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Abstract

Prognostication for comatose post-cardiac arrest patients is a critical challenge that directly
impacts clinical decision-making in the ICU. Clinical information that informs prognosti-
cation is collected serially over time. Shortly after cardiac arrest, various time-invariant
baseline features are collected (e.g., demographics, cardiac arrest characteristics). After
ICU admission, additional features are gathered, including time-varying hemodynamic data
(e.g., blood pressure, doses of vasopressor medications). We view these as two phases in
which we collect new features. In this study, we propose a novel stepwise dynamic compet-
ing risks model that improves the prediction of neurological outcomes by automatically
determining when to take advantage of time-invariant features (first phase) and time-
varying features (second phase). A key finding is that it is not always beneficial to use
all features (first and second phase) for prediction. Notably, our model finds patients for
whom this second phase (time-varying hemodynamic) information is beneficial for prog-
nostication and also when this information is beneficial (as we collect more hemodynamic
data for a patient over time, how important these data are for prognostication varies).
Our approach extends the standard Fine and Gray model to explicitly model the two
phases and to incorporate neural networks to flexibly capture complex nonlinear feature
relationships. Evaluated on a retrospective cohort of 2,278 comatose post-arrest patients,
our model demonstrates robust discriminative performance for the competing outcomes
of awakening, withdrawal of life-sustaining therapy, and death despite maximal support.
Subgroup analyses based on the motor component of the FOUR score reveal that pa-
tients with severe neurological dysfunction receive minimal additional prognostic benefit
from hemodynamic data, whereas those with moderate-to-mild impairment derive signif-
icant incremental risk information. These findings underscore the potential of dynamic
risk modeling for enhancing prognostication. Our approach generalizes to more than two
phases in which new features are collected and could be used in other dynamic prediction
tasks, where it may be helpful to know when and for whom newly collected features signifi-
cantly improve prediction. The source code implementing the proposed method is publicly
available at https://github.com/xiaobin-xs/Stepwise-Fine-and-Gray.

© 2025 X. Shen, J. Elmer & G.H. Chen.
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Stepwise Fine and Gray

1. Introduction

Prognostication in comatose survivors of cardiac arrest is a critical and challenging aspect
of post-arrest care (Rossetti et al., 2016; Geocadin et al., 2019; Steinberg et al., 2024).
Among patients who remain in a coma and are admitted to the ICU, the leading cause of
death is the withdrawal of life-sustaining therapy (WLST) based on physicians’ perceived
poor prognosis (May et al., 2019). Guidelines focus primarily on predicting neurological
outcomes, since death due to brain injury is more common than other irrecoverable organ
failures. In particular, neuroprognostication relies on a multimodal approach (Nolan et al.,
2021), incorporating neurological exams, electroencephalogram (EEG), brain imaging, and
blood biomarkers, as no single indicator reliably precludes recovery potential. While the
precision of neuroprognostic tools has improved in recent years (e.g., Westhall et al. 2016),
accurate prognostication remains a substantial clinical challenge.

In addition to neuroprognostic testing, comatose survivors of cardiac arrest are critically
ill and undergo close monitoring of many physiological processes in the intensive care unit.
Continuous blood pressure monitoring is a core component of post-cardiac arrest inten-
sive care, and the severity of low blood pressure (shock) has prognostic relevance (Huang
et al., 2017; Chi et al., 2022). According to post-resuscitation care guidelines (Nolan et al.,
2021), maintaining adequate mean arterial pressure (MAP) is essential, and hypotension
(MAP<65 mmHg) should be avoided. Vasopressors are continuously administered medi-
cations that increase blood pressure to meet these treatment goals. Several studies have
reported associations between early hypotension and poor neurological outcomes (e.g., Lau-
rikkala et al. 2016; Chiu et al. 2018), while higher MAP levels have been linked to improved
recovery (Beylin et al., 2013; Roberts et al., 2019). Compared to neuroprognostic tools like
neurological exams and imaging, blood pressure signals are continuously available in the
ICU. This provides a real-time window into cardiovascular stability, which may indirectly
reflect cerebral perfusion and brain health. Thus, hemodynamic signals could complement
other modalities in a multimodal neuroprognostic strategy.

Machine learning approaches have recently been applied to neuroprognostication using
multimodal predictors, including EEG and blood pressure (e.g., Zheng et al. 2021; Kim
et al. 2023; Hessulf et al. 2023; Kim et al. 2025). However, many existing models treat
neuroprognostication as a time-invariant, binary classification task by contrasting good
versus poor outcomes. This approach may introduce bias in the target labels, especially in
the context of WLST. Patients who die following WLST are often labeled as having poor
outcomes, despite the uncertainty of their true neurological trajectory had life-sustaining
therapy been continued (Elmer et al., 2025). On the other hand, excluding these patients
entirely would not only waste valuable data but could also introduce a sampling bias: if, for
instance, the vast majority of these patients would have ended up dying despite maximal
support, then excluding patients who died followingWLST would bias the remaining dataset
to have a larger proportion of patients with “good” outcomes (e.g., who are likely to awaken).

Instead of using a binary classification approach, a more principled solution is to adopt
a competing risks setup (see, e.g., Chapter 12 of the standard text by Collett (2023)), a
standard extension of survival analysis to model the time that will elapse until the earliest of
multiple mutually exclusive outcomes (e.g., awakening from coma, death following WLST,
death despite maximal support), while still allowing for censoring (e.g., a patient still being
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in a coma by the time data collection stops). Especially as we are in a setting where we
collect more data on each patient over time, we specifically adopt a dynamic competing risks
setup, with predictions repeatedly made over time (see, e.g., Section 6.2 of Chen (2024)).

In this study, we propose a “stepwise” neural net extension to the standard competing
risks method by Fine and Gray (1999) to evaluate the role of hemodynamic data (including
blood pressure and vasopressor dosages over time) in predicting neurological outcomes in
comatose post-cardiac arrest patients. The stepwise nature could be described in terms of
two phases, which correspond to the ordering in which features are commonly collected: in
the first phase (shortly after cardiac arrest), we collect static features (e.g., demographics,
cardiac arrest characteristics, neurological exams) and can already make predictions using
these features. Later in the second phase (after ICU admission), we start collecting time-
varying features (e.g., blood pressure trajectories, vasopressor usage), which we use to
refine predictions from the already built first phase model as to come up with a second
phase model. Our method learns a thresholding rule to decide whether to use the first or
second phase model to make predictions, where the thresholding depends on the specific test
patient as well as how much of the patient’s data we have seen. In other words, we determine
for whom and when time-varying hemodynamic features are particularly important for
prediction over static baseline features. This is in contrast to other competing risks variable
selection approaches based on boosting or lasso or certain selection criteria (like AIC and
BIC) that select which features to use across all subjects and thus do not provide variable
selection personalized at the individual subject level (e.g., Binder et al. 2009; Kuk and
Varadhan 2013; Tapak et al. 2015; Fu et al. 2017).

We apply our proposed stepwise Fine and Gray method on 2,278 comatose post-arrest
patients. Our results suggest that our approach improves model performance (in terms of
a competing risks version of the concordance index (Wolbers et al., 2014; Ishwaran et al.,
2014)) compared to using all features simultaneously. We also provide individual-level
dynamic risk profiles over time. Changes in predicted risk over time, quantified as the
ratio of log subhazards, between phases serve as potential alerts for clinicians to reassess
a patient’s neurological status or to consider intervention. Additionally, subgroup analyses
based on the motor component of the FOUR score (Wijdicks et al., 2005) reveal that pa-
tients with moderate-to-mild early neurological impairment benefit most from continuous
hemodynamic monitoring, as evidenced by the significant incremental prognostic contri-
bution from time-varying blood pressure and vasopressor dosage features. We believe our
findings offer meaningful insights into the integration of continuous hemodynamic data into
neuroprognostication workflows and may inform future clinical decision-making.

Generalizable Insights about Machine Learning in the Context of Healthcare

From a methodological viewpoint, our learning framework illustrates how decomposing risk
prediction into early static features and subsequent time-varying data can yield interpretable
insights that could aid clinical decision-making. This approach is flexible and easily extends
to arbitrarily many phases of newly collected features per subject, providing insight as to
which features are significantly beneficial for prediction for which subjects and when.

From a decision support viewpoint, by quantifying the incremental prognostic contri-
bution of dynamic measurements (the hemodynamic features in our case), our method
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demonstrates the value of continuous monitoring in refining risk estimates. Although blood
pressure control is a core component of post-cardiac arrest care, blood pressure data is not
typically incorporated into prognostication algorithms for these patients. Our analysis re-
veals that these dynamic hemodynamic data possess predictive power that could potentially
complement other modalities such as EEG.

The framework and evaluation strategy presented here are not limited to prognostica-
tion. They can be adapted to other time-to-event prediction problems in healthcare, such as
treatment response or disease progression, where distinguishing the impact of static versus
dynamic factors (or other ways of splitting features into phases) could be beneficial.

2. Background

We first review the competing risks setup (Section 2.1) followed by the classic Fine and Gray
(1999) competing risks model (Section 2.2). For the latter, we go over why the Fine and
Gray model can easily be interpreted, which is why we extend it in our proposed approach.
Throughout the paper, for any positive integer ℓ, we use [ℓ] ≜ {1, 2, . . . , ℓ} to denote the set
of integers from 1 to ℓ. Random variables are written as uppercase letters (e.g., X) whereas
realizations of random variables, dummy variables, and constants are written as lowercase
letters (e.g., x). For reference, we provide a list of all notations used in Appendix A.

2.1. Competing Risks Problem Setup

Suppose that there are m competing events that are mutually exhaustive. We now describe
the statistical setup assumed for the training data and, separately, for test data.

Training data For each training subject i ∈ [n], we observe the tuple (Xi, Yi, Di), where
Xi ∈ X is the i-th subject’s feature vector, Yi ∈ (0,∞) is the i-th subject’s “observed time”
(to be defined momentarily), and Di ∈ {0, 1, . . . ,m} indicates which competing event is
the earliest to happen for the i-th subject (the special value of 0 means that the censoring
happens before any of the m competing events). If Di = 0, then Yi is the censoring time.
Otherwise (i.e., if Di ∈ [k]), then Yi is the time until the earliest competing event happened.

Here, we could view the i-th subject as having their Yi and Di random variables gen-
erated based on the latent random variables Ti,1, Ti,2, . . . , Ti,m, Ci, where Ti,k (for k ∈ [m])
is the time of occurrence for event k of the i-th subject, and Ci is the censoring time
for the i-th subject. We assume that conditioned on feature vector Xi, the event times
(Ti,1, Ti,2, . . . , Ti,m) are independent of the censoring time Ci. Then

Yi ≜ min{Ti,1, Ti,2, . . . , Ti,m, Ci},

Di ≜

{
0 if Yi = Ci (censoring is the earliest to happen),

argmink∈[m] Ti,k otherwise.

Test data and prediction At test time, we assume a slightly different statistical model.
We denote a generic test subject’s feature vector as X, and we use Tk (for k ∈ [m]) to
denote the time of occurrence of event k. In particular, the tuple (X,T1, . . . , Tm) has the
same distribution as the tuple (Xi, Ti,1, . . . , Ti,m) for any training subject i ∈ [n]. We are
not interested in reasoning about whether the test subject will be censored (so that we do
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not define a censoring time for the test subject). We define the time until the earliest event
happens T and the event indicator D as

T ≜ min
k∈[m]

Tk, and D ≜ arg min
k∈[m]

Tk.

For any observed test feature vectorX=x ∈X , our goal is to predict the so-called cumulative
incidence function (CIF) for every event k ∈ [m], defined for any time horizon h > 0 as

Fk(h|x) ≜ P(T ≤ h,D = k | X = x), (1)

which can be interpreted as the probability of event k occurring before time horizon h
conditioned on feature vector x.

2.2. Fine and Gray Competing Risks Model

We now review the classic Fine and Gray (1999) competing risks model, which our proposed
approach extends. The Fine and Gray model in turn extends the standard Cox proportional
hazards model (Cox, 1972) to the competing risks setting. To do so, we work with the
subdistribution hazard function (abbreviated as subhazard), defined for each event k ∈ [m] as

λk(h|x) ≜ lim
∆h→0

1

∆h
P
(
T ∈ [h, h+∆h], D = k

∣∣∣ (T ≥ h ∪ (T ≤ h,D ̸= k)︸ ︷︷ ︸
“unnatural” condition

)
, X = x

)
(2)

Importantly, in the conditional probability above, there is an “unnatural” condition. First
off, it is natural to consider a subject to still be at risk at time h if they have not experienced
any event by time h (corresponding to the condition that T ≥ h). Fine and Gray added
the extra unnatural condition (roughly, a subject could also be at risk of event k happening
even if they already experienced a different event earlier) primarily for modeling convenience;
this choice makes interpreting the subhazard difficult but turns out to make interpreting
the impact of features on CIFs more straightforward, as we explain shortly.

With the above definition of a subhazard, the Fine and Gray model applies Cox’s propor-
tional hazards assumption to the subhazard as to get a proportional subhazards assumption:

λk(h|x) = λk,0(h) exp
{
ϕk(x; θk)

}
for all h ≥ 0, x ∈ X , (3)

where λk,0(h) is the baseline subhazard function for event k; and ϕk(·; θk) is a transformation
on the feature vector x with learnable parameter θk. In their original paper, Fine and Gray
assumed x and θk to be Euclidean vectors of the same length with ϕk(x; θk) = x⊤θk, whereas
in this paper we more generally let ϕk be a user-specified neural net (that maps an input
feature vector from the input space X to a real-valued “risk score”).

Implications of the proportional subhazards assumption Under the proportional
subhazards assumption, Fine and Gray (1999) showed that if we apply the transformation
g(u) ≜ ln

{
− ln(1− u)

}
to the CIF, we get

g
(
Fk(h|x)

)
= µ0(h) + ϕk(x; θk),
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where µ0(h) = ln
{∫ h

0 λk,0(η)dη
}
. Since g is a monotonically increasing function, the main

takeaway here is that as ϕk(x; θk) increases, so does the CIF value Fk(h|x). This interpreta-
tion is a key reason why the Fine and Gray model is popularly used, despite its subhazard
being uninterpretable. If we were to remove the unnatural condition from equation (2), we
would no longer have a “clean” relationship between the subhazard for a specific event k
and event k’s CIF because event k’s CIF will depend on subhazards for all events, not just
that of event k (for more details, see, for instance, Section 12.3.2 of Collett (2023)).

To further emphasize the ease of interpreting a Fine and Gray model, consider any two
feature vectors x, x′ ∈ X . We can compare the log subhazards ratio between x and x′:

ln
λk(h|x′)
λk(h|x)

= lnλk(h|x′)− lnλk(h|x)

= lnλk,0(h) + ϕk(x
′; θk)− lnλk,0(h)− ϕk(x; θk) (plugging in equation (3))

= ϕk(x
′; θk)− ϕk(x; θk). (4)

The right-hand side has a straightforward interpretation: how much more is the risk of
event k for x′ compared to x. A positive log ratio means x′ has a higher risk than x for
event k; a negative log ratio means the opposite. The ease of interpreting the log subhazards
ratio and the monotonic relationship between an event’s subhazard and the same event’s
CIF are the key reasons our proposed approach builds on the Fine and Gray model.

Model training The parameter θk could be learned by maximizing a partial likelihood
function with inverse probability of censoring weighting (IPCW) adjustment due to com-
peting risks, while the baseline subhazard λk,0(h) can be estimated using Breslow’s method,
also with IPCW adjustment. As both of these steps are standard and explaining them is
unnecessary for understanding the high-level ideas of our proposed method, we defer pre-
senting how the Fine and Gray model training works to Appendix B. In summary, after
model training, per event k, we have both an estimate θ̂k of θk (neural net parameters) and
an estimate λ̂k,0 of the baseline subhazard λk,0.

Prediction Using the learned model parameters, for test feature vector x ∈ X , we can
calculate the predicted CIF for event k ∈ [m] as

F̂k(h|x) = 1− exp
{
− exp{ϕk(x; θ̂k)}Λ̂k,0(h)

}
for h ≥ 0, (5)

where Λ̂k,0(h) =
∫ h
0 λ̂k,0(η)dη is called the baseline cumulative subhazard.

Other competing risks models Recently, there are other competing risks models (Lee
et al., 2018; Nagpal et al., 2021; Jeanselme et al., 2023; Alberge et al., 2025) proposed.
However, to the best of our knowledge, they do not provide a straightforward interpretation
of how the risk of an event differs between two feature vectors (of a form like in equation (4)),
which we crucially build upon to check for whether adding new features benefits prediction.
Moreover, these other flexible models allow for complex interactions between the critical
events so that the CIF of one event could depend on information from all events.

Separately, when considering the specific medical problem we focus on (prognostication
of comatose post-cardiac arrest patients) albeit using different features, existing work by
Shen et al. (2023) (who used EEG data, whereas we focus on hemodynamic data) showed
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that the Fine and Gray model is a strong baseline, with model performance on par with or
exceeding more recently proposed deep learning methods (namely, Dynamic-DeepHit (Lee
et al., 2019) and DDRSA (Venkata and Bhattacharyya, 2022)).

3. Proposed Method: Stepwise Fine and Gray

We now describe our proposed model, Stepwise Fine and Gray, that can evaluate the prog-
nostic impact of hemodynamic signals on neurological outcomes in comatose post-cardiac
arrest patients. Our approach builds upon the Fine and Gray model described in Section 2.2
and employs neural networks to flexibly parameterize the effects of features. In what fol-
lows, we describe a two-phase learning procedure and a thresholding strategy to assess the
incremental contribution of time-varying features. Accommodating more than two phases
in which new features are collected is straightforward; as this generalization is not essential
to understanding our proposed approach nor our experiments, we discuss it in Section 6.
For our specific application, we use m = 3 competing events: awakening from coma, death
following WLST, and death despite maximal support.

The dynamic prediction task Following the notation in Section 2 but omitting subject
index i for simplicity, we now add time index t to capture a patient’s varying features over
time after the cardiac arrest. Specifically, let Xt denote the feature vector for subject i at
prediction time t (Xt can consist of both static and time-varying features). In our context,
the prediction time t represents the time after a patient’s cardiac arrest onset (i.e., time 0
is when the patient experienced cardiac arrest). As t increases (in which we could collect
more data from the patient), our goal is to predict the time until the earliest competing
event as well as which event it is, starting from time t for the patient.

For ease of exposition, in this section, it suffices to think of t as fixed. For example,
if t is set to be 12 hours, then it means that for every subject, we use their first 12 hours
of collected data (summarized into a fixed-length feature vector) to predict the time until
the earliest competing event as well as which event it is, measured starting from hour 12.
Formally, we predict the CIF of each event k ∈ [m], where time horizon h > 0 is measured
starting from hour 12:

Fk(h|xt) ≜ P(T ≤ h,D = k | Xt = xt).

This is a slightly modified version of equation (1). The only modification is that we explicitly
indicate that the feature vector is based on data collected up to time t for the subject.

In our experiments later, we vary t. A single model is trained that works for all t, rather
than re-training a separate model for different values of t. The details of handling varying
values of t are not essential to understanding the key ideas of our proposed method and are
deferred to Appendix B.3.

Two-phase learning We decompose Xt into two components Xt =
(
X

(1)
t , X

(2)
t

)
. Here,

X
(1)
t includes static features (collected early on) as well as the value of t itself (i.e., time

elapsed since cardiac arrest). Including t as part of X
(1)
t is a basic way to capture time-

dependent variation, assuming no other time-varying features were available (e.g., the per-
ceived probability of awakening for a patient who remains in a coma 8 hours after cardiac
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arrest might be different from a patient who remains in a coma 24 hours after cardiac arrest,
even if they have the exact same static features initially collected and assuming that we

know nothing else about the patients). Next, X
(2)
t consists of time-varying hemodynamic

features (e.g., blood pressure trajectories, vasopressor usage) summarized at time t.
Our goal is to update risk predictions for different events by first modeling the baseline

risk with X
(1)
t (Phase 1) and then incorporating the additional information from X

(2)
t

(Phase 2). We conduct the two-phase learning for each competing event of interest. In what
follows, we focus on the k-th event; the same procedure applies to other events as well.

Our method sequentially learns two Fine and Gray models, the latter building on the
first (hence why we call our method Stepwise Fine and Gray).

Phase 1 (static features): In the first phase, we train a Fine and Gray model using

only features X
(1)
t . Specifically, the subhazard function for event k is

λ
(1)
k,t (h | X(1)

t ) = λ
(1)
k,0(h) exp

{
ϕ
(1)
k,t

(
X

(1)
t ; θ

(1)
k

)}
, (6)

where λ
(1)
k,0(h) is the baseline subhazard. After learning the model, we obtain the estimated

log partial subhazard f̂
(1)
k,t (Xt) = ϕ

(1)
k,t

(
X

(1)
t ; θ̂

(1)
k

)
, i.e., θ̂

(1)
k contains the learned neural net

parameters. We can think of f̂
(1)
k,t (Xt) as the risk score for Xt only using Phase 1 features.

Phase 2 (time-varying features): In the second phase, we incorporate the time-varying

features X
(2)
t along with X

(1)
t to refine the risk prediction. Specifically, we define a second

risk function ϕ
(2)
k,t

(
X

(1)
t , X

(2)
t ; θ

(2)
k

)
with parameters θ

(2)
k . We still use a Fine and Gray model

except where the overall subhazard function is now taken to be

λ
(2)
k,t (h | X(1)

t , X
(2)
t ) = λ

(2)
k,0(h) exp

{
f̂
(1)
k,t (Xt)︸ ︷︷ ︸

treated as fixed

+ ϕ(2)
(
X

(1)
t , X

(2)
t ; θ

(2)
k

)}
, (7)

where λ
(2)
k,0(h) is a different baseline subhazard estimated in Phase 2. Note that the risk

prediction from Phase 1 is treated as fixed (so θ̂
(1)
k is frozen in Phase 2 model train-

ing). The combined risk prediction is then given by f̂
(1)
k,t (Xt) + f̂

(2)
k,t (Xt) with f̂

(2)
k,t (Xt) =

ϕ
(2)
k,t

(
X

(1)
t , X

(2)
t ; θ̂

(2)
k

)
. By using the proportional subhazards assumption, the log subhazards

ratio (similar to equation (4)) that compares the Phase 2 model to the Phase 1 model is

Ik(h|Xt) ≜ ln
λ̂
(2)
k (h | X(1)

t , X
(2)
t )

λ̂
(1)
k (h | X(1)

t )

=
[
ln λ̂

(2)
k,0(h) + f̂

(1)
k,t (Xt) + f̂

(2)
k,t (Xt)

]
−
[
ln λ̂

(1)
k,0(h) + f̂

(1)
k,t (Xt)

]
= f̂

(2)
k,t (Xt) + ln λ̂

(2)
k,0(h)− ln λ̂

(1)
k,0(h). (8)

We refer to the log ratio Ik(h|Xt) as the incremental contribution of the Phase 2 features (in
our application, the time-varying hemodynamic features) over the Phase 1 features (static
features). Instead of comparing the risks of two feature vectors that correspond to two
subjects (as in equation (4)), Ik(h|Xt) compares the risks of the same subject with access
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to two different sets of features X
(1)
t vs Xt = (X

(1)
t , X

(2)
t ). The monotonic relationship

between an event’s subhazard and CIF (Section 2.2) ensures that positive log subhazard
ratios correspond to increased event probabilities. Thus, when Ik(h|Xt) is positive, the
inclusion of Phase 2 features is associated with increased predicted probabilities of the
event occurring for the subject corresponding to feature vector Xt, while a negative value
suggests the opposite.

For instance, when modeling a favorable event (e.g., a coma patient waking up), a
positive Ik(h|Xt) means that the patient’s Phase 2 features are associated with an improved
chance of awakening. Conversely, when modeling an adverse event (e.g., death), a positive
Ik(h|Xt) suggests that the patient’s Phase 2 features are linked to a higher risk of death.

Thresholding the incremental contribution To determine when Phase 2 featuresX
(2)
t

significantly improve prediction, we introduce a thresholding procedure on the incremental
contribution Ik(h|Xt). We learn a threshold across δk(h), which is not patient-dependent,
by selecting the value that yields the best performance on a held-out validation set. In
particular, if |Ik(h|Xt)| > δk(h), then we use the Phase 2 model to predict. Otherwise, we
fall back to the Phase 1 model. Importantly, this form of variable selection (when to use only
Phase 1 features vs features from both phases) depends on Xt and thus is patient-specific.

Model training As we have described in Section 2.2, parameters θ
(1)
k and θ

(2)
k can be

separately estimated by maximizing the IPCW-adjusted partial likelihood as defined in
equation (11). We choose to use neural network architectures (e.g., a few linear layers with

some nonlinear activation functions) to parameterize ϕ
(1)
k,t and ϕ

(2)
k,t to capture non-linear

relationships among features. The baseline hazards λ
(1)
k,0 and λ

(2)
k,0 are then estimated using

an IPCW-adjusted Breslow estimator. The cumulative baseline subhazard functions Λ
(1)
k,0(h)

and Λ
(2)
k,0(h) are then obtained by integrating the estimated baseline hazards. We tune the

threshold function δk(h) on a validation set.

Prediction Once we have learned the parameters θ̂
(1)
k , θ̂

(2)
k and the baseline subhazard

functions, we can calculate f̂
(1)
k,t = ϕ

(1)
k,t

(
X

(1)
t ; θ̂

(1)
k

)
and f̂

(2)
k,t = ϕ

(2)
k,t

(
X

(1)
t , X

(2)
t ; θ̂

(2)
k

)
, and the

Phase 1 and Phase 2 CIF estimates F̂
(1)
k,t (h | Xt) and F̂

(2)
k,t (h | Xt), respectively, for the k-th

event at time t for the two phases respectively using equation (5):

CIF from Phase 1: F̂
(1)
k,t (h | Xt) = 1− exp

{
− exp

{
f̂
(1)
k,t

}
Λ̂
(1)
k,0(h)

}
CIF from Phase 2: F̂

(2)
k,t (h | Xt) = 1− exp

{
− exp

{
f̂
(1)
k,t + f̂

(2)
k,t

}
Λ̂
(2)
k,0(h)

}
Letting δ̂k(h) denote the learned thresholding function, the final predicted CIF for event k
at time t is

F̂k,t(h | Xt) =

{
F̂

(1)
k,t (h | Xt) if |Ik(h|Xt)| ≤ δ̂k(h),

F̂
(2)
k,t (h | Xt) if |Ik(h|Xt)| > δ̂k(h),

(9)

where Ik(h|Xt) is computed using the right-hand side of equation (8). Although the thresh-
olding rule yields a binary choice between Phase 1 and Phase 2 at any fixed prediction time
t, the timing of that choice is dynamic and patient-specific. For each patient, event k, and
horizon h, we re-evaluate the incremental contribution as new data arrive and t advances.
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Overall, our two-phase competing risks method enables us to see for whom (i.e., for
which Xt) and also when (since Xt depends on t) it suffices to only consider Phase 1
(static) features versus also considering Phase 2 (time-varying) features (since the thresh-
olding in equation (9) depends on Ik(h|Xt)), providing insight into the incremental value
of continuous hemodynamic monitoring in the context of prognostication.

4. Cohort

We now describe the cohort of comatose post-cardiac arrest patients and the process for
data extraction.

Cohort selection We retrospectively identified comatose post-cardiac arrest patients ad-
mitted to the intensive care unit (ICU) at a large medical center in the Northeastern US
between 2010 and 2022. Inclusion criteria required that patients be adults who experienced
a cardiac arrest, were successfully resuscitated, and remained comatose upon ICU admis-
sion. Patients withdrawn from life-sustaining therapy for non-neurological reasons (e.g.,
they never wished to undergo ICU care) were excluded. Additionally, since our goal is to
assess the incremental clinical value of time-varying features beyond the static baseline fea-
tures collected within 6 hours post-arrest, we excluded patients whose first event occurred
during this period. After applying these criteria, the final analytic cohort consisted of 2,278
patients (see summary statistics in Appendix C). As already stated at the start of Sec-
tion 3, we consider three competing events: awakening from coma, death following WLST,
and death despite maximal support. For patients experiencing multiple events (e.g., awak-
ening followed by WLST), we use the earliest event. As a robustness check, we repeated
our analysis excluding patients admitted in 2020 and 2021 (corresponding to the COVID-19
pandemic); our findings remain largely the same (see Appendix D for details).

Data extraction A set of clinical variables was extracted from the electronic health
record and a prospective registry maintained at this institution. Demographic information
(e.g., age, gender) and cardiac arrest characteristics (e.g., location of arrest, transfer status,
arrest rhythm) were obtained. Early neurological exam results, including the motor compo-
nent of the Full Outline of Unresponsiveness (FOUR) score, as well as pupillary and corneal
reflex responses, were recorded within the first 6 hours post-arrest. Longitudinal hemody-
namic data were also collected, including MAP measurements and vasopressor dosages. In
addition, the time of first awakening (i.e., when a patient was first able to follow commands)
and the time of death (whether following WLST or despite maximal support) were recorded,
allowing us to calculate the time-to-event for each of the three competing outcomes.

Time-varying data were aggregated into 1-hour snapshots up to the occurrence of the
first event. Missing values in the mean blood pressure (BP) series were imputed using the
last observation carried forward method, and summary statistics (mean, minimum, and
maximum) were computed for each 1-hour window. For vasopressor dosages, both the
hourly mean and cumulative dosage since arrest were calculated. Time elapsed since the
cardiac arrest was included as an additional feature.

Static features collected within the first 6 hours post-arrest and time elapsed since arrest
were used in Phase 1 of our analysis, while Phase 2 incorporated both static and dynamic
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features from the hourly snapshots. A full list of features and their processing details is
provided in Appendix C.

5. Experiment Results

We trained our stepwise Fine and Gray model on the cohort described in Section 4. The
models are trained using data up to 10 days post-arrest (for computational efficiency, we
did not consider more than 10 days). A stratified 64/16/20 train/validation/test split
based on patients was used (stratified by the motor component of the FOUR score), and
experiments were repeated 5 times to ensure robustness. For threshold tuning on the
incremental contribution from Phase 2, for each horizon value h ∈ {24, 48, 72, 120, 240}
(hours), we select the threshold that yields the best validation performance. The search
grid consists of 100 uniformly sampled values ranging from 0 up to the maximum absolute
value of the incremental contribution. See Appendix D for additional experimental details.
As explained in Appendix B.3, during learning, we use instances from training patients by
sampling hourly snapshots with a step size of 5-hour and train the models separately for
each of the three competing events we mentioned: awakening from the coma for the first
time, death despite maximal support (i.e., not from WLST), and death from WLST.

In what follows, we first describe the evaluation approach and model performance. We
also look at individual-level and subgroup analysis to further understand the clinical insights
from our stepwise Fine and Gray model.

5.1. Evaluation Approach

To evaluate the model’s discriminative performance, we used the concordance index adapted
for competing risks (CR c-index) following Wolbers et al. (2014) and Ishwaran et al. (2014).
The CR c-index for the k-th event is defined as

ck = P
{
f̂k(Xi|θ̂k) > f̂k(Xj |θ̂k) | Di = k and (Yi < Yj or Dj ̸= k)

}
(10)

which accounts for the presence of competing events. It falls in the range of [0, 1], with 1
indicating a perfect separation on patients’ risk. For reference, we also report the classic
Harrell c-index (Harrell et al., 1982) in Appendix D, though it is known to be biased when
considering competing risks by treating them as censored events (Wolbers et al., 2014).

5.2. Model Performance

We report the discriminative performance of our stepwise Fine and Gray model, as measured
by the competing risks (CR) c-index, for each event at various prediction times t (hours
since cardiac arrest, as described in Section 3) in Table 1. At each time t, only patients
who remain under observation (i.e., those still in a coma t hours after cardiac arrest) are
included; patients who have experienced an event (awakening or death) before that time
are excluded from subsequent evaluations (see Figure 3 for details). More details of the
threshold tuning procedure can be found in Appendix D.

For the event of awakening, predictions based solely on static features yield high perfor-
mance (Phase 1 column in Table 1). The addition of time-varying hemodynamic features,
when incorporated without thresholding, tends to lower the c-index (Phase 2 column in
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Table 1: CR c-index of the Two-Phase Neural Network Fine and Gray Model. “Phase 1”
refers to predictions based solely on static features; “Phase 2” incorporates time-varying
hemodynamic features; “Tuned Threshold” applies a threshold to the Phase 2 contribution
to determine its clinical significance. Values are reported as mean ± standard deviation
over 5 experimental repeats.

Event Prediction Time t (hr) Phase 1 Phase 2 Tuned Threshold

Awakening

6 0.9253±0.0136 0.8298±0.0366 0.9238±0.0138
12 0.9211±0.0060 0.8260±0.0169 0.9205±0.0044
24 0.9132±0.0091 0.7864±0.0366 0.9039±0.0145
48 0.8920±0.0126 0.7452±0.0234 0.8837±0.0176

6 0.7773±0.0225 0.8146±0.0139 0.8415±0.0191
non-WLST 12 0.7816±0.0164 0.8326±0.0302 0.8470±0.0230

Death 24 0.7859±0.0283 0.7927±0.0238 0.8282±0.0260
48 0.8094±0.0427 0.7542±0.0504 0.8258±0.0382

WLST

6 0.8026±0.0277 0.7313±0.0549 0.8076±0.0271
12 0.8292±0.0272 0.7388±0.0529 0.8297±0.0232
24 0.8522±0.0275 0.7368±0.0495 0.8488±0.0236
48 0.8562±0.0261 0.7476±0.0449 0.8545±0.0262

Table 1); however, when a threshold is applied to the Phase 2 contribution, performance is
nearly as good as that of using static features alone (Tuned Threshold column in Table 1).
Thus, hemodynamic features should be carefully integrated to avoid decreased discrimina-
tion performance.

For the event of death not from WLST, the inclusion of time-varying hemodynamic
data significantly improves prognostication, suggesting that blood pressure (BP) informa-
tion is important in predicting fatal outcomes. Furthermore, tuning the threshold for the
Phase 2 contribution further enhances model discrimination. In a later subgroup analysis
(Section 5.4), we provide more insights on what clinical prognostic value it brings from
including BP and vasopressor dosage information.

For the WLST event, static features strongly predict physicians’ decisions, and incorpo-
rating time-varying features without thresholding appears to diminish performance. This
suggests that the key baseline factors influencing WLST decisions, such as patient demo-
graphics, time elapsed since arrest, and the initial neurological examinations, are already
captured by Phase 1 features. These findings are consistent with the cognitive models
reported in Steinberg et al. (2022), where physicians emphasized the importance of these
foundational factors in their decision-making process.

Naively using the Phase 2 model everywhere can lower discrimination performance for
two reasons. Technically, the Phase 2 model is learned with the Phase 1 model held fixed,
which restricts flexibility; combined with noisy hemodynamic inputs, this can reduce per-
formance. Clinically, hemodynamics are volatile and intervention-driven, so brief changes in
blood pressure and vasopressor dosage may not indicate whether a patient’s brain function
is improving or declining in the long term. Our thresholding therefore uses the Phase 2
model only when |Ik(h | Xt)| > δ̂k(h), preserving the stronger Phase 1 signal when the
additional hemodynamic monitoring does not significantly help. We show the distribution
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of the incremental contribution from Phase 2 and the learned thresholds for different events
from one repeat of the experiment in Appendix D.

We also observe that the performance trends vary with the prediction time. For awak-
ening and non-WLST death, the CR c-index tends to decrease as prediction time increases,
suggesting that patients remaining in a coma for longer periods represent more challenging
cases for neuroprognostication. In contrast, performance for WLST increases over time,
which is consistent with the notion that static features are strong predictors of physicians’
decisions regarding WLST.

We also compare our model against baselines DeepSurv (Faraggi and Simon, 1995; Katz-
man et al., 2018), DeepHit (Lee et al., 2018), and Deep Survival Machines (Nagpal et al.,
2021), reporting achieved test set CR c-index scores in Table 7 in Appendix D. Our step-
wise Fine and Gray model achieves similar or higher performance while providing additional
interpretation on the incremental contribution from Phase 2 features.

5.3. Individual-level Visualization

We develop individual visualizations using patient trajectory and predicted CIF for the event
of death (not from WLST), as the time-varying features tend to give the greatest value on
the event of non-WLST death compared to the other two events. Figure 1 illustrates two
representative patient trajectories for the event of death (excluding WLST). In the top
panel, a patient with a poor initial neurological exam (no response to pain) eventually
awakened after approximately 10 days. The predicted risk of death gradually decreased
over time, reflecting stable mean arterial pressure readings. In contrast, the bottom panel
shows a patient with a relatively favorable early exam (flexion response to pain) who died
after about 3 days despite maximal support; here, marked drops in the predicted risk were
observed when blood pressure fell below 65 mmHg, particularly during later periods.

5.4. Subgroup Analysis

We performed subgroup analyses based on the motor component of the FOUR score, cat-
egorizing patients into three groups: (1) Group 1: No response or extension to pain, or
myoclonus – representing severe brain dysfunction; (2) Group 2: Flexion to pain – interme-
diate impairment; (3) Group 3: Localizing to pain – least severe dysfunction.

For each subgroup, we computed the average CIF at h = 240 (10 days after the prediction
time t), which represents the probability of death despite maximal support, and the mean
incremental contribution (defined in equation (8)) from Phase 2, which reflects the relative
effect of time-varying features compared to the static baseline prediction from Phase 1. It is
important to emphasize that the Phase 2 incremental contribution reflects changes from the
Phase 1 risk prediction; for example, in Group 1 patients, whose Phase 1 risk prediction are
already very high due to severe neurological impairment, even a modest contribution from
time-varying features may result in only a small or even positive incremental contribution
to the risk of death. Note that only patients who had not yet experienced an event and
remained in a coma at each time point were included in these averages. Figure 2 displays
these subgroup comparisons, with predictions evaluated up to 72 hours post-arrest.

Our subgroup analysis reveals a clear trend in the mean CIF for death (not from WLST)
across different neurological impairment groups. Specifically, Group 1, the most severely
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Figure 1: Top Panel: A patient with an initially poor neurological exam who ultimately
awakened; the gradual decrease in predicted risk reflects benign hemodynamic trends. Bot-
tom Panel: A patient with a moderate early neurological exam who died despite maximal
support; notable drops in predicted risk coincide with MAP falling below 65 mmHg. A 65-
100 mmHg interval for mean BP marked with two dashed gray horizontal lines represents
a recommended range for mean BP.

impaired, exhibits the highest mean CIF, indicating the poorest prognosis, while Groups 2
and 3 demonstrate lower CIF values, consistent with their comparatively better outcomes.

In addition, incorporating blood pressure and vasopressor dosage information over time
generally results in lower risks of death (i.e., negative log subhazard ratios) when averaged
across patients still under observation, suggesting that the dynamic data tend to provide
favorable prognostic signals. However, for Group 1 patients, there is an early period (ap-
proximately the first 18 hours since the arrest) during which the incremental contribution
becomes positive, suggesting an increased risk of death associated with the dynamic fea-
tures during that window. This finding aligns with clinical expectations: in patients with
severe brain dysfunction, the potential for recovery is limited, so additional cardiovascular
information may offer less prognostic value. In contrast, patients in Groups 2 and 3, who
have lower baseline risks from static features, exhibit a more pronounced negative incre-
mental contribution, indicating a stronger beneficial effect from continuous hemodynamic
monitoring.

Moreover, the trend toward increasingly positive incremental effects over time may re-
flect that patients who persist in a coma at later time points, having avoided early adverse
events, are more likely to have a better chance of recovery.
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Figure 2: Average CIF at h = 240 hours and Phase 2 Log Subhazard Contributions by Neu-
rological Exam Subgroup. The mean predicted CIFs at a h = 10 horizon (i.e., probability of
death within 10 days of arrest) and the corresponding log subhazards ratio (i.e., the incre-
mental contribution of hemodynamic features I(240|Xt) using equation (8)) are shown for
three subgroups defined by the motor component of the FOUR score. The results indicate
that patients with the most severe neurological dysfunction (Group 1) exhibit the smallest
incremental prognostic value from dynamic features, whereas patients with intermediate
(Group 2) and less severe impairment (Group 3) demonstrate larger positive contributions,
suggesting that continuous cardiovascular monitoring is more informative for those with
relatively preserved neurological function.

6. Discussion

Our stepwise Fine and Gray model integrates static baseline features and time-varying
hemodynamic features to enhance prognostication in comatose post-cardiac arrest patients.
Our results demonstrate that incorporating dynamic data significantly improves risk pre-
diction, particularly for death despite maximal support. While early neurological assess-
ments remain robust predictors for awakening and decisions regarding the withdrawal of
life-sustaining therapy, the additional information from continuous hemodynamic monitor-
ing refines risk estimates over time. By decomposing the overall risk into static and dynamic
components via the additive log-subhazard property, our method provides interpretable risk
estimates. Notably, subgroup analyses based on the motor component of the FOUR score
reveal that the incremental prognostic value of time-varying features differs among patients;
those with moderate-to-mild neurological impairment benefit more from continuous mon-
itoring compared to patients with severe dysfunction. This observation underscores the
potential for tailoring monitoring strategies to individual patient profiles.

Extension to more phases We motivated our stepwise Fine and Gray model using two
phases with a real medical application where, in practice, Phase 1 features are collected prior
to Phase 2 features. There could be situations where we start collecting yet another set of
features (such as EEG data) that could be thought of as Phase 3 features. We could repeat
the same strategy as our two-phase approach of Section 3, treating Phase 1 and Phase 2
features collectively as what we previously referred to as Phase 1 features, while treating
the Phase 3 features as what we previously called the Phase 2 features. In this manner,
our approach can easily extend to an arbitrarily large number of phases that correspond to
newly collected features over time.
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As another modeling choice, we had motivated using hemodynamic data as Phase 2
features such as mean blood pressure and vasopressor dosages. We could separate these
out into, for instance, Phase 2 (mean blood pressure) and Phase 3 (vasopressor dosages)
features; even though we might start collecting these in tandem in the ICU for different
patients, we may want to tease apart the contribution of these two separately (where it is
possible to see how much Phase 2 contributes over Phase 1, how much Phase 3 contributes
over Phase 1, and also how much Phases 2 and 3 together contribute over Phase 1 in an
ablation-style analysis). Making phases too fine-grained could make it so that each new
phase does not contribute enough new information per subject. Making a phase too coarse
could make it so that we are grouping together too many features into the phase, making
it harder to interpret what is special about a phase even if it significantly helps prediction.
We have thematically grouped together all hemodynamic features into a single Phase 2 with
the idea that clinicians would find this sort of grouping still intuitive without making the
resulting model overly complicated.

Limitations We discuss some limitations of our work. First, our study focuses on hemo-
dynamic and early neurological exam data. Future studies could integrate additional modal-
ities (e.g., EEG, serial neurological exams, and brain imaging) to provide a more compre-
hensive assessment. Second, for simplicity, we did not incorporate dedicated time-series en-
coders (e.g., RNNs, transformers) and instead focused on an interpretable variable selection
approach to derive medical insights; although integrating such encoders is straightforward,
they may capture more intricate temporal dynamics. Third, while MAP is continuously
monitored in clinical practice, our dataset captures near-hourly recordings, and our im-
putation strategy relies on the last observation carried forward; more granular MAP data
could potentially enhance model performance. Fourth, our method builds on the Fine and
Gray model, which has some limitations by itself. For example, the CIFs generated by the
model do not necessarily sum to one across events at some maximal horizon. Although
normalization approaches have been proposed (Jeanselme et al., 2023), they risk disrupting
the proportional properties and the fundamental mathematical relationships between an
event’s subhazard and its CIF that underpin the original model, so we chose not to adopt
them. Additionally, we are using it for a dynamic prediction setup, which is not what Fine
and Gray was initially designed for (see Appendix B.3 for more explanations on this). Fi-
nally, it is important to note that our clinical insights are derived from observational data
collected at a single medical center. As such, further medical studies and external validation
are required to verify and generalize these findings across diverse patient populations and
clinical settings.
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Appendix A. Notation List

We provide a list of notations used in the paper with their explanation in Table 2 and 3.

Table 2: Notations Used in the Competing Risks Setup and Fine and Gray Models

Notation Description

[ℓ] {1, 2, . . . , ℓ}, for a positive integer ℓ
m Number of competing events
n Number of training subjects
i ∈ [n] Subject index
k ∈ [m] Event index
Xi A random variable representing the feature vector for subject i
x A realization of a random variable (e.g., a feature vector).
Yi The observed time (either the event time or censoring time) for subject i
Di The observed event indicator for subject i
Ti,k The latent time of occurrence for event k for subject i, with k ∈ [m]
Ci The latent censoring time for subject i
Fk(h|x) The cumulative incidence function (CIF) for event k at time horizon h > 0,

given features x
λk(h|x) Subdistribution hazard (subhazard) function for event k at time horizon h,

given features x
λk,0(h) Baseline subhazard for event k at time horizon h
ϕk(x; θk) A transformation (e.g., a neural net) of the feature vector x with parameters

θk, mapping x to a risk score.

θ̂k The estimated parameters for the risk transformation of event k.

λ̂k,0(h) The estimated baseline subhazard function for event k.

Λ̂k,0(h) The estimated baseline cumulative subhazard for event k.
ϕk(X; θk) Partial subhazard parameterized by θk for feature vector X
LIPCW(θk) IPCW-adjusted partial likelihood with parameter θk (equation (11))
wj(h) Weight for subject j at time horizon h used in IPCW adjustment

Ĝ(h) Estimated censoring time distribution at time horizon h

F̂k(h|X) Predicted CIF for event k at horizon h, conditioned on feature vector X

Appendix B. More Details on Fine and Gray Competing Risks Modeling

B.1. Estimating Partial Subhazard Function with IPCW-adjusted Partial
Likelihood

Under competing risks, inverse probability of censoring weighting (IPCW) techniques need
to be applied to the partial likelihood. The IPCW-adjusted partial likelihood is defined as

LIPCW(θk) =

n∏
i=1

[
exp

{
ϕk(Xi; θk)

}∑
j∈Ri

wj(Yi) · exp
{
ϕk(Xj ; θk)

}]1{Di=k}

, (11)
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Table 3: Notations Used in the Two-Phase Learning

Notation Description

t Prediction time (time after the cardiac arrest onset)
Xt Full feature vector at prediction time t

X
(1)
t Phase 1 features: static clinical features as well as the value of t itself (time

elapsed since cardiac arrest)

X
(2)
t Phase 2 features: time-varying hemodynamic features collected up to time t

λ
(1)
k,t (h | X(1)

t ) Phase 1 subhazard function for event k, based only on X
(1)
t

ϕ
(1)
k,t (X

(1)
t ; θ

(1)
k ) Phase 1 risk transformation with parameters θ

(1)
k

f̂
(1)
k,t (Xt) Estimated log partial subhazard (risk score) from Phase 1

λ
(2)
k,t (h | X(1)

t , X
(2)
t ) Phase 2 subhazard function for event k, incorporating both X

(1)
t and X

(2)
t

ϕ
(2)
k,t (X

(1)
t , X

(2)
t ; θ

(2)
k ) Phase 2 risk transformation with parameters θ

(2)
k

f̂
(2)
k,t (Xt) Estimated additional risk score from Phase 2

Ik(h|Xt) Incremental contribution of Phase 2 features over Phase 1

δk(h), δ̂k(h) Thresholding function and its learned estimate for event k at time horizon h,
used to decide the prediction model

F̂
(1)
k,t (h | Xt) Predicted CIF from the Phase 1 model

F̂
(2)
k,t (h | Xt) Predicted CIF from the Phase 2 model.

F̂k,t(h | Xt) Final predicted CIF for event k at time t, selected based on the thresholding
of Ik(h|Xt)

where Ri is the (unnatural) risk set of subject i at time Yi defined as

Ri =
{
j ∈ [n]

∣∣ Yj ≥ Yi or (Yj < Yi and Dj ̸= k)
}
,

wj(Yi) is the weight for subject j ∈ Ri at time Yi defined as

wj(Yi) =


1 if Yj ≥ Yi,

Ĝ(Yi)

Ĝ(Yj)
if Yj < Yi and Dj ̸= k,

(12)

and Ĝ(h) is an estimate of the censoring time distribution tail function G(h) = P(C > h).
Then the partial subhazard function (with parameter θk) can be estimated by minimiz-

ing the negative log-likelihood function, obtained by taking the negative logarithm of the
likelihood function defined in equation(11), using standard optimization techniques. The
same process can be done for each event k ∈ [m].

B.2. Estimating Baseline Subhazard with IPCW-adjusted Breslow Method

Following Fine and Gray (1999) (also see Chapter 12.5.1 of Collett (2023) for reference),
once ϕk(x; θ̂k) has been estimated, we can obtain the baseline subhazard function via the
Breslow estimator with IPCW adjustment. In the discrete-time setting, this estimator is

22



Stepwise Fine and Gray

given by:

λ̂k,0(h) =
dk(h)∑

j∈R(h)wj(h) · exp
{
ϕk(x; θ̂k)

}
where dk(h) is the number of subjects in the training set who experienced event k at time
horizon h, and R(h) denotes the “unnatural” risk set at time h. The weight wj(h) is the
same as defined in equation (12), which is used to adjust for competing risks. Here, the set
of distinct time points h corresponds to the unique observed event times in the training set.

Once the baseline subhazard function has been estimated, the baseline cumulative sub-
hazard is computed by summing the estimated baseline subhazard function over the time
horizon:

Λ̂k,0(h) =
∑
η≤h

λ̂k,0(η)

B.3. Modeling with Time-Varying Features at Multiple Time Points

In our stepwise Fine and Gray model described in Section 3, for a certain event k ∈ [m] of
interest, we train a single model that simultaneously learns risk predictions across different
time points t. This is achieved by incorporating feature snapshots from each subject at
various times after cardiac arrest. Since subjects have different lengths of observation, we
include, for each subject, snapshots of time-varying features (e.g., mean blood pressure and
vasopressor dosage) at multiple t’s. For instance, a snapshot at hour 6 is summarized into
a fixed-length vector using summary statistics, and similar snapshots can be taken at hours
7, 8, and so on, until an event occurs or the subject is lost to follow-up. We have the
option either to include all available snapshots for each subject or to sample snapshots at
predetermined intervals (e.g., every 5 hours). Once these snapshots are extracted for all
training subjects, the model is trained on the aggregate of snapshots.

Technically, the Fine and Gray model was originally developed under the assumptions
that the data are independent and identically distributed (i.i.d.) and that baseline subhaz-
ard estimation shares a common starting time across subjects. Under a dynamic prediction
setup, however, we train a single model across various prediction times t. This is done by
treating different prefixes of a subject’s time series (as more data become available over
time) as separate data points, even though these prefixes are not independent. While this
strategy enables the model to learn risk predictions at multiple time points, it deviates from
the original i.i.d. and common start time assumptions of the Fine and Gray model. We
acknowledge this as a limitation of our Stepwise Fine and Gray method.

Appendix C. More Details on the Cohort and the Data

For summary statistics of the cohort we use in the paper, see Table 4.
For blood pressure, non-invasive cuff measurements were recorded when manually taken,

whereas invasive mean arterial pressure (MAP) data were continuously monitored via arte-
rial catheter and recorded at approximately hourly intervals. When both types of measure-
ments were available within a given 1-hour window, invasive MAP was prioritized due to its
higher reliability (i.e., we ignore any cuff-based mean BP records if there is a MAP record
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Table 4: Patient Characteristics Summary Statistics. For most of the covariates, we show
the percentage of patients in each event group, except for age and for arrest-to-event time,
for which we show the mean. Note that the event group only considers the first event that
occurred, i.e., if a patient awakened and then died, then they will only show up in the
“Awakened” group but not the others.

Total Awakened
Death, Death, Coma

not WLST WLST (Censoring)

Number of subjects 2278 717 672 825 64
Percentage 100% 31.5% 29.5% 36.2% 2.8%

Age (yr) 57.7 57.4 55.2 59.9 58.1
Female 39.3% 34.3% 43.5% 40.0% 43.8%
Out-of-hospital arrest 83.6% 74.5% 87.2% 88.8% 81.3%
Referral from outside facility 64.2% 53.4% 69.6% 69.7% 57.8%
FOUR score - motor

Localizing to pain 7.5% 19.8% 3.3% 0.5% 4.7%
Flexion response to pain 15.2% 29.8% 5.8% 8.8% 31.3%
Extension response to pain 2.4% 3.6% 1.2% 2.3% 3.1%
No response to pain 51.1% 28.7% 74.7% 52.7% 31.3%
Myoclonus 16.2% 2.5% 10.0% 32.6% 21.9%
Unknown 7.7% 15.5% 5.1% 3.0% 7.8%

Initial rhythm
VT/VF 27.3% 45.9% 16.2% 19.9% 32.8%
PEA 35.4% 33.9% 36.6% 36.0% 32.8%
Asystole 30.8% 14.8% 39.3% 37.9% 29.7%
Unknown 6.4% 5.4% 7.9% 6.2% 4.7%

Arrest-to-event time (hr) 106.0 83.2 85.8 107.2 556.4

available in the past 1-hour window). Vasopressor administration was tracked for nore-
pinephrine, epinephrine, vasopressin, dopamine, and phenylephrine, with non-zero dosages
recorded.

For Phase 1 of the model, the features comprise static features and the time elapsed
since arrest. Including time elapsed allows us to capture the evolution of risk even when
dynamic features are not used. In Phase 2, we augment these features with time-varying
hemodynamic data to capture additional risk information provided by changes in the pa-
tients’ condition. For a complete list of the features used in both phases, see Table 5.

Due to delays in initiating blood pressure monitoring and the occurrence of events
(or censoring), blood pressure data are not available from the beginning for all subjects.
Besides, if there is a period longer than 5 hours with no blood pressure or vasopressor
dosage information, it is likely that the monitoring was interrupted or that the patient was
transferred, leading to long gaps in the continuous data needed for reliable risk prediction.
Thus, for reliability, we also exclude any data following such long gaps. For details on
the number of patients with available data at various time points post-cardiac arrest, see
Figure 3.

1. https://www.emergencymedicine.pitt.edu/patient-care/post-cardiac-arrest-service/
pittsburgh-cardiac-arrest-category
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Table 5: List of Static and Time-Varying Features Used in the Study. Phase 2 features are
additional to Phase 1 features, meaning that all Phase 1 features are also included in Phase
2.

Feature Description

age Patient age in years
female Indicator variable for female gender
transfer Indicator if patient was transferred from another hospital
oohca Indicator for out-of-hospital cardiac arrest
rhythm Initial cardiac rhythm observed during arrest; one-hot encoded
ca type Pittsburgh Cardiac Arrest Category1; one-hot encoded
FOUR Motor Motor component score from the FOUR score; one-hot encoded
pupils Pupillary response (e.g., reactive or non-reactive); one-hot encoded
corneals Corneal response (e.g., presence/absence of reflex); one-hot encoded
t since arrest hr Time (in hours) since cardiac arrest

Phase 2: Additional Time-Varying Hemodynamic Features

mean bp Mean blood pressure over a 1-hour window
min bp Minimum blood pressure recorded in a 1-hour window
max bp Maximum blood pressure recorded in a 1-hour window
bp diff Change in mean blood pressure from the previous hour (0 if unavailable)
DOP dose Dopamine dosage administered in the 1-hour window
EPI dose Epinephrine dosage administered in the 1-hour window
NOR dose Norepinephrine dosage administered in the 1-hour window
VAS dose Vasopressin dosage administered in the 1-hour window
PHE dose Phenylephrine dosage administered in the 1-hour window
cum DOP dose Cumulative dopamine dosage since cardiac arrest
cum EPI dose Cumulative epinephrine dosage since cardiac arrest
cum NOR dose Cumulative norepinephrine dosage since cardiac arrest
cum VAS dose Cumulative vasopressin dosage since cardiac arrest
cum PHE dose Cumulative phenylephrine dosage since cardiac arrest

Appendix D. More Details on the Experiments

Experiment Configuration We parameterize the Fine and Gray models using a neural
network architecture. Specifically, the feature encoder consists of two hidden linear layers
with 64 and 32 units, respectively, each followed by a ReLU activation and a dropout layer
with a dropout rate of 0.2. A final linear layer (with no bias term) produces the output,
corresponding to the log partial subhazards. We optimize model parameters using the Adam
optimizer with a learning rate chosen from {5e− 4, 1e− 4, 5e− 5} and apply a weight decay
of 0.001. Training is conducted for up to 1000 iterations, with early stopping triggered if the
validation loss does not decrease for 20 consecutive epochs. A batch size of 128 is used, and
the best model is selected based on the average CR c-index computed at prediction times
t = 6, 12, 24, and 48 hours on the validation set. For threshold tuning on the incremental
contribution from Phase 2, we search for the optimal threshold for each value of horizons
h = 24, 48, 72, 120, and 240 hours separately by selecting the threshold that yields the best
validation CR c-index. The search grid consists of 100 uniformly sampled values ranging
from 0 up to the maximum absolute value of the incremental contribution.
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Figure 3: Number of Patients Over Time Since Cardiac Arrest. The bar heights indicate
how many patients remain under observation at each hour post-arrest (from a total of 2,278).
The percentages on the bar represent the proportion of the total cohort still included at
that time. Early gaps primarily reflect delays between the cardiac arrest and the initiation
of blood pressure monitoring, whereas later attrition is largely due to patients experiencing
their first event (awakening or death). The distribution is long-tailed, and the plot is
restricted to a maximum of 72 hours after arrest.

Incremental Contribution and Learned Threshold We display the distribution of
the incremental contribution from Phase 2 in Figure 4 and the learned thresholds in Figure 5.
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Figure 4: Distribution of the Incremental Contribution from Phase 2 for Different Events
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Figure 5: Learned Threshold δk(h) of Different Events

Additional Model Performance at Different h after Tuning Threshold on the
Incremental Contribution from Phase 2 For a single trained model, the predicted
subhazard values at different time horizons h may lead to varying c-indices. In the columns
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labeled “Phase 1” and “Phase 2” in Table 1, the Fine–Gray model’s proportional subhaz-
ards assumption guarantees that the c-indices remain identical across different horizons.
However, after applying the threshold tuning procedure to the incremental contribution
from Phase 2, the tuning is performed separately for each h (in our results, we use h = 24,
48, 75, 120, and 240 hours), and thus the resulting c-indices can differ across horizons. In
Table 1, for the “Tuned Threshold” column, we first compute the mean CR c-index across
horizons within one experiment, and then report the overall mean and standard deviation
of these values across different experimental repeats. For completeness, we also provide a
detailed breakdown of the CR c-index at different horizons in Table 6.

Table 6: CR C-index of Two-Phase Fine and Gray with Tuned Threshold at Different Hori-
zons. Prediction time is time since arrest in hour. Values are reported as mean±standard
deviation over 5 experimental repeats.

Event
Prediction Horizon(hr)

Time t (hr) 24 48 72 120 240

Awakening

6 0.9252±0.0133 0.9234±0.0133 0.9240±0.0138 0.9232±0.0135 0.9234±0.0150
12 0.9220±0.0039 0.9206±0.0047 0.9203±0.0047 0.9202±0.0047 0.9192±0.0046
24 0.9037±0.0150 0.9039±0.0147 0.9040±0.0148 0.9037±0.0143 0.9041±0.0137
48 0.8825±0.0172 0.8844±0.0179 0.8844±0.0179 0.8837±0.0177 0.8834±0.0174

6 0.8435±0.0169 0.8435±0.0170 0.8433±0.0170 0.8455±0.0181 0.8317±0.0287
non-WLST 12 0.8496±0.0244 0.8508±0.0238 0.8511±0.0236 0.8504±0.0240 0.8333±0.0243

death 24 0.8303±0.0289 0.8303±0.0293 0.8304±0.0291 0.8306±0.0303 0.8194±0.0194
48 0.8263±0.0416 0.8270±0.0418 0.8270±0.0413 0.8271±0.0424 0.8218±0.0381

WLST

6 0.8075±0.0294 0.8075±0.0290 0.8077±0.0294 0.8077±0.0295 0.8074±0.0287
12 0.8300±0.0253 0.8294±0.0246 0.8297±0.0248 0.8299±0.0249 0.8297±0.0251
24 0.8492±0.0258 0.8483±0.0251 0.8487±0.0254 0.8489±0.0255 0.8487±0.0253
48 0.8542±0.0283 0.8541±0.0282 0.8547±0.0276 0.8541±0.0285 0.8555±0.0283

Model Performance of Other Models We report model performance of DeepSurv
(Faraggi and Simon, 1995; Katzman et al., 2018), DeepHit (Lee et al., 2018), Deep Survival
Machines (Nagpal et al., 2021) in Table 7. Note that DeepSurv does not handle compet-
ing risks, and we trained the models by converting other competing events to censoring
and training three models for each of the three competing events separately. We can see
that our two-phase Fine and Gray model performs as well as or better than other compet-
ing risks models, while also providing the additional individual-level variable selection for
interpretability.

Robustness Check Excluding COVID-19 Period Data The hospital department
we worked with was not substantially affected by the COVID-19 pandemic in terms of
resource availability or processes of care. In the included cohort, fewer than 1% of the
arrests were attributed to COVID-19 infection. Even so, as a robustness check, we re-run
our experiments excluding data from 2020–2021, which accounted for 23.13% of the entire
cohort. As shown in Table 9, the performance patterns are consistent with those in Table 1,
confirming the prognostic power of hemodynamics.
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Table 7: CR C-index of the DeepSurv, DeepHit, Deep Survival Machines (DSM). Prediction
time is time since arrest in hour. Values are reported as mean±standard deviation over 5
experimental repeats.

Event Prediction Time t (hr) DeepSurv DeepHit DSM Ours

Awakening

6 0.7600±0.3707 0.9266±0.0168 0.9230±0.0144 0.9238±0.0138
12 0.7585±0.3675 0.9207±0.0088 0.9188±0.0124 0.9205±0.0044
24 0.7468±0.3665 0.9107±0.0097 0.9157±0.0156 0.9039±0.0145
48 0.7214±0.3639 0.8834±0.0202 0.8862±0.0202 0.8837±0.0176

6 0.7060±0.3319 0.8278±0.0132 0.8374±0.0123 0.8415±0.0191
non-WLST 12 0.7027±0.3450 0.8265±0.0268 0.8378±0.0277 0.8470±0.0230

death 24 0.6918±0.3437 0.8255±0.0257 0.8299±0.0228 0.8282±0.0260
48 0.6832±0.3455 0.8220±0.0351 0.8104±0.0246 0.8258±0.0382

WLST

6 0.7801±0.0272 0.8055±0.0181 0.7494±0.0225 0.8076±0.0271
12 0.8105±0.0280 0.8274±0.0196 0.7826±0.0187 0.8297±0.0232
24 0.8294±0.0209 0.8455±0.0232 0.8090±0.0139 0.8488±0.0236
48 0.8307±0.0165 0.8428±0.0314 0.8062±0.0099 0.8545±0.0262

Table 8: Harrell’s C-index of our Two Phase Fine and Gray. Prediction time is time since
arrest in hour. However, notice that Harrell’s c-index is biased in a competing risks setting.
Values are reported as mean±standard deviation over 5 experimental repeats.

Event Prediction Time t (hr) Phase 1 Phase 2 Tuned Threshold

Awakening

6 0.7986±0.0160 0.6939±0.0349 0.7986±0.0160
12 0.7972±0.0119 0.6944±0.0264 0.7956±0.0094
24 0.7984±0.0137 0.6651±0.0412 0.7951±0.0138
48 0.7964±0.0159 0.6474±0.0382 0.7965±0.0149

6 0.6534±0.0212 0.7342±0.0206 0.7370±0.0186
non-WLST 12 0.6665±0.0203 0.7744±0.0306 0.7578±0.0181

death 24 0.6805±0.0262 0.7524±0.0369 0.7506±0.0295
48 0.7335±0.0463 0.7155±0.0566 0.7653±0.0460

WLST

6 0.6790±0.0300 0.5861±0.0582 0.6762±0.0294
12 0.6704±0.0294 0.5695±0.0396 0.6622±0.0263
24 0.6726±0.0341 0.5575±0.0395 0.6624±0.0322
48 0.6481±0.0339 0.5475±0.0479 0.6395±0.0330
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Table 9: CR c-index of the Two-Phase Neural Network Fine and Gray Model (excluding
the cohort admitted in 2020-2021). “Phase 1” refers to predictions based solely on static
features; “Phase 2” incorporates time-varying hemodynamic features; “Tuned Threshold”
applies a threshold to the Phase 2 contribution to determine its clinical significance. Values
are reported as mean ± standard deviation over 5 experimental repeats.

Event Prediction Time t (hr) Phase 1 Phase 2 Tuned Threshold

Awakening

6 0.9060 ± 0.0121 0.7933 ± 0.0605 0.9109 ± 0.0126
12 0.9082 ± 0.0115 0.8020 ± 0.0500 0.9095 ± 0.0114
24 0.8920 ± 0.0107 0.7426 ± 0.0457 0.8870 ± 0.0151
48 0.8687 ± 0.0091 0.7118 ± 0.0645 0.8600 ± 0.0107

6 0.7612 ± 0.0257 0.8037 ± 0.0231 0.8270 ± 0.0209
non-WLST 12 0.7770 ± 0.0356 0.8061 ± 0.0432 0.8321 ± 0.0405

Death 24 0.7807 ± 0.0357 0.7843 ± 0.0254 0.8248 ± 0.0236
48 0.8061 ± 0.0390 0.7608 ± 0.0507 0.8260 ± 0.0385

WLST

6 0.8211 ± 0.0238 0.7480 ± 0.0578 0.8205 ± 0.0233
12 0.8546 ± 0.0248 0.7385 ± 0.0448 0.8534 ± 0.0265
24 0.8743 ± 0.0245 0.7525 ± 0.0391 0.8725 ± 0.0215
48 0.8744 ± 0.0492 0.7719 ± 0.0472 0.8752 ± 0.0480

Appendix E. Additonal Patient Visualization

Figure 6 represents a patient’s feature trajectory and estimated CIF for (non-WLST) death.
This patient initially showed no response to pain.
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Figure 6: Visualization for a patient who initially presented with poor neurological exam
results and ultimately died despite maximal support. Notable fluctuations in the risk esti-
mates correspond to observed variations in the patient’s hemodynamic features.
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