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Abstract: In this work, we propose PolarBEV for vision-based uneven BEV
representation learning. To adapt to the foreshortening effect of camera imag-
ing, we rasterize the BEV space both angularly and radially, and introduce polar
embedding decomposition to model the associations among polar grids. Polar
grids are rearranged to an array-like regular representation for efficient process-
ing. To determine the 2D-to-3D correspondence, we iteratively update the BEV
surface based on a hypothetical plane, and adopt height-based feature transfor-
mation. PolarBEV keeps real-time inference speed on a single 2080Ti GPU,
and outperforms other methods for both BEV semantic segmentation and BEV
instance segmentation. Thorough ablations are presented to validate the de-
sign. The code has been released for facilitating further research at https:
//github.com/SuperZ-Liu/PolarBEV.
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1 Introduction

Bird’s Eye View (BEV) representation [1, 2, 3, 4, 5, 6, 7] is of great practical value for environ-
mental perception in autonomous driving. Especially for vision-based system, BEV implicitly and
elegantly aggregates multi-view information into a unified representation, avoiding time-consuming
post processing for multi-view fusion.

This work proposes PolarBEV for vision-based uneven BEV representation learning. We rasterize
the BEV space both angularly and radially, making BEV grids densely distributed near the ego-
vehicle and sparsely distributed far from the ego-vehicle, i.e., distance-dependent uneven grid dis-
tribution. Recent works [2, 8, 9] rasterize the BEV space along the cartesian axes and get evenly
distributed rectangular grids. Such rectangular BEV representation is straightforward, but polar
BEV representation makes more sense. First, for a self-driving car, the concerned perception region
is centered at the ego vehicle. Surrounding perception results are more important than distant ones
for avoiding traffic accidents. Thus, higher resolution in surrounding areas is expected. Second,
for even BEV representation, long-range BEV space (e.g., 100m × 100m) requires a large number
of BEV grids and high computational budget. Polar rasterization enables long-tailed uneven grid
distribution, which can be flexibly adjusted to cover large BEV space with limited computation cost.

We assign angle-specific and radius-specific embeddings to each polar grid according to its 3D
position. Because of the foreshortening effects of camera imaging, object’s scale in image varies a
lot when the distance to camera changes. Polar grids at the same distance correspond to the same
scale. Grids at the same angle correspond to the same camera view. With angle-specific and radius-
specific embeddings, we model the associations among grids to enhance the BEV representation.

We propose iterative surface estimation for effective and efficient BEV representation learning. Pre-
vious methods [2, 9] usually predict pixel-wise depth distribution and broadcast pixel features to
BEV space. Differently, we first set a hypothetical BEV surface and iteratively update the height of
each polar grid to adjust the 2D-to-3D correspondence between image pixels and BEV grids. Height
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is much easier to be estimated than depth. The iterative refinement process leads to more precise
2D-to-3D feature transformation and better BEV representation.

PolarBEV achieves real-time inference speed (25 FPS on a 2080Ti GPU), and significantly outper-
forms counterparts for both BEV semantic segmentation and BEV instance segmentation. Given the
high efficiency and strong performance, PolarBEV can be integrated into autopilot system for online
environmental perception.

2 Related Work

Recently, many large multi-sensor datasets [10, 11, 12] made it possible to directly supervise models
by projecting 3D annotations onto the ground plane to generate BEV labels. The key to the problem
is how to model the transformation from image view to Bird’s Eye View, which is inherently an
ill-posed problem. A straightforward method is to assume the world is flat and transform the image
to BEV map through Inverse Perspective Mapping (IPM) [1, 13, 14]. Though this approach works
in some cases, it often introduces artifacts to objects that lie above the ground plane.

In order to achieve better results, other methods [15, 16, 17] explicitly estimate depth to lift objects
into BEV. And OFT [18] maps image-based features into an orthographic 3D space with the aid of
camera parameters. A potential performance bottleneck of this method is that the contribution of
each pixel feature is independent of objects depth at that pixel. Instead of copying each pixel feature
along camera ray, Lift-Splat [9] learns a depth distribution for each pixel. Recently, FIERY [2] has
extended Lift-Splat [9] further to use multi-timestamp observations for motion forecasting. Different
from these methods, we adopt BEV surface estimation instead of depth distribution to determine the
correspondence between image and BEV.

Another technical route directly predicts BEV outputs from input images. CVT [8] encodes the
camera parameters into positional embeddings to model the geometric structure of the scene implic-
itly. Different from CVT [8] using global attention to update each query, GKT [7] leverages the
geometric priors to guide the transformer to focus on discriminative regions. VED [6] predicts a
semantic occupancy grid directly from the front-view image with a variational encoder-decoder net-
work. VPN [19] proposes a fully-connected view relation module to predict the semantic BEV map
from multiple views. PON [20] further advances fully-connected layer for each column to translate
features from image space to BEV space. Instead of using fully connected layers, TIM [21] models
the relation of image columns and BEV polar rays with cross-attention. Based on TIM [21], the
work [22] further employs a graph network to spatially reason about an object within the context of
other objects. BEVFormer [23] predefines a set of uniformly distributed height anchors and projects
these anchor points to image to get features.

In 3D domain, [24, 25] divide the 3D space into polar grids for point cloud segmentation, in order
to adapt to the long-tailed distribution of LiDAR points. [26] leverages the radial symmetry to nor-
malize point cloud along the radial direction. [27] introduces polar parametrization for 3D detection
to establish explicit associations between image patterns and prediction targets. Differently, consid-
ering the foreshortening effects of camera imaging and the characteristics of BEV perception, we
adopt polar rasterization for vision-based BEV representation learning.

3 Method

3.1 Overview

The framework of PolarBEV is presented in Fig. 1. Taking multi-view images as input, we first
extract image features with shared CNN backbone. We rasterize the BEV space along the polar
coordinates and rearrange the polar grids to array-like regular representation. Then, we iteratively
update the BEV surface with grid-wise height estimation, and transform 2D features to BEV features
based on the estimated height and camera’s calibrated parameters. BEV surface updating and feature
transformation are repeated in a cascade manner for several times. And various heads follow the final
BEV representation to perform BEV perception. Detailed designs are presented below.
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Figure 1: Illustration of PolarBEV. Top: multi-view images are sent into the shared CNN back-
bone for feature extraction. BEV space is rasterized along the polar coordinates. Polar girds are
rearranged to array-like regular representation. Bottom: we iteratively update the BEV surface for
precise height-based projection.

3.2 Polar BEV Rasterization and Rearrangement

The concerned BEV space is centered at the ego-vehicle with the radius Rmax and 360◦ FoV (field
of view) coverage. As shown in Fig. 1, we rasterize the BEV space both angularly and radially. Ra-
dially, we evenly divide [0, Rmax] into Drad segments (Rmax and Drad respectively denote radius
maximum and radial resolution). Angularly, we evenly divide the 360◦ into Dang segments (Dang

denotes the angular resolution). After rasterization, for efficiently processing the polar representa-
tion, we rearrange polar grids along the angular and radial dimensions and get array-like regular
representation with shape Drad × Dang . The rearranged representation is hardware-friendly but
can not be processed by conventional convolution operation. As shown in Fig. 1, in the angular
dimension, −π and π correspond to the the same angle but are separated in the array-like regular
representation. Alternatively, we adopt ring convolution [25] with circular padding to process the
rearranged representation. Specifically, we first circularly pad in the angular dimension, and then
adopt conventional convolution with 0 padding in the radial dimension. The ring convolution is
followed by batch normalization and ReLU activation layers.

3.3 Polar Embedding Decomposition

For each polar grid with radial distance r and angle θ, we predefine a learnable query embedding
q and decompose q into two components, i.e., radius-specific query q(r)rad and angle-specific query
q
(θ)
ang , which is formulated as,

q = q
(r)
rad + q(θ)ang. (1)

For the polar representation, polar grids at the same distance correspond to the same scale, and
grids at the same angle correspond to the same camera view. With angle-specific and radius-specific
embeddings, we model the associations among grids to enhance the BEV representation. Ablation
experiments are presented in Sec. 4.3 to validate the effectiveness of embedding decomposition.

3.4 Iterative Surface Estimation and 2D-to-3D Feature Transformation

We perform 2D-to-3D feature transformation based on a height-based projection mechanism. To
make sure the correspondence between image and BEV, we first set a hypothetical BEV surface
with height hhypo and then iteratively update the height of each grid i based on its query embedding
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qi. This can be formulated as follows:
hti = Θ(qt−1i ) + ht−1i , (2)

where Θ is a MLP layer, t is the iteration index and h0i is the hypothetical height hhypo. Then we
normalize hi (superscript t is omitted for clarity) to the range of [0, 1] with sigmoid function σ and
further scale up the value to the range of [Zinf , Zsup], i.e.,

zi = σ(hi)× (Zsup − Zinf ) + Zinf , (3)
where Zsup and Zinf are the predefined upper and lower bounds of height respectively. Each grid
i corresponds to a polar coordinate pi = (ri, θi) (the position of the grid’s center point). We first
transform each polar coordinate pi to cartesian coordinate (xi, yi) in the following manner:

xi = ri × cos θi, yi = ri × sin θi. (4)
Then we concatenate the cartesian coordinate (xi, yi) with its corresponding height zi to construct
the homogeneous coordinate wi, i.e.,

wi = (xi, yi)⊕ zi ⊕ 1, (5)
where ⊕ denotes the concatenation operation. Then we project wi to the image plane with camera’s
intrinsics I ∈ RK×3×3 and extrinsics E ∈ RK×3×4:

ui,n = In · En · wiT , (6)
where ui,n is the projected image point on the nth view of BEV grid i, and K represents the total
image views. Finally, we transform features from the image view to the Bird’s Eye View with the
projected coordinates. This can be formulated as:

fi =

K∑
n=1

Mn · Fi,n, (7)

where Fi,n is the sampled image feature corresponding to the projected image point ui,n, and Mn

is a binary mask for masking out projected points which exceed the image boundary. After that, fi
is sent into a MLP layer and its output is added to the previous query for query update.

The surface estimation and 2D-to-3D feature transformation are conducted for several times and the
polar representation is iteratively updated.

3.5 Segmentation Head

We follow the head design of FIERY [2]. We adopt a small encoder-decoder network to further
refine BEV features. Three branches follow the network, respectively for predicting segmentation
score, offset and centerness. The loss settings are also the same with FIERY [2]. Polar predictions
are mapped into rectangular predictions for loss calculation based on the rectangular ground truths.

4 Experiments

4.1 Experimental Settings

Datasets NuScenes [10] dataset is a large-scale autonomous driving dataset which was collected
over a variety of weathers and traffic conditions. This dataset contains 1000 scenes and each scene
lasts 20 seconds. The captured RGB images are from six cameras covering a full of 360

◦
around

the ego-vehicle. Each camera has calibrated intrinsics and extrinsics at every timestamp. Following
common practice [2, 8], we project the 3D box annotations of vehicles onto the ground plane to get
ground truth labels.

Architecture We adopt the pre-trained EfficientNet-B4 [28] as backbone to extract multi-view
image features. Features of stride 8 are taken as the input for feature transformation. The initial polar
BEV feature is a combination of angular queries and radial queries with the shape of 400×100×64
for representing a certain BEV area (setting 1 or setting 2) centered at the ego-vehicle. We set the
radius maximum Rmax as the distance from the farthest point of BEV area to the center of ego-
vehicle. The small encoder-decoder network contains first four layers of ResNet-18 [29], and all the
convolution layers with kernel size greater than 1 are changed into ring convolutions to adapt to the
polar representation.
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Method Setting 1(IoU%) Setting 2(IoU%) # Params(M) FPS
PON [20] 24.7 - 38 30
VPN [19] 25.5 - 18 -
STA [33] 36.0 - - -

Lift-Splat [9] - 32.1 14 25
FIERY Static [2] 37.7 35.8 7.4 8
Ours (224×480) 41.5 37.6 7.4 25
Ours (448×960) 45.4 41.2 7.4 10

Table 1: Comparison of vehicle BEV semantic segmentation on nuScenes [10] without masking
invisible vehicles. Setting 1 refers to the 100m × 50m at 25cm resolution. Setting 2 refers to the
100m× 100m at 50cm resolution. We report Intersection-Over-Union (IoU) for evaluating vehicle
BEV semantic segmentation performance. The iteration of feature transformation is set to 2 for both
input resolution, (224×480) and (448×960) in this table. Our method (224×480 input) significantly
outperforms counterparts while achieving real-time speed (25 FPS).

Method Setting 1(IoU%) Setting 2(IoU%) # Params(M) FPS
FIERY Static [2] 42.7 39.8 7.4 8

CVT [8] 37.5 36.0 5 35
Ours (224×480) 44.3 41.3 7.4 25
Ours (448×960) 48.4 45.6 7.4 10

Table 2: Comparison of vehicle BEV semantic segmentation on nuScenes [10] with masking invisi-
ble vehicles. The iteration of feature transformation is set to 2 for both input resolution, (224× 480)
and (448× 960) in this table. Our method (224×480 input) achieves much higher IoU than FIERY
Static [2] and CVT [8] while achieving real-time speed (25 FPS).

Training All our networks are implemented with Pytorch [30] and Pytorch Lightning. The input
images are first resized and randomly cropped into a special resolution before being fed into the
networks. The AdamW [31] optimizer is used for training the networks, with weight decay of 1e−7.
We apply the one-cycle learning rate scheduler [32] to adjust the learning rate. All networks are
trained on 8 GPUs with a batch size of 16.

Evaluation Two settings are used for evaluating vehicle segmentation map. Setting 1 [20] per-
ceives a 100m × 50m area around the ego-vehicle with 0.25m resolution, while the perceptual
range of setting 2 [9] is 100m × 100m with 0.5m resolution. These two settings serve as the main
comparisons to prior works. We use setting 2 for all the ablation studies. The Intersection-Over-
Union (IoU) metric is used for evaluating vehicle BEV segmentation performance for both settings.
We also report Panoptic Quality (PQ) metric for evaluating vehicle BEV instance segmentation per-
formance, following previous work [2]. Additionally, we report the inference speeds measured on
a single 2080Ti GPU. The number of iterations and input resolution for PolarBEV are set to 3 and
224× 480 respectively for most experiments unless specified otherwise. Results of ablation studies
are produced with masking invisible vehicles.

4.2 Performance Comparison

To validate the effectiveness and efficiency of the proposed method, we compare PolarBEV with
competitive approaches on both BEV semantic segmentation and BEV instance segmentation. All
the methods involved in comparison only use single frames as input without temporal information.

BEV Semantic Segmentation For fair comparison, in Tab. 1 and Tab. 2, we respectively compare
results without and with masking invisible vehicles. Tab. 1 compares results without masking invis-
ible vehicles. Our model with 2 iterations outperforms counterparts by a significant margin in both
settings, especially for 448×960 input resolution. Even compared with the best prior method FIERY
Static [2], our method (224× 480 input) is still 3.8 points higher in setting 1 and performs 3× faster
inference with the same parameters. When the input resolution is increased to 448×960, our model
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Setting 1 Setting 2 FPS
RQ% SQ% PQ% RQ% SQ % PQ%

FIERY Static [2] 49.5 71.7 35.5 47.3 71.1 33.6 8
Ours 52.3 72.0 37.7 50.2 71.4 35.9 25

Table 3: Comparison of vehicle BEV instance segmentation on nuScenes [10] with masking invisi-
ble vehicles. We report Recognition Quality (RQ), Segmentation Quality (SQ) and Panoptic Quality
(PQ) for evaluating vehicle BEV instance segmentation performance. Our method significantly out-
performs FIERY Static [2] in both performance and speed.

Grid Distribution IoU% PQ% FPS
Rectangular 40.83 35.45 22

Polar 41.36 35.78 22

Table 4: Ablation study about polar and rectan-
gular grid distribution.

Feature Transformation IoU% PQ% FPS
Depth-based 39.81 33.62 8
Height-based 40.83 35.45 22

Table 5: Ablation study about depth-based and
height-based feature transformation.

achieves further 7.7 points higher in setting 1 but still runs in a faster speed than FIERY Static. In
Tab. 2, we compare PolarBEV with other methods with masking invisible vehicles. Because there
is no official results of FIERY Static [2] in this setting, we reproduce it with the official code. As
this table shows, our model (224× 480 input) with 2 iterations also achieves the best results in both
settings and achieves real-time performance.

BEV Instance Segmentation We also provide BEV instance segmentation comparison with
masking invisible vehicles in Tab. 3. The results of FIERY Static [2] are reproduced with the official
code. As shown in this table, our model with 2 iterations is more than two points higher than FIERY
Static in both settings in terms of PQ. We also report Recognition Quality (RQ) and Segmentation
Quality (SQ) in this table. As we can see from this table, the revenue mainly comes from RQ,
meaning our model detects instances more accurately.

4.3 Ablation Study

Polar vs. Rectangular Grid Distribution In Tab. 4, we present ablation experiments about polar
and rectangular grid distribution. For fair comparison, both results have the same number of BEV
grids, 200× 200 for rectangular grid distribution and 400× 100 for polar grid distribution. We keep
the network structure the same. As shown in Tab. 4, polar grid distribution achieves an improvement
of 0.53 IoU and 0.33 PQ with no degradation in inference speed.

Height-based vs. Depth-based Feature Transformation In Tab. 5, we provide ablation experi-
ments about feature transformation. FIERY Static [2] adopts depth-based transformation, thus we
directly take it as baseline for comparison. To get the height-based results, based on FIERY Static,
we change the feature transformation manner to the one introduced in Sec 3.4. Tab. 5 shows that
height-based results surpass depth-based results a lot in both IoU and PQ with nearly 3× inference
speed, validating the advantage of height-based transformation.

The advantage mainly comes from the following points. The numerical range of depth is [0,+∞) for
each pixel, which is hard for the network to estimate a reasonable value in such a huge space. While

Ring Convolution PED (qang, qrad) IoU% PQ%
40.48 34.39

X 40.81 35.42
X X 41.36 35.78

Table 6: Ablation study about ring convolution and embedding decomposition. PED denotes Polar
Embedding Decomposition.
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Angular Radial IoU% PQ% # Params(M)
50 100 37.43 26.63 7.5

100 100 39.53 31.77 7.5
200 100 40.46 34.63 7.5
400 100 41.36 35.78 7.5
600 100 41.40 35.93 7.6
400 50 40.34 34.60 7.5
400 142 41.48 36.13 7.5

Table 7: Ablation study about various resolutions of polar BEV representation. The shape of polar
BEV representation is Dang ×Drad.

t IoU% PQ% #Params(M) FPS
1 40.73 34.59 7.3 27
2 41.30 35.86 7.4 25
3 41.36 35.78 7.5 22
6 41.39 35.96 7.8 17

Table 8: Ablation study about iterations of the 2D-to-3D feature transformation.

the numerical range of height for BEV is quite small. Height-based transformation corresponds to
less prediction error. As for the speed, depth-based methods (such as FIERY Static) broadcast pixel
features to BEV space along the depth dimension and sum all the 3D features along the vertical di-
mension. These operations are time-consuming. While height-based transformation is lightweight,
resulting in less latency.

Ring Convolution and Polar Embedding Decomposition In Tab. 6, we ablate on the ring convo-
lution and the proposed polar embedding decomposition. The baseline result achieves 40.48% IoU
and 34.39% PQ. After adopting ring convolution, we observe an improvement of 0.33 in IoU and
1.03 in PQ respectively. In order to model the associations among polar grids, we decompose grid
embeddings q into angle-specific ones qang and radius-specific ones qrad. As the last row shows,
embedding decomposition further brings an improvement of 0.55 IoU and 0.36 PQ.

Polar BEV Resolution To verify how the resolution of polar BEV representation affects model
performance, we performe ablation experiments on the angular resolution and the radial resolution
respectively. As shown in the upper of Tab. 7, the model performance becomes better with the
increase of angular resolution and reaches saturation at 400. The same rule can be found in radial
resolution, as the radial resolution increases, the results become better. Although increasing the
angular resolution or the radial resolution brings benefits and barely increases model parameters,
the memory occupation is proportional to the angular or radial resolution. Considering both the
performance and memory occupation, we choose the resolution of 400× 100 as the default setting.

The Number of Iteration We also conduct ablation study about the number of BEV surface es-
timation iterations in Tab. 8. As this table shows, our model with only 1 iteration gets 40.73% IoU
and 34.59% PQ, which has already exceeded all previous methods by a significant margin but with
a real-time inference speed. When the number of iteration is 2, the method achieves higher per-
formance in both IoU and PQ metrics and still keeps real-time speed. After adding the number of
iteration to 3 or 6, the performance seems to reach saturation, while the FPS degrades a lot when the
number of iterations is 6.

4.4 Qualitative Results

Fig. 2 shows several qualitative results on various scenes. We give the six camera views and the
predicted segmentation results and instance segmentation results along with the ground truth in each
row. As can be seen from this figure, PolarBEV can accurately segment vehicles in a variety of
complex scenes.
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Figure 2: Qualitative results on various scenes. Left shows the six camera views. Right shows our
semantic segmentation results, instance segmentation results and the ground truth in turn.

Figure 3: Failure examples on nuScenes [10]. Left shows the six camera views. Right shows our
semantic segmentation results, instance segmentation results and the ground truth in turn.

4.5 Limitations

We present some failure examples in Fig. 3. As shown in the upper of this figure, it is hard for
PolarBEV to predict the exact location when vehicle is far away from the ego-vehicle. As the
bottom of this figure shows, PolarBEV fails when the height of vehicle is hard to estimate because of
blocking. In order to achieve better results in the future, we may consider using temporal information
to calibrate the failures.

5 Conclusion

We propose PolarBEV for vision-based uneven BEV representation learning in this work. PolarBEV
rasterizes the BEV space both angularly and radially, making a distance-dependent uneven grid
distribution. To model the associations among grids, we assign angle-specific and radius-specific
embeddings to each polar grid. Different from previous depth based methods, we first set a hypo-
thetical BEV surface and then iteratively update the height of each polar grid to adjust the 2D-to-3D
correspondence between image pixels and BEV grids. Extensive experiments show PolarBEV is an
alternative way for better and faster segmentation.

8



Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant no.
62072327.

References
[1] S. Ammar Abbas and A. Zisserman. A geometric approach to obtain a bird’s eye view from

an image. In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, 2019.

[2] A. Hu, Z. Murez, N. Mohan, S. Dudas, J. Hawke, V. Badrinarayanan, R. Cipolla, and
A. Kendall. Fiery: Future instance prediction in bird’s-eye view from surround monocular
cameras. In ICCV, 2021.

[3] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory
and experiment. IEEE transactions on pattern analysis and machine intelligence, 1994.

[4] Y. Kim and D. Kum. Deep learning based vehicle position and orientation estimation via
inverse perspective mapping image. In 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.

[5] A. Loukkal, Y. Grandvalet, T. Drummond, and Y. Li. Driving among flatmobiles: Bird-eye-
view occupancy grids from a monocular camera for holistic trajectory planning. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021.

[6] C. Lu, M. J. G. van de Molengraft, and G. Dubbelman. Monocular semantic occupancy grid
mapping with convolutional variational encoder–decoder networks. IEEE Robotics and Au-
tomation Letters, 2019.

[7] S. Chen, T. Cheng, X. Wang, W. Meng, Q. Zhang, and W. Liu. Efficient and robust
2d-to-bev representation learning via geometry-guided kernel transformer. arXiv preprint
arXiv:2206.04584, 2022.
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