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ABSTRACT

Oversmoothing is a common phenomenon in a wide range of Graph Neural Net-
works (GNNs) and Transformers, where performance worsens as the number of
layers increases. Instead of characterizing oversmoothing from the view of com-
plete collapse in which representations converge to a single point, we dive into a
more general perspective of dimensional collapse in which representations lie in
a narrow cone. Accordingly, inspired by the effectiveness of contrastive learning
in preventing dimensional collapse, we propose a novel normalization layer called
ContraNorm. Intuitively, ContraNorm implicitly shatters representations in the
embedding space, leading to a more uniform distribution and a slighter dimen-
sional collapse. On the theoretical analysis, we prove that ContraNorm can alle-
viate both complete collapse and dimensional collapse under certain conditions.
Our proposed normalization layer can be easily integrated into GNNs and Trans-
formers with negligible parameter overhead. Experiments on various real-world
datasets demonstrate the effectiveness of our proposed ContraNorm. Our imple-
mentation is available at https://github.com/PKU-ML/ContraNorm.

1 INTRODUCTION

Recently, the rise of Graph Neural Networks (GNNs) has enabled important breakthroughs in vari-
ous fields of graph learning (Ying et al., 2018; Senior et al., 2020). Along the other avenue, although
getting rid of bespoke convolution operators, Transformers (Vaswani et al., 2017) also achieve phe-
nomenal success in multiple natural language processing (NLP) tasks (Lan et al., 2020; Liu et al.,
2019; Rajpurkar et al., 2018) and have been transferred successfully to computer vision (CV) field
(Dosovitskiy et al., 2021; Liu et al., 2021; Strudel et al., 2021). Despite their different model archi-
tectures, GNNs and Transformers are both hindered by the oversmoothing problem (Li et al., 2018;
Tang et al., 2021), where deeply stacking layers give rise to indistinguishable representations and
significant performance deterioration.

In order to get rid of oversmoothing, we need to dive into the modules inside and understand how
oversmoothing happens on the first hand. However, we notice that existing oversmoothing analysis
fails to fully characterize the behavior of learned features. A canonical metric for oversmoothing
is the average similarity (Zhou et al., 2021; Gong et al., 2021; Wang et al., 2022). The tendency
of similarity converging to 1 indicates representations shrink to a single point (complete collapse).
However, this metric can not depict a more general collapse case, where representations span a low-
dimensional manifold in the embedding space and also sacrifice expressive power, which is called
dimensional collapse (left figure in Figure 1). In such cases, the similarity metric fails to quantify
the collapse level. Therefore, we need to go beyond existing measures and take this so-called dimen-
sional collapse into consideration. Actually, this dimensional collapse behavior is widely discussed
in the contrastive learning literature (Jing et al., 2022; Hua et al., 2021; Chen & He, 2021; Grill
et al., 2020), which may hopefully help us characterize the oversmoothing problem of GNNs and
Transformers. The main idea of contrastive learning is maximizing agreement between different
augmented views of the same data example (i.e. positive pairs) via a contrastive loss. Common
contrastive loss can be decoupled into alignment loss and uniformity loss (Wang & Isola, 2020).
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The two ingredients correspond to different objectives: alignment loss expects the distance between
positive pairs to be closer, while uniformity loss measures how well the embeddings are uniformly
distributed. Pure training with only alignment loss may lead to a trivial solution where all represen-
tations shrink to one single point. Fortunately, the existence of uniformity loss naturally helps solve
this problem by drawing representations evenly distributed in the embedding space.

Given the similarities between the oversmoothing problem and the representation collapse issue,
we establish a connection between them. Instead of directly adding uniformity loss into model
training, we design a normalization layer that can be easily used out of the box with almost no
parameter overhead. To achieve this, we first transfer the uniformity loss used for training to
a loss defined over graph node representations, thus it can optimize representations themselves
rather than model parameters. Intuitively, the loss meets the need of drawing a uniform node
distribution. Following the recent research in combining optimization scheme and model archi-
tecture (Yang et al., 2021; Zhu et al., 2021; Xie et al., 2021; Chen et al., 2022), we use the
transferred uniformity loss as an energy function underlying our proposed normalization layer,
such that descent steps along it corresponds with the forward pass. By analyzing the unfolding
iterations of the principled uniformity loss, we design a new normalization layer ContraNorm.

Figure 1: An illustration of how our proposed
ContraNorm solves the dimensional collapse.
Left: Features suffer from dimensional collapse.
Right: With the help of ContraNorm, features be-
come more uniform in the space, and the dimen-
sional collapse is eased.

As a proof of concept, Figure 1 demonstrates
that ContraNorm makes the features away from
each other, which eases the dimensional col-
lapse. Theoretically, we prove that ContraNorm
increases both average variance and effective
rank of representations, thus solving complete
collapse and dimensional collapse effectively.
We also conduct a comprehensive evaluation
of ContraNorm on various tasks. Specifically,
ContraNorm boosts the average performance
of BERT (Devlin et al., 2018) from 82.59%
to 83.54% on the validation set of General
Language Understanding Evaluation (GLUE)
datasets (Wang et al., 2019), and raises the test
accuracy of DeiT (Touvron et al., 2021) with 24
blocks from 77.69% to 78.67% on ImageNet1K
(Russakovsky et al., 2015) dataset. For GNNs,
experiments are conducted on fully supervised graph node classification tasks, and our proposed
model outperforms vanilla Graph Convolution Network (GCN) (Kipf & Welling, 2017) on all depth
settings. Our contributions are summarized as:

• We dissect the limitations of existing oversmoothing analysis, and highlight the importance
of incorporating the dimensional collapse issue into consideration.

• Inspired by the techniques from contrastive learning to measure and resolve oversmooth-
ing, we propose ContraNorm as an optimization-induced normalization layer to prevent
dimensional collapse.

• Experiments on a wide range of tasks show that ContraNorm can effectively mitigate di-
mensional collapse in various model variants, and demonstrate clear benefits across three
different scenarios: ViT for image classification, BERT for natural language understanding,
and GNNs for node classifications.

2 BACKGROUND & RELATED WORK

Message Passing in Graph Neural Networks. In the literature of GNNs, message-passing graph
neural networks (MP-GNNs) are intensively studied. It progressively updates representations by
exchanging information with neighbors. The update of node i’s representation in l-th layer is for-
malized as h

(l)
i = UPDATE

(
h(l−1),AGGREGATE(h(l−1)

i , {h(l−1)
j | j ∈ N (i)})

)
, where N (i)

denotes the neighborhood set of node i, AGGREGATE(·) is the procedure where nodes exchange
message, and UPDATE(·) is often a multi-layer perceptron (MLP). A classical MP-GNNs model
is GCN (Kipf & Welling, 2017), which propagates messages between 1-hop neighbors using an
adjacency matrix.

Self-Attention in Transformers. Transformers encode information in a global scheme with self-
attention as the key ingredient (Vaswani et al., 2017). Self-attention module re-weights interme-
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diate representations by aggregating semantically near neighbors. Formally, it estimates similari-
ties between key and query, namely self-attention matrix, as Ā = softmax(QK⊤), Q = XWQ,
and K = XWK where X , WQ, and WK are the input, weight matrices for query and key, re-
spectively. A multi-head self-attention module with a residual connection can be formularized as
attn(X) = X +

∑h
k=1 ĀkXVkW

⊤
k , where h is the number of heads, and V , W are weights for

value and final output.

Connections between Message Passing and Self-Attention. Note that the self-attention matrix can
be seen as a normalized adjacent matrix of a corresponding graph (Shi et al., 2022). Considering
a weighted fully connected graph G with adjacency matrix denoted as Â, we map nodes to token
representations and set weights of the edge between node i and node j to exp(Q⊤

i Kj). Then (i, j)

entry of a normalized adjacency matrix is Ãij = Âij/D̂ij = exp(Q⊤
i Kj)/

∑
k exp(Q

⊤
i Kk),

where diagonal matrix D̂ii =
∑

j Âij . Apparently, Ã is equal to the form of self-attention matrix
defined in Transformers. Simultaneously, Ã plays a major part in the message-passing scheme by
deciding which nodes to exchange information with.

Oversmoothing in GNNs and Transformers. The term oversmoothing is firstly proposed by Li
et al. (2018) in research of GNNs. Intuitively, representations converge to a constant after repeatedly
exchanging messages with neighbors when the layer goes to infinity. Zhou et al. (2020) mathemat-
ically proves that, under some conditions, the convergence point carries only information of the
graph topology. Coincidentally, an oversmoothing-like phenomenon is also observed in Transform-
ers. Unlike CNNs, Transformers can not benefit from simply deepening layers, and even saturates
with depth increasing. Early works empirically ascribe it to attention/feature collapse or patch/token
uniformity (Tang et al., 2021; Zhou et al., 2021; Gong et al., 2021; Yan et al., 2022). To be specific,
the attention maps tend to be overly similar in later layers, whereby features insufficiently exchange
information and lose diversity in the end. Outputs of pure transformers, i.e., attention without skip
connections or MLPs, are also observed to converge to a rank-1 matrix (Dong et al., 2021). For
illustration proposes, we also refer to the degeneration issue in Transformers as oversmoothing.

Whitening Methods for Dimensional Collapse. Whitening methods ensure that the covariance
matrix of normalized outputs is diagonal, making dimensions mutually independent and implicitly
solving dimensional collapse. Huang et al. (2018; 2019); Siarohin et al. (2018); Ermolov et al.
(2021) all adopt the idea of whitening, but differ in calculating details of whitening matrix and
application domain. Compared with them, we avoid complicated calculations on the squared root of
the inverse covariance matrix and delicate design of backward pass for differentiability. Moreover,
Huang et al. (2018; 2019) are proposed for convolution operations, Siarohin et al. (2018) is for GAN,
and Ermolov et al. (2021) works in self-supervised learning. In contrast, we borrow the idea from
contrastive learning and solve oversmoothing in completely different fields like Transformers and
GNNs.

3 MITIGATING OVERSMOOTHING FROM THE PERSPECTIVE OF
CONTRASTIVE LEARNING

In this section, we first empirically demonstrate that current similarity metric fails to characterize
dimensional collapse, thus overlooking a crucial part of oversmoothing. To address this problem,
we draw inspiration from contrastive learning whose uniformity property naturally rules out dimen-
sional collapse. Specifically, we transfer the uniformity loss to a loss that directly acts on represen-
tations. By unfolding the optimization steps along this loss, we induce a normalization layer called
ContraNorm. Theoretically, we prove our proposed layer helps mitigate dimensional collapse.

3.1 THE CHARACTERIZATION OF OVERSMOOTHING

In this part, we begin by highlighting the limitations of existing metrics in characterizing over-
smoothing. These limitations motivate us to adopt the effective rank metric, which has been demon-
strated to be effective in capturing the degree of dimensional collapse in contrastive learning.

Taking the oversmoothing problem of Transformers as an example without loss of generality, a
prevailing metric is evaluating attention map similarity (Wang et al., 2022; Gong et al., 2021; Shi
et al., 2022). The intuition is that as attention map similarity converges to one, feature similarity
increases, which can result in a loss of representation expressiveness and decreased performance.
However, by conducting experiments on transformer structured models like ViT and BERT, we find
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Figure 2: Comparison between different metrics of oversmoothing of 12-layer BERT on GLUE
sub-task STS-B and 12-layer ViT on CIFAR10. Fig. 2a and Fig. 2b show feature and attention
map cosine similarity along layer index. Fig. 2c and Fig. 2d show the singular value distribution of
features and effective rank of BERT w/ and w/o ContraNorm.

that high attention map similarity does not necessarily correspond to high feature similarity. As
shown in Fig. 2a and Fig. 2b, although attention map similarity is close to 0.8 or even higher,
the feature similarity remains below 0.5 in most cases. It means the oversmoothing problem still
occurs even with a low feature similarity. This finding suggests that similarity can not fully depict
the quality of representations and the oversmoothing problem.

Intuitively, we can consider a case that representations in the latent embedding space do not shrink to
one single point but span a low dimensional space. In such cases, feature similarity may be relatively
low, but representations still lose expressive power. Such representation degeneration problem is
known as dimensional collapse, and it is widely discussed in the literature of contrastive learning. In
contrastive learning, common practice to describe dimensional collapse is the vanishing distribution
of singular values (Gao et al., 2019; Ethayarajh, 2019; Jing et al., 2022). To investigate whether
dimensional collapse occurs in Transformers, we draw the singular value distribution of features in
the last block of 12-layer BERT. As shown in Fig. 2c, the insignificant (nearly zero) values dominate
singular value distribution in the deep layer of vanilla BERT, indicating that representations reside on
a low-dimensional manifold and dimensional collapse happens. To show the collapse tendency along
layer index, we simplify the singular value distribution to a concise scalar effective rank (erank) (Roy
& Vetterli, 2007), which covers the full singular value spectrum.

Definition 3.1 (Effective Rank). Considering matrix X ∈ Rm×n whose singular value decomposi-
tion is given by X = UΣV , where Σ is a diagonal matrix with singular values σ1 ≥ σ2 ≥ · · · ≥
σQ ≥ 0 with Q = min{m,n}. The distribution of singular values is defined as L1-normalized
form pi = σi/

∑Q
k=1 |σk|. The effective rank of the matrix X , denoted as erank(X), is defined as

erank(X) = exp(H{p1, p2, · · · , pQ}), where H(p1, p2, · · · , pQ) is the Shannon entropy given by
H(p1, p2, · · · , pQ) = −

∑Q
k=1 pk log pk.

Based on erank, we revisit the oversmoothing issue of Transformers in Fig. 2d. We can see that
the effective rank descends along with layer index, indicating an increasingly imbalanced singular
value distribution in deeper layers. This finding not only verifies dimensional collapse does occur
in Transformers, but also indicates the effectiveness of using effective rank as a metric to detect this
issue.

3.2 INSPIRATIONS FROM THE UNIFORMITY LOSS IN CONTRASTIVE LEARNING

The core idea of contrastive learning is maximizing agreement between augmented views of the
same example (i.e., positive pairs) and disagreement of views from different samples (i.e. negative
pairs). A popular form of contrastive learning optimizes feature representations using a loss function
with limited negative samples (Chen et al., 2020). Concretely, given a batch of randomly sampled
examples, for each example we generate its augmented positive views and finally get a total of N
samples. Considering an encoder function f , the contrastive loss for the positive pair (i, i+) is

L(i, i+) = − log
exp(f(xi)

⊤f(xi+)/τ)∑N
k=1 exp(f(xi)⊤f(xk)/τ)− exp(f(xi)⊤f(xi)/τ)

, (1)
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where τ denotes a temperature factor. The loss can be decoupled into two parts named alignment
loss and uniformity loss:

Lalign(i, i
+) = −f(xi)

⊤f(xi+)/τ Luniform(i) = log

N∑
k=1

exp(f(xi)
⊤f(xk)/τ). (2)

The alignment loss encourages feature representations for positive pairs to be similar, thus being
invariant to unnecessary noises. However, training with only the alignment loss will result in a
trivial solution where all representations are identical. In other words, complete collapse happens.
While batch normalization (Ioffe & Szegedy, 2015) can help avoid this issue, it cannot fully prevent
the problem of dimensional collapse, which still negatively impacts learning (Hua et al., 2021).

Thanks to the property of uniformity loss, dimensional collapse can be solved effectively. Reviewing
the form of uniformity loss in Eq.(2), it maximizes average distances between all samples, resulting
in embeddings that are roughly uniformly distributed in the latent space, and thus more information
is preserved. The inclusion of the uniformity loss in the training process helps to alleviate dimen-
sional collapse. Intuitively, it can also serve as a sharp tool for alleviating oversmoothing in models
such as GNNs and Transformers.

An alternative approach to address oversmoothing is to directly incorporate the uniformity loss into
the training objective. However, our experiments reveal that this method has limited effectiveness
(see Appendix D for more details). Instead, we propose a normalization layer that can be easily
integrated into various models. Our approach utilizes the uniformity loss as an underlying energy
function of the proposed layer, such that a descent step along the energy function corresponds to
a forward pass of the layer. Alternatively, we can view the layer as the unfolded iterations of an
optimization function. This perspective is adopted to elucidate GNNs (Yang et al., 2021; Zhu et al.,
2021), Transformers (Yang et al., 2022), and classic MLPs (Xie et al., 2021).

Note that the uniformity loss works by optimizing model parameters while what the normalization
layer directly updates is representation itself. So we first transfer the uniformity loss, which serves
as a training loss, to a kind of architecture loss. Consider a fully connected graph with restricted
number of nodes, where node hi is viewed as representation of a random sample xi. Reminiscent
of Luniform, we define L̂uniform over all nodes in the graph as

L̂uniform =
∑
i

Luniform(i) =
∑
i

log
∑
j

eh
⊤
i hj/τ . (3)

This form of uniformity loss is defined directly on representations, and we later use it as the under-
lying energy function for representation update.

3.3 THE PROPOSED CONTRANORM

Till now, we are able to build a connection between layer design and the unfolded iterations of
descent steps used to minimize uniformity loss. Specifically, we take the derivative of L̂uniform on
node representations:

∂L̂uniform

∂hi
=

∑
j

exp(h⊤
i hj/τ)∑

k exp(h
⊤
i hk/τ)

hj/τ +
∑
j

exp(h⊤
i hj/τ)∑

k exp(h
⊤
j hk/τ)

hj/τ, (4)

by denoting feature matrix as H with h⊤
i as the i-th row, we rewrite Eq.(4) into a matrix form for

simplicity:
∂L̂uniform

∂H
= (D−1A+AD−1)H/τ, (5)

where A = exp(HH⊤/τ) and D = deg(A)1. In order to reduce the uniformity loss L̂uniform, a
natural way is to take a single step performing gradient descent, which is to update representations
H in the way of

Ht = Hb − s× ∂L̂uniform

∂Hb
= Hb − s/τ × (D−1A+AD−1)Hb, (6)

1deg(A) is a diagonal matrix, whose element in the i-th row and the i-th column is the sum of the i-th row
of A.
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where Hb and Ht denote the representations before and after the update, respectively, and s is the
step size of the gradient descent. By taking this update after a certain representation layer, we can
reduce the uniformity loss of the representations and thus help ease the dimensional collapse.

In Eq.(6), there exist two terms D−1A and AD−1 multiplied with Hb. Empirically, the two terms
play a similar role in our method. Note that the first term is related to self-attention matrix in
Transformers, so we only preserve it and discard the second one. Then Eq.(6) becomes

Ht = Hb − s/τ × (D−1A)Hb = Hb − s/τ × softmax(HbH
⊤
b )Hb. (7)

In fact, the operation corresponds to the stop-gradient technique, which is widely used in contrastive
learning methods (He et al., 2020; Grill et al., 2020; Tao et al., 2022). By throwing away some terms
in the gradient, stop-gradient makes the training process asymmetric and thus avoids representation
collapse with less computational overhead, which is discussed in detail in Appendix A.

However, the layer induced by Eq.(7) still can not ensure uniformity on representations. Consider
an extreme case where softmax(HbH

⊤
b ) is equal to identity matrix I . Eq.(7) becomes Ht =

Hb − s/τ × Hb = (1 − s/τ)Hb, which just makes the scale of H smaller and does not help
alleviate the complete collapse. To keep the representation stable, we propose two methods:

Regularization. We add a regularization term − 1
2

∑
i ∥hi∥22 to the uniformity loss. When the

regularization term becomes smaller, the norm of hi becomes larger. Therefore, adding this term
can help prevent the norm of representation hi from becoming smaller. In this way, the update form
becomes

Ht = (1 + s)Hb − s/τ × softmax(HbH
⊤
b )Hb. (8)

Proposition 1. Let e = (1, 1, . . . , 1)⊤/
√
n. For attention matrix Ā = softmax(HbH

⊤
b ), let σmin

be the smallest eigenvalue of P = (I−ee⊤)(I−Ā)+(I−Ā)⊤(I−ee⊤). For the update in Eq.8,
i.e. Ht = ((1+ s)I − sĀ)Hb, s > 0, we have V ar(Ht) ≥ (1 + sσmin) · V ar(Hb). Especially, if
σmin ≥ 0, we have V ar(Ht) ≥ V ar(Hb).

Proposition 1 gives a bound for the ratio of the variance after and before the update. It shows that the
change of the variance is influenced by the symmetric matrix P = (I−ee⊤)(I−Ā)+(I−Ā)⊤(I−
ee⊤). If P is a semi-positive definite matrix, we will get the result that V ar(Ht) ≥ V ar(Hb),
which indicates that the representations become more uniform. In Appendix B, we will give out
some sufficient conditions for that P is semi-positive definite.

LayerNorm. We leverage layer normalization (Ba et al., 2016), which adjusts the representation
according to its mean and variance. The update form of the layer normalization on representation
hi is LayerNorm(hi) = γ · ((hi − mean(hi))/

√
Var(hi) + ε) + β, where γ and β are learnable

parameters and ε = 10−5 prevents the denominator from becoming zero. The learnable parameters γ
and β can rescale the representation hi to help ease the problem. We append the layer normalization
to Eq.(7) as

Ht = LayerNorm
(
Hb − s/τ × softmax(HbH

⊤
b )Hb

)
, (9)

where applying the layer normalization to a representation matrix H means applying the layer nor-
malization to all its components h1, . . . ,hn. We empirically compare the two proposed methods
and find their performance comparable, while the second one performs slightly better. Therefore,
we adopt the second update form and name it Contrastive Normalization (ContraNorm). The Con-
traNorm layer can be added after any representation layer to reduce the uniformity loss and help
relieve the dimensional collapse. We discuss the best place to plug our ContraNorm in Appendix E.
Given Hb ∈ Rn×d where n and d is the number of samples in the batch and hidden dimension, the
time complexity of ContraNorm is O(n2d), which is the same order as the self-attention operation
in Transformer. For enhancing scalability, we propose a modified version of ContraNorm with a
linear complexity in the number of samples. See Appendix F for more details.

3.4 THEORETICAL ANALYSIS

In this part, we will give a theoretical result on our proposed ContraNorm method. We will show
that with a different form of the uniformity loss, the ContraNorm update can help alleviate the
dimensional collapse.
Proposition 2. Consider the update form

Ht = (1 + s)Hb − s(HbH
⊤
b )Hb, (10)
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let σmax be the largest singular value of Hb. For s > 0 satisfying 1 + (1 − σ2
max)s > 0, we have

erank(Ht) > erank(Hb).

Proposition 2 gives a promise of alleviating dimensional collapse under a special update form. De-
note L̂dim = tr((I − HH⊤)2)/4, then L̂dim shares a similar form with Barlow Twins (Zbon-
tar et al., 2021). This loss tries to equate the diagonal elements of the similarity matrix HH⊤

to 1 and equate the off-diagonal elements of the matrix to 0, which drives different features
becoming orthogonal, thus helping the features become more uniform in the space. Note that
∂L̂dim

∂H = (I − HH⊤)H , therefore, Eq.(10) can be rewritten as Ht = Hb + s∂L̂dim(Hb)
∂Hb

, which
implies that this update form is in fact a ContraNorm with a different uniformity loss. Proposition 2
claims that this update can increase the effective rank of the representation matrix, when s satisfies
1+(1−σmax)s > 0. Note that no matter whether σmax > 0 or not, if s is sufficiently close to 0, the
condition will be satisfied. Under this situation, the update will alleviate the dimensional collapse.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of ContraNorm by experiments including 1) lan-
guage understanding tasks on GLUE datasets with BERT and ALBERT (Lan et al., 2020) as the
backbones; 2) image classification task on ImageNet100 and ImageNet1k datasets with DeiT as the
base model; 3) fully supervised graph node classification task on popular graph datasets with GCN
as the backbone. Moreover, we conduct ablative studies on ContraNorm variants comparison and
hyperparameters sensitivity analysis.

4.1 EXPERIMENTS ON LANGUAGE MODELS

To corroborate the potential of ContraNorm, we integrate it into two transformer structured models:
BERT and ALBERT, and evaluate it on GLUE datasets. GLUE includes three categories of tasks:
(i) single-sentence tasks CoLA and SST-2; (ii) similarity and paraphrase tasks MRPC, QQP, and
STS-B; (iii) inference tasks MNLI, QNLI, and RTE. For MNLI task, we experiment on both the
matched (MNLI-m) and mismatched (MNLI-mm) versions.

Setup. We default plug ContraNorm after the self-attention module and residual connection (more
position choices are in Appendix E). We use a batch size of 32 and fine-tune for 5 epochs over
the data for all GLUE tasks. For each task, we select the best scale factor s in Eq.(6) among
(0.005, 0.01, 0.05, 0.1, 0.2). We use base models (BERT-base and ALBERT-base) of 12 stacked
blocks with hyperparameters fixed for all tasks: number of hidden size 128, number of attention
heads 12, maximum sequence length 384. We use Adam (Kingma & Ba, 2014) optimizer with the
learning rate of 2e− 5.

Results. As shown in Table 1, ContraNorm substantially improves results on all datasets compared
with vanilla BERT. Specifically, our ContraNorm improves the previous average performance from
82.59% to 83.39% for BERT backbone and from 83.74% to 84.67% for ALBERT backbone. We also
submit our trained model to GLUE benchmark leaderboard and the results can be found in Appendix
G. It is observed that BERT with ContraNorm also outperforms vanilla model across all datasets.
To verify the de-oversmoothing effect of ContraNorm. We build models with/without ContraNorm
on various layer depth settings. The performance comparison is shown in Fig. 3a. Constant stack
of blocks causes obvious deterioration in vanilla BERT, while BERT with ContraNorm maintains
competitive advantage. Moreover, for deep models, we also show the tendency of variance and
effective rank in Fig. 3b and Fig. 3c, which verifies the power of ContraNorm in alleviating complete
collapse and dimensional collapse, respectively.

4.2 EXPERIMENTS ON VISION TRANSFORMERS

We also validate effectiveness of ContraNorm in computer vision field. We choose DeiT as back-
bone and models are trained from scratch. Experiments with different depth settings are evaluated
on ImageNet100 and ImageNet1k datasets. Based on the Timm (Wightman, 2019) and DeiT repos-
itories, we insert ContraNorm into base model intermediately following self-attention module.

Setup. We follow the training recipe of Touvron et al. (2021), and make minimal changes to hy-
perparameters. Specifically, we use AdamW (Loshchilov & Hutter, 2019) optimizer with cosine
learning rate decay. We train each model for 150 epochs and the batch size is set to 1024. Aug-
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Figure 3: Comparison of BERT and BERT+ContraNorm on COLA with various layer depths.
Fig.(3a) presents performances of models with block number=12, 24, 36, 48, 60, 72. Fig.(3b) and
Fig.(3c) show the tendency of features variance and effective rank for models with 72 blocks.

Table 1: Results comparison on validation set of GLUE tasks. Following (Devlin et al., 2018), we
report F1 scores for QQP and MRPC, Spearman correlations for STS-B, and accuracy scores for the
other tasks. ContraNorm* denotes the best model when varying plugging positions of ContraNorm.
Avg denotes the average performance on all the tasks and bold denotes the best performance.

Dataset COLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE Avg
BERT-base 55.28 92.89 88.96 88.24 88.61 84.65 84.61 91.51 68.59 82.59
BERT + ContraNorm 58.83 93.12 89.49 88.30 88.66 84.87 84.66 91.78 70.76 83.39
BERT + ContraNorm* 59.57 93.23 89.97 88.30 88.93 84.87 84.67 91.78 70.76 83.54
ALBERT-base 57.35 93.69 92.09 87.23 90.54 84.56 84.37 90.90 76.53 83.74
ALBERT + ContraNorm 58.51 92.89 92.86 87.45 90.56 84.33 84.62 91.76 79.06 84.67
ALBERT + ContraNorm* 58.76 93.23 92.89 87.67 90.72 84.69 84.95 92.28 79.06 84.92

Table 2: Test accuracy (%) comparison results. For ImageNet100 and ImageNet1k, we use DeiT-
tiny and DeiT-small as the baseline respectively. The block number is set to 12, 16 and 24. The best
result for each dataset is bolded.

Dataset Model #L=12 #L=16 #L=24

ImageNet100 DeiT-tiny 76.58 75.34 76.76
+ContraNorm 79.34 80.44 81.28

ImageNet1k DeiT-small 77.32 78.25 77.69
+ContraNorm 77.80 79.04 78.67

mentation techniques are used to boost the performance. For all experiments, the image size is set
to be 224 × 224. For Imagenet100, we set the scale factor s to 0.2 for all layer depth settings. For
Imagenet1k, we set s to 0.2 for models with 12 and 16 blocks, and raise it to 0.3 for models with 24
blocks.

Results. In Table 2, DeiT with ContraNorm outperforms vanilla DeiT with all layer settings on both
datasets. Typically, our method shows a gain of nearly 5% on test accuracy for ImageNet100. For
ImageNet1k, we boost the performance of DeiT with 24 blocks from 77.69% to 78.67%.

4.3 EXPERIMENTS ON GRAPH NEURAL NETWORKS

We implement ContraNorm as a simple normalization layer after each graph convolution of GCN,
and evaluate it on fully supervised graph node classification task. For datasets, we choose two
popular citation networks Cora (McCallum et al., 2000) and Citeseer (Giles et al., 1998), and
Wikipedia article networks Chameleon and Squirrel (Rozemberczki et al., 2021). More informa-
tion of datasets is deferred to Appendix H. We compare ContraNorm against a popular normaliza-
tion layer PairNorm (Zhao & Akoglu, 2020) designed for preventing oversmoothing. We also take
LayerNorm as a baseline by setting the scale s = 0.

Setup. We follow data split setting in Kipf & Welling (2017) with train/validation/test splits of 60%,
20%, 20%, respectively. To keep fair in comparison, we fix the hidden dimension to 32, and dropout
rate to 0.6 as reported in Zhao & Akoglu (2020). We choose the best of scale controller s in range of
{0.2, 0.5, 0.8, 1.0} for both PairNorm and ContraNorm. For PairNorm, we choose the best variant
presented by Zhao & Akoglu (2020).

Results. As shown in Table 3, in shallow layers (e.g., two layer), the addition of ContraNorm
reduces the accuracy of vanilla GCN by a small margin, while it helps prevent the performance
from sharply deteriorating as the layer goes deeper. ContraNorm outperforms PairNorm and Lay-
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Table 3: Test accuracy (%) comparison results. We use GCN as backbone and apply LayerNorm,
PairNorm and ContraNorm, respectively. We fairly tune the scale parameter in LayerNorm and
ContraNorm. The layer number is set to 2, 4, 8, 16, 32. For every layer setting, the best accuracy is
marked in blue background, and the second best is underlined. Results are averaged over 5 runs.

Dataset Model #L=2 #L=4 #L=8 #L=16 #L=32

Cora

Vanilla GCN 81.75 ± 0.51 72.61 ± 2.42 17.71 ± 6.89 20.71 ± 8.54 19.69 ± 9.54
+LayerNorm 79.96 ± 0.73 77.45 ± 0.67 39.09 ± 4.68 7.79 ± 0.00 7.79 ± 0.00
+PairNorm 75.32 ± 1.05 72.64 ± 2.67 71.86 ± 3.31 54.11 ± 9.49 36.62 ± 2.73
+ContraNorm 79.75 ± 0.33 77.02 ± 0.96 74.01 ± 0.64 68.75 ± 2.10 46.39 ± 2.46

CiteSeer

Vanilla GCN 69.18 ± 0.34 55.01 ± 4.36 19.65 ± 0.00 19.65 ± 0.00 19.65 ± 0.00
+LayerNorm 63.27 ± 1.15 60.91 ± 0.76 33.74 ± 6.15 19.65 ± 0.00 19.65 ± 0.00
+PairNorm 61.59 ± 1.35 53.01 ± 2.19 55.76 ± 4.45 44.21 ± 1.73 36.68 ± 2.55
+ContraNorm 64.06 ± 0.85 60.55 ± 0.72 59.30 ± 0.67 49.01 ± 3.49 36.94 ± 1.70

Chameleon

Vanilla GCN 45.79 ± 1.20 37.85 ± 1.35 22.37 ± 0.00 22.37 ± 0.00 23.37 ± 0.00
+LayerNorm 63.95 ± 1.29 55.79 ± 1.25 34.08 ± 2.62 22.37 ± 0.00 22.37 ± 0.00
+PairNorm 62.24 ± 1.73 58.38 ± 1.48 49.12 ± 2.32 37.54 ± 1.70 30.66 ± 1.58
+ContraNorm 64.78 ± 1.68 58.73 ± 1.12 48.99 ± 1.52 40.92 ± 1.74 35.44 ± 3.16

Squirrel

Vanilla GCN 29.47 ± 0.96 19.31 ± 0.00 19.31 ± 0.00 19.31 ± 0.00 19.31 ± 0.00
+LayerNorm 43.04 ± 1.25 29.64 ± 5.50 19.63 ± 0.45 19.96 ± 0.44 19.40 ± 0.19
+PairNorm 43.86 ± 0.41 40.25 ± 0.55 36.03 ± 1.43 29.55 ± 2.19 29.05 ± 0.91
+ContraNorm 47.24 ± 0.66 40.31 ± 0.74 35.85 ± 1.58 32.37 ± 0.93 27.80 ± 0.72

Table 4: Performance comparison among different variants of ContraNorm. SG, LN, L2N are the
abbreviations of stop gradient, layer normalization and L2 normalization, respectively. All exper-
iments are conducted on GLUE tasks with the same parameter settings. Avg denotes the average
performance on all the tasks. We bold the best result for each task.

Variants Datasets Avg
SG LN L2N COLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE

✓ 58.80 93.12 89.60 88.35 88.97 84.81 84.67 91.47 68.23 83.11
✓ ✓ 59.82 93.00 89.64 88.37 88.92 84.72 84.58 91.58 68.95 83.29
✓ ✓ 59.57 93.12 89.97 88.30 88.93 84.84 84.67 91.58 68.95 83.33

erNorm in the power of de-oversmoothing. Here, we show the staple in diluting oversmoothing is
ContraNorm, and LayerNorm alone fails to prevent GCN from oversmoothing, even amplifying the
negative effect on Cora with more than 16 layers.

4.4 ABLATION STUDY

Comparison of different ContraNorm variants. Recalling Section 3.3, we improve ContraNorm
with stop-gradient technique (SG) by masking the second term. For solving data representation in-
stability, we apply layer normalization (LN) to the original version, while for the convenience of
theoretical analysis, layer normalization is replaced by L2 normalization (L2N). Here, we inves-
tigate the effect of these tricks and the results are shown in Table 4. Compared with the variant
with only LayerNorm, ContraNorm with both stop gradient and layer normalization presents better
performance. As for the two normalization methods, they are almost comparable to our methods,
which verifies the applicability of our theoretical analysis.

Hyperparameters sensitivity analysis. We conduct an ablation study regarding the gains of Con-
traNorm while using different values of scale factor s. In Appendix I, we show that ContraNorm is
robust in an appropriate range of s.

5 CONCLUSION

In this paper, we point out the deficiencies of current metrics in characterizing over-smoothing, and
highlight the importance of taking dimensional collapse as the entry point for oversmoothing analy-
sis. Inspired by the uniformity loss in contrastive learning, we design an optimization-induced nor-
malization layer ContraNorm. Our theoretical findings indicate ContraNorm mitigates dimensional
collapse successfully by reducing variance and effective rank of representations. Experiments show
that ContraNorm boosts the performance of Transformers and GNNs on various tasks. Our work
provides a new perspective from contrastive learning on solving the oversmoothing problem, which
helps motivate the following extensive research.
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A ILLUSTRATION ON THE STOP-GRADIENT OPERATION IN EQ.(7)

In this section, we will illustrate the stop-gradient operation in Eq.(7) by using the framework pro-
posed by (Tao et al., 2022). The original update form should be Eq.(6):

Ht = Hb − s× ∂L̂uniform

∂Hb
= Hb − s/τ × (D−1A+AD−1)Hb.

We take SimCLR(Chen et al., 2020) as the contrastive learning framework. Tao et al. (2022) have
studied the stop-gradient form of SimCLR and illustrated that the stop-gradient operation will make
a similar performance with the original one. Based on this, we will elaborate on how AD−1 is
removed in the following part. In fact, we can directly illustrate how the second term in Eq(4) can
be omitted.

∂L̂uniform

∂hi
=

∑
j

exp(h⊤
i hj/τ)∑

k exp(h
⊤
i hk/τ)

hj/τ +
∑
j

exp(h⊤
i hj/τ)∑

k exp(h
⊤
j hk/τ)

hj/τ.

In SimCLR, by denoting the normalized features from the online branch as uo
i , i = 1, 2, . . . , n,

the normalized features from the target branch (although the two branches have no differences in
SimCLR) are ut

i, i = 1, 2, . . . , n and V = {uo
1, u

o
2, . . . , u

o
n, u

t
1, u

t
2, . . . , u

t
n}, the SimCLR loss can

be represented as

L = − 1

2n

∑
u1∈V

log
exp(u⊤

1 u
′
1/τ)∑

u∈V/u1
exp(u⊤

1 u/τ)

where u1 and u′
1 are positive pairs and τ is the temperature. Then the gradient of L on uo

1 can be
calculated as

∂L

∂uo
1

=
1

2τn

−ut
1 +

∑
v∈V/uo

1

svv

+
1

2τn

−ut
1 +

∑
v∈V/uo

1

tvv


where

sv =
exp(uo⊤

1 v/τ)∑
v′∈V/uo

1
exp(uo⊤

1 v′/τ)

is the softmax results over similarities between uo
1 and other samples, and

tv =
exp(v⊤uo

1/τ)∑
v′∈V/v exp(v

⊤v′/τ)

is computed over similarities between sample v and its contrastive samples V/v. We can see that
the first term of ∂L/∂uo

1 comes from the part which takes uo
1 as the anchor, and the second term

comes from the part which takes the other feature as the anchor. Tao et al. (2022) proposes to stop
the second term and verifies that stopping the second gradient term will not affect the performance
empirically.

Note that the ut
1 term in the gradient is from the alignment loss. So the gradient of the uniformity

loss on uo
1 can be written as

∂Luniform

∂uo
1

=
1

2τn

 ∑
v∈V/uo

1

svv

+
1

2τn

 ∑
v∈V/uo

1

tvv

 (11)

It is noteworthy that by writing V = {h1, h2, . . . , hN}, Eq(4) shares the same form as Eq(11). By
adopting the stop-gradient method just as (Tao et al., 2022) takes, we remove the second term in
Eq(4), which is just the AD−1 term in Eq(6).

Empirically, we draw the singular value distribution of embeddings for vanilla BERT and +Contra-
Norm with only AD−1 term or D−1A term on RTE task. As shown in Fig. 4, compared with
vanilla BERT with a long-tail distribution (dimensional collapse), adding ContraNorm with D−1A
and AD−1 both reduce the number of insignificant (nearly zero) singular values and make a more
balanced distribution. The similar singular value distributions mean that they play a similar role in
alleviating dimensional collapse.
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Figure 4: Singular value distributions with ContraNorm using only AD−1 term or D−1A term.
Experiments are conducted with 12-layer BERT on RTE task.

B PROOFS FOR PROPOSITIONS IN SECTION 4.3

We give out two lemmas.

Lemma B.1. Denote e = [1, 1, . . . , 1]⊤/
√
n. For any update form X1 = PX0 and λ > 0,

if the eigenvalues of (I − ee⊤) − λP⊤(I − ee⊤)P are all not larger than zero, then we have
Var(X1) ≥ λ−1 ·Var(X0).

Proof. We denote X0X
⊤
0 = Y diag(ω1, . . . , ωn)Y

⊤ for the eigen-decomposition of X0X
⊤
0 ,

where Y = [y1,y2, . . . ,yn] is the orthogonal basis and all ωi ≥ 0. Note that (I − ee⊤)2 =
(I − ee⊤). Therefore,

Var(X0) = ∥(I − ee⊤)X0∥2F
= tr{|(I − ee⊤)X0X

⊤
0 (I − ee⊤)}

= tr{(I − ee⊤)Y diag(ω1, . . . , ωn)Y
⊤(I − ee⊤)}

= tr{diag(ω1, . . . , ωn)Y
⊤(I − ee⊤)(I − ee⊤)Y }

= tr{diag(ω1, . . . , ωn)Y
⊤(I − ee⊤)Y }

=

n∑
i=1

ωiy
⊤
i (I − ee⊤)yi

(12)

Similarly, we have

Var(X1) =

n∑
i=1

ωiy
⊤
i P (I − ee⊤)Pyi. (13)

Therefore, we have

Var(X0)− λVar(X1) =

n∑
i=1

ωiy
⊤
i {(I − ee⊤)− λP⊤(I − ee⊤)P }yi. (14)

Thus, if the eigenvalues of (I − ee⊤) − λP⊤(I − ee⊤)P := Σ are all not larger than zero, Σ is
semi-negative definite, then we have

y⊤
i {(I − ee⊤)− λP⊤(I − ee⊤)P }yi ≤ 0, (15)

which implies that Var(X0)− λVar(X1) ≤ 0. Therefore, Var(X1) ≥ λ−1 ·Var(X0).

The second lemma is from the Eq.(13) in (Fulton, 2000).
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Lemma B.2. Let A,B,C be symmetric matrices and C = A + B. Suppose the eigenvalues of A
are α1 ≥ α2 ≥ · · · ≥ αn, the eigenvalues of B are β1 ≥ β2 ≥ · · · ≥ βn, and the eigenvalues of C
are γ1 ≥ γ2 ≥ · · · ≥ γn. Then we have the inequality

max
i+j=n+k

αi + βj ≤ γk ≤ min
i+j=k+1

αi + βj . (16)

We can now start to prove Proposition 1.
Proposition 1. Let e = (1, 1, . . . , 1)⊤/

√
n. For attention matrix Ā = softmax(HbH

⊤
b ), let σmin

be the smallest eigenvalue of P = (I − ee⊤)(I − Ā) + (I − Ā)⊤(I − ee⊤). For the ContraNorm
update Ht = ((1 + s)I − sĀ)Hb, s > 0, we have V ar(Ht) ≥ (1 − sσmin)

−1 · V ar(Hb).
Especially, if σmin ≥ 0, we have V ar(Ht) ≥ V ar(Hb).

Proof. We denote Σ = (I − ee⊤)− λ((1 + s)I − sĀ)⊤(I − ee⊤)((1 + s)I − sĀ). Then,

Σ = (1− λ)I − λ(s(I − Ā)⊤(I − ee⊤)− s(I − ee⊤)(I − Ā)− s2(I − Ā)⊤(I − ee⊤)(I − Ā))

= (1− λ)I − λsP − λs2(I − Ā)⊤(I − ee⊤)(I − Ā).
(17)

Let α1 ≥ α2 ≥ · · · ≥ αn be the eigenvalues of Σ. Since I − ee⊤ has a eigenvalue of 0 and n − 1
eigenvalues of 1, I−ee⊤ is a semi-definite positive matrix. Thus, s2(I−Ā)⊤(I−ee⊤)(I−Ā) is
also a semi-definite positive matrix. Notice that the largest eigenvalue of (1−λ)I−sP is (1−λ)−
sσmin and the largest eigenvalue of −s2(I−Ā)⊤(I−ee⊤)(I−Ā) is 0. Therefore, by Lemma B.2,
the largest eigenvalue of Σ is less or equal to (1− λ)− sσmin. Let λ = 1− sσmin, then the largest
eigenvalue of Σ is less or equal to 0. By Lemma B.1, we have V ar(Ht) ≥ (1−sσmin)

−1·V ar(Hb).

Moreover, if σmin ≥ 0, then (1− sσmin)
−1 ≥ 1, leading to V ar(Ht) ≥ V ar(Hb).

Remark. Now we discuss some sufficient conditions for σmin ≥ 0. If P is a diagonally dominant
matrix, then we will have the result σmin ≥ 0. Denote aij = Āij , bij = σij − aij and Q =
(I − ee⊤)(I − Ā), where σij = 1 if i = j and σij = 0 if i ̸= j, then we have

Qij = bij −
1

n

n∑
k=1

(bkj). (18)

If we have
∑n

k=1 akj ≤ 1 + naij for any i, j, then we will have

bjj ≥
∑n

k=1 bkj
n

≥ bij , i ̸= j. (19)

Notice that
∑n

k=1 bkj = 0, we have

|Qjj | = |
∑
k ̸=j

Qkj | (20)

Since Ā is an attention matrix, we also have

|Qjj | = |
∑
k ̸=j

Qjk|. (21)

Therefore, we have
|Pjj | = 2|Qjj |

= |
∑
k ̸=j

Qkj |+ |
∑
k ̸=j

Qjk|

≥ |
∑
k ̸=j

Qkj +
∑
k ̸=j

Qjk|

≥ |
∑
k ̸=j

Pkj |,

(22)

which indicates that P is a diagonally dominated matrix, thus σmin ≥ 0. Therefore,
∑n

k=1 akj ≤
1 + naij for any i, j is just a sufficient condition. A special case for this is

∑n
k=1 akj = 1,∀k.

We now move on to the proof of Proposition 2. We first give a lemma on the property of effective
rank.
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Lemma B.3. Let the eigenvalues of AA⊤ be λ1 ≥ λ2 ≥ · · · ≥ λn and the eigenvalues of BB⊤ be
σ1 ≥ σ2 ≥ . . . σn. If σi/λi is increasing as i increases, then we have erank(B) ≥ erank(A).

This lemma can be proved just by using the definition of the effective rank.
Proposition 2. Consider the update form

Ht = (1 + s)Hb − s(HbH
⊤
b )Hb, (23)

let σmax be the largest singular value of Hb. For s > 0 satisfying 1 + (1 − σ2
max)s > 0, we have

erank(Ht) > erank(Hb).

Proof. We have
Ht = ((1 + s)Hb − sHbH

⊤
b )Hb. (24)

Therefore,

HtH
⊤
t = s2(HbH

⊤
b )3 − 2s(1 + s)(HbH

⊤
b )2 + (1 + s)2(HbH

⊤
b ) (25)

Suppose λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of HbH
⊤
b , then HtH

T
t has the same eigenvectors

as HbH
⊤
b , and its eigenvalues are (λis − (1 + s))2λi. Since s satisfies 1 + (1 − σ2

maxs) > 0, we
have 1 + s > λis. Therefore, (λis − (1 + s))2 is increasing as i increases, resulting the fact that
erank(Ht) > erank(Hb) by using Lemma B.3.

C METRICS CALCULATING FEATURE AND ATTENTION MAP COSINE
SIMILARITY

Following Wang et al. (2022), given feature map H ∈ RN×D and attention map of the h-th head
A(h) ∈ RN×N with batch size N and hidden embedding size D, the feature cosine similarity and
the attention cosine similarity is computed as

simf =
2

N(N − 1)

∑
i,j>i

hi
⊤hj

∥hi∥2∥hj∥2
, simattn =

2

N(N − 1)H

∑
i,j>i

a
(h)
i

⊤
a
(h)
j

∥a(h)
i ∥2∥a(h)

j ∥2
,

where hi denotes the i-th row of H , ai is the i-th column of A, and H is the number of attention
heads.

D APPLYING THE UNIFORMITY LOSS DIRECTLY

We conduct a comparative experiment on BERT model with straightforwardly applied uniformity
loss and our proposed ContraNorm. Specifically, we add the uniformity loss (lossuni) to the clas-
sification loss (MSELoss, CrossEntropyLoss or BCELoss depending on the task type, denoted by
losscls). Formally, the final loss is written as

losstotal = losscls + lossuni,

where lossuni =
∑N

i=1 log
∑N

j=1 exp(f(xi)
T f(xj)/τ) and N is the number of samples in the

batch. We tune τ in the range of [0.5, 0.8, 1.0, 1.2, 1.5] and choose the best one in terms of average
performance. Other hyperparameters are kept the same as settings of ContraNorm. The results are
shown in the Table.5

We can see that +ContraNorm gets the best score in 8 / 9 tasks, while +Uniformity loss reaches
the best only in 1 / 9 tasks. ContraNorm also has the highest average score among all tasks. The
reason is that updating the total loss is a combined process for objectives of correct classification
and uniform distribution. Thus, a lower losstotal may be only caused by a lower classification
loss while uniformity loss is kept the same, which cannot ensure a more uniform distribution of
representations. In contrast, ContraNorm acts directly on representations in each layer and enforces
the uniform property.

In fact, there are many methods in GNNs such as Yang et al. (2021) and Zhu et al. (2021), which
design the propagation mechanism under the guidance of the corresponding objective. The well-
designed propagation mechanism is shown to be the most fundamental part of GNNs (Zhu et al.,
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Table 5: Results comparison on validation set of GLUE tasks. Following (Devlin et al., 2018),
we report F1 scores for QQP and MRPC, Spearman correlations for STS-B, and accuracy scores
for the other tasks. Avg denotes the average performance on all the tasks. For each task, the best
performance is bolded.

Dataset COLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE Avg
BERT-base 55.28 92.89 88.96 88.24 88.61 84.65 84.61 91.51 68.59 82.59
BERT + Uniformity Loss 58.08 93.00 89.46 88.14 88.69 84.45 84.43 91.60 68.59 82.94
BERT + ContraNorm 58.83 93.12 89.49 88.30 88.66 84.87 84.66 91.78 70.76 83.39

Table 6: Results comparison on different plugging positions of ContraNorm. Experiments are eval-
uated on the validation set of GLUE tasks. Avg denotes the average performance on all the tasks.
The best result for each task is bolded.

Dataset COLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE Avg
BERT-base 55.28 92.89 88.96 88.24 88.61 84.65 84.61 91.51 68.59 82.59
before-residual 59.57 93.12 89.97 88.30 88.93 84.84 84.67 91.58 68.95 83.33
after-residual 58.83 93.12 89.49 88.30 88.66 84.87 84.66 91.78 70.76 83.39

2021). Instead of directly using the loss function, these methods transfer the loss function into a
specific propagation method and achieve superior performance, which indicates that changing the
network may be more effective than directly adding the objective to the loss function.

E CHOICES OF CONTRANORM PLUGGING POSITION

We explore two ways to integrate ContraNorm into BERT and ALBERT. Concretely, consider the
update of H(l) in l-th block of Transformers

H(l) = MultiHeadAttention(H(l)), (26)

H(l) = H(l) +X, (27)

H(l) = LayerNorm(H(l)), (28)

where X = Hb is the input tensor.

We choose positions 1) between Eq.(26) and Eq.(27), named as before-residual; 2) between Eq.(27)
and Eq.(28), named as after-residual. The performance comparison between the two positions on
GLUE datasets is shown in Table. (6). It is observed that putting ContraNorm after the residual
connection slightly outperforms that before residual. Therefore, we choose the after-residual variant
as our basic ContraNorm.

F TIME COMPLEXITY ANALYSIS AND A MODIFIED CONTRANORM

The most time-consuming operation of ContraNorm is the matrix multiplication. Given H ∈ Rn×d,
where n and d denote the number of samples in a batch and feature size respectively, the time
complexity of ContraNorm is O(n2d), which is the same order as the self-attention operation in
Transformer. Empirically, we report the training time of BERT with or without ContraNorm on
GLUE tasks in Table 7. All experiments are conducted on a single NVIDIA GeForce RTX 3090.
On average, we raise the performance of BERT on GLUE tasks from 82.59% to 83.54% (see Table
1) with less than 4 minutes overhead. We think the time overhead is acceptable considering the
benefits it brings.

Moreover, to enhance scalability we propose a modified version of ContraNorm inspired by Ali et al.
(2021). As already alluded to, ContraNorm resolves dimensional collapse by pushing samples away
from each other with the uniformity loss as the energy function. A different choice of the underlying
function generates a new form of normalization layer. Here, to maintain the same goal of settling
dimensional collapse, we choose another contrastive loss named Barlow Twins (Zbontar et al., 2021)

LBT =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (29)
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Table 7: Estimated training time of BERT with or without ContraNorm on GLUE tasks. All experi-
ments are conducted on a single NVIDIA GeForce RTX 3090. s is the abbreviation for second. Avg
denotes the average training time across all the tasks.

Dataset COLA SST-2 MRPC QQP STS-B MNLI-m (/mm) QNLI RTE Avg
BERT 110s 851s 74s 6458s 110s 8186s 2402s 74s 2283s
+ContraNorm 125s 983s 80s 7150s 122s 8941s 2594s 80s 2509s

with Cij =
∑

b f(x
A
b,i)f(x

B
b,j)/

√∑
b(f(x

A
b,i))

2
√∑

b(f(x
B
b,j))

2, where λ is a trading-off constant,

b is the batch index, i, j index the vector dimension, and xA,xB denotes different augmented views
of x. Dislike the sample-wise loss InfoNCE, Barlow Twins decorrelates the dimensions and can be
seen as contrastive between the dimensions of the embeddings (Garrido et al., 2022). Despite seem-
ing different, recent works empirically show strong similarities between the two loss functions, and
theoretically prove the equivalence between them under limited assumptions (Garrido et al., 2022;
Tao et al., 2022; Balestriero & LeCun, 2022; Huang et al., 2021). Therefore, the layer generated by
unfolding iterations of Barlow Twins is believed to work equally well as ContraNorm. Specifically,
we reorder the matrix multiplication from HHT ∈ Rn×n to HTH ∈ Rd×d to enforce the channels
of embeddings different from each other. Then the modified version of ContraNorm becomes

ContraNorm-v2(H) = LayerNorm(H− s/τ ×H× softmax(HTH)). (30)

The transposed alternative has a linear complexity in the number of samples, i.e. O(nd2). In the
case of n ≫ d, the modified version greatly alleviates the computation burden.

To verify whether it performs equally well as ContraNorm, we conduct experiments on the validation
set of GLUE tasks. The learning rate of BERT with ContraNorm-v2 is set to 4e − 5 and other
experiment setups are the same in Section 4.1. As shown from Table 8, for each task the performance
of BERT with ContraNorm-v2 surpasses the vanilla BERT, and the average performance is raised
from 82.59% to 84.21%. The results imply effectiveness of this modified version of ContraNorm,
which can also be explained with the relationship between Gram matrix (G = HHT ∈ Rn×n ) and
covariance matrix ( C = HTH ∈ Rd×d) (Ali et al., 2021).

Table 8: Results comparison of BERT with or without ContraNorm-v2 on validation set of GLUE
tasks. Following Devlin et al. (2018), we report F1 scores for QQP and MRPC, Spearman correla-
tions for STS-B, and accuracy scores for the other tasks. Avg denotes the average performance on
all the tasks and bold denotes the best performance.

Dataset COLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE Avg
BERT 55.28 92.89 88.96 88.24 88.61 84.65 84.61 91.51 68.59 82.59
+ ContraNorm-v2 62.08 93.69 91.78 88.36 89.59 85.24 85.19 91.95 70.04 84.21

G RESULTS ON TEST SET OF GLUE DATASETS

We submit our trained model to GLUE benchmark leaderboard and the resultant feedback of perfor-
mance is shown in Table (9).

Table 9: Results comparison on test set of GLUE tasks. Avg denotes the average performance on all
the tasks.

Dataset COLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE Avg
BERT-base 53.3 92.8 86.8 71.2 82.8 84.4 83.2 90.9 66.3 79.1
BERT + ContraNorm 54.5 93.0 87.9 71.4 83.0 84.5 83.4 91.0 66.9 79.5
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H INTRODUCTION OF GRAPH DATASETS

Citation Network. Cora, CiteSeer are three popular citation graph datasets. In these graphs, nodes
represent papers and edges correspond to the citation relationship between two papers. Nodes are
classified according to academic topics.

Wikipedia Network. Chameleon and Squirrel are Wikipedia page networks on specific topics,
where nodes represent web pages and edges are the mutual links between them. Node features are
the bag-of-words representation of informative nouns. The nodes are classified into four categories
according to the number of the average monthly traffic of the page.

Statics of datasets are shown in Table. (10).

Table 10: Graph datasets statics.

Category Dataset # Nodes # Edges # Features Degree # Classes

Citation Cora 2708 5278 1433 4.90 7
CiteSeer 3327 4552 3703 3.77 6

Wikipedia Chameleon 2277 36101 500 5.0 6
Squirrel 5201 217073 2089 154.0 4

I ABLATION STUDY FULL RESULTS

We conduct experiments using BERT+ContraNorm with varying scaling factor s on GLUE datasets.
For each dataset, we vary the normalization scale around the best choice, and other parameters
remain consistent. As shown in Fig.(5), the results illustrate that model with ContraNorm is robust
in an appropriate range of normalization scaling factor.
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Figure 5: Performance when varying scale factor s on GLUE datasets. We choose BERT as the base
model. The varying range is an interval containing the best choice of s. Here, we fix it to [0.005, 0.1]
for all tasks.
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