ✗
Repeated Aug ✗ ✓ ✓ ✗
Gradient Clip. ✗ 1.0 ✗ ✗
H. flip ✓ ✓ ✓ ✓
RRC ✓ ✓ ✓ ✓
Rand Augment ✗ 9/0.5 7/0.5 6/0.5
Auto Augment ✗ ✗ ✗ ✗
Mixup alpha ✗ 0.8 0.1 0.1
Cutmix alpha ✗ 1.0 1.0 1.0
Erasing prob. ✗ 0.25 ✗ ✗
ColorJitter ✗ ✗ ✗ ✗
EMA ✗ ✓ ✗ ✗
CE loss ✓ ✓ ✗ ✗
BCE loss ✗ ✗ ✓ ✓
Mixed precision ✗ ✗ ✓ ✓

Table A2: Top-1 accuracy (%) of image classification based on ResNet variants on ImageNet-1K
using PyTorch-style 100-epoch and 300-epoch training procedures.

Beta PyTorch 100 epochs PyTorch 300 epochs
Methods α R-18 R-34 R-50 R-101 RX-101 R-18 R-34 R-50 R-101
Vanilla - 70.04 73.85 76.83 78.18 78.71 71.83 75.29 77.35 78.91
MixUp 0.2 69.98 73.97 77.12 78.97 79.98 71.72 75.73 78.44 80.60
CutMix 1 68.95 73.58 77.17 78.96 80.42 71.01 75.16 78.69 80.59
ManifoldMix 0.2 69.98 73.98 77.01 79.02 79.93 71.73 75.44 78.21 80.64
SaliencyMix 1 69.16 73.56 77.14 79.32 80.27 70.21 75.01 78.46 80.45
FMix 1 69.96 74.08 77.19 79.09 80.06 70.30 75.12 78.51 80.20
ResizeMix 1 69.50 73.88 77.42 79.27 80.55 71.32 75.64 78.91 80.52
PuzzleMix 1 70.12 74.26 77.54 79.43 80.53 71.64 75.84 78.86 80.67
AutoMix 2 70.50 74.52 77.91 79.87 80.89 72.05 76.10 79.25 80.98
AdAutoMix 1 70.86 74.82 78.04 79.91 81.09 - - - -
SAMix 2 70.83 74.95 78.06 80.05 80.98 72.27 76.28 79.39 81.10

and 32× 32 resolutions for Transformer and CNN architectures. We only changed the batch size to
100 for CIFAR-100 and borrowed other settings the same as DeiT on ImageNet-1K.

B MIXUP IMAGE CLASSIFICATION BENCHMARKS

B.1 MIXUP BENCHMARKS ON IMAGENET-1K

PyTorch-style training settings The benchmark results are illustrated in Table A2. Notice that we
adopt α = 0.2 for some cutting-based mixups (CutMix, SaliencyMix, FMix, ResizeMix) based on
ResNet-18 since ResNet-18 might be under-fitted on ImageNet-1k.

DeiT training setting Table A3 shows the benchmark results following DeiT training setting.
Experiment details refer to Sec. A.2. Notice that the performances of transformer-based architectures
are more difficult to reproduce than ResNet variants, and the mean of the best performance in 3 trials
is reported as their original paper.

RSB A2/A3 training settings The RSB A2/A3 benchmark results based on ResNet-50, EfficientNet-
B0, and MobileNet.V2 are illustrated in Table A4. Training 300/100 epochs with the BCE loss on
ImageNet-1k, RSB A3 is a fast training setting, while RSB A2 can exploit the full representation
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Table A3: Top-1 accuracy (%) on ImageNet-1K based on popular Transformer-based architectures
using DeiT-S training settings. Notice that † denotes reproducing results with the official implementa-
tion, while other results are implemented with OpenMixup. TransMix, TokenMix, and SMMix are
specially designed for Transformers.

Methods α DeiT-T DeiT-S DeiT-B PVT-T PVT-S Swin-T ConvNeXt-T MogaNet-T
Vanilla - 73.91 75.66 77.09 74.67 77.76 80.21 79.22 79.25
DeiT 0.8, 1 74.50 79.80 81.83 75.10 78.95 81.20 82.10 79.02
MixUp 0.2 74.69 77.72 78.98 75.24 78.69 81.01 80.88 79.29
CutMix 0.2 74.23 80.13 81.61 75.53 79.64 81.23 81.57 78.37
ManifoldMix 0.2 - - - - - - 80.57 79.07
AttentiveMix+ 2 74.07 80.32 82.42 74.98 79.84 81.29 81.14 77.53
SaliencyMix 0.2 74.17 79.88 80.72 75.71 79.69 81.37 81.33 78.74
FMix 0.2 74.41 77.37 75.28 78.72 79.60 81.04 79.05
ResizeMix 1 74.79 78.61 80.89 76.05 79.55 81.36 81.64 78.77
PuzzleMix 1 73.85 80.45 81.63 75.48 79.70 81.47 81.48 78.12
AutoMix 2 75.52 80.78 82.18 76.38 80.64 81.80 82.28 79.43
SAMix 2 75.83 80.94 82.85 76.60 80.78 81.87 82.35 79.62
TransMix 0.8, 1 74.56 80.68 82.51 75.50 80.50 81.80 - -
TokenMix† 0.8, 1 75.31 80.80 82.90 75.60 - 81.60 - -
SMMix 0.8, 1 75.56 81.10 82.90 75.60 81.03 81.80 - -

Table A4: Top-1 accuracy (%) on ImageNet-1K based on classical ConvNets using RSB A2/A3
training settings, including ResNet, EfficientNet, and MobileNet.V2.

Backbones Beta R-50 R-50 Eff-B0 Eff-B0 Mob.V2 1× Mob.V2 1×
Settings α A3 A2 A3 A2 A3 A2
RSB 0.1, 1 78.08 79.80 74.02 77.26 69.86 72.87
MixUp 0.2 77.66 79.39 73.87 77.19 70.17 72.78
CutMix 0.2 77.62 79.38 73.46 77.24 69.62 72.23
ManifoldMix 0.2 77.78 79.47 73.83 77.22 70.05 72.34
AttentiveMix+ 2 77.46 79.34 72.16 75.95 67.32 70.30
SaliencyMix 0.2 77.93 79.42 73.42 77.67 69.69 72.07
FMix 0.2 77.76 79.05 73.71 77.33 70.10 72.79
ResizeMix 1 77.85 79.94 73.67 77.27 69.94 72.50
PuzzleMix 1 78.02 79.78 74.10 77.35 70.04 72.85
AutoMix 2 78.44 80.28 74.61 77.58 71.16 73.19
SAMix 2 78.64 80.40 75.28 77.69 71.24 73.42

ability of ConvNets. Notice that the RSB settings employ Mixup with α = 0.1 and CutMix with
α = 1.0. We report the mean of top-1 accuracy in the last 5/10 training epochs for 100/300 epochs.

B.2 SMALL-SCALE CLASSIFICATION BENCHMARKS

To facilitate fast research on mixup augmentations, we benchmark mixup image classification on
CIFAR-10/100 and Tiny-ImageNet with two settings.

CIFAR-10 As elucidated in Sec. A.2, CIFAR-10 benchmarks based on CIFAR version ResNet
variants follow CutMix settings, training 200/400/800/1200 epochs from stretch. As shown in
Table A5, we report the median of top-1 accuracy in the last 10 training epochs.

CIFAR-100 As for the classical setting (a), CIFAR-100 benchmarks train 200/400/800/1200
epochs from the stretch in Table A6, similar to CIFAR-10. Notice that we set weight decay to 0.0005
for cutting-based methods (CutMix, AttentiveMix+, SaliencyMix, FMix, ResizeMix) for better
performances when using ResNeXt-50 (32x4d) as the backbone. As shown in Table A7 using the
modern setting (b), we train three modern architectures for 200/600 epochs from the stretch. We resize
the raw images to 224× 224 resolutions for DeiT-S and Swin-T while modifying the stem network
as the CIFAR version of ResNet for ConvNeXt-T with 32× 32 resolutions. As shown in Table A8,
we further provided more metrics to evaluate the robustness and reliability (Naseer et al., 2021;
Song et al., 2023): evaluating top-1 accuracy on the corrupted version of CIFAR-100 (Hendrycks &
Dietterich, 2019), applying FGSM attack (Goodfellow et al., 2015)), and visualizing the prediction
calibration (Verma et al., 2019).

Tiny-ImageNet We largely follow the training setting of PuzzleMix (Kim et al., 2020) on Tiny-
ImageNet, which adopts the basic augmentations of RandomFlip and RandomResizedCrop
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Table A5: Top-1 accuracy (%) on CIFAR-10 training 200, 400, 800, 1200 epochs based on ResNet
(R) and ResNeXt-32x4d (RX).

Backbones Beta R-18 R-18 R-18 R-18 Beta RX-50 RX-50 RX-50 RX-50
Epochs α 200 ep 400 ep 800 ep 1200ep α 200 ep 400 ep 800 ep 1200ep
Vanilla - 94.87 95.10 95.50 95.59 - 95.92 95.81 96.23 96.26
MixUp 1 95.70 96.55 96.62 96.84 1 96.88 97.19 97.30 97.33
CutMix 0.2 96.11 96.13 96.68 96.56 0.2 96.78 96.54 96.60 96.35
ManifoldMix 2 96.04 96.57 96.71 97.02 2 96.97 97.39 97.33 97.36
SmoothMix 0.5 95.29 95.88 96.17 96.17 0.2 95.87 96.37 96.49 96.77
AttentiveMix+ 2 96.21 96.45 96.63 96.49 2 96.84 96.91 96.87 96.62
SaliencyMix 0.2 96.05 96.42 96.20 96.18 0.2 96.65 96.89 96.70 96.60
FMix 0.2 96.17 96.53 96.18 96.01 0.2 96.72 96.76 96.76 96.10
GridMix 0.2 95.89 96.33 96.56 96.58 0.2 97.18 97.30 96.40 95.79
ResizeMix 1 96.16 96.91 96.76 97.04 1 97.02 97.38 97.21 97.36
PuzzleMix 1 96.42 96.87 97.10 97.13 1 97.05 97.24 97.37 97.34
AutoMix 2 96.59 97.08 97.34 97.30 2 97.19 97.42 97.65 97.51
SAMix 2 96.67 97.16 97.50 97.41 2 97.23 97.51 97.93 97.74

Table A6: Top-1 accuracy (%) on CIFAR-100 training 200, 400, 800, 1200 epochs based on ResNet
(R), Wide-ResNet (WRN), ResNeXt-32x4d (RX). Notice that † denotes reproducing results with the
official implementation, while other results are implemented with OpenMixup.

Backbones Beta R-18 R-18 R-18 R-18 RX-50 RX-50 RX-50 RX-50 WRN-28-8
Epochs α 200 ep 400 ep 800 ep 1200ep 200 ep 400 ep 800 ep 1200ep 400ep
Vanilla - 76.42 77.73 78.04 78.55 79.37 80.24 81.09 81.32 81.63
MixUp 1 78.52 79.34 79.12 79.24 81.18 82.54 82.10 81.77 82.82
CutMix 0.2 79.45 79.58 78.17 78.29 81.52 78.52 78.32 77.17 84.45
ManifoldMix 2 79.18 80.18 80.35 80.21 81.59 82.56 82.88 83.28 83.24
SmoothMix 0.2 77.90 78.77 78.69 78.38 80.68 79.56 78.95 77.88 82.09
SaliencyMix 0.2 79.75 79.64 79.12 77.66 80.72 78.63 78.77 77.51 84.35
AttentiveMix+ 2 79.62 80.14 78.91 78.41 81.69 81.53 80.54 79.60 84.34
FMix 0.2 78.91 79.91 79.69 79.50 79.87 78.99 79.02 78.24 84.21
GridMix 0.2 78.23 78.60 78.72 77.58 81.11 79.80 78.90 76.11 84.24
ResizeMix 1 79.56 79.19 80.01 79.23 79.56 79.78 80.35 79.73 84.87
PuzzleMix 1 79.96 80.82 81.13 81.10 81.69 82.84 82.85 82.93 85.02
Co-Mixup† 2 80.01 80.87 81.17 81.18 81.73 82.88 82.91 82.97 85.05
AutoMix 2 80.12 81.78 82.04 81.95 82.84 83.32 83.64 83.80 85.18
SAMix 2 81.21 81.97 82.30 82.41 83.81 84.27 84.42 84.31 85.50
AdAutoMix 1 81.55 81.97 82.32 - 84.40 84.05 84.42 - 85.32

Table A7: Top-1 accuracy (%), GPU memory (G), and total training time (h) of 600 epochs on
CIFAR-100 training 200 and 600 epochs based on DeiT-S, Swin-T, and ConvNeXt-T with the DeiT
training setting. Notice that all methods are trained on a single A100 GPU to collect training times
and GPU memory.

Methods α DeiT-Small Swin-Tiny ConvNeXt-Tiny
200 ep 600 ep Mem. Time 200 ep 600 ep Mem. Time 200 ep 600 ep Mem. Time

Vanilla - 65.81 68.50 8.1 27 78.41 81.29 11.4 36 78.70 80.65 4.2 10
Mixup 0.8 69.98 76.35 8.2 27 76.78 83.67 11.4 36 81.13 83.08 4.2 10
CutMix 2 74.12 79.54 8.2 27 80.64 83.38 11.4 36 82.46 83.20 4.2 10
DeiT 0.8, 1 75.92 79.38 8.2 27 81.25 84.41 11.4 36 83.09 84.12 4.2 10
ManifoldMix 2 - - 8.2 27 - - 11.4 36 82.06 83.94 4.2 10
SmoothMix 0.2 67.54 80.25 8.2 27 66.69 81.18 11.4 36 78.87 81.31 4.2 10
SaliencyMix 0.2 69.78 76.60 8.2 27 80.40 82.58 11.4 36 82.82 83.03 4.2 10
AttentiveMix+ 2 75.98 80.33 8.3 35 81.13 83.69 11.5 43 82.59 83.04 4.3 14
FMix 1 70.41 74.31 8.2 27 80.72 82.82 11.4 36 81.79 82.29 4.2 10
GridMix 1 68.86 74.96 8.2 27 78.54 80.79 11.4 36 79.53 79.66 4.2 10
ResizeMix 1 68.45 71.95 8.2 27 80.16 82.36 11.4 36 82.53 82.91 4.2 10
PuzzleMix 2 73.60 81.01 8.3 35 80.33 84.74 11.5 45 82.29 84.17 4.3 53
AlignMix 1 - - - - 78.91 83.34 12.6 39 80.88 83.03 4.2 13
AutoMix 2 76.24 80.91 18.2 59 82.67 84.05 29.2 75 83.30 84.79 10.2 56
SAMix 2 77.94 82.49 21.3 58 82.70 84.74 29.3 75 83.56 84.98 10.3 57
TransMix 0.8, 1 76.17 79.33 8.4 28 81.33 84.45 11.5 37 - - - -
SMMix 0.8, 1 74.49 80.05 8.4 28 81.55 - 11.5 37 - - - -
Decoupled (DeiT) 0.8, 1 76.75 79.78 8.2 27 81.10 84.59 11.4 36 83.44 84.49 4.2 10
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Table A8: More evaluation metric (robustness and calibration) on CIFAR-100 with 200-epoch training,
reporting top-1 accuracy (%)↑ (clean data, corruption data, and FGSM attacks) and calibration ECE
(%)↓.

Methods α DeiT-Small Swin-Tiny
Clean Corruption FGSM ECE↓ Clean Corruption FGSM ECE↓

Vanilla - 65.81 49.31 20.58 9.48 78.41 58.20 12.87 11.67
Mixup 0.8 69.98 55.85 17.65 7.38 76.78 59.11 15.03 13.89
CutMix 2 74.12 55.08 12.53 6.18 80.64 57.73 18.38 10.95
DeiT 0.8, 1 75.92 57.36 18.55 5.38 81.25 62.21 15.66 15.68
SmoothMix 0.2 67.54 52.42 15.07 30.59 66.69 49.69 9.79 27.10
SaliencyMix 0.2 69.78 51.14 17.31 5.45 80.40 58.43 15.29 10.49
AttentiveMix+ 2 75.98 57.57 13.90 9.89 81.13 58.07 15.43 9.60
FMix 1 70.41 51.94 12.20 4.14 80.72 58.44 13.97 9.19
GridMix 1 68.86 51.11 8.43 4.09 78.54 57.78 11.07 9.37
ResizeMix 1 68.45 50.87 20.03 7.64 80.16 57.37 13.64 7.68
PuzzleMix 2 73.60 57.67 17.44 9.45 80.33 60.67 12.96 16.23
AlignMix 1 - - - - 78.91 61.61 17.20 1.92
AutoMix 2 76.24 60.08 27.35 4.69 82.67 64.10 23.62 9.19
SAMix 2 77.94 61.91 30.35 4.01 82.70 62.19 23.66 7.85
TransMix 0.8, 1 76.17 59.89 22.48 8.28 81.33 62.53 18.90 16.47
SMMix 0.8, 1 74.49 59.96 22.85 8.34 81.55 62.86 19.14 16.81
Decoupled (DeiT) 0.8, 1 76.75 59.89 22.48 8.28 81.10 62.25 16.54 16.16

Table A9: Top-1 accuracy (%) on Tiny
based on ResNet (R) and ResNeXt-
32x4d (RX). Notice that † denotes re-
producing results with the official im-
plementation, while other results are im-
plemented with OpenMixup.

Backbones α R-18 RX-50
Vanilla - 61.68 65.04
MixUp 1 63.86 66.36
CutMix 1 65.53 66.47
ManifoldMix 0.2 64.15 67.30
SmoothMix 0.2 66.65 69.65
AttentiveMix+ 2 64.85 67.42
SaliencyMix 1 64.60 66.55
FMix 1 63.47 65.08
GridMix 0.2 65.14 66.53
ResizeMix 1 63.74 65.87
PuzzleMix 1 65.81 67.83
Co-Mixup† 2 65.92 68.02
AutoMix 2 67.33 70.72
SAMix 2 68.89 72.18
AdAutoMix 1 69.19 72.89
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Figure A2: Radar plots of the top-1 accuracy of all evaluated
mixup augmentation methods based on a variety of popular
vision backbones on ImageNet-1K.

and optimize the models with a basic learning rate of 0.2 for 400 epochs with Cosine Scheduler. As
shown in Table A9, all compared methods adopt ResNet-18 and ResNeXt-50 (32x4d) architectures
training 400 epochs from the stretch on Tiny-ImageNet.

B.3 DOWNSTREAM CLASSIFICATION BENCHMARKS

We further provide benchmarks on three downstream classification scenarios in 224×224 resolutions
with ResNet architectures, as shown in Table A10.

Benchmarks on Fine-grained Scenarios. As for fine-grained scenarios, each class usually has
limited samples and is only distinguishable in some particular regions. We conduct (a) transfer
learning on CUB-200 and FGVC-Aircraft and (b) fine-grained classification with training from
scratch on iNat2017 and iNat2018. For (a), we use transfer learning settings on fine-grained datasets,
using PyTorch official pre-trained models as initialization and training 200 epochs by SGD optimizer
with the initial learning rate of 0.001, the weight decay of 0.0005, the batch size of 16, the same
data augmentation as ImageNet-1K settings. For (b) and (c), we follow Pytorch-style ImageNet-1K
settings mentioned above, training 100 epochs from the stretch.
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Table A10: Top-1 accuracy (%) of mixup image classification with ResNet (R) and ResNeXt (RX)
variants on fine-grained datasets (CUB-200, FGVC-Aircraft, iNat2017/2018) and Places205.

Beta CUB-200 FGVC-Aircraft Beta iNat2017 iNat2018 Beta Places205
Method α R-18 RX-50 R-18 RX-50 α R-50 RX-101 R-50 RX-101 α R-18 R-50
Vanilla - 77.68 83.01 80.23 85.10 - 60.23 63.70 62.53 66.94 - 59.63 63.10
MixUp 0.2 78.39 84.58 79.52 85.18 0.2 61.22 66.27 62.69 67.56 0.2 59.33 63.01
CutMix 1 78.40 85.68 78.84 84.55 1 62.34 67.59 63.91 69.75 0.2 59.21 63.75
ManifoldMix 0.5 79.76 86.38 80.68 86.60 0.2 61.47 66.08 63.46 69.30 0.2 59.46 63.23
SaliencyMix 0.2 77.95 83.29 80.02 84.31 1 62.51 67.20 64.27 70.01 0.2 59.50 63.33
FMix 0.2 77.28 84.06 79.36 86.23 1 61.90 66.64 63.71 69.46 0.2 59.51 63.63
ResizeMix 1 78.50 84.77 78.10 84.0 1 62.29 66.82 64.12 69.30 1 59.66 63.88
PuzzleMix 1 78.63 84.51 80.76 86.23 1 62.66 67.72 64.36 70.12 1 59.62 63.91
AutoMix 2 79.87 86.56 81.37 86.72 2 63.08 68.03 64.73 70.49 2 59.74 64.06
SAMix 2 81.11 86.83 82.15 86.80 2 63.32 68.26 64.84 70.54 2 59.86 64.27

Benchmarks on Scenis Scenarios. As for scenic classification tasks, we study whether mixup
augmentations help models distinguish the backgrounds, which are less important than the foreground
objects in commonly used datasets. We employ the PyTorch-style training setting like ImageNet-1K
on Places205 (Zhou et al., 2014), optimizing models for 100 epochs with SGD optimizer, a basic
learning rate of 0.1 with 256 batch size.

Visualization of Training Stabiltities. To further analyze training stability and convergence speed,
we provided more visualization of the training epoch vs. top-1 validation accuracy of various Mixup
augmentations on different datasets to support the conclusion of training convergence, as shown
in Figure A3. These visualization results could be easily obtained by our analysis tools under
tools/analysis tools.
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(b) Swin-T on ImageNet-1K
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(c) ResNet-50 on iNatualist2017
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Figure A3: Training epoch vs. top-1 accuracy plots of various mixup methods on (a)(b) ImageNet-1K,
(c) iNatualist2017, and (d) Place205 to further study training stability and convergence speed.
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(c) R-50 on iNatural2017
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Figure A4: Explaination of learned ResNet-50 or Swin-T by various mixup methods with alpha
metrics computed by WeightWather on (a)(b) ImageNet-1K, and (c) iNaturalist2017, and (d)
Place205. In each figure, the bars are sorted with the top-1 accuracy from left to right. Empirically,
the alpha metric indicates the degree of how well models fit the task, where alpha less than 2 or
greater than 6 indicates the risk of overfitting and underfitting. (a)(b) On ImageNet-1K, favorable
mixup methods (e.g., dynamic ones like AutoMix variants) prevent ResNet-50 (already had inductive
bias) from overfitting while helping Swin-T learning better representations. (c) Since iNaturalist2017
is a smaller dataset with more difficult classes than ImageNet-1K, dynamic mixup methods tend to
prevent overfitting to get better fine-grained classification performances. (d) Place205 with difficult
scenic images, is two times larger than ImageNet-1K with iconic images. Therefore, it is likely to
require mixup augmentations to encourage better fitting to scenic classification.

B.4 TRANSFER LEARNING

Object Detection. We conduct transfer learning experiments with pre-trained ResNet-50 (He
et al., 2016) and PVT-S (Wang et al., 2021) using mixup augmentations to object detection on
COCO-2017 (Lin et al., 2014) dataset, which evaluate the generalization abilities of different mixup
approaches. We first fine-tune Faster RCNN (Ren et al., 2015) with ResNet-50-C4 using Detec-
tron2 (Wu et al., 2019) in Table A11, which is trained by SGD optimizer and multi-step scheduler
for 24 epochs (2×). The dynamic mixup methods (e.g., AutoMix) usually achieve both competitive
performances in classification and object detection tasks. Then, we fine-tune Mask R-CNN (He et al.,
2017) by AdamW optimizer for 24 epochs using MMDetection (Chen et al., 2019) in Table A12.
We have integrated Detectron2 and MMDetection into OpenMixup, and the users can perform the
transferring experiments with pre-trained models and config files. Compared to dynamic sample
mixing methods, recently-proposed label mixing policies (e.g., TokenMix and SMMix) yield better
performances with less extra training overheads.

Semantic Segmentation. We also perform transfer learning to semantic segmentation on
ADE20K (Zhou et al., 2018) with Semantic FPN (Kirillov et al., 2019) to evaluate the general-
ization abilities to fine-grained prediction tasks. Following PVT (Wang et al., 2021), we fine-tuned
Semantic FPN for 80K interactions by AdamW (Loshchilov & Hutter, 2019) optimizer with the learn-
ing rate of 2×10−4 and a batch size of 16 on 5122 resolutions using MMSegmentation (Contributors,
2020b). Table A12 shows the results of transfer experiments based on PVT-S.

Weakly Supervised Object Localization. To study the localization ability of trained models more
precisely, we follow CutMix (Yun et al., 2019) to evaluate the weakly supervised object localization
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Table A11: Trasfer learning of object
detection with ImageNet-1k pre-trained
ResNet-50 backbone on COCO dataset.

IN-1K COCO
Method Acc mAP APbb

50 APbb
75

Vanilla 76.8 38.1 59.1 41.8
Mixup 77.1 37.9 59.0 41.7
CutMix 77.2 38.2 59.3 42.0
ResizeMix 77.4 38.4 59.4 42.1
PuzzleMix 77.5 38.3 59.3 42.1
AutoMix 77.9 38.6 59.5 42.2
SAMix 78.1 38.7 59.6 42.2

Table A12: Trasfer learning of object detection with Mask
R-CNN and semantic segmentation with Semantic FPN with
pre-trained PVT-S on COCO and ADE20K, respectively.

IN-1K COCO ADE20K
Method Acc mAP APbb

50 APbb
75 mIoU

MixUp+CutMix 79.8 40.4 62.9 43.8 41.9
AutoMix 80.7 40.9 63.9 44.1 42.5
TransMix 80.5 40.9 63.8 44.0 42.6
TokenMix 80.6 41.0 64.0 44.3 42.7
TokenMixup 80.5 40.7 63.6 43.9 42.5
SMMix 81.0 41.0 63.9 44.4 43.0

(WSOL) task on CUB-200 (Wah et al., 2011). The model localizes objects of interest based on the
activation maps of CAM (Selvaraju et al., 2019) without bounding box supervision and calculates the
maximal box accuracy with a threshold δ ∈ {0.3, 0.5, 0.7} as MaxBoxAccV2 (Choe et al., 2020).
We provided the benchmarked results on CUB-200 in Table A13, where we found similar conclusions
as the visualization of Grad-CAM in Sec. 4.2.

Table A13: MaxBoxAcc (%)↑ for the Weakly Supervised Object Localization (WSOL) task on
CUB-200 based on ResNet architectures. Following CutMix (Yun et al., 2019), the model localizes
objects of interest based on the activation maps of CAM (Selvaraju et al., 2019) without bounding
box supervision and calculates the maximal box accuracy with a threshold δ ∈ {0.3, 0.5, 0.7} as
MaxBoxAccV2 (Choe et al., 2020).

Backbone Vanilla Mixup CutMix ManifoldMix SaliencyMix FMix PuzzleMix Co-Mixup AutoMix SAMix
R-18 49.91 48.62 51.85 48.49 52.07 50.30 53.95 54.13 54.46 57.08
RX-50 53.38 50.27 57.16 49.73 58.21 59.80 59.34 59.76 61.05 60.94

B.5 RULES FOR COUNTING THE MIXUP RANKINGS

We have summarized and analyzed a great number of mixup benchmarking results to compare
and rank all the included mixup methods in terms of performance, applicability, and the overall
capacity. Specifically, regarding the performance, we averaged the accuracy rankings of all mixup
algorithms for each downstream task and averaged their robustness and calibration results rankings
separately. Finally, these ranking results are averaged again to produce a comprehensive range of
performance ranking results. As for the applicability, we adopt a similar ranking computation scheme
considering the time usage and the generalizability of the methods. With the overall capacity ranking,
we combined the performance and applicability rankings with a 1:1 weighting to obtain the final
take-home rankings. For equivalent results, we take a tied ranking approach. For instance, if three
methods are tied for first place, then the method that results in fourth place is recorded as second
place by default. Finally, we provide the comprehensive rankings as shown in Table 1 and Table 5.
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C REPRODUCTION COMPARISON

We provided the reproduction analysis of various mixup methods. Note that AutoMix (Qin et al.,
2024), SAMix (Li et al., 2021), AdAutoMix (Qin et al., 2024), and Decouple Mix (Liu et al.,
2022c) are originally implemented in OpenMixup, while the other popular mixup algorithms
are reproduced based on their official source codes or descriptions. As shown in Table A14 and
Table A15, the reproduced results are usually better than the original implementations because of the
following reasons: To ensure a fair comparison, we follow the standard training settings for various
datasets. Without changing the training receipts, we applied the effective implementations of the
basic training components. For example, we employ a better implementation of the cosine annealing
learning rate scheduler (updating by iterations) instead of the basic version (updating by epochs). On
CIFAR-100, we utilize the RandomCrop augmentation with a “reflect” padding instead of the “zero”
padding. On Tiny-ImageNet, we utilize RandomResizedCrop with the cropping ratio of 0.2
instead of RandomCrop in some implementations. On ImageNet-1K, we found that our reproduced
results closely align with the reported performances, with any minor discrepancies (around ±0.5%)
attributable to factors such as random initialization and specific hardware configurations.

Table A14: Comparison of benchmark results reproduced by OpenMixup and the official implemen-
tations on CIFAR-100 and Tiny-ImageNet. We report the top-1 accuracy and the training epoch. Note
that AutoMix (Qin et al., 2024), SAMix (Li et al., 2021), AdAutoMix (Qin et al., 2024), and Decouple
Mix (Liu et al., 2022c) are originally implemented in OpenMixup. The reproduced results are
usually better than the original implementations because we applied the effective implementations of
the standard training settings without changing the training receipts.

Method Publication CIFAR-100 (R18) Tiny-ImageNet (R18)
Ours Official Ours Official

MixUp(Zhang et al., 2018) ICLR’2018 79.24 (1200) 76.84 (1200) 63.86 (400) 58.96 (400)
CutMix(Yun et al., 2019) ICCV’2019 78.29 (1200) 76.95 (1200) 65.53 (400) 59.89 (400)
SmoothMix(ha Lee et al., 2020) CVPRW’2020 78.69 (800) 78.14 (800) 66.65 (400) -
GridMix(Baek et al., 2021) PR’2020 78.72 (800) 78.09 (800) 64.79 (400) 62.22 (400)
ResizeMix(Qin et al., 2023) CVMJ’2023 79.19 (400) 79.05 (400) 63.47 (400) 63.23 (400)
ManifoldMix(Verma et al., 2019) ICML’2019 80.21 (1200) 79.98 (1200) 64.15 (400) 60.24 (400)
FMix(Harris et al., 2020) arXiv’2020 79.91 (400) 79.85 (400) 63.47 (400) 61.43 (400)
AttentiveMix(Walawalkar et al., 2020) ICASSP’2020 79.62 (200) 77.16 (200) 64.01 (400) -
SaliencyMix(Uddin et al., 2020) ICLR’2021 79.75 (200) 76.11 (200) 64.60 (400) -
PuzzleMix(Kim et al., 2020) ICML’2020 81.13 (800) 80.99 (800) 65.81 (400) 63.48 (400)
AlignMixup(Venkataramanan et al., 2022) CVPR’2022 82.27 (800) 82.12 (800) 66.91 (400) 66.87 (400)

Table A15: Comparison of reproduced results with OpenMixup and the official implementations on
ImageNet-1K. We report the top-1 accuracy and the training epoch. Our reproduced results closely
align with the reported performances, with any minor discrepancies (around ±0.5%) attributable to
factors such as random initialization and specific hardware configurations.

Method Publication ImageNet-1K
Backbone Ours Official

MixUp (Zhang et al., 2018) ICLR’2018 R50 77.12 (100) 77.01 (100)
CutMix (Yun et al., 2019) ICCV’2019 R50 77.17 (100) 77.08 (100)
SmoothMix (ha Lee et al., 2020) CVPRW’2020 R50 77.84 (300) 77.66 (300)
GridMix (Baek et al., 2021) PR’2020 R50 78.50 (300) 78.25 (300)
ResizeMix (Qin et al., 2023) CVMJ’2023 R50 78.91 (300) 78.90 (300)
ManifoldMix (Verma et al., 2019) ICML’2019 R50 77.01 (100) 76.85 (100)
FMix (Harris et al., 2020) arXiv’2020 R50 77.19 (100) 77.03 (100)
AttentiveMix (Walawalkar et al., 2020) ICASSP’2020 DeiT-S 80.32 (300) 77.50 (300)
SaliencyMix (Uddin et al., 2020) ICLR’2021 R50 78.46 (300) 78.76 (300)
PuzzleMix (Kim et al., 2020) ICML’2020 R50 77.54 (100) 77.51 (100)
AlignMixup (Venkataramanan et al., 2022) CVPR’2022 R50 79.32 (300) 79.50 (300)
TransMix (Chen et al., 2022) CVPR’2022 DeiT-S 80.80 (300) 80.70 (300)
SMMix (Chen et al., 2023) ICCV’2023 DeiT-S 81.10 (300) 81.10 (300)
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