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Abstract

We investigate Greedy PAG Search (GPS) for
score-based causal discovery over equivalence
classes, similar to the famous Greedy Equivalence
Search algorithm, except now in the presence of lat-
ent confounders. It is based on a novel characteriza-
tion of Markov equivalence classes for MAGs, that
not only improves state-of-the-art identification of
Markov equivalence between MAGs to linear time
complexity for sparse graphs, but also allows for
efficient traversal over equivalence classes in the
space of all MAGs. The resulting GPS algorithm
is evaluated against several existing alternatives
and found to show promising performance, both in
terms of speed and accuracy.

1 INTRODUCTION

Ever since the advent in the early 90’s of modern, principled
methods for causal discovery from observational data, there
have been two main paradigms that have been widely em-
ployed: constraint-based and score-based methodologies.
Both start from the assumption that there is some under-
lying causal structure, typically in the form of a directed
acyclic graph (DAG), that is responsible for the observed
data distribution. The first class of methods then search for
(conditional) in/dependence constraints between variables
in the data, and use this information in combination with cer-
tain orientation rules to reconstruct the output causal model.
Key assumptions include the causal Markov assumption,
essentially stating that the structure of the underlying graph
induces independence constraints in the observed data ac-
cording to the d-separation criterion (see below), as well
as the causal faithfulness assumption, stating that these are
also the only observable independencies in the data. Other
simplifying model assumptions like acyclicity and causal
sufficiency (no latent confounders) can also be employed.

When causal sufficiency does not apply the target causal
model can be represented as a (maximal) ancestral graph
(MAG, see below). The output then represents the so-called
Markov equivalence class (MEC) of the underlying causal
model, in the form of a partial ancestral graph (PAG) repres-
enting all causal graphs that satisfy the same independence
model. Benchmark examples of algorithms in this tradition
include PC and FCI (Spirtes et al., 2000), where the lat-
ter is sound and complete even in the presence of latent
confounders and selection bias.

In contrast, score-based approaches define a metric that
quantifies how well a certain graph structure captures the
observed data, and then iteratively try to search for a graph
that maximizes this score. The score is typically based on
a (Bayesian) likelihood in combination with a penalty on
model complexity, and usually assumes an underlying DAG
structure with no unobserved confounders. A classic ex-
ample is the K2 algorithm by Cooper and Herskovits (1992),

In many cases, it is possible to choose a score in such a
way that all graphs in the same equivalence class obtain the
same score (Heckerman et al., 1995). As there can be a huge
number of graph instances in the same equivalence class,
this opens up the possibility of significantly speeding up
the search by moving between equivalence classes rather
than between individual graphs. This was the motivation be-
hind algorithms like GBPS (Spirtes and Meek, 1995), and its
famous successor GES (Greedy Equivalence Search) (Chick-
ering, 2002b), as well as recent versions improving scaling
behaviour and statistical efficiency (Ramsey et al., 2017;
Chickering, 2020). In practice, equivalence search signific-
antly outperforms traditional graph based search methods,
both in speed and accuracy. Due to the global nature of the
score, their output also tends to be more robust than that
of their constraint-based counterparts. Unfortunately, like
PC, they also assume causal sufficiency, meaning that there
is currently no available method that can employ the full
potential of score-based equivalence search in the presence
of latent confounders. Addressing this gap is the focus of
this article.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<Tom.Claassen@ru.nl>?Subject=GPS-UAI2022
mailto:<g.bucur@cs.ru.nl>?Subject=GPS-UAI2022


Towards equivalence search for MAGs

There have been several related score-based methods in re-
cent years that try to go beyond the standard DAG search.
For example Triantafillou and Tsamardinos (2016) consider
the relative performance of constraint-based methods vs.
MAG search using the BIC score for multivariate Gaussian
distributions from (Richardson and Spirtes, 2002). Their GS-
MAG algorithm employed a greedy search over the space
of MAGs, where at each step all possible single edge modi-
fications were evaluated. Later results showed this could be
improved by starting from the MMPC skeleton Tsirlis et al.
(2018). GSMAG was found to have promising performance,
albeit at much greater running times.

A different approach was taken by Ogarrio et al. (2016).
They managed to circumvent the MAG equivalence search
by exploiting the original GES to first do equivalence search
in the space of DAGs, and then to add a post-processing
step using a modification of FCI that started from the GES
output in order to obtain the final PAG. The result was a
hybrid method (GFCI, short for Greedy FCI)) that showed
promising performance over either method separately, but
did not exploit the potential of full PAG search.

Bhattacharya et al. (2021) presented a radically different
alternative that tackles the even wider class of ancestral
ADMGs by exploiting differentiable algebraic constraints to
turn causal discovery in a continuous optimization problem.

In the meantime many transformational characterizations
of MAGs have been developed, see e.g. (Tian, 2012; Zhang
and Spirtes, 2012), showing that we can reach all MAGs
within the same equivalence class by a series of (covered)
edge reversals to go from one MAG to the next where all
are part of the same MEC. But as these characterizations are
primarily concerned with transformations within the same
equivalence class, they are not easy to generalize into an
orthogonal search strategy between equivalence classes.

Our solution to this problem is based on a novel MEC char-
acterization for MAGs that does not rely on complicated
paths but on straightforward collider/noncollider triples.
Any change to these triples implies a new MEC, which
makes it easy to generate a collection of neighbouring
MECs. In combination with an appropriate score this then
forms the main engine in our Greedy PAG Search (GPS) al-
gorithm for score-based equivalence search in the presence
of latent confounders.

The rest of the article is organised as follows: section 2
introduces some basic concepts and terminology, section 3
describes the new characterization for Markov equivalence
between MAGs, section 4 discusses how to use this for
traversal between equivalence classes in the MAG space,
ultimately leading to the GPS algorithm in section 5. Section
6 then shows the performance of GPS in practice compared
to some state-of-the-art alternatives.

2 NOTATION AND TERMINOLOGY

A mixed graph G is a graphical model that can contain
three types of edges between pairs of nodes: directed (→),
bidirected (↔), and undirected (−). In a mixed graph,
standard graph-theoretical notions, e.g. child/parent, an-
cestor/descendant, directed path, cycle, still apply, with
natural extension to sets. A vertex z is a collider on a path
π = 〈. . . , x, z, y, . . .〉 if there are arrowheads at z on both
edges from x and y, otherwise it is a noncollider. A triple
x− z− y on a path is unshielded if x and y are not adjacent
in G. An unshielded collider is known as v-structure.

A mixed graph G is ancestral iff an arrowhead at x on an
edge to y implies there is no directed path from x to y in
G, and there are no arrowheads at nodes with undirected
edges. As a result, arrowhead marks can be read as ‘is not an
ancestor of’. In a mixed graph G, a vertex x is m-connected
to y by a path π, relative to a set of vertices Z, iff every
noncollider on π is not in Z, and every collider on π is an
ancestor of Z. If there is no such path, then x and y are m-
separated by Z. An ancestral graph is maximal (MAG) if for
any two nonadjacent vertices there is a set that m-separates
them. A directed acyclic graph (DAG) is a special kind of
MAG, containing only → edges, for which m-separation
reduces to the standard d-separation criterion. For more
details, see (Koller and Friedman, 2009; Spirtes et al., 2000).

A causal DAG GC is a directed acyclic graph where the arcs
represent direct causal interactions (Pearl, 2009). In general,
the independence relations between observed variables in
a causal DAG can be represented in the form of a MAG
(Richardson and Spirtes, 2002). The (complete) partial an-
cestral graph (PAG) represents all invariant features that
characterize the equivalence class [G] of such a MAG, with
a tail ‘−’ or arrowhead ‘>’ end mark on an edge, iff it is
invariant in all [G], otherwise a circle mark ‘◦’.

3 CHARACTERIZING MARKOV
EQUIVALENCE CLASSES

In this section we introduce a modified characterization
for the Markov equivalence class (MEC) of MAGs, that
will form the basis for the equivalence search in the next
section. It also leads to a simple method to establish Markov
equivalence between MAGs.

3.1 MECS OF MAGS

For Markov equivalence between MAGs we start from the
following characterization from Ali et al. (2009):

Lemma 1 Two MAGs G1 and G2 belong to the same
Markov equivalence class if and only if they have the same
skeleton and the same colliders with order.



This reflects the well known characterization for DAGs
where two members are in the same equivalence class iff
they have the same skeleton and v-structures, with the latter
now generalized to ‘collider triples with order’:

Definition 1 Let Ti(i ≥ 0) be the set of triples of order i
in a MAG G, defined recursively as:

- A triple 〈a, b, c〉 ∈ T0 if a ∗−∗ b ∗−∗ c is in G, with a
and c not adjacent.

- A triple 〈a, b, c〉 ∈ Ti≥1 if 〈a, b, c〉 /∈ Tj<i, and there
is a discriminating path 〈x, q1, .., qp, a, b, c〉 for b in G
(possibly q1 = a), where the p+ 1 colliders
〈x, q1, q2〉, ..., 〈qp−1, qp, a〉, 〈qp, a, b〉 ∈

⋃
j<i

Tj .

Here a path π = 〈x, q1, .., qp, a, b, c〉 in G is a discriminat-
ing path for b iff x is not adjacent to c, and every vertex
between x and b is a collider along π and is parent of y
in G. For example in Figure 1, 〈A,B,C,E〉 would be a
discriminating path for C, and 〈A,B,C,D,E〉 for D.

Note that triples 〈a, b, c〉 and 〈c, b, a〉 are equivalent, and
that triples with order i ≥ 1 are triangles in G. Also note
that the final condition is only needed to uniquely determ-
ine the order i, but that the characterization itself does not
depend on the actual value. This characterization leads to
an algorithm for testing Markov equivalence between two
MAGs with polynomial complexity O(ne4), with n the
number of vertices and e the number of edges in the graph.

More recently, Hu and Evans (2020) came up with a charac-
terization in terms of a parameterizing set S3(G) based on
so-called heads and tails of the districts (connected bidirec-
ted components) in G, and the ‘3’ indicates only sets of up
to 3 nodes are required. In contrast with (Ali et al., 2009)
it does not rely on the discriminating path, and leads to an
even more efficient algorithm for checking equivalence that
runs in O(ne2) for sparse graphs (when n = O(e)). Unfor-
tunately, this characterization is difficult to translate into a
comprehensive search strategy between equivalence classes.

However, it turns out that we can also circumvent the dis-
criminating path in Definition 1 in another way.

3.2 A NEW ‘TRIPLES WITH ORDER’
CHARACTERIZATION

On closer inspection of the second part of Definition
1 we see that every discriminating path (see Figure 1)
can be viewed as a collection of collider and noncollider
triples with order. More importantly, to know that a path
〈x, q1, .., qp, z, y〉 is a valid discriminating path for z in G
it suffices to know that 〈x, q1, .., qp−1, qp, y〉 is a valid dis-
criminating path for noncollider qp along the path, and that
〈qp−1, qp, z〉 is a collider, and that z and y are adjacent in

Figure 1: MAG with discriminating paths A-B-C-(D)-E.

k C
0 A B C
0 B C D
0 B E D
2 C D E

k D
0 A B E
1 B C E

Table 1: Corresponding ‘triples with order’ lists.

G. But that also means we do not actually need the full dis-
criminating path, but we just need to know that 〈qp−1, qp, y〉
is a noncollider with order, and that 〈qp−1, qp, z〉 is a col-
lider with order. This results in the following alternative
characterization:

Definition 2 Let Ci resp. Di (i ≥ 0) be the set of collider-
resp. noncollider triples with order i in a MAG G, defined
recursively as:

- A triple 〈a, b, c〉 ∈ C0 (resp. D0), if a ∗−∗ b ∗−∗ c is
an unshielded collider (resp. noncollider) in G.

- A triple 〈a, b, c〉 ∈ Ci (resp. Di), with i ≥ 1, if
〈a, b, c〉 /∈ Cj<i (resp. Dj<i), and

1. a ∗−∗ b ∗−∗ c is a collider (noncollider) in G,
2. ∃q : 〈q, a, b〉 ∈ Cj<i, and 〈q, a, c〉 ∈ Dk<i.

The connection to the original ‘triple with order’ definition
follows from the next lemma (proof in the supplement):

Lemma 2 In a MAG G, a triple 〈a, b, c〉 is in Ci (resp. Di),
if and only if 〈a, b, c〉 ∈ Ti and 〈a, b, c〉 is a collider (resp.
noncollider) in G.

This motivates the following definition:

Definition 3 The MECM of a MAG G, denotedM(G), is
defined as the triplet 〈S,C,D〉, with S the (undirected) skel-
eton of G, and C and D the corresponding lists of collider
resp. noncollider triples with order from Definition 2.

Which leads to the straightforward implication:

Corollary 3 Two MAGs G1 and G2 are Markov equivalent
if and only ifM(G1) =M(G2).

From here on we will use the term MEC to denote this
particular representation of the Markov equivalence class of
a MAG G.



3.3 FROM MAG TO MEC

Definition 2 implies that after we established the unshielded
(non)collider triples with order 0, we only need to check the
already constructed lists and a specific (non)collider triple
in the graph G in order to identify each higher order triple.
This leads to the following MAG-to-MEC procedure:

Algorithm 1 MAG-to-MEC

Input: MAG G
Output: MEC {S,C,D}
phase 1: initialise, process unshielded triples
S ← Skeleton(G)
C0/D0 ← unshielded (non)colliders 〈x, z, y〉 ∈ G
for all 〈x, z, y〉 ∈ D0 do

if ∃q : 〈x, z, q〉 ∈ C0 and G(q, y) > 0 then
L← 〈z, q, y〉 {initialise process list L}

end if
end for
phase 2: process candidate triples until no more left
repeat
〈x, z, y〉 ← Pop(L)
if x ∗→z←∗ y in G then

add 〈x, z, y〉 to C
∀q : 〈x, z, q〉 ∈ D, G(q, y) > 0: add 〈z, y, q〉 to L

else
add 〈x, z, y〉 to D
∀q : 〈x, z, q〉 ∈ C, G(q, y) > 0: add 〈z, q, y〉 to L

end if
until L is empty
return S,C,D

Algorithm 1 gives a high-level overview of the correspond-
ing steps. (implementation details available at https://
github.com/tomc-ghub/gps_uai2022) It starts
by identifying all unshielded triples (order 0) and alloc-
ating them to the appropriate collider or noncollider lists.
After that, all triples with order 1 are collected in list L, and
processed one by one depending on whether they corres-
pond to a collider or noncollider in the graph. Each allocated
triple may give rise to new triples with order that are added
to the end of the list L, until we have found them all. For
each processed triple (allocated to C or D) we only need
to consider the existence of matching triples in the comple-
mentary list together with the presence of a specific edge
in the MAG to find the new implied (higher order) triples.
Table 1 shows the output C and D lists given the MAG in
Figure 1.

3.4 FROM MEC BACK TO MAG

For the reverse MEC-to-MAG direction we can directly
map all triples with order into specific (minimal) edge mark
orientations to obtain the so-called core PAG (Definition
4), and then propagate the remaining implied orientations

using a subset of the standard FCI orientation rules from
Zhang (2008) to obtain the completed PAG. From there
we can obtain a matching MAG instance by following, e.g.
the arc-augmentation procedure in Theorem 2 of (Zhang,
2008) which will result in a fully oriented MAG in the same
MEC with a minimum number of (invariant) bidirected and
undirected edges.

Definition 4 (core PAG) For a MECM = 〈S,C,D〉, the
core PAG P∗ is defined as the graph obtained from the
skeleton S with all ◦−◦ edges, in combination with

- ∀〈x, z, y〉 ∈ C0 : orient x ∗→z←∗ y in P∗

- ∀〈x, z, y〉 ∈ Ck≥1 : orient z←∗ y in P∗

- ∀〈x, z, y〉 ∈ Dk≥1 : orient z−−∗ y in P∗

Each collider with order 0 becomes a v-structure, and each
triple with order k ≥ 1 corresponds to exactly one invariant
edge mark (arrowhead or tail) in the graph. Note that in
processing triples 〈x, z, y〉 with order k ≥ 1, we rely on
the fact that they are stored in the lists such that the y entry
corresponds to the final node in a discriminating path, which
is easily done when constructing the MEC.

The justification for the notion of a‘core PAG’ is that the
resulting graph contains all invariant information needed
to uniquely establish the full, completed PAG, by only
propagating the graphical FCI orientation rules, i.e. without
the need for specific independence test results as required
by v-structure ruleR0 and the discriminating path ruleR4
in (Zhang, 2008).

However, it is possible that an invariant tail is hiding in
a higher order noncollider triple that is not a ‘triple with
order’, hence we need one more rule to ensure completeness.
As it fulfils much the same role as the originalR4, we will
refer to it as ruleR4′:

R4′: Let Z be a district among the parents of a node y. If
x ∗→ z −→ y, with z ∈ Z and x and y not adjacent, then
orient all u ∗→ y with u ∗→ z′ for some z′ ∈ Z (possibly
z′ = z) as u−→y.

Algorithm 2 MEC-to-CPAG

Input: MEC {S,C,D}
Output: completed PAG P
P ← P∗(S,C,D) (the core PAG from Definition 4)
run orientation rulesR1−R4′ on P (all arrowheads)
run orientation rulesR5−R10 on P (remaining tails)
return P

The following lemma ensures the output is indeed sound
and complete:

Lemma 4 For a valid MECM, algorithm 2 will output the
corresponding completed PAG P .

https://github.com/tomc-ghub/gps_uai2022
https://github.com/tomc-ghub/gps_uai2022


3.5 ALGORITHMIC COMPLEXITY

Checking for Markov equivalence between MAGs simply
corresponds to building the MEC for one, and verifying that
the same steps apply to the other. This will induce a constant
cost for each entry in the MEC, and so the algorithmic
complexity for increasing graph sizes is determined by the
complexity of building the MEC from a given MAG.

To estimate the worst-case time complexity of algorithm 1
consider graphs over n nodes with e edges and max. node
degree d. For sparse graphs with d ≤ k we have e = O(n),
whereas in general we can have e = O(n2).

The first phase of the algorithm requires finding all un-
shielded triples, which means selecting all pairs of nodes
from the neighbours of every node in the graph, leading
to n · d · (d − 1) = O(nd2) triples. For the initialization
of the temporary triple list L we need to check all triples
〈x, y, z〉 in C0, and compare with specific entries in the com-
plementary list D0 (or vice versa) for nodes adjacent to z
in G. With appropriate indexing that implies an additional d
candidates to check for each entry in the smaller of the two
lists, bringing the total for phase 1 to O(nd3).

Each entry in the temporary list is then processed and com-
pared against d other candidates, each of which can be
handled in constant time as it involves only verifying pres-
ence in one of the (non)collider triple lists, which can again
be done in constant time using appropriate indexing, and
the presence of a specific edge in G, also in constant time.
Each combination added corresponds to a triangle in the
graph, meaning there are at most O(nd2) triples to process,
where each requires checking d entries, again leading to a
combined total of O(nd3) steps for phase 2.

Together that means for sparse graphs we have worst case
linear complexity of O(n) (!), whereas in general this leads
to O(n4). This is actually a significant improvement over
the O(ne2) complexity reported by Hu and Evans (2020),
corresponding to O(n3) for sparse graphs and O(n5) for
arbitrary density (when e = O(n2)).

These complexity results relate to the worst-case scaling
behaviour, and in practice the typical performance may
scale much better. For example the empirical complexity
for sparse graphs in Hu and Evans (2020) seemed much
closer to our linear result, meaning that in practice the two
characterizations may be expected to perform similarly (see
section 6.1). The main contribution of our new represent-
ation therefore lies in the way it enables us to traverse the
MEC/PAG space in the next section.

4 MOVING BETWEEN PAGS

The main goal in this article is to find a search strategy that
allow us to move directly from one equivalence class to

Figure 2: PAG after MakeNoncollider(A,B,C) on Figure 1.

another, as the basis for an iterative (greedy) score-based
causal discovery algorithm, similar in spirit to GES for
DAGs (Chickering, 2002a), but now in the presence of latent
confounders. For that we need a principled way to generate
a set of new candidate neighbouring equivalence classes
from a given starting equivalence class. Key aspects here
are deciding what to change, and then how to change it, in
order to ensure the resulting target corresponds to a different
but valid equivalence class.

For the ‘what’, the new characterization in terms of the
MECM provides a natural starting point, as any change by
definition leads to a new equivalence class. This suggests
the following basic operators:

- AddEdge - insert an edge between two nodes in S,

- DeleteEdge - remove a single edge from S,

- MakeNoncollider - move a triple 〈x, z, y〉 in C to D,

- MakeCollider - move a triple 〈x, z, y〉 in D to C.

However, this does not fully answer the ‘how’ yet. A single
application on a MEC of one of the operators above can
lead to many implied changes, creating as well as destroying
other ‘triples with order’. For example, in Figure 1, turning
collider triple 〈A,B,C〉 into a noncollider would imply the
destruction of both higher order triples in Table 1, leading to
the PAG in Figure 2. At the same time, not all operators can
act in isolation, e.g. if two or more triples share an edge in
the PAG, and some changes may be invalid, e.g. if it would
introduce an invariant arrowhead at a node on an undirected
edge in the PAG. To avoid such inconsistencies and recog-
nise which triples should be modified in conjunction, we
implement the operators to act directly on the PAG P .

That leaves the problem of how to convert the resulting
modified graph into a valid equivalence class, as the stand-
ard FCI orientation rules do not suffice given that certain
invariant edge marks in the starting PAG may no longer be
invariant in the target PAG. Fortunately, here too the new
MEC characterization comes to the rescue. On closer inspec-
tion we see that we could equally well use a PAG as input
for the MAG-to-MEC procedure in Algorithm 1, or indeed
the modified graph G resulting from applying an operator
on the PAG P .

The main challenge that remains is that an operator may
introduce a level of ambiguity through newly created triples
with order that are not fully determined by the modified



graph G. For example, given the PAG in Figure 2, executing
the reverse operator MakeCollider(A,B,C) implies that
〈B,C,E〉 is a new triple with order, but we have no inform-
ation on whether it should be a collider or a noncollider, and
indeed both options would lead to a valid PAG.

In the baseline implementation of our operators, below, we
resolve this ambiguity by constructing a specific instance
for the Add/DeleteEdge operators that is guaranteed to
be valid, and choosing a default ‘noncollider’ option for all
remaining undetermined higher order triples.

Having reconstructed the modified MECM′ we can use Al-
gorithm 2 to obtain the corresponding PAG P ′, and expand
to an (arc-augmented) MAG instance G′, This MAG can
subsequently be used to validate the output. The resulting
procedure is depicted in Algorithm 3.

Algorithm 3 PAG Candidate Neighbours

Input: MECM, PAG P , active Operators
Output: collection of PAG {Neighbours}
for all active Operators, target edges/triples inM do
G ← Operator(P, target) (modified graph)
M′ ←MAG_to_MEC(G) (rebuild MEC, Alg.1)
P ′ ←MEC_to_PAG(M′) (expand)
G′ ← PAG_to_MAG(P ′) (arc-augmentation)
if IsV alidMAG(G′) then
Neighbours{end+ 1} ← {M′,P ′,G′} (add)

end if
end for
return {Neighbours}

4.1 BASELINE OPERATOR IMPLEMENTATION

The potential for inconsistencies and ambiguity from ap-
plying operators arbitrarily to a PAG means that a form
of validation is necessary to ensure we obtain meaningful
candidate neighbour PAGs at each step of the algorithm.

Unfortunately, determining a sound and complete expansion
of a PAG with arbitrary background information (the modi-
fied graph G in algorithm 3) is still an open problem. In com-
bination with the potential ambiguity from undetermined
higher order triples that means we cannot (yet) provide a
full a priori ‘if and only if’ validity check for all of the
operators. However, we can incorporate some basic checks
to ensure we do not try candidates that will lead to obvious
inconsistencies. In the experimental results in section 6 we
will find that this already filters out the vast majority of
invalid candidate PAGs

The validity checks for the the MakeCollider and MakeN-
oncollider operators simply verify the edge marks in the
modified graph G would not violate the definition of a valid
MAG (no arrowheads at nodes on undirected edges, and no
(almost) directed cycles). The MakeNoncollider operator is

the most involved, as there we need to consider multiple
versions to create a noncollider triple, possibly leading to
multiple, different output PAGs: three versions for order 0
colliders: x ∗−− z, z−−∗ y, and x ∗−− z−−∗ y, and one for
higher order: z−→y The AddEdge and DeleteEdge operat-
ors are constructed such that they are always valid, and so
do not require an explicit validity check prior to execution.
Both are based on a tail-augmented MAG instance (Zhang,
2006) of the source PAG P , which needs to be derived only
once per iteration.

AddEdge(P, x, y): Let G be a tail-augmented MAG in-
stance of P . If both x and y have no arrowheads in G, then
add x−−y to G. Otherwise, if x does not have an arrowhead
in G, but y does, then add x−→ y (or v.v.). Otherwise, if
x ∈ An(y) in G then add x−→ y, if y ∈ An(x) then add
x←−y, if neither then add x←→y to G.

DeleteEdge(P, x, y): Let G be a tail-augmented MAG in-
stance of P . Remove edge x ∗−∗ y from G.

MakeCollider(P, x, z, y): Check for no other u−− z in
P . Let G be the graph from setting x ∗→z←∗ y in P . Check
there is no (almost) directed cycle in G involving x, y and z.

MakeNoncollider(P, x, z, y): (Order 0, version 1): If not
exists collider triple u ∗→z←∗ y then skip (=equivalent to
version 3). Check not x−→z in P (arrowhead at undirected
edge), check x←− z would not be part of an (almost) dir-
ected cycle. Create G by setting x ∗−− z in P . (Version 2):
Idem for z−−∗ y. (Order 0, version 3): Check if x−→z, then
no u ∗→ x in P; idem if y−→ z then no u ∗→ y; if either
then also check no u ∗→z. Create G by setting x ∗−−z−−∗ y
in P . If x←−z in P then check it is not part of an (almost)
directed path in G. Idem for z−→y. (Higher order): Check
z−→y would not be part of an almost directed cycle in P .
Create G by setting z−→y in P .

In principle the four operators suffice to traverse the entire
MEC/PAG space, although that is naturally no guarantee the
optimal model will be found in a greedy search strategy.

5 GREEDY PAG SEARCH

Given the procedure to obtain different neighbouring
PAGs/MECs, all that remains to turn this into an effective
search algorithm is a means to score individual PAGs. For
simplicity, we will assume a multivariate Gaussian model.

5.1 SCORING PAGS

When moving between equivalence classes, algorithm 3
expands each PAG to an arc-augmented MAG instance to
verify validity. Given that for multivariate Gaussian models
Richardson and Spirtes (2002) already introduced a well-
established MAG score, we will rely on that as an associated
score for the corresponding equivalence class. Because it



is already part of the literature, we will relegate the de-
scription of the Gaussian MAG score to Appendix C in the
supplement. For details see also (Nowzohour et al., 2017;
Triantafillou and Tsamardinos, 2016).

Note that the GPS algorithm itself is in no way restricted to
multivariate Gaussian distributions. For example, we could
equally well have chosen the score for binary/discrete data
developed in (Drton and Richardson, 2008), or alternatively
the ADMG score for nested Markov models in (Shpitser
et al., 2013) as a MAG corresponds to an ADMG for a
nested Markov model without implied Verma constraints.

However, as it is also known that the Gaussian MAG score
can be notoriously unstable for graphs with larger districts,
we will also include an evaluation based on the so-called
structural Hamming distance (SHD) relative to the true PAG,
to illustrate the potential of the GPS search itself, separate
from any potential scoring issues.

5.2 THE BASELINE GPS ALGORITHM

Having developed all the necessary tools we can now put
them together into the (baseline) Greedy PAG Search (GPS)
algorithm below. It starts from an empty model and, using
the operators from section 4.1, each time greedily tries to
find a different, neighbouring PAG that will improve the
score the most, until no more improvements can be found.

Algorithm 4 Greedy PAG Search

Input: Gaussian covariance Σ over N variables
Output: optimal matching PAG P , top score s
Initialise:M← empty MEC over N variables, s← 0
repeat
{M} ← Candidate_Neighbours(M)
for allMi ∈M do
si ← Score(Mi)
if si > s then (M, s)← (Mi, si)

end for
until no more improvement
return P ←MEC_to_PAG(M), s

The baseline PAG search aims to find a single, unambiguous
target for each version of the operators. This limits the num-
ber of candidates to consider at each iteration in the search,
which helps to speed up the overall process. Downside is
that it becomes easier to get stuck in local optima, leading to
suboptimal final solutions. Therefore we will also consider
an alternative GPS version.

5.3 EXTENDED GPS SEARCH

Effectively, the baseline operators avoid ambiguity by treat-
ing remaining circle marks in the modifed graph as signi-
fying ‘noncollider’. But, by definition, for any circle mark

in a PAG there is at least one MAG instance that contains
an arrowhead, and so for a newly created unshielded triple
involving circles it is possible that the same operator applied
to a MAG in the starting P would have produced an unshiel-
ded collider triple instead. And for multiple such instances,
any different combination of collider and noncollider triples
with order corresponds to a different PAG. For example in
Figure 2, removing edge C ◦→ E would create two new
triples with order 0: 〈C,B,E〉 and 〈C,D,E〉, where both
could become either collider or noncollider in one of four
different valid PAGs.

That means that the current baseline search effectively only
considers a small proportion of the possible set of neigh-
bouring PAGs at each step. Therefore we also introduce
a version of the search that generates an extended collec-
tion of neighbours for each operator, one for each possible
(non)collider combination of newly introduced unshielded
triples. In this version, both AddEdge and DeleteEdge now
start from the PAG (rather than a specific tail-augmented
MAG instance), where AddEdge also considers all possible
edge types to add at each application.

This extended approach is similar in spirit to GES (Chicker-
ing, 2002b), that at each step also considers a (potentially
large) collection of neighbouring equivalence classes per
operator, whereas the baseline search is more in line with
(Chickering, 2002a). To avoid the risk of having to consider
too many candidates in cases where we encounter dense
graphs we simply put a reasonable limit (in our case: 64)
on the maximum number of local candidates per operator
to consider, again similar to GES. No additional validity
checks were implemented per operator, so we may expect
the rejection rate to rise compared to the baseline version.

The added rigour of the extended search comes at a notice-
able penalty cost in terms of time per iteration. Therefore, as
a way of illustrating the flexibility of the approach, we will
also consider a hybrid version that uses the baseline search
as standard, and only switches to the extended version once
it gets stuck.

One could envisage similar adaptations that restrict what op-
erators can be used in different search stages, e.g. first only
allowing ‘AddEdge’, and then a second stage that only uses
‘DeleteEdge’, to mimic the GES strategy. Alternatively, we
could start from the output graph found by another method
like FCI, and then try to tweak this for further improvements,
or restrict the search to stay within a likely skeleton, etc.

Finally, for this article we will only consider single runs for
each GPS instance, but other familiar strategies to improve
the final output, like tabu-search, multiple restarts, simulated
annealing etc. could also be employed. Establishing what
ultimately works best in what circumstances will be left as
future work.



6 EXPERIMENTAL EVALUATION

6.1 MAG-TO-MEC COMPLEXITY

Figure 3: Empirical complexity MAG-to-MEC.

A crucial part of the proposed methodology is the new
MEC characterization in terms of ‘triples with order’. In
Section 3.2, we derived that for sparse graphs the theoret-
ical complexity of the MAG-to-MEC algorithm is O(n).
Figure 3 confirms this via the empirical complexity on
random MAGs of size n = {10, 20, ..., 100}, each aver-
aged over 250 graphs. Similar to the simulation in Hu and
Evans (2020) the MAGs are generated to have approxim-
ately e = 3n edges, (corresponding to d = 6), while each
edge is (independently) either directed or bidirected with
probability p = 0.5.1 The results demonstrate a strong lin-
ear trend (even slightly better), both in terms of ‘elementary
operations’ (purple) and raw computational time (cyan).

6.2 GPS SIMULATION EXPERIMENTS

We evaluate the speed and accuracy of the three versions of
the GPS algorithm. We compare our method against the GS-
MAG algorithm proposed by Triantafillou and Tsamardinos
(2016) and the GFCI algorithm proposed by Ogarrio et al.
(2016), while also showing the results obtained with FCI as
a baseline. We also compared against DCD (Bhattacharya
et al., 2021), which we found to perform slightly worse than
GFCI at significantly longer running times, and so is left
out of the final comparison. We generated 100 MAGs for
each graph size n ∈ {5, 10, 15, 20}, such that the average
node degree was d = 3, the maximum node degree was
dmax = 10, and the probability of an edge being bidirected
(as opposed to directed) was p = 0.2.

We used the following metrics to evaluate the algorithm
performance: 1. the Structural Hamming Distance (SHD),

1Simulation details are available with the software at https:
//github.com/tomc-ghub/gps_uai2022.

counting the number of different edges and/or edge marks
between the output PAG and the ground truth PAG; 2. the
Bayesian information criterion (BIC) score for MAGs as
proposed by Triantafillou and Tsamardinos (2016); and 3.
the accuracy of edge marks, obtained as a Jaccard similarity
coefficient, by dividing the number of correct edge marks
in the output PAG by the total number of edge marks in the
(skeleton) union of output and ground truth PAG.

The accuracy results are summarized in Table 2. For all GPS
versions and GSMAG, we considered two different starting
points for the greedy search, namely the empty graph and
the PAG obtained by running the FCI algorithm. We used
the BIC score for MAGs (Triantafillou and Tsamardinos,
2016) as the objective function in the greedy optimization.
We ran FCI and GFCI using the Tetrad library (Glymour
et al., 2014) with default parameters, where Fisher’s z-test
was used for finding conditional independences, and the BIC
score was used for the score-based component of GFCI.

In Table 2 we first note that in terms of accuracy when using
the BIC score, baseline GPS and GFCI are the clear winners.
Extended/hybrid GPS and GSMAG all manage to obtain
better (lower) BIC scores, however at abysmal accuracy
ratings, indicating a fundamental issue with the Gaussian
MAG score. On closer inspection this turns out to result
from unstable BIC scores, primarily related to larger dis-
tricts, where the RICF fitting step fails to converge properly.
Baseline GPS tends to favour graphs with fewer/smaller
districts (due to the ‘default noncollider’ option) for which
this issue is much less pronounced. However, using the SHD
scores shows a dramatically different result: here GSMAG
clearly outcompetes the baseline GPS search with accuracy
% in the low 90s rather than mid 80s for the latter. How-
ever this also demonstrates the potential and effectiveness
of the extended search obtaining accuracies of 97-98%. A
second interesting observation here is that starting from the
FCI PAG actually hinders the extended GPS search from
achieving its optimal score by a significant margin (around
10% worse), suggesting that FCI tends to favour a local op-
timum from which it can be difficult to escape to the optimal
graph. This is also reflected in the hybrid version, that runs
extended on top of the baseline output, but also is pushed
in a certain region of PAG space from which it is harder to
escape in single run greedy search.

When it comes to speed, shown in Table 3, baseline GPS
arrives at results much faster than GSMAG in all cases, as
it needs to consider far fewer candidates per step. Starting
from the FCI PAG cuts the number of iterations roughly
in half, although time required using the BIC score can
actually increase, again signalling the convergence issue.
The extended GPS-SHD version shows that the number of
iterations required to obtain the optimal model is about a
quarter lower than for the baseline version, indicative of
the added flexibility the extended neighbour collection can
bring. The unsurprising drawback of this larger collection

https://github.com/tomc-ghub/gps_uai2022
https://github.com/tomc-ghub/gps_uai2022


Table 2: Algorithm accuracy comparison

Algorithm GPS baseline GPS extended GPS hybrid GSMAG GFCI FCI

Criterion BIC SHD BIC SHD BIC SHD BIC SHD N/A N/A

n metric empty FCI empty FCI empty FCI empty FCI empty FCI empty FCI empty FCI empty FCI N/A N/A

SHD 9.73 9.56 1.76 1.11 12.53 11.14 0.31 0.47 10.49 10.56 0.92 0.80 9.73 8.60 1.34 1.61 10.36 10.64
BIC 12.88 12.81 13.09 12.89 12.46 12.53 12.89 12.89 12.63 12.61 12.94 12.90 12.41 12.55 12.95 12.90 12.99 13.055
accuracy 0.50 0.50 0.88 0.93 0.36 0.41 0.98 0.97 0.45 0.44 0.93 0.94 0.52 0.55 0.92 0.90 0.45 0.42

SHD 24.48 23.36 5.82 5.15 35.80 31.13 0.54 3.75 31.26 28.99 2.94 4.51 38.45 31.02 3.47 2.63 21.51 22.77
BIC 30.33 30.57 32.35 31.75 28.93 29.17 31.29 31.53 28.82 29.06 31.98 31.74 28.92 28.75 31.44 31.37 31.72 31.7310
accuracy 0.49 0.50 0.83 0.84 0.33 0.38 0.98 0.88 0.40 0.41 0.91 0.86 0.32 0.42 0.90 0.92 0.48 0.45

SHD 34.15 38.47 7.26 8.42 54.90 53.32 1.53 6.75 50.19 50.21 4.59 7.67 62.90 53.64 3.60 3.58 29.99 34.10
BIC 36.54 36.48 40.29 39.63 33.24 33.51 38.59 39.25 32.58 33.42 39.91 39.61 32.83 32.31 38.19 38.18 38.74 39.1815
accuracy 0.52 0.47 0.85 0.83 0.32 0.34 0.97 0.86 0.37 0.38 0.90 0.84 0.31 0.38 0.92 0.92 0.50 0.43

SHD 44.35 49.69 9.96 11.20 82.98 74.49 1.69 8.67 69.11 70.45 6.63 10.73 94.06 74.46 4.47 3.34 36.82 42.72
BIC 59.91 60.14 64.77 63.94 55.44 55.08 62.87 63.42 54.77 55.96 64.30 63.94 54.52 54.23 62.61 62.55 63.53 63.9020
accuracy 0.55 0.50 0.84 0.83 0.30 0.36 0.97 0.87 0.38 0.38 0.89 0.83 0.29 0.39 0.93 0.95 0.55 0.46

Table 3: Algorithm speed comparison

Algorithm GPS baseline GPS extended GPS hybrid GSMAG

Criterion BIC SHD BIC SHD BIC SHD BIC SHD

n metric empty FCI empty FCI empty FCI empty FCI empty FCI empty FCI empty FCI empty FCI

iterations 7.80 2.08 9.00 3.81 6.77 2.20 8.05 3.47 9.33 3.49 10.18 4.88 8.28 3.00 8.09 3.53
5

time (s) 0.33 0.18 0.23 0.15 0.97 0.49 1.12 0.67 0.63 0.45 0.52 0.38 1.60 1.24 0.53 0.48

iterations 19.31 7.34 20.41 7.56 17.73 7.45 16.29 6.80 23.37 10.99 22.20 8.76 21.14 10.72 16.94 8.34
10

time (s) 8.25 9.23 4.13 2.36 29.53 24.75 21.20 12.22 17.86 22.09 9.95 5.62 50.66 55.06 10.04 14.30

iterations 27.53 13.18 29.68 11.06 26.86 13.57 23.12 9.20 34.69 19.74 31.49 12.23 33.04 17.98 25.07 12.69
15

time (s) 33.62 55.08 18.25 9.88 156.62 187.08 102.49 51.07 98.08 149.59 41.05 20.24 321.62 360.39 70.83 59.20

iterations 38.65 18.47 39.79 13.40 40.10 21.36 30.82 11.27 48.85 28.49 41.74 14.53 48.92 26.60 33.14 15.96
20

time (s) 107.39 167.10 56.80 28.00 564.51 729.35 365.16 173.52 342.30 489.25 113.12 51.15 926.26 863.41 240.71 148.44

is that the actual running time can be 5-6x greater. Hybrid
GPS performance is somewhere halfway between the two.

To give an indication of the effectiveness of the validity
checks: on a typical batch of 16 graphs over various sizes
and densities we found that baseline GPS rejected 2879
candidates, and accepted 11517 as neighbouring PAGs, out
of which 130 (1.1%) were found to be invalid at the final
MAG validation check. For the same batch, extended GPS
version rejected 5969 candidates at the initial check, while
accepting 47523, out of which 2087 (4.4%) were found to
be invalid after all.

That means the basic validity tests already filter out close
to 95% of all invalid operators. Undoubtedly this can be
increased further, but there is a risk the added overhead
of significantly more complicated validity tests may not
outweigh the benefits of avoiding an extra MEC-PAG-MAG
conversion for 1% of the candidates. Similarly, the extended
version now captures about 75% of all invalid operators, but
this can likely be brought to around the level of the baseline
version by adding explicit basic validity checks for each
candidate considered by an operator (rather than the single
check per operator it is now).

7 CONCLUSION

We presented GPS, the first score-based equivalence search
algorithm in the presence of latent confounders. It was based
on a new MEC characterization for MAGs that brings es-
tablishing Markov equivalence between sparse graphs down
to linear complexity, with the new core PAG providing the
crucial link to efficient PAG reconstruction. Experimental
results confirmed our hopes/expectations that equivalence
search could traverse the MAG space faster than single-edge
MAG modifications, while arriving at better models, com-
parable to or improving on other state-of-the-art methods,
and that additional gains can be expected by incorporat-
ing more comprehensive search strategies like tabu-search
and multiple restarts. Looking forward, we aim to expand
GPS further by considering the full PAG neighbourhood as
candidates (similar to GES), and including a more robust
equivalence score that can also handle selection bias.
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