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ABSTRACT

Image Manipulation Localization (IML) aims to identify and localize the tam-
pered regions within edited images. Many studies employ a dual-branch backbone
to extract tampering features from dual modalities, followed by feature fusion at
the final stage. In this process, the extraction and fusion of dual-modality fea-
tures is relatively independent, which fails to fully leverage the complementarity
between different modalities and thus diminishes sensitivity to tampering arti-
facts. Inspired by the way humans continuously integrate multi-faceted knowl-
edge to understand the world, we propose QMA-Net, which contains a novel
Multi-stage Alternating Feature Extraction and Interaction architecture. At each
stage, we deeply explore the intrinsic relationships and mappings between dif-
ferent modality features. Feature extraction and interaction are performed alter-
nately, constructing complementary dual-modality tampering feature representa-
tions and enhancing sensitivity to tampering artifacts. Additionally, we introduce
a lightweight, Query-driven Multi-level Feature Decoding. This mechanism pro-
gressively aggregates key information from multi-level dual-modality tampering
features through multiple sets of learnable tamper-aware queries, effectively fil-
tering out irrelevant features. Finally, multi-level queries are used to refine dis-
criminative features, enabling precise localization of tampered regions. Extensive
experiments demonstrate that our framework outperforms current state-of-the-art
models in localization accuracy and robustness across multiple public datasets,
achieving a favorable balance between performance and efficiency.

1 INTRODUCTION

The widespread use of digital image tampering techniques poses a severe challenge to societal trust
systems. Tampered images are often used to create fake news, forge evidence, or commit fraud,
posing serious threats to personal privacy, social order, and even national security. IML has become
a critical technological barrier for maintaining information authenticity.

Most existing IML frameworks (Zhu et al., 2025)(Zeng et al., 2024)(Guo et al., 2024)(Lin et al.,
2023) typically adopt a dual-branch structure, where one branch extracts features from the RGB
modality, and the other extracts features from noise or high-frequency modality, working together
to locate tampered regions. These frameworks often follow the classical paradigm of “extraction
→ simple fusion”. This paradigm suffers from severe modality isolation and information fragmen-
tation, which results in a lack or insufficiency of interaction among features at early and interme-
diate levels. For example, the RGB modality focuses on semantic boundaries but cannot perceive
local statistical anomalies present in the noise modality; conversely, the noise modality is sensi-
tive to compression artifacts but lacks high-level semantic guidance, often misclassifying highly
textured regions (e.g., leaves) as tampered. Therefore, we hope to design a comprehensive bidi-
rectional inter-modal interaction mechanism to construct complementary dual-modality tampering
feature representations, thereby enhancing the sensitivity of dual-modality features to tampering ar-
tifacts. Through experiments, we visualize the features output by the backbone under both classical
paradigms (Columns 5 and 6) and our methods (Columns 3 and 4) in Fig 1. It can be observed that
dual-modality features under our methods exhibit higher sensitivity to tampered regions.
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Manipulated Image GroundTruth Ours_HF Ours_RGB Classical_HF Classical_RGB

Figure 1: Ours vs. Classical. Grad-CAM visualizations of backbone output features under different
paradigms. The redder the color of the region, the greater its contribution to the model’s prediction
results. ”HF” denotes the high-frequency noise modality.

Current multi-level feature decoding methods often employ upsampling combined with convolution
or MLP (Zhuang et al., 2021)(Ma et al., 2023), which indiscriminately aggregate a large amount
of irrelevant background information and noise, severely overwhelming subtle tampering features.
Moreover, fixed or simple decoding strategies struggle to adaptively balance the contributions of
features from different levels and modalities, preventing effective collaboration between shallow
fine-grained textures and deep semantic context, and thus degrading localization accuracy. In addi-
tion, computationally intensive decoding hinders their deployment in resource-constrained scenar-
ios. Therefore, we decide to design the decoding mechanism of our framework to be lightweight
and capable of effectively screening and aggregating critical information from multi-level features.

Recent studies have introduced multimodal large models into the task of IML Yin et al.
(2024)(Zhang et al., 2024)(Su et al., 2024)(Kwon et al., 2025), using them as a backbone to ex-
tract general features. While this approach enables the extraction of more comprehensive tampering
features, it also introduces a large amount of irrelevant information (Zhang et al., 2025a). Without
sufficient feature selection, this can easily lead to counterproductive results. Moreover, multimodal
large models have more critical limitations, including the need for substantial computational re-
sources and slower inference speed, making deployment on mobile devices challenging. Our model
aims to incorporate as few additional parameters as possible based on a relatively lightweight back-
bone, achieving a favorable balance between performance and efficiency.

Motivated by the above observations, we propose QMA-Net, which contains a Multi-stage Alter-
nating Feature Extraction and Interaction architecture and a lightweight, Query-driven Multi-level
Feature Decoding. The former is inspired by the human cognitive process of repeatedly examining
complex objects from multiple perspectives to gain a deep understanding. At each stage, feature
extraction and deep interaction are not isolated but performed alternately and mutually reinforced.
Through specially designed cross-modal Feature Alignment and Dual-modal Feature Cross-guided
Module, the network bidirectionally and deeply explores previously underutilized intrinsic rela-
tionships and mappings between RGB and noise modality features at every stage. This process
essentially enables both modalities to perform bidirectional retrieval and attention across multiple
levels, perceiving important relevant points within each modality while suppressing irrelevant noise.
To allow such interaction to propagate across levels, the interacted features are fed back into the
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backbone to extract the next-level features. In this way, we successfully construct complementary
dual-modality tampering feature representations, significantly enhancing sensitivity to tampering
artifacts. Furthermore, we innovatively introduce a lightweight decoding mechanism. By incorpo-
rating multiple sets of learnable, dedicated tamper-aware query vectors, these queries act as “fusion
controller” for each feature level. At each stage, through a carefully designed Multi-domain Feature
Aggregation Module, the queries progressively and selectively extract and condense the most criti-
cal information from dual-modality features while filtering out irrelevant interference. This process
effectively simulates a coarse-to-fine, stepwise focusing decision procedure: shallow-level queries
target potential anomalous regions, whereas deep-level queries associate global context to verify
and refine localization results. Finally, the multi-level dual-modality features and their correspond-
ing queries are fed into a Query-driven Multi-level Feature Decoder to localize the tampered regions.
Such a dynamic, decision-level fusion strategy substantially improves localization accuracy.

In summary, our main contributions are as follows:

• We introduce a novel framework, QMA-Net, which contains a Multi-stage Alternating
Feature Extraction and Interaction architecture. Feature extraction and interaction are
performed alternately. At each stage, cross-modal Feature Alignment and Dual-modal
Feature Cross-guided Module are employed to deeply explore intrinsic relationships and
mappings between different modality features. This approach constructs complementary
dual-modality tampering feature representations and significantly enhances sensitivity to
tampering artifacts.

• We propose a lightweight, Query-driven Multi-level Feature Decoding. We introduce mul-
tiple sets of learnable tamper-aware queries, which progressively aggregate key information
from dual-modality tampering features at each stage through a Multi-domain Feature Ag-
gregation Module, while filtering out irrelevant features. In the Query-driven Multi-level
Feature Decoder, these queries act as “fusion controllers”, performing decision-level selec-
tion and fusion of dual-modality features at each level, substantially improving localization
accuracy.

• Extensive experiments demonstrate that our framework outperforms existing state-of-the-
art models in both localization accuracy and robustness across multiple public datasets.
Moreover, our framework has a relatively small number of parameters and low computa-
tional requirements, making it more suitable for practical applications.

2 RELATED WORKS

2.1 IMAGE MANIPULATION LOCALIZATION

Traditional IML methods mainly rely on hand-crafted extractors (Ferrara et al., 2012)(Ye et al.,
2007)(Tralic et al., 2012)(Kong et al., 2025) to capture anomalies caused by tampering operations.
For example, Pasquale et al. utilize CFA (Ferrara et al., 2012) pattern inconsistencies to detect forged
regions. However, they rely on the assumption that specific tampering operations always leave par-
ticular traces. When this assumption is not valid, their performance deteriorates significantly. With
the development of computational power, deep learning has achieved remarkable progress in the field
of IML (Cozzolino & Verdoliva, 2020)(Bappy et al., 2019)(Hao et al., 2021)(Hu et al., 2020). Wu
et al. propose ManTra-Net(Wu et al., 2019), which formulates IML as an anomaly detection prob-
lem by modeling 385 manipulation types with Z-score and auxiliary features. Liu et al. introduce
PSCC-Net(Liu et al., 2022), which leverages HRNet(Wang et al., 2021) to learn multi-scale fea-
tures and employs SCCM to capture spatial–channel correlations for progressive mask generation.
ObjectFormer (Wang et al., 2022) employs CNN layers to extract local features and then leverages
transformer encoders for global modeling. However, they still exhibit limitations in generalization
capability and robustness. In the latest studies, researchers have begun exploring multimodal large
models (MLM) in IML to improve generalization and interpretability. For instance, FakeShield
(Xu et al., 2025) utilizes MLM by integrating visual features with linguistic instructions, enabling
instruction-driven forgery localization and interpretable outputs. IMDPrompter (Zhang et al., 2025b)
leverages a Cross-view Prompt Learning paradigm built upon SAM(Kirillov et al., 2023) to achieve
robust localization. Nevertheless, these approaches often come with higher computational demands,
slower inference speed, and introduce irrelevant features.
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2.2 CLASSICAL PARADIGM OF FEATURE EXTRACTION AND FUSION IN IML

The dual-branch architecture that separately extracts RGB features and high-frequency modality fea-
tures has become a classic paradigm for IML. This paradigm typically adopts a sequential feature
extraction and simple fusion strategy. For example, MVSS-Net (Dong et al., 2023) performs feature
extraction and fusion in an independent manner, where only the deepest features from ResNet (He
et al., 2016) are used for fusion, while shallow features are largely ignored. Such a design limits
the model’s ability to capture fine-grained cues and hinders comprehensive representation learning.
(Mazumdar & Bora, 2022) propose the two-stream encoder–decoder network, where two branches
independently perform encoding and decoding without cross-branch interaction, thus limiting com-
plementary feature learning. (Niu et al., 2024) propose an end-to-end IML network that fuses RGB
and noise features at each level using FAM, but without feeding the fused features back to the
backbone, which restricts the transmission of fusion information across levels. In summary, such
approaches lead to suboptimal representation learning.

2.3 QUERY-BASED FEATURE AGGREGATION

Query-based architectures have recently emerged as a powerful paradigm for feature selection in
computer vision. The fundamental principle lies in introducing learnable queries that interact with
image features through attention mechanisms, thereby steering the network toward task-relevant re-
gions. For example, Mask2Former (Cheng et al., 2022) employs masked cross-attention to refine
queries, restricting attention to predicted mask regions and thereby improving segmentation preci-
sion. ECENet (Liu et al., 2023) further generates object queries directly from predicted masks, en-
suring that each query is semantically explicit and corresponds to a distinct object region. In SAM
(Kirillov et al., 2023), output tokens serve as queries that guide image embeddings and prompt
embeddings for segmentation. These methods demonstrate the outstanding potential of learnable
queries in feature selection and aggregation.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK OF QMA-NET

We propose an IML framework, QMA-Net (as shown in Fig 2), which emulates human learning
mechanisms to acquire feature representations sensitive to tampering artifacts. It is primarily com-
posed of two key components: a Multi-stage Alternating Feature Extraction and Interaction, and
a Query-driven Multi-level Feature Decoding. The former employs both the RGB view Ximg and
a high-frequency noise view Xnoise processed by a Multi-domain Noise-sensitive Fusion Module
(MNFM) as inputs. The interrelationships between diverse modal features are extensively explored
at each stage via a cross-modal Feature Alignment and Dual-modal Feature Cross-guided Module
(DFCM). The enhanced features are subsequently fed into the corresponding backbone for next-
level feature extraction. This process facilitates the construction of complementary dual-modal fea-
ture representations {R1 ∼ R4,N1 ∼ N4}, thereby improving sensitivity to tampering artifacts. The
latter employs a set of learnable tamper-aware queries Qtaq as input. At each stage, key information
from dual-modal tampering features is progressively integrated through a Multi-domain Feature Ag-
gregation Module (MFAM), while irrelevant features are filtered out, resulting in multi-level query
embeddings {Q1∼Q4}. Finally, the dual-modal features and their corresponding query embeddings
at each level form a triplet, which is fed into the Query-driven Multi-level Feature Decoder (QMFD)
for decoding, enabling precise localization of tampered regions.

3.2 MULTI-STAGE ALTERNATING FEATURE EXTRACTION AND INTERACTION

Previous methods (Zeng et al., 2024)(Guo et al., 2024) employ a simple approach for feature
extraction and fusion. These methods fail to achieve sufficient feature interaction and do not
effectively leverage the complementarity between dual-modal features. Accordingly, we pro-
pose a Multi-stage Alternating Feature Extraction and Interaction. It follows a continuously
“extract→interact→extract→interact” paradigm, where feature extraction and interaction are per-
formed alternately. SegFormer (Xie et al., 2021) is selected to serve as both the Global and Local
Artifact Extractors (GAE and LAE) in the network, and the architecture is manually divided into
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Figure 2: The pipeline of QMA-Net. Given an RGB view Ximg and a high-frequency noise view
Xnoise, they are first processed by the Multi-stage Alternating Feature Extraction and Interaction
architecture to generate multi-level complementary feature representations {R1 ∼ R4,N1 ∼ N4}.
Subsequently, a set of learnable tamper-aware queries Qtaq progressively aggregates cross-modal
information through the MFAM. Finally, the tampering features and query embeddings from all lev-
els are fed into the QMFD to localize tampered regions Mloc.

four blocks based on its structural design. The overall network utilizes both the RGB modality
Ximg∈R3×H×W and the high-frequency noise modality Xnoise∈R3×H×W processed by the MNFM as
input. The MNFM comprises SRM (Zhou et al., 2018), BayarConv (Bayar & Stamm, 2018), and
NoisePrint++ (Guillaro et al., 2023), along with a fusion convolution, to aggregate features including
local statistical anomalies, pixel-wise anomaly correlations, and device source noise.

Subsequently, the details of the Multi-stage Alternating Feature Extraction and Interaction are elab-
orated. At each stage, the dual-modal features (Ri,Ni, i = 0,1,2,3) from the previous level (where
the initial input is regarded as level 0) are fed into the feature extraction blocks of the corresponding
backbone networks, producing initial features for the next level (Rinit

i+1,N
init
i+1):

Rinit
i+1 = GAEi+1(Ri) Ninit

i+1 = LAEi+1(Ni) (1)

The Rinit
i+1 are aligned with the noise modality. Both sets of features are then fed into the DFCM for

deep interaction (as illustrated in Fig 2):

(Ri+1,Ni+1) = DFCMi+1(δ (Rinit
i+1),N

init
i+1) (2)

Where δ represents cross-modal Feature Alignment. The overall structure of the DFCM is symmet-
rically designed. First, the dual-modal features undergo lightweight channel attention for feature
recalibration Γ. Channel-wise aggregation of the features is performed via adaptive average pooling,
followed by the acquisition of channel weights through a projection head. The input features are then
multiplied by these channel weights to obtain the recalibrated feature representation (Rmid

i+1,N
mid
i+1 ):

Rmid
i+1 = Γ

R
i+1(δ (R

init
i+1) Nmid

i+1 = Γ
N
i+1(N

init
i+1) (3)

Subsequently, cross-attention is performed between the two modal features. Each modality serves
as the query Q while the other provides the key-value pair (K,V ), enabling bidirectional retrieval
of intrinsic relationships and valuable information from the modalities. This mechanism enhances
both the complementarity of the dual-modal features and their sensitivity to tampering artifacts. In
contrast to classical cross-attention approaches, Group Convolution Modules (GCM) (Krizhevsky
et al., 2012) are utilized as the transformation matrices for Q, K, and V , instead of applying simple
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linear transformations to the features prior to performing attention. This design not only reduces
parameter and computational costs but also enables the capture of diverse feature patterns, similar to
multi-head attention. It provides a unified representation space for features originating from different
modalities, allowing cross-attention to compute inter-feature correlations more effectively. Finally,
the output is generated by combining the result of the cross-attention with a residual connection of
the original features, ensuring that the original information remains preserved:

Ri+1 = Rinit
i+1 +AttnN←R(G(Rmid

i+1),G(Nmid
i+1 ),G(Nmid

i+1 ))

Ni+1 = Ninit
i+1 +AttnR←N(G(Nmid

i+1 ),G(Rmid
i+1),G(Rmid

i+1))
(4)

After being aligned back to the original feature space, the RGB modality features, together with the
noise modality features, are returned to the corresponding backbone for the extraction of features at
the next level.

3.3 QUERY-DRIVEN MULTI-LEVEL FEATURE DECODING MECHANISM

Existing approaches typically integrate upsampling with convolution or MLP. However, this strat-
egy fails to pre-screen features, indiscriminately introducing substantial irrelevant background in-
formation and noise into the decoder. Consequently, subtle tampering features are severely over-
whelmed. Inspired by the mechanism of the SAM Mask Decoder (Kirillov et al., 2023), we propose
a lightweight, Query-driven Multi-level Feature Decoding. Specifically, a set of learnable tamper-
aware queries Qtaq∈RN×dim is initialized at the beginning of the framework. These queries are
subsequently utilized to generate corresponding query embeddings for each level of features. At
each stage, the queries, together with the enhanced dual-modal features, are fed into the MFAM to
be updated and generate the corresponding query embeddings Qi, i = 1,2,3,4:

Qi = MFAM(Qinit
i ,Ri,Ni) (5)

Where Qinit
i represents the initial state of the i-th level queries. The MFAM consists of three trans-

former blocks (Vaswani et al., 2017) (as shown in Fig. 2). The first two perform cross-attention, en-
abling the queries to establish richer and more robust cross-modal representations from both modal-
ities while filtering out irrelevant features. The third block employs multi-head self-attention to
further refine and integrate the information it has learned, thereby producing a final representation
that is more semantically coherent and contextually enriched. Subsequently, the query embeddings
Qi are passed through an MLP layer to generate the queries Qinit

i+1 for the next level, repeating the
aforementioned process. The query embeddings at each level accumulate aggregated information
from all preceding stages. This process is formulated as follows:

Qi = TransR←Q(Qinit
i ,Ri,Ni)

Qi = TransN←Q(Qi,Ni,Qi)

Qi = TransQ←Q(Qi,Qi,Qi)

Qinit
i+1 = MLP(Qi)

(6)

Then, the dual-modal features and their corresponding query embeddings from all levels are grouped
into four triplets (Qi,Ri,Ni) and fed into the QMFD. Its internal architecture is illustrated in the
appendix. Within the decoder, the RGB modality features and noise modality features from the
same level are fed into a Dilated Convolution Module (DCM) Wang et al. (2018), leveraging its large
receptive field to achieve preliminary fusion. The fused features {F f in

1 ∼ F f in
4 } are then multiplied

with the corresponding query embeddings via matrix multiplication. This step is designed to perform
feature selection. Finally, the features from all levels are upsampled to a common resolution and fed
into the prediction head to output the final localization mask Mloc∈R1×H×W :

Mloc = PredictHead(ConCat(Qi⊗F f in
i , i = 1,2,3,4)) (7)

3.4 LOSS FUNCTION DESIGN

To enable the network to focus more on the edges of tampered areas, the RGB modality features
output at each stage are fed into an Edge Supervision Module to predict the boundaries of tampered
regions, thereby constructing an edge loss Lossedg. The predicted mask output from the decoder is

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

used to construct the segmentation loss Lossseg. Considering the extreme imbalance between tam-
pered and authentic pixels, Dice Loss (Milletari et al., 2016) is employed to compute both Lossedg
and Lossseg. The total loss Losstotal of the model is formulated as follows, where, based on empirical
practice, α is set to 0.2 and β to 0.8.

Losstotal = αL̇ossseg +β L̇ossedg (8)

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training Dataset and Implementation Details Our model is trained on the standardized
Protocol-CAT dataset (Kwon et al., 2021), which consists of CASIAv2 (Dong et al., 2013),
IMD2020 (Novozamsky et al., 2020), FantasticReality (Kniaz et al., 2019), and TampCOCO Kwon
et al. (2022), totaling 825,997 images. These images cover multiple tampering types, such as splic-
ing, copy-move, and removal. Each image is resized to 512× 512 for training input. The model
is trained for 150 epochs with a batch size of 32. We adopt a cosine decay learning rate schedule,
initialized at 1e-4 and gradually reduced to a minimum of 5e-7. The AdamW optimizer is em-
ployed with a weight decay of 0.05 to mitigate overfitting. All models are trained and evaluated on
IMDLBenco (Ma et al., 2024).

Test Dataset and Evaluation Metric The evaluation of our model is conducted on a series of
public benchmarks, encompassing four widely adopted datasets: CASIAv1 (Dong et al., 2013),
Coverage (Wen et al., 2016), NIST16 (Guan et al., 2019), Columbia (Hsu & Chang, 2006). These
collections comprise images that exhibit a wide range of resolutions and incorporate diverse tamper-
ing strategies. To quantitatively assess the model’s performance in IML, we employ the pixel-level
F1 and AUC score as the primary evaluation metrics.

Table 1: Comparison of Pixel-level F1 and AUC across four datasets. Best results are bold, second-
best are underlined.

Method Pixel-level F1 Pixel-level AUC

CAS COl COV NIST AVG CAS COl COV NIST AVG

ManTra-Net 0.327 0.462 0.196 0.193 0.295 0.643 0.724 0.566 0.709 0.661
PSCC-Net 0.578 0.822 0.341 0.416 0.539 0.918 0.919 0.872 0.810 0.880
MVSS-Net 0.583 0.723 0.470 0.320 0.524 0.904 0.911 0.868 0.777 0.865
CAT-Net 0.778 0.923 0.485 0.450 0.659 0.965 0.962 0.907 0.867 0.925
TruFor 0.700 0.903 0.379 0.426 0.602 0.951 0.936 0.887 0.863 0.909
IML-ViT 0.751 0.927 0.546 0.140 0.591 0.961 0.941 0.921 0.812 0.909
SAM 0.627 0.817 0.401 0.509 0.589 0.945 0.973 0.886 0.876 0.920
Mesorch 0.826 0.905 0.526 0.412 0.667 0.979 0.924 0.917 0.891 0.928
QMA-Net(Ours) 0.873 0.939 0.659 0.480 0.738 0.985 0.943 0.931 0.860 0.930

4.2 PERFORMANCE COMPARISON WITH STATE-OF-THE-ART

We adopt ManTra-Net (Wu et al., 2019), PSCC-Net (Liu et al., 2022), CAT-NetKwon et al. (2022),
MVSS-Net (Dong et al., 2023), TruFor (Guillaro et al., 2023), IML-ViT (Ma et al., 2023), SAM, and
Mesorch (Zhu et al., 2025) as baseline methods for comparison. For fairness, all baseline models are
retrained on the Protocol-CAT dataset. The corresponding experimental results are reported in Table
1. As shown in the table, QMA-Net consistently surpasses the existing state-of-the-art methods in
IML across the four benchmark datasets. In addition, Fig. 3 illustrates a qualitative comparison of
the predicted results from our model and the competing approaches. It can be clearly observed that
our framework delineates the boundaries of manipulated regions more accurately, leading to fewer
false alarms and higher precision. This fact demonstrates that our framework successfully con-
structs complementary dual-modal representations sensitive to tampering and accurately localizes
the tampered regions.
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Figure 3: IML results on multiple datasets. The leftmost two columns are the manipulated image
and groundtruth, followed by the prediction results of different models.

Manipulated Image GroundTruth QMA-Net(ours) MVSS-Net PSCC-Net CAT-Net Trufor Mesorch IML-VIT

Figure 4: Robustness test results. The x-axis represents the attack intensity, while the y-axis denotes
the pixel-level F1 score on the corresponding test datasets.
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4.3 ROBUSTNESS STUDY

To assess the robustness of the model against different attack scenarios, we apply degradation oper-
ations—including Gaussian noise, Gaussian blur, and JPEG compression—to the tampered images.
The corresponding results are depicted in Fig. 4. Our framework consistently surpasses other SoTA
approaches on the CASIA, Coverage, and NIST16 datasets across all attack types. For the Columbia,
our method achieves superior performance under Gaussian blur and is only marginally outperformed
by CAT-Net under the other two degradations. These findings collectively demonstrate the strong
robustness of our model.

4.4 ABLATION STUDY

Table 2: Ablation Study Results. We conduct five additional sets of experiments to validate the
effectiveness of the proposed components.

Method Setting Pixel-level F1 Score

CAS COL COV NIST AVG

Ours w/ CP w/o DFCM 0.850 0.943 0.579 0.456 0.707
Ours w/ SL Only (Q4,R4,N4) 0.849 0.943 0.604 0.416 0.703
Ours w/ SS Only Stage#4 0.850 0.919 0.592 0.444 0.701
Ours w/ CD Conv Decoder 0.857 0.946 0.582 0.438 0.706
Ours w/ MLP MLP Decoder 0.859 0.936 0.601 0.445 0.710
QMA-Net Ours 0.873 0.939 0.659 0.480 0.738

Ablation study on Multi-stage Alternating Feature Extraction and Interaction We validate the
effectiveness of the proposed Multi-stage Alternating Feature Extraction and Interaction paradigm
from two perspectives. On one hand, we remove DFCM at each stage; on the other hand, we only
retain the fourth stage. The results are listed in Settings 1 and 3 of Table 2. respectively. Our
model demonstrates an average performance improvement of 4.2% and 4.7% compared to these two
scenarios, respectively. This fact indicates that our method effectively constructs complementary
bimodal tampering representations, enhances sensitivity to tampering artifacts, and suppresses intra-
modal noise.

Ablation study on Query-driven Multi-level Feature Decoding We replace the Query-driven
Multi-level Feature Decoding with upsampling followed by convolutional or MLP decoders. The
results are shown in Settings 4 and 5 in Table 2. Our model shows improvements of 4.5% and
3.9% compared to these two scenarios, respectively. Furthermore, compared to using single-level
features (setting 2), our model achieves a 5.0% performance improvement. These findings indicate
the necessity of each level of features and that our method achieves effective feature selection and
aggregation.

5 CONCLUSION

In this work, we propose a novel IML network, QMA-Net, which consists of a Multi-stage Alter-
nating Feature Extraction and Interaction architecture and a lightweight, Query-driven Multi-level
Feature Decoding. The former simulates the cognitive processes of the human brain, construct-
ing complementary tampering feature representations through cross-modal Feature Alignment and
DFCM at each stage, thereby enhancing sensitivity to tampering artifacts. Moreover, the latter
employs learnable tamper-aware queries to progressively aggregate crucial information from multi-
level features through MFAM at each stage. In QMFD, these query embeddings perform selective
refinement and aggregation of multi-level features to accurately predict tampered regions. Extensive
experiments demonstrate that our framework outperforms current SoTA models in localization accu-
racy and robustness across multiple public datasets. Simultaneously, our model exhibits a reduction
in both parameter count and FLOPs.
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A APPENDIX

A.1 DETAILED INFORMATION ABOUT THE DATASETS USED IN THIS PAPER

We trained our model using the protocol-CAT dataset, which was first introduced and utilized by
CAT-Net. It consists of four datasets: CASIAv2, IMD2020, TampCOCO and Fantastic Reality. CA-
SIA2.0 provides high-quality copy-move and spliced tampered images. IMD2020 includes complex
real-world edits (such as splicing and local modifications) with non-fixed resolutions. Fantastic Re-
ality is a multi-task annotation dataset that integrates tamper localization and semantic segmentation,
providing pixel-level tamper region masks, instance segmentation, and category labels. TampCOCO
is constructed based on the COCO 2017 dataset and includes two parts: copy-move and splicing.
All images undergo JPEG compression while retaining clear boundaries to support model learning
of low-level tampering traces. The information of all training sets is listed in Table 3. These training
sets contain rich semantic details and noise patterns, making them more aligned with real-world ap-
plication scenarios. By training on these datasets, we can learn more comprehensive and hierarchical
features of tampering, effectively enhancing both robustness and generalization capabilities.

We select six public benchmark datasets as our test data, namely CAISAv1, Columbia, Cover-
age, NIST16, COCOGlide, and AutoSplice. CASIAv1 primarily provides high-quality spliced im-
age. The Columbia dataset focuses on uncompressed spliced image and features high-resolution.
The Coverage dataset addresses copy-move forgeries, typically by copying and pasting one item
from a group of similar objects within an image.The NIST16 comprises three forgery types: splic-
ing, removal, and copy-move operations, and maintains high image resolution throughout. The
COCOGlide focuses on generative image forgery research by combining the GLIDE diffusion model
with semantic prompts to create tampered content, simulating semantic-level local manipulations.
The AutoSplice represents a text-prompt manipulated image collection where all images undergo
JPEG compression processing. The information of all test sets is listed in Table 4. These datasets
encompass diverse manipulation types, exhibit wide resolution ranges, and contain varied forgery
region sizes, collectively enabling comprehensive evaluation of model performance across multiple
dimensions.

Table 3: Detailed information of the protocol-CAT training set, where ”N/K” indicates that the
quantity of this type is unknown.

Dataset
Manipulation type

Number
Resolution

cope-move splice remove min max
CASIAv2 3274 1849 0 5123 320×240 800×600
IMD2020 N/K N/K N/K 2010 260×193 2958×4437
TampCOCO 600000 200000 0 800000 72×51 640×640
Fantastic Reality N/K N/K N/K 19423 500×333 6000×4000
Total N/K N/K N/K 826556 72×51 6000×4000

A.2 THE DETAILS OF QMFD

The internal architecture of QMFD is illustrated in Fig. 5. The QMFD comprises four branches, each
dedicated to processing dual-modal features at four distinct levels. Given a ternary tuple (Qi,Ri,Ni)
at one level, the dual-modal features are fused through the DCM to produce the fused features
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Table 4: Detailed information of the six public benchmark datasets, where ”N/K” indicates that the
quantity of this type is unknown.

Dataset
Manipulation type

Number
Resolution

cope-move splice remove AI-Gen min max
CASIAv1 459 461 0 0 920 384×256 384×256
Columbia 0 180 0 0 180 757×568 1152×768
Coverage 100 0 0 0 100 334×190 752×472
NIST16 236 225 103 0 564 500×500 5616×3744
COCOGlide 0 0 0 512 512 256×256 256×256
AutoSplice 0 0 0 3621 3621 256×256 4232×4232
Total 795 866 103 4133 5897 334×190 5616×3744
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Segm
entation H

ead

Figure 5: The pipeline of QMFD. A DCM and multi-level query embeddings are leveraged to pre-
screen features, followed by concatenation of features from all levels into the prediction head for
precise localization of tampered regions.

F f in
i . The query Qi then performs pixel-wise feature weighting and reconstruction across the F f in

i .
Specifically, each query shares the same length as the pixel’s feature vector, enabling element-wise
weighted summation operations. This step aims to emphasize critical information while suppress-
ing irrelevant feature interference. Finally, the refined features from all four levels are fed into a
prediction head to output the tampered region mask. The prediction head consists of a simple 1×1
convolutional layer.

A.3 COMPARSION WITH BASELINE MODELS USING ADDITIONAL METRIC

We conduct supplementary experiments on four benchmark datasets using permute-F1 and pixel-
level IoU scores as evaluation metrics. The results are presented in Table 5. As shown in the results,
QMA-Net achieves SoTA performance across all metrics, with particularly significant improvements
in average permute-F1 and pixel-level IoU scores compared to other models. This outcome further
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validates that our method successfully constructs complementary dual-modal features sensitive to
tampering artifacts, and effectively filters and aggregates multi-level features through the query-
driven mechanism.

Table 5: Comparison of permute-F1 and Pixel-level IoU across four datasets. Best results are bold,
second-best are underlined.

Method Permute-F1 Pixel-level IoU

CAS COl COV NIST AVG CAS COl COV NIST AVG

PSCC-Net 0.559 0.830 0.451 0.371 0.553 0.442 0.729 0.307 0.259 0.434
MVSS-Net 0.597 0.768 0.529 0.357 0.563 0.481 0.641 0.397 0.236 0.439
CAT-Net 0.786 0.951 0.551 0.490 0.695 0.716 0.903 0.430 0.388 0.609
TruFor 0.714 0.934 0.443 0.466 0.639 0.621 0.874 0.303 0.350 0.537
IML-ViT 0.763 0.974 0.595 0.169 0.625 0.683 0.919 0.482 0.127 0.553
Mesorch 0.837 0.966 0.594 0.467 0.716 0.778 0.896 0.481 0.353 0.627
QMA-Net 0.880 0.995 0.697 0.520 0.773 0.832 0.935 0.617 0.420 0.701

A.4 THE MODEL’S PERFORMANCE ON AI-GENERATED TAMPERING TECHNIQUES

We supplement the performance of QMA-Net on CocoGlide and AutoSplice (image tampering
based on diffusion models or LLM) to evaluate localization capabilities for AI-based tampered im-
age. As shown in the Table 6, QMA-Net achieves optimal or sub-optimal performance across all
metrics on both datasets.

Table 6: Comparison on COCOGlide and AutoSplice under with different SoTA models. Best
results are bold, second-best are underlined.

Method COCOGlide AutoSplice

F1 AUC IoU F1 AUC IoU

MVSS-Net 0.428 0.819 0.327 0.388 0.755 0.272
PSCC-Net 0.458 0.848 0.396 0.455 0.871 0.406
CAT-Net 0.409 0.849 0.334 0.450 0.862 0.348
IML-ViT 0.369 0.835 0.290 0.343 0.854 0.246
Mesorch 0.397 0.894 0.329 0.357 0.926 0.252
QMA-Net 0.477 0.867 0.416 0.451 0.875 0.352

A.5 QUANTITATIVE RESULTS OF ROBUSTNESS STUDY

We quantify the robustness test data presented in Figure 4, using the average pixel-level F1 score
under single-attack types with varying intensity factors as the evaluation metric. The results are
presented in Tables 6 and 7. We apply degradation techniques such as Gaussian noise (GN)
with different standard deviations(3,7,11,15,19,23), Gaussian blur (GB) with varying kernel sizes
(3,7,11,15,19,23), and JPEG compression (JC) with different quality factors (100,90,80,70,60,50)
to the tampered images. As visually demonstrated in both tables, QMA-Net achieves SoTA perfor-
mance on CASIAv1, Coverage, and NIST16 datasets across all attack types.

A.6 GRAD-CAM ANALYSIS OF MULTI-LEVEL FEATURES

We visualized the fused multi-level features using Grad-CAM in Figure. 6. Red areas represent
the high-response regions in the feature maps. It can be observed that Level 1 and Level 2 features
focus on the edges of the tampered regions, effectively capturing low-level features. In contrast,
the deeper Level 3 and Level 4 features extract high-level object-based characteristics without inter-
ference from other regions. This phenomenon demonstrates that our model successfully constructs
complementary dual-modal features sensitive to tampering artifacts, and effectively aggregates these
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Table 7: Avergae pixel-level F1 comparison on CASIAv1 and Columbia datasets under different
attacks. Best results are bold, second-best are underlined.

Method CASIAv1 Columbia

JC GB GN JC GB GN

PSCC-Net 0.427 0.324 0.564 0.814 0.747 0.817
MVSS-Net 0.506 0.296 0.578 0.697 0.556 0.719
CAT-Net 0.674 0.444 0.757 0.923 0.883 0.918
TruFor 0.619 0.403 0.663 0.901 0.858 0.888
QMA-Net 0.803 0.643 0.805 0.914 0.907 0.909

Table 8: Average pixel-level F1 comparison on NIST16 and Coverage datasets under different at-
tacks. Best results are bold, second-best are underlined.

Method NIST16 Coverage

JC GB GN JC GB GN

PSCC-Net 0.340 0.346 0.323 0.356 0.293 0.404
MVSS-Net 0.317 0.306 0.320 0.401 0.258 0.460
CAT-Net 0.445 0.398 0.435 0.420 0.273 0.482
TruFor 0.419 0.419 0.404 0.281 0.193 0.333
QMA-Net 0.478 0.474 0.457 0.548 0.370 0.612

dual-modal features through query-driven mechanisms, thereby suppressing interference from irrel-
evant features.

A.7 ABLATION STUDY ON QUERY QUANTITY

We vary the number of queries in the framework by adjusting them to three configurations: 4, 8,
and 32, to investigate the impact of query quantity on model performance. The experimental results
are shown in Table 9. Our model (16 queries) demonstrates improvements of 2.8%, 2.4%, and 3.1%
in average p-F1 scores compared to the configurations with 4, 8, and 32 queries respectively. It is
noted that the model’s performance does not monotonically improve with increasing query quantity,
but rather follows a unimodal curve pattern.

Table 9: The results of ablation study on query quantity. Best results are bold, second-best are
underlined.

Queries Pixel-level F1 Score

CAS COl COV NIST AVG
4 queries 0.864 0.942 0.613 0.450 0.717
8 queries 0.857 0.933 0.641 0.448 0.720
32 queries 0.861 0.952 0.590 0.457 0.715
16 queries(Ours) 0.873 0.939 0.659 0.480 0.738

A.8 FLOPS AND PARAMETERS

The number of parameters and FLOPs for all measurements was calculated based on a batch size of
1. As shown in Table 10, our model has a comparable computational burden to VLMs-based models
while demonstrating higher accuracy. Our model achieves SoTA performance while requiring sig-
nificantly fewer parameters and lower computational overhead (FLOPs). Notably, the FLOPs of our
model are nearly seven times lower than those of vision foundation model-based approaches (e.g.,
IMDprompt). These results demonstrate the lightweight nature and superior practical value of our
proposed method.
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Table 10: Comparison of parameters and computational efficiency (Flops) across different models.
Method Parameters (M) FLOPs (G)
ManTra-Net 3.9 274.0
MVSS-Net 150.5 171.0
PSCC-Net 3.7 376.8
CAT-Net 116.7 137.2
TruFor 68.7 236.5
SAM 309.0 1499.0
IMDPrompt 347.6 1533.0
QMA-Net (Ours) 114.0 230.0
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Manipulated Image GroundTruth pred level_1 level_2 level_3 level_4

Figure 6: Visualization of Grad-CAM for multi-level features. The first three columns are the
tampered image, groundtruth, and prediction results, respectively. Followed by the corresponding
fused multi-level features.
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