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Abstract

We introduce MoNet, a novel method that combines end-
to-end learning with modular network architectures for self-
supervised and interpretable sensorimotor learning. MoNet is
composed of three functionally distinct neural modules: Per-
ception, Planning, and Control. Leveraging its inherent mod-
ularity through a cognition-guided contrastive loss function,
MoNet efficiently learns task-specific decision-making pro-
cesses in latent space, without requiring task-level supervi-
sion. Moreover, our method incorporates an online post-hoc
explainability approach, which enhances the interpretability
of the end-to-end inferences without a trade-off in sensorimo-
tor performance. In real-world indoor environments, MoNet
demonstrates effective visual autonomous navigation, sur-
passing baseline models by 11% to 47% in task specificity
analysis. We further delve into the interpretability of our net-
work through the post-hoc analysis of perceptual saliency
maps and latent decision vectors. This offers insights into the
incorporation of explainable artificial intelligence within the
realm of robotic learning, encompassing both perceptual and
behavioral perspectives.

Introduction
One of the main objectives in end-to-end learning for au-
tonomous navigation is to develop complex policies through
human demonstrations. This is achieved by an end-to-end
network that learns the hierarchical pipeline of perception,
planning, and control in robotic systems via imitation learn-
ing (IL). Given that IL facilitates safe and efficient policy
learning in an offline, supervised manner, end-to-end net-
works have been widely used in the design of learning-based
applications (Tampuu et al. 2020).

However, although studies on IL have shown preliminary
successes, designing an end-to-end sensorimotor network
that can scale up to complex driving scenarios remains chal-
lenging. Traditional end-to-end networks often exhibit a less
clear decision-making process, which complicates learning
entangled tasks from demonstrations. To address this, recent
conditional learning methods (Huang et al. 2020) employ
multiple branching networks for each task, with outputs that
switch based on task-level conditional inputs. However, this
conditional input often corresponds to the outcome of an
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Figure 1: Our approach incorporates a functionally modular
end-to-end network architecture, which includes a post-hoc
process for an interpretable latent decision-making process.

internal decision-making process in human demonstrations,
which is typically implicit and difficult to identify. As a con-
sequence, this approach necessitates extra task-level annota-
tions (e.g., go-straight, turn-left), making it more demanding
than simply collecting sensorimotor pairs.

Moreover, conventional networks, which directly com-
pute control commands from sensory inputs, lack a transpar-
ent inference process. This obscurity makes it unclear what
behavioral decision was intended for the resulting control
output without direct execution. Several studies have sought
to enhance interpretability by reconstructing various modal-
ities (Chen, Li, and Tomizuka 2021; Zeng et al. 2019), or
by visualizing attention maps (Kim and Canny 2017). How-
ever, they mainly focus on perceptual insights, still leaving
the high-level decisions behind sensorimotor outputs largely
obscure. This lack of clarity leads to insufficient task speci-
ficity and interpretability during the sensorimotor process,
ultimately diminishing the reliability and trustworthiness of
end-to-end networks in practical applications.

To tackle those limitations, we adopt the insight of func-
tional modularity in the neuroscience field for the design of
an end-to-end architecture. Neuroscientists explain the or-
ganization of the human brain with two fundamental princi-
ples: functional segregation and integration (Meunier, Lam-
biotte, and Bullmore 2010). The brain has separate sub-
modules that are structurally connected but functionally seg-
regated according to their specific functions, such as sensory,
cognitive, or motor processes, to perform complex behav-
iors. This suggests that employing a functionally modular-
ized end-to-end architecture would be more suitable for ap-



proximating an autonomous driving stack comprising multi-
ple sub-functions.

In this paper, we present a modular end-to-end network,
MoNet, inspired by the functional modularity of intercon-
nected brain networks. MoNet is divided into perception,
planning, and control modules, which are functionally sep-
arated but explicitly connected to form a single end-to-end
structure (Fig. 1). Our network contains an internal latent de-
cision process to facilitate task-oriented guidance for behav-
iorally relevant sensory-motor processes. Simultaneously, it
employs a self-attention mechanism to extract salient spatial
features from sensory input.

Leveraging the inter-modular relationships in MoNet, we
design a novel cognition-guided contrastive (CGC) loss
function. Directed by the perception module with task-
oriented contexts, this function encourages the planning
module to make consistent decisions in similar driving con-
texts while differentiating responses in varied situations.
Furthermore, we integrate a post-hoc multi-class classifica-
tion method to decode task-relevant latent decisions into un-
derstandable representations. The internal hierarchy, com-
bined with the contrastive scheme and augmented by the
post-hoc explainability method, not only promotes func-
tional specialization but also enables the emergence of a
task-relevant and interpretable decision mechanism through
self-supervision.

In our evaluation, our method effectively demonstrates
visual autonomous driving across multiple tasks, including
corridor navigation, intersection navigation, and collision
avoidance. We present empirical experiments conducted on
a real-world robotic RC platform, showcasing the network’s
capability to perform task-specific sensorimotor inference
without requiring task-level labeling. We further explore
spatial saliency maps and latent decisions during end-to-end
inference. Specifically, by decoding latent decisions into ex-
plainable posterior probabilities, we gain the ability to visu-
alize sequential high-level internal decisions alongside task
uncertainty during continuous end-to-end sensorimotor con-
trol. These analyses highlight the significant interpretability
and transparency of our end-to-end model, showcasing its
effectiveness from both perceptual and behavioral perspec-
tives in real-world continuous control applications.

Our main contributions can be summarized as follows:
• We propose MoNet, a modular end-to-end network that

incorporates a post-hoc explainable method, enabling in-
terpretable sensorimotor control.

• We design a novel cognition-guided contrastive loss
function to enhance the task-relevant and interpretable
decision mechanism within the end-to-end network.

• We examine the perceptual and behavioral interpretabil-
ity, as well as the sensorimotor performance of our net-
work, showcasing the potential benefits of integrating the
explainability method into robotic learning.

Related Works
End-to-End Sensorimotor Learning: In autonomous
driving, end-to-end methods employ single neural networks
to directly map sensory inputs to control outputs. ALVINN,

the initial model for steering angle inference, utilized a
multilayer perceptron (Pomerleau 1988). This approach has
evolved to include convolutional neural networks (CNNs),
mainly focused on lane-following tasks (Bojarski et al.
2016). Recent advancements have incorporated conditional
imitation learning to cover a broader range of driving
tasks (Gao et al. 2017; Codevilla et al. 2018; Huang et al.
2020; Zhang, Huang, and Ohn-Bar 2023). These methods
use multiple branched layers switched by conditional inputs
for navigating environments, such as ’go-straight’, ’turn-
left’, or ’turn-right’. While such methods reduce task-level
ambiguity, they necessitate additional human-engineered la-
beling for the navigational inputs and are constrained to
predefined tasks. Moreover, interpreting the perceptual and
behavioral processes within end-to-end networks remains a
challenge, which affects confidence in the network’s relia-
bility for real-world deployment.

Interpretable Methods: Recent studies have concen-
trated on designing interpretable end-to-end networks to ad-
dress existing limitations. In this context, researchers us-
ing segmentation methods (Chen, Li, and Tomizuka 2021;
Teng et al. 2022) have indirectly shown how a network
can comprehend surrounding contexts by generating seman-
tic masks from hidden features. Similarly, studies involving
multi-head networks (Zeng et al. 2019) have evaluated the
effectiveness of their planning methods by examining in-
terpretable representations across various modalities, such
as object detection or cost map generation. In contrast, at-
tention mechanisms (Vaswani et al. 2017; Kim and Canny
2017) in recent studies have explicitly facilitated a deeper
understanding of the areas within given feature elements
where the network predominantly focuses during feedfor-
ward processing. Specifically, in the realm of autonomous
driving, methods leveraging attention aim to accentuate crit-
ical aspects in driving scenarios, such as lane following (Shi
et al. 2020), lane changing (Chen et al. 2019), or navigat-
ing intersections (Seong et al. 2021). However, the majority
of research has primarily focused on the cognitive interpre-
tations of how networks perceive contexts. Our work takes
this a step further by investigating how to interpret the task-
oriented intentions of the network in an explainable way.
This approach enables both perceptual and behavioral inter-
pretations online during end-to-end inference.

Modular End-to-End Network
Latent Functional Modularity
Our main idea is to embed functional modularity with in-
ternal hierarchy into an end-to-end network, allowing func-
tionalities of the robotic sub-modules in latent space. As
shown in Fig. 1, our modular end-to-end network, MoNet,
has three distinct neural modules: Perception (P), Plan-
ning (Q), and Control (R), which are the major components
of the robotics system (Schwarting, Alonso-Mora, and Rus
2018). Each module 1) encodes raw observations o into a
fused perception feature vector zp, 2) infers a latent deci-
sion hd, and 3) computes a sensorimotor command ac, re-
spectively. The modules are functionally separated yet struc-
turally connected in latent space, enabling them to constitute
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Figure 2: Overview of our method. While the entire end-to-end network is optimized by the supervised imitation loss Lπ , the
planning module is updated by the cognition-guided contrastive loss LCGC , which is directed by the latent fusion vector zp.

an end-to-end policy network π, parameterized by θ:

Perception: zp = P(o; θ)

Planning: hd = Q(zp; θ)

Control: ac = R(zp, hd; θ)

(1)

To encourage functional specialization of the modules in
the network, we utilize two distinct mechanisms: bottom-
up and top-down neural processes (Baluch and Itti 2011;
Anderson et al. 2018). Specifically, the bottom-up mecha-
nism is a stimulus-driven, exogenous process, while the top-
down mechanism is a behavior-relevant endogenous pro-
cess (Katsuki and Constantinidis 2014). Considering their
properties, the perception (Pθ) and planning (Qθ) modules
configure with self-attention mechanisms (Vaswani et al.
2017) to extract salient spatial features from sensory in-
put o and to obtain contextual importance from the features
zp, respectively. In contrast, the control (Rθ) module is de-
signed with a top-down mechanism to internally modulate
the sensory-motor signals based on the context-oriented be-
havioral decision hd from the planning module. This internal
hierarchy enables the network to generate spatial attention
maps and high-level latent decisions that are explicitly ac-
cessible during end-to-end inference. Employing a post-hoc
approach allows these to be transformed into interpretable
salient maps and behavioral decisions, respectively.

Network Details
Perception module: Our network receives a high-
dimensional observation o = [I,M ] that includes a front
camera image I ∈ R224×224×1 and a topology map M ∈
R64×64×3. This observation includes visual sensory data
with navigational information, providing driving contexts in
the ego-centric area for navigating complex environments,
such as corridors with intersections. To effectively process
high-dimensional camera images, we employ a hybrid ar-
chitecture that combines the Vision Transformer encoder
with CNN blocks (Dosovitskiy et al. 2020). In the percep-
tion module, the image I and the topology map M are
first encoded into a hidden image feature zI ∈ R6×6×64

and a hidden route feature zM ∈ R1×1×64, respectively,
using ResNet-inspired CNN blocks (He et al. 2016). The
image feature is first reshaped into a flattened embedding

zflat
I ∈ R(6×6)×64, serving as a tokenized embedding for
N = 6×6 image patches. This reshaped embedding is then
concatenated with a positional embedding and fed into a
Transformer encoder network (see the appendix for details).
Subsequently, the Transformer model processes this input to
produce an attention matrix A(·, ·), which integrates with the
global context of the image feature zI via the self-attention
mechanism. The attention matrix is computed as follows:

A(Q,K) = softmax(
QKT

√
dk

) (2)

Q,K, V = ZWQ, ZWK , ZWV (3)

where Q,K, V ∈ RN×Dk refer to queries, keys, and val-
ues consisting of N data nodes with Dk dimension size by
following common terminology (Dosovitskiy et al. 2020).
WQ,WK ,WV ∈ RDk×D are weight matrices for an arbi-
trary input feature Z ∈ RN×D with D dimension size to
compute Q,K, V . The attention matrix A ∈ RN×N discerns
the spatial significance of feature elements in the input im-
age, offering valuable information to interpret the module’s
bottom-up neural processing from a perceptual standpoint.
Finally, by applying mean pooling, we derive the attention-
integrated feature zatt

I with reduced dimensionality. This fea-
ture vector is then concatenated with the flattened route
feature zflat

M ∈ R64, yielding a latent feature fusion vector
zp = [zatt

I , zflat
M ]. The fused feature is subsequently fed into

the planning and control modules without nonlinearity.

Planning module: This module extracts contextual fea-
tures from the fused vector zp and produces a latent decision
hd to modulate the neural signals of the control module in
a top-down manner. We construct the planning module us-
ing another Transformer network, mirroring the encoder of
the perception module. Here, the fusion vector is expanded
and tokenized into an input embedding, corresponding to the
embedding zflat

I in perception. This input embedding is then
concatenated with a positional embedding, following a sim-
ilar process to that in the perception module. To derive the
latent decision in continuous space, we apply a linear layer
to the output of the Transformer encoder without using a
nonlinear activation function.

Control module: The control module computes a low-
level control command incorporating the high-level deci-



sion through bottom-up and top-down processes (Fig. 2).
The module initially extracts a pre-sensory-motor feature
xpre ∈ RNd from a given perceptual feature zp using the
MLPpre block (Eq. 4). The motor feature is then passed
through a linear fully-connected layer (FC) and modulated
in a top-down fashion via elementwise addition with the
task-oriented latent decision hd ∈ RNd (Eq. 5). The mod-
ule finally converts the modulated feature into the control
command ac ∈ R2 through the MLPpost block followed by
a tanh activation function (Eq. 6).

xpre = MLPpre(z
p) (4)

xmod = FC(xpre) + hd (5)
ac = tanh(MLPpost(xmod)) (6)

Here, the command ac = [δc, τ c] contains a normalized
steering angle δc and throttle value τ c. This self-modulated
hierarchy facilitates the independent computation of sensori-
motor and contextual data from perceptual inputs, resulting
in a control signal guided by latent decision-making. As a
result, MoNet is capable of learning task-specific sensori-
motor policies even from task-agnostic demonstrations.

Training Details
To train the network, we first introduce the supervised loss
function Lπ , defined as the absolute deviation (L1) between
the network’s prediction and the demonstration data:

Lπ(a
c, a) = |δc − δ|+ λτ |τ c − τ | (7)

where the loss term for throttle control τ c is weighted by the
parameter λτ ∈ [0, 1]. This weighting aims to emphasize
supervision on steering control in visual autonomous nav-
igation (Codevilla et al. 2018). Given that we collect noisy
demonstrations from a real robot platform, we choose the L1
loss to reduce the penalty for large errors and be more robust
to outliers compared to the L2 loss.

Furthermore, to enhance the distinctiveness of top-down
latent decisions, we design a cognition-guided contrastive
(CGC) loss function using a self-supervised approach, lever-
aging the modular characteristics of our end-to-end network.
Generally, the output of planning is influenced by the con-
text of the driving scene. This implies that similar situations
lead to analogous decisions, while different scenarios result
in distinct plans. Building on the observation that planning
outputs are context-dependent, we define a cognition-guided
contrastive loss, denoted as LCGC(z

p
i , z

p
j , h

d
i , h

d
j ). Here, the

latent decision hd is guided by the output feature fusion zp

of the perception module as follows:

LCGC =

{
1− cos(hd

i , h
d
j ) if cos(zpi , z

p
j ) >= κ

max(0, cos(hd
i , h

d
j )) if cos(zpi , z

p
j ) < κ

(8)

where cos(α, β) = α·β
|α||β| is cosine similarity that is widely

used for similarity and clustering analysis in data sci-
ence (Larose and Larose 2014). It calculates the distance be-
tween two vectors based on their relative orientations, rather
than their absolute distance, within the bounded range [-1,
+1]. The subscript j represents the index of a sample within

a mini-batch, different from the current sample index i. By
minimizing Eq. 8, we aim to reduce the intra-cluster dis-
tance for latent decisions in demonstrations where percep-
tual feature similarity exceeds κ. Conversely, we strive to
increase the inter-cluster distance when the similarity is be-
low κ. This approach incentivizes the planning module to
generate more consistent latent decisions for scenarios with
comparable perceptual contexts, while ensuring diverse de-
cisions for scenarios with differing contexts. Moreover, by
leveraging perceptual features, our method eliminates the
need to define positive or negative samples, thereby enabling
contrastive learning through a self-supervised approach.

The overall per-sample loss function is given by the
weighted summation:

L = Lπ(a
c
i , ai) + λCGCLCGC(z

p
i , z

p
j , h

d
i , h

d
j ) (9)

where λCGC is a weight parameter. During the training
phase, the supervised loss function Lπ propagates the gra-
dient flow across all modules (P,Q,R), while the latent-
guided loss function LCGC targets only the planning and per-
ception modules (P,Q), promoting functional distinction
between the planning and control modules (Q,R).

Interpretation Details
Cognitive Interpretation: We use the attention matrix of
the perception module to create a saliency map S, which
highlights the spatial regions in the current driving scene
that the network focuses on from a cognitive perspective.
The module generates the attention matrix A ∈ RN×N

corresponding to the flattened vector of the encoded fea-
ture map zI ∈ Rh×w×c, where N = h × w is a resulting
size of attention, (h,w) is a reduced resolution of the image
I ∈ R224×224×1, and c is the feature dimension of zI . Thus,
we initially aggregate weights along the first dimension of
A to obtain the averaged attention weights Ā ∈ R1×N :

Āj =
1

N

∑N

i=1
Aij for j = 1, ...N (10)

where Āj represents the central tendency of the weights
in each column. Subsequently, we reshape the averaged
weights into a two-dimensional matrix S̄ ∈ Rh×w. This is
then upscaled to form the saliency map S ∈ R224×224.

Behavioral Interpretation: Considering that the latent
decision contains task-oriented features, we decode the deci-
sion vector hd into an understandable, task-wise probability
score vector to facilitate the behavioral interpretation of our
network. We employ a multiclass linear Support Vector Ma-
chine (SVM) classifier (Suthaharan 2016) that is computa-
tionally efficient and less prone to overfitting. Utilizing sam-
ple decisions and their corresponding task labels (hd

i , yi),
linear SVM is designed to learn binary classification through
the following optimization (Tang 2013):

min
w,b

1

2
wTw+ C

M∑
i=1

max(0, 1− yi(w
Thd

i + b))2 (11)

where w is the weight vector, b is the bias term, and C is
the regularization parameter. The linear SVM is extended to
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Figure 3: Hardware and experimental setup.

multiclass classification using the one-vs-rest scheme (Tang
2013). This adaptation enables SVMs to maximize the mar-
gin between input data belonging to different classes. After
training the multiclass linear SVMs, we transform their out-
put into a posterior probability score vector P (yi= k|hd

i ) for
each class k, using a calibration method (Niculescu-Mizil
and Caruana 2005):

P (yi = k|hd
i ) =

1

1 + exp(Ekfk(hd
i ) + Fk)

(12)

where fk = wT
k h

d
i + bk is the SVM’s output for class k,

and Ek, Fk are parameters fitted using maximum likelihood
estimation from sample data set [fk(hd

i ), yi].
We carry out behavior interpretation in a post-hoc man-

ner. Initially, we generate sample latent decisions for each
task that human engineers aim to interpret, using the trained
modular network. Subsequently, we train the multiclass
SVMs, along with parameters Ek and Fk for the calibration
method. Finally, during sensorimotor inferencing, we trans-
form MoNet’s latent decisions into probability score vectors
using Eq. 12. This approach allows us to interpret the end-
to-end model without sacrificing sensorimotor performance.

Our approach is comparable to concept-based interpre-
tation methods in explainable artificial intelligence (Ghor-
bani et al. 2019). These studies focus on understanding how
high-level concepts are represented and utilized by models
in decision-making. In our case, the concept vector corre-
sponds to the latent decision that encapsulates the driving
situation. Consequently, to interpret the decision intent dur-
ing the sensorimotor process, we quantify the alignment of a
given decision vector with the specific tasks’ concept (driv-
ing situation). This is performed by decoding the latent de-
cision into the understandable probability score vector.

Experiments
Experimental Setup
Fig. 3 shows the overall setup for hardware, environ-
ment, and scenarios in this work. We apply MoNet on a
wheeled, car-like platform, modeled after the F1TENTH ve-
hicle (O’Kelly et al. 2020). Our platform consists of a 1/10
scale racing car chassis (TT-02) equipped with an embedded
computer (Jetson Xavier NX) and a controller (Arduino).
The Xavier NX receives front camera images and range
measurements from sensors mounted on the platform. The
range measurements are utilized to estimate the current pose
of the ego vehicle and compute ego-centric coarse topology

Success Rate (Count/Total)
Method ST SI LT RT CA

MoNet 1.00
(76/76)

1.00
(32/32)

1.00
(8/8)

1.00
(8/8)

0.95
(18/19)

ViTNet 1.00
(76/76)

1.00
(32/32)

1.00
(8/8)

0.63
(5/8)

0.89
(17/19)

Table 1: Success rate results for each driving task.

map (Amini et al. 2019). Detailed hardware setup and the
coarse map processing are provided in the appendix.

Our platform performs visual autonomous navigation
with multiple driving tasks such as straight (ST), left-
turn (LT), right-turn (RT), and collision avoidance (CA).
Data collection is carried out under controlled conditions in
two indoor environments: Corridor Environment 1 (Env. 1,
71m×16m) and Environment 2 (Env. 2, 88m×35m). Box-
shaped obstacles are randomly positioned within specific ar-
eas in these environments. The training dataset comprises
data from scenarios that feature either a single obstacle or no
obstacles. However, scenarios involving multiple obstacles
are introduced as new, unseen challenges during the evalua-
tion phases. Our method is evaluated in Env. 1, characterized
by more frequent intersection situations during autonomous
navigation. For further details on data collection and pro-
cessing (see the appendix for details).

Quantitative Evaluation
Sensorimotor Performance We evaluate the sensorimo-
tor performance by measuring the success rate for each driv-
ing task in the evaluation environment. In addition to our
method, we have implemented ViTNet, a baseline model
designed as a conventional Vision Transformer-based end-
to-end architecture without the planning module (Q) from
the MoNet’s architecture. Under the same hardware and en-
vironmental conditions, each model performed 16 episodes
in the real-world environment, totaling 143 driving tasks.
Table 1 summarizes the performance results. These results
demonstrate that our model exhibits stronger generalization
ability across multiple sensorimotor tasks compared to the
baseline model. Both models show safe navigation perfor-
mance in straight driving scenarios. However, ViTNet often
struggles to overcome unseen obstacle scenarios and partic-
ularly fails in turning right at intersections, where it records
its lowest success rate of 63%. Although there was a situ-
ation where our model had a mild touch with a wall while
avoiding cluttered obstacles, MoNet succeeded in all trials
of navigating intersections and generally performed well in
obstacle avoidance scenarios.

Planning Performance To assess the planning-level per-
formance of the end-to-end network, we quantify the task
specificity during sensorimotor inference using a t-SNE
map (Van der Maaten and Hinton 2008) and a Represen-
tational Similarity Matrix (RSM) (Popal, Wang, and Olson
2019). In consideration of the data distribution, we sampled
318, 64, 59, 59, and 67 pieces of data, respectively, for the
five tasks (ST, SI, LT, RT, CA) for these assessments.

The t-SNE visualization (Fig. 4 (A)) demonstrates that our
planning module generates distinct and well-structured de-
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Figure 4: Results of the planning-level quantitative evaluations. (A): The t-SNE map illustrates clusters of latent decisions
among different tasks. (B): The similarity matrix shows the quantitative similarity of the decision vectors between different
classes. (C): The learning curve indicates performance improvement in L1 loss and similarity score across different models.

cisions in the latent space for various tasks. It effectively
differentiates between the LT and RT tasks from the ST sce-
nario and recognizes the directional variations in navigating
intersections. The decisions for CA are positioned between
the ST, LT, and RT clusters, indicating a need for mod-
erate planning that involves both intersection-turning and
corridor-following behaviors in collision avoidance scenar-
ios. Furthermore, the data for SI exhibits a high similarity to
that of ST, reflecting similar driving contexts, despite their
differing inputs from topological maps.

For a more quantitative analysis of similarity in latent
planning, we further examine the RSM of the learned de-
cisions (Fig. 4 (B)). We measure the cosine similarity be-
tween the latent decisions of each task using the average
linkage method (Nielsen and Nielsen 2016). The similar-
ities among the five task classes are then normalized to a
range of [0, 1] through a row-wise softmax operation. The
results demonstrate that our method effectively differentiates
between various tasks while clustering similar driving situ-
ations. The matrix shows strong diagonal values, indicating
that the latent decisions effectively distinguish various driv-
ing tasks based on contextual features derived from sensory
data, without task-level inputs. Specifically, the decisions re-
lated to navigating intersections (LT, RT) and avoiding col-
lisions (CA) are clearly differentiated from other tasks, en-
suring minimal confusion. Additionally, the decisions from
similar contexts, such as ST and SI, although showing higher
similarities than the average value of 0.2, remain distin-
guishable from each other. This analysis provides the user
with a clear understanding of the network’s performance in
discriminating between different tasks. It also allows for the
consolidation of similar task classes (ST and SI in our case),
which increases the efficiency of decision interpretation.

Learning Curves We evaluate the learning curves of var-
ious baseline models based on their control and planning
performance (Fig. 4 (C)). For sensorimotor control perfor-
mance, we calculate the L1 loss using the validation dataset.
To assess planning-level performance, we compute a simi-
larity score, which is the sum of the diagonal values in the

RSM results. In addition to our method, we configure ViT-
Net, which comprises only perception and control modules,
to investigate the necessity of the planning module. For ViT-
Net’s similarity score computation, we select the perceptual
feature (zp) and the control-level hidden states (zc), where
zc is the output of Eq. 5, computed without the top-down
decision process. Additionally, we introduce another ver-
sion of MoNet (MoNet w/o LCGC), trained without the con-
trastive loss LCGC, to analyze the effectiveness of the self-
supervised scheme. Our approach achieves notable improve-
ment in top-down latent planning over other models, with-
out compromising sensorimotor learning capabilities. The
L1 loss curves show minimal changes with the addition of
an extra planning module or a contrastive learning scheme.
Meanwhile, in the similarity score curves, our method out-
performs other approaches, demonstrating 11%-47% higher
final performance. MoNet (w/o LCGC), which only includes
a planning module, does not exhibit significant discrimina-
tion performance (1.00) in the latent space. In contrast, the
latent decision (hd) of our modular network (MoNet), uti-
lizing the self-supervised contrastive scheme, achieves the
highest terminal score (1.47), outperforming the perception-
level (1.32) and control-level (1.13) hidden features. This
indicates that our method substantially enhances the task-
specificity of end-to-end inferences without affecting policy
learning. Moreover, it reveals that our latent decision more
effectively embeds contextual characteristics compared to
perceptual or low-level control features, thereby improving
its suitability for behavioral interpretation.

Analysis of Interpretability
We investigate the interpretability and transparency of our
model while performing end-to-end sensorimotor process-
ing by decoding the top-down latent decisions. Fig. 5 il-
lustrates the quantitative results, including latent decisions,
decoded interpretable decisions, and control output, during
an autonomous navigation episode encompassing multiple
tasks. Since the decoded decisions are represented as prob-
abilistic score vectors, we further compute the entropy of
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Figure 5: Quantitative results showing given sensory inputs, latent decisions, decoded interpretable decisions, entropy, and
control output during an autonomous navigation episode.

these decisions. This entropy represents the confidence level
of the internal decision-making during sensorimotor pro-
cessing. The results show that our method can provide inter-
pretable sensorimotor processes through decoded decisions
that validly reflect the driving situation based on sensory in-
puts. In the early phase, our robot followed a straight cor-
ridor using minimal steering control, demonstrating strong
probability scores for the task decision ST. However, when
navigating intersections, our model produced latent deci-
sions that were decoded as high scores for corresponding
turns (LT, RT), necessitating large steering angle commands.
In the case of approaching a wall or obstacle, our network
generates different patterns (CA) of neural activations, re-
sulting in unique decision responses compared to straight
driving (ST) and turns (LT, RT).

Moreover, by analyzing the entropy of the decoded prob-
ability score vector, we can assess the confidence level of
internal decision-making during end-to-end control. When-
ever the robot needed to alter its current driving decisions,
such as when approaching intersections or obstacles, the en-
tropy of the decision increased to more than 1.0, indicat-
ing mid-level entropy values. Since latent decision-making
is the causal process leading to robot control, our method can
provide the internal confidence of the end-to-end inference
prior to executing the robot’s control actions. This shows
the significant interpretability and transparency of our model
from a behavioral perspective in practical applications.

We further delve into the perceptual and behavioral in-
terpretation across various driving tasks and include these
results in the appendix for brevity.

Conclusion
We introduced MoNet, a modular end-to-end network for
self-supervised and interpretable sensorimotor learning. The
network leverages functional modularity to enable a novel
cognition-guided contrastive scheme. This scheme allows
the network to learn task-specific sensorimotor control with-
out task-level supervision. Furthermore, our network incor-
porates a self-attention mechanism and an internal decision
process, both of which can be decoded into a spatial saliency
map and an explainable decision. In real-world autonomous
navigation, our model demonstrates effective sensorimotor
performance with interpretability among multiple tasks.

Our approach to interpretable sensorimotor learning with
functional modularity offers several advantages for the use
of end-to-end networks. Firstly, it enables more reliable
and less uncertain end-to-end processes in robotics. Our
method allows human engineers to comprehend the net-
work’s intent and the rationale behind specific control out-
puts from perspectives beyond control-level observation, in-
cluding perception and planning. Such enhancement is par-
ticularly valuable in real-world deployments where safety is
critical. Secondly, our approach facilitates the integration of
learning-based, black-box modules with nonlearning-based,
white-box ones into a hybrid architecture. By leveraging de-
coded interpretable decisions from our modular network,
it becomes feasible to conditionally apply either network-
based policies or conventional controllers during deploy-
ment. We hope that our work contributes to integrating
robotic sensorimotor processes with explainable artificial in-
telligence. We plan to validate our method across a more di-
verse range of robotic platforms and scenarios.
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Supplementary Materials
A demo video, codes, and dataset for quantitative results
and interpretation are available at https://drive.google.com/
drive/folders/1zREu8PdCf1D6hre06dnSpni8FPGwU6vT.

Perception Module in Details
The perception module utilizes the Transformer encoder to
generate a saliency map, which is then integrated with the
global context of the input image I through the self-attention
mechanism. Following the description in (Dosovitskiy et al.
2020), the encoder network comprises: 1) a multi-head self-
attention block (MSA), and 2) an MLP block, both equipped
with layer normalizations (LN) and residual connections.
After feature extraction by the CNN block (Eq. 13), the in-
put embedding undergoes preprocessing (Eq. 14-15) before
being fed into the Transformer encoder process (Eq. 16-18).

zi = CNNi(oi), i = {I,M} (13)

zflat
i = reshapei(zi), zflat

I ∈ RNp×Dp , zflat
M ∈ RDp (14)

zI0 = [zI ; z
pos
I ] ∈ RNp×(Dp+1), zposI ∈ RNp×1 (15)

z′l = MSA(LN(zl−1)) + zl−1, l = 1, ..., L (16)

zl = MLP(LN(z′l)) + z′l, l = 1, ..., L (17)

zp = [zatt
I ; zflat

M ], where zatt
I = MeanPool(zL) (18)

where Np = 6 × 6 and Dp = 64. The MLP block in-
cludes ReLU for nonlinearity. Considering the limited com-
puting resources available for on-board implementation, we
construct a single-stack Transformer encoder (L = 1) for
each module.

Hardware System and Coarse Topology Map
Our platform consists of a 1/10 scale racing car chassis
equipped with an embedded computer, Jetson Xavier NX,
and a controller, Arduino. The Xavier NX receives front
camera images with the Realsense D435i camera sensor
and acquires range measurements using a 2D LiDAR sen-
sor (Hokuyo UST-20LX). These measurements are utilized

to estimate the current pose of the ego vehicle through on-
board localization (Hess et al. 2016) in GPS-denied indoor
environments. The Xavier NX then computes an ego-centric
coarse topology map (Amini et al. 2019), which includes a
highlighted routed map alongside an unrouted map, based on
the ego vehicle’s pose and a globally routed path. This path
is planned using the Dijkstra algorithm, utilizing a sparse
topological roadmap of the indoor corridor environments.
The Arduino receives commands from either the Xavier NX
or a human driver, converting them into PWM signals for the
steering and speed control motors of the platform.

Data Collection and Processing
While collecting data, we record camera images, topology
maps, and corresponding command signals for steering and
throttle control from the human driver. These control sig-
nals are normalized to a range of [-1, +1]. We collect data
for a total of 2 hours, amounting to 88,326 pairs of sensory
input and labels in the environments of Env. 1 and Env. 2.
The data is split into training and validation sets at a ratio of
80 : 20. The camera image is cropped to a size of 440× 240
pixels and then resized to 224×224 pixels for use in our net-
work. For data augmentation, we apply random image shifts
and corresponding steering angle adjustments, as outlined
in (Bojarski et al. 2016).

Perceptual and Behavioral Interpretability
Fig. 6 illustrates the results of perceptual and behavioral in-
terpretation among various driving tasks. Using the spatial
saliency map, we can explicitly interpret where the network
focuses during autonomous navigation in real-world indoor
environments. While the network does not specifically fo-
cus on any areas when driving straight through corridors, it
shows strong spatial attention on the boundaries of intersec-
tions during turns, areas crucial for navigating the desired
route. Similarly, upon encountering obstacles, the network
generates spatial attention on the obstacle regions, further
emphasizing critical areas for avoiding collisions. These re-
sults show that our network effectively identifies the regions
with spatial importance in the visual sensory input during
end-to-end autonomous driving, offering human engineers
understandable insights into its perceptual processes.

Our model can also provide explainable decisions while
performing end-to-end sensorimotor processing by decod-
ing task-specific top-down latent decisions. In the exper-
iments, our method yields explainable decoded decisions,
which are validly recognized as corresponding to the driv-
ing situation based on the sensory inputs (Fig. 6). Even with
varying environmental conditions in the driving scene, the
top-down latent decision produces a similar distribution of
neural values when the task-level context is analogous, re-
sulting in accurate interpretations of behavioral intents.

Moreover, our method demonstrates both flexibility and
scalability in interpretability. Drawing on previous quantita-
tive results, we have consolidated straight driving tasks (ST,
SI) into a single category, ST, by reconfiguring samples for
the refitting of the SVMs. This underscores our method’s
ability to tailor the interpretation method to meet the specific
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Figure 6: Results of the spatial saliency maps, latent decisions, and decoded interpretable decisions, corresponding to given
sensory inputs from various driving tasks. Latent decisions are plotted to represent their distribution, while the decoded deci-
sions are presented as posterior probabilities between ST, LT, RT, and CA.

needs of human engineers without having to retrain the orig-
inal end-to-end network. Additionally, during navigation,
we observe transition zones when the robot approaches in-
tersections (Inter. Approach), shifting from straight driving
(ST) to turning (LT/RT). This transition presents a unique
pattern, with both ST and LT/RT exhibiting high posterior

probabilities simultaneously. Standing apart from the five
predefined tasks (ST, SI, LT, RT, CA), this pattern suggests
our method’s capacity to uncover new behavioral tasks not
previously identified by human engineers. As mentioned,
SVM samples can be restructured if necessary to facilitate
interpretation of these newly identified tasks.


