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Abstract

The Bradley-Terry-Luce (BTL) model is a popular
statistical approach for estimating the global rank-
ing of a collection of items using pairwise compar-
isons. To ensure accurate ranking, it is essential to
obtain precise estimates of the model parameters in
the ℓ∞-loss. The difficulty of this task depends cru-
cially on the topology of the pairwise comparison
graph over the given items. However, beyond very
few well-studied cases, such as the complete and
Erdös-Rényi comparison graphs, little is known
about the performance of the maximum likelihood
estimator (MLE) of the BTL model parameters
in the ℓ∞-loss under more general graph topolo-
gies. In this paper, we derive novel, general upper
bounds on the ℓ∞ estimation error of the BTL
MLE that depend explicitly on the algebraic con-
nectivity of the comparison graph, the maximal
performance gap across items and the sample com-
plexity. We demonstrate that the derived bounds
perform well and in some cases are sharper com-
pared to known results obtained using different
loss functions and more restricted assumptions and
graph topologies. We carefully compare our results
to Yan et al. (2012), which is closest in spirit to our
work. We further provide minimax lower bounds
under ℓ∞-error that nearly match the upper bounds
over a class of sufficiently regular graph topolo-
gies. Finally, we study the implications of our ℓ∞-
bounds for efficient (offline) tournament design.
We illustrate and discuss our findings through vari-
ous examples and simulations.

1 INTRODUCTION

Simultaneous or ‘global’ ranking of a set of items is a prac-
tical problem that arises naturally in a variety of domains.

For example, one may wish to ascertain a ‘best player’ or
‘best team’ in a given sports league. Designing a principled
statistical approach to global ranking of items is challeng-
ing due to data limitations and complex domain-specific
relationships between the underlying items to be ranked.

A popular and practicable solution to estimating global rank-
ing is to utilize pairwise comparison information across the
items to be ranked, which is easily accessible across many
application domains. The BTL model (Bradley and Terry,
1952; Luce, 1959) is a popular statistical model for pair-
wise comparison data. A similar model was also originally
studied in Zermelo (1929). The continued practical and the-
oretical interest in the BTL model stems from its relatively
simple parametric form which provides a good balance be-
tween interpretability and tractability for theoretical analy-
sis. The BTL model is domain-agnostic, making it an ideal
benchmarking tool across a variety of ranking applications
e.g. sports analytics (Fahrmeir and Tutz, 1994; Masarotto
and Varin, 2012; Cattelan et al., 2013), and bibliometrics
(Stigler, 1994; Varin et al., 2016).

Formally, we can describe the BTL model as follows. Sup-
pose that we have n distinct items, each with a (fixed but un-
observed) positive strength or preference score w∗

i , i ∈ [n],
quantifying item i’s propensity to beat other items in pair-
wise comparisons. The BTL model assumes that the com-
parisons between different pairs are independent and the
outcomes of comparisons between any given pair, say item
i and item j, are i.i.d. Bernoulli random variables, with
winning probability pij , defined as

pij := Pr (i beats j) :=
w∗

i

w∗
i + w∗

j

, ∀ i, j ∈ [n]. (1)

A common reparametrization is to set, for each i, w∗
i =

exp(θ∗i ), where θ∗ := (θ∗1 , . . . , θ
∗
n)

⊤ ∈ Rn. By convention,
we assume that

∑
i∈[n] θ

∗
i = 0 for parameter identifiability.

From a theoretical perspective, much attention in the BTL
literature has been paid to two popular estimators, namely
the maximum likelihood estimator (MLE) and the spectral
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method (Jain et al., 2020). Recently, Chen et al. (2020) show
that the MLE attains a sharper minimax rate of the Hamming
top-k loss compared to the spectral method. In this paper,
we thus focus on the MLE, which we formally define later
in Section 2.

General pairwise comparison graphs

Given n items to be compared, the pairwise comparison
scheme among them can be expressed through an undi-
rected simple graph G(V,E), where the vertex set V := [n]
and the edge set E := {(i, j) : i and j are compared } is
determined by the comparison scheme. Correspondingly,
if we define the directed edge set as Ed := {(i, j, k) :
(i beats j) k times}, then the induced directed simple graph
G(V,Ed) is called a directed comparison graph. It is a classi-
cal result (Ford, 1957; Simons and Yao, 1999; Hunter, 2004)
that the BTL model is identifiable if and only if G(V,E) is
connected, and the MLE of the model parameters exists and
is consistent if and only if G(V,Ed) is strongly connected.
Henceforth, comparison graph refers to the undirected pair-
wise comparison graph.

Typically one is interested in getting sharp bounds for the
estimation risk, which could be based on a norm-induced
metric ∥θ̂ − θ∗∥p or a ranking metric, e.g., Kendall’s tau
distance (Kendall, 1938). What makes risk analysis of BTL
model estimators particularly challenging is a combination
of the type of estimation risk loss considered, and the as-
sumptions on the topology of G(V,E).

Core questions of interest

Among all the metrics measuring uncertainty of estima-
tors of BTL parameters, the ℓ∞-loss directly connects with
ranking metrics, e.g. binary and Hamming top-k (partial)
ranking loss (see, e.g. Chen et al., 2019, 2020).

It is thus natural to study the MLE for the BTL parameters
in the ℓ∞-loss, to better understand the risk optimality of
the MLE and further justify its use for practical global and
partial ranking problems. In this spirit, Yan et al. (2012)
focus specifically on proving ℓ∞-error bounds for the BTL
MLE for general comparison graphs. However, a notable
limitation in their setting is that they impose a strictly dense
comparison graph assumption, which may be impractical
in many real world applications. This leaves a gap in the
literature, summarized in the following questions:

Core questions: For the BTL model, how
does the MLE perform with respect to the
ℓ∞ loss, under much weaker assumptions
on the pairwise comparison graph com-
pared to Yan et al. (2012)? That is, as-
suming only that the comparison graph is
connected. Moreover, what are the impli-
cations of such bounds in applications?

Providing a sharp analysis to these questions with a detailed
comparison to recent theoretical results in the BTL literature
motivates our work in this paper.

Relevant and related literature

We give a brief overview of the work that addresses the
challenge of comparison graph topology in ranking. When
the comparison graph is a complete graph, Simons and Yao
(1999) give a high-probability upper bound for the ℓ∞ loss,
i.e., ∥θ̂−θ∗∥∞ and obtain the asymptotic distribution of the
MLE. In the setting where the comparison graph follows the
Erdös-Rényi graph model, Chen and Suh (2015), Chen et al.
(2019), Chen et al. (2020) and Han et al. (2020) derive high-
probability upper bounds for the ℓ∞ loss. Moreover, Chen
et al. (2019) show that both MLE and spectral method are
minimax optimal in terms of the binary top-k ranking loss,
i.e., whether the items with the highest k out of n preference
scores are perfectly identified; Chen et al. (2020) consider
a Hamming Loss for top-k items and show that the MLE
is minimax optimal compared to the spectral method with
differences arising in constant factors.

For a broader class of comparison graphs beyond complete
and Erdös-Rényi graph, researchers have studied the ex-
plicit dependence of the estimation risk on graph topology.
In particular, Yan et al. (2012) give a high-probability up-
per bound for the ℓ∞-loss for relatively dense graphs. Hajek
et al. (2014); Shah et al. (2016) give a high probability upper
bound for the ℓ2 or Euclidean loss ∥θ̂ − θ∗∥2, establish up-
per and lower bounds of E∥θ̂ − θ∗∥2 and show the minimax
optimality of the constraint MLE across a wide range of
graph topologies. Recently, Agarwal et al. (2018) give sharp
upper bounds for a novel spectral method in the ℓ1-loss
∥π̂ − π∗∥1 for π∗ = w∗/∥w∗∥1 instead of θ∗. Hendrickx
et al. (2019, 2020) propose a weighted least square method
to estimate w∗ and prove a sharp upper bound for their es-
timator in E[sin2(ŵ,w∗)] or equivalently in E∥ŵ/∥ŵ∥2 −
w∗/∥w∗∥2∥22, in the sense that this upper bound matches a
instance-wise lower bound up to constant factors.

Contributions

Our contributions in this paper are fourfold and are summa-
rized as follows:

• Upper bounds: We derive a novel upper bound for
the ℓ∞-error of the regularized MLE in BTL model
allowing for general graph topology. Our upper bounds
hold under minimal assumptions on graph topologies,
i.e., assuming only that the comparison graph is con-
nected. Given such generality, we show our ℓ∞ bound
is tighter than existing results under a broad range of
graph topologies, and works well in general. In partic-
ular, we carefully compare our work analytically and
in simulation to Yan et al. (2012), which is closest in
spirit to our work.

A minor corollary of our techniques results in the state



of the art ℓ2-loss bounds for the Erdös-Rényi graph.

• Lower bounds: We derive minimax lower bounds
for BTL parameter estimation in ℓ∞-loss. We analyze
specific graph topologies satisfying certain regularity
connectivity conditions under which the BTL MLE is
nearly minimax optimal.

• Implications for tournament design: We show that
the BTL MLE in ℓ∞-loss satisfies a unique subadditiv-
ity property, and how our ℓ∞ bounds can exploit this
property for efficient (offline) tournament design.

• Extension to the unregularized BTL model: We also
extend our upper bounds under ℓ∞-loss to the unregu-
larized (‘vanilla’) BTL MLE, which is also frequently
used in practice.

Due to the more complicated form of the vanilla BTL
MLE upper bounds and space limitations, we present
these analagous results and their proofs separately in Ap-
pendix A.7. Henceforth, MLE refers to the regularized BTL
MLE unless stated otherwise. In addition to our theoreti-
cal contributions a core aspect throughout our paper is to
emphasize the interpretability of our results, the associated
assumptions, and implications for practical ranking tasks.

Organization of the paper

The rest of the paper is organized as follows. In Section 2, we
present our main results for the upper bound in Theorem 1
and an interpretation of the key components of the bound.
In Section 3, we discuss minimax lower bounds using the
ℓ∞ risk loss in Theorem 5. In Section 4, we show some
practical implications of our results in efficient tournament
design from a ranking perspective. In Section 5, we conduct
extensive numerical simulations to validate the optimality
of our bounds compared to related results in the literature.

Notation

We typically use lowercase for scalars, e.g., (x, y, z, . . .),
boldface lowercase for vectors, e.g., (x,y, z, . . .), and bold-
face uppercase for matrices, e.g. (X,Y,Z, . . .). We denote
the finite set {1, . . . , n} by [n]. For asymptotics, we denote
xn ≲ yn or xn = O(yn) and un ≳ vn or un = Ω(vn) if ∀n,
xn ≤ c1yn and un ≥ c2vn for some constants c1, c2 > 0.
We denote ei as a vector whose entries are all 0 except
that the i-th entry is 1. an = o(bn) means an/bn → 0 as
n→ ∞ and conversely, an = ω(bn) means bn/an → 0 as
n→ ∞. We denote 1n ∈ Rn to be a vector of ones.

2 UPPER BOUNDS

Recall that given n items to be compared, the comparison
scheme among them defines the comparison graph G(V,E),
where V = [n] and E = {(i, j) : i and j are compared }.
We denote the corresponding adjacency matrix as A ∈
Rn×n, and its (i, j)th entry is Aij := 1{(i, j) ∈ E}. The

associated (unnormalized) graph Laplacian is the symmet-
ric, positive-semidefinite matrix LA := D − A, where
D = diag(n1, . . . , nn), with ni :=

∑n
j=1Aij the degree

of node i. It is well known that the smallest eigenvalue of
LA is 0 with an eigenvector 1n. Let λ2(LA) be the sec-
ond smallest eigenvalue of LA, known as the algebraic
connectivity of G (Das, 2004), then G is connected if and
only if λ2(LA) > 0. Following the standard in the BTL
literature we assume a that for each edge (i, j) of the com-
parison graph, the corresponding items i and j are com-
pared L times, each leading to an independent outcome
y
(l)
ij ∈ {0, 1}, where l ∈ [L]. If pairs are compared different

number of times, we take L to be the smallest number of
pairwise comparisons over the edge set, as a worst-case
scenario. The corresponding sample averages are denoted
with ȳij = 1

L

∑L
l=1 y

(l)
ij and are sufficient statistics for the

model parameters. The ℓ2-regularized MLE is defined as

θ̂ρ = argmin
1⊤
n θ=0

ℓρ(θ;y), ℓρ(θ;y) = ℓ(θ;y)+
ρ

2
∥θ∥22, (2)

where ℓ(θ;y) is the negative log-likelihood, given by

ℓ(θ;y) := −
∑

1≤i<j≤n

Aij{ȳij logψ(θi − θj)

+ (1− ȳij) log[1− ψ(θi − θj)]},
(3)

and t ∈ R 7→ ψ(t) = 1/[1 + e−t] the sigmoid function.

Under this notational setup, we are ready to state the ℓ∞
upper bound of the BTL MLE in Theorem 1.

Theorem 1. Assume the BTL model with parameter θ∗ =
(θ∗1 , . . . , θ

∗
n)

⊤ such that 1⊤
n θ

∗ = 0 and a comparison graph
G = G([n], E) with adjacency matrix A, algebraic connec-
tivity λ2(LA) and maximum and minimum degrees nmax

and nmin. Suppose that each pair of items (i, j) ∈ E are
compared L times. Let κ = maxi,j |θ∗i − θ∗j | and κE =

max(i,j)∈E |θ∗i − θ∗j | and set ρ ≥ cρκ
−2e−2.5κEn−4n

1/2
max.

Assume that G is connected or λ2(LA) > 0. Then with prob-
ability at least 1− O(n−4), the regularized MLE θ̂ρ from
(2) satisfies

∥θ̂ρ − θ∗∥∞ ≲
e2κE

λ2

nmax

nmin

(√
n+ r

L
+ ρκ

√
n

nmax

)

+
eκE

λ2

√
nmax(log n+ r)

L
, (4)

∥θ̂ρ − θ∗∥2 ≲
eκE

λ2

(√
nmax(n+ r)

L
+ ρκ

√
n

)
(5)

where λ2 = λ2(LA), r := κE + log κ provided that
L ≤ n8e5κE max{1, κ}, and L is large enough so that
the right hand side of Equation (4) is smaller than a suf-
ficiently small constant C > 0. In particular, if we set



ρ = cρ/κ
√
nmax/L for some cρ > 0, then

∥θ̂ρ − θ∗∥∞ ≲
e2κE

λ2

nmax

nmin

√
n+ r

L
+
eκE

λ2

√
nmax(log n+ r)

L
,

∥θ̂ρ − θ∗∥2 ≲
eκE

λ2

√
nmax(n+ r)

L
. (6)

As a brief sketch, the proof is based on a gradient descent
procedure initialized at θ(0) = θ∗ and the idea is to control
∥θ(T ) − θ̂ρ∥∞ using the linear convergence property and
∥θ(T ) − θ∗∥∞ using the leave-one-out technique in Chen
et al. (2019) and Chen et al. (2020). In fact, our work con-
firms that such a line of argument extends to more general
graph topologies beyond the Erdös-Rényi graph, which is
non-trivial. The proof details can be found in Appendix A.2.

Interpretation of key terms

The upper bound in Equation (4) contains several distinct
terms, which interact with each other in non-trivial ways
and express different aspects of the intrinsic difficulty of the
estimation task.

• The factor eκE

λ2(LA) combines two sources of statistical
hardness: the maximal gap in performance κE among
the ranked items over the edge set E, and the alge-
braic connectivity λ2(LA) of the comparison graph.
It is intuitively clear that the larger the performance
gap among the compared items, the more difficult it is
to accurately estimate the model parameters. Further-
more, the smaller the algebraic connectivity, the less
connected the comparison graph is, due to the presence
of bottlenecks1. This in turn will increase the chance
of obtaining a highly erroneous ranking or of gathering
data from which a global ranking cannot be elicited at
all. The minimal and maximal degrees nmin and nmax

further quantify the impact of the connectivity of the
comparison graph.

• We note that the factor 1
λ2(LA) can be equivalently re-

placed with 1
λ2(I) (see Lemma 2 in Appendix A.2).

Here, I := ∇2ℓ0(θ
∗;y) is the Fisher information ma-

trix at θ∗ and λ2(I) its smallest non-zero eigenvalue.
The fact that the bound depends on the Fisher informa-
tion is not too surprising. This is so, since this quantity
in exponential families quantifies the curvature of the
likelihood and the intrinsic difficulty of estimating θ∗.

• Our bounds depend on both κ and κE , which is non-
standard in the literature. By definition, κE ≤ κ and
in many cases, κE can be much smaller than κ. We
discuss this further in Section 5.

• The term r := κE + log κ shows the impact of large κ
and κE . When κ ≲ n and κE ≲ log n, r is negligible.

1Here, bottlenecks can be formally described as small con-
nected subgraphs with very few edges separating dense portions
of the graph.

We will consider this parameter range throughout the
paper unless stated otherwise.

• The term
√

n
L describes explicitly the impact of a

high-dimensional parameter space on the estimation
problem in relation to L, the number of samples for
each comparison, which can be thought of as a measure
of the sample size required for each of the n parameters.
The inverse root dependence on L is to be expected
and, we conjecture, not improvable.

Remark 1. In the case of dense graphs, e.g., complete graphs,
λ2(LA) is large enough so that even L = 1 will ensure a
consistent estimator as n → ∞. But for sparse graphs,
L needs to be larger to compensate for weaker connectiv-
ity. The assumption that L ≤ n8e5κE max{1, κ} is a tech-
nical condition. There is nothing special in the exponent
for n. Any fixed number larger than 8 can be used which
will only affect the constants in the bounds. The condition
L ≤ n8e5κE max{1, κ} may seem counter-intuitive, since
it places an upper bound on the sample size. But a con-
trol over L is needed because as L gets larger, the optimal
choice of the regularization parameter ρ = cρ

1
κ

√
nmax

L
gets smaller and, accordingly, the convergence rate of the
gradient descent procedure upon which our proof is based
degrades. The optimal choice ρ = cρ

1
κ

√
nmax

L depends
on κ, which is unknown before an estimator is produced,
however, one can set ρ = cρ

√
nmax

L and the upper bound
will only change by a factor max{1, κ} in the first term of
Equation (6).

2.1 COMPARISON TO OTHER WORK

To the best of our knowledge, Yan et al. (2012); Hajek et al.
(2014); Shah et al. (2016); Negahban et al. (2017); Agarwal
et al. (2018); Hendrickx et al. (2019, 2020) are the only exist-
ing papers that study estimation error for the BTL model on
a comparison graph with general topology. Since Negahban
et al. (2017); Agarwal et al. (2018); Hendrickx et al. (2019,
2020) estimate the the preference scores w∗ rather than θ∗,
we cannot directly compare our results with theirs because
there is no tight two-sided relationship between their met-
rics of error and ours. Therefore, here we only compare our
results to those in Yan et al. (2012); Hajek et al. (2014);
Shah et al. (2016), as is summarized in Table 1. We include
the comparison to the other four papers in Appendix A.1.

ℓ∞ loss: Yan et al. (2012) establish an ℓ∞-bound depend-
ing on nij , the number of common neighbors of item i and
item j in the comparison graph, under a strong assumption
that nij ≥ cn for some constant c ∈ (0, 1). This constraint
on graph topology is stronger than ours since it requires
the graph to be dense. In particular, when the compari-
son graph comes from an Erdös-Rényi model ER(n, p),
mini,j nij ≍ np2. Then the conditions in Yan et al. (2012)
requires p to be bounded away from 0 and their bound be-

comes eκ

p

√
logn
npL , while our bound is e2κE√

p

√
logn
npL . Our



bound is tighter for moderate or small κE , and importantly,
allows p to vanish. Furthermore, in Section 5, we show by
some specific examples that mini,j nij could be 0 even for
many fairly dense graphs, to illustrate that the Yan et al.
(2012) upper bound cannot apply to many realistic settings.

ℓ2 loss: Hajek et al. (2014); Shah et al. (2016) consider
constrained MLE θ̂ := min∥θ∥∞≤B ℓ0(θ) for a known pa-
rameter B such that ∥θ∗∥∞ ≤ B. Setting aside the fact
that their results require stricter conditions than ours, our ℓ2
bound is tighter than theirs for general parameter settings
with moderate B, κ and for a broad range of graphs with
moderate λ2(LA), i.e., not too sparse or irregular.

Norm Reference Upper bound

∥ · ∥∞ Yan et al. (2012) eκ

mini,j nij

√
nmax logn

L

Our work See Theorem 1
Hajek et al. (2014) e8B |E| logn

λ2(LA)2L

∥ · ∥22 Shah et al. (2016) e8B n logn
λ2(LA)L

Our work e2κE

λ2(LA)2
nmaxn

L

Table 1: Comparison of results in literature.

We re-emphasize that Hendrickx et al. (2020) also provide
upper bounds for a general fixed comparison graph that
matches an instance-wise lower bound, for their parameter
of interest w∗ := (eθ

∗
1 , . . . , eθ

∗
n)⊤, instead of θ∗. However,

their error metric, i.e., sin(ŵ,w∗), is quite different from
other similar papers in the BTL literature, including our
work. As such, it is not clear how to compare to their results.
Furthermore, as noted in Section 1, from the perspective of
ranking, an entry-wise metric like ∥·∥∞ is more informative
than vector-level metrics like ∥ · ∥2 and sin(·, ·).

2.2 SPECIAL CASES OF GRAPH TOPOLOGIES

We can check some common types of comparison graph
topologies and see in what order the necessary sample com-
plexity Ncomp = |E|L needs to be to achieve consistency,
i.e., ∥θ̂ − θ∗∥∞ = o(1). The results are summarized in
Table 2. For path and star graphs, we used the specialized
bounds in Propositions 3 and 4. As shown in Table 2, our

Graph Ncomp
(Yan et al., 2012)

Ncomp
(Our work)

Complete Ω(n2) Ω(n2)
Bipartite N/A Ω(n2)

Path N/A ω(e2κEn2 log n)
Star N/A ω(e2κEn log n)

Barbell N/A ω(e2κEn5 log n)

Table 2: Magnitude of Ncomp to ensure ∥θ̂− θ∗∥∞ = o(1).

bound now applies to a much broader class of graph topolo-

gies under the ℓ∞-norm compared to Yan et al. (2012).
Remark 2. For the path graph, star graph, and barbell graph,
the necessary sample complexity induced by directly ap-
plying our ℓ∞ bound is larger than the sample complexity
induced by the ℓ2 bound in Shah et al. (2016), though they
require more stringent conditions than ours. Thus we pro-
vide specialized sharp upper bounds in the case of path
and star graph in Proposition 3 and 4. Additionally, in Sec-
tion 4, we illustrate that by applying a unique sub-additivity
property of ℓ∞-loss, we can achieve a much smaller sample
complexity in graphs with bottlenecks like the barbell graph.

Erdös-Rényi graph: By applying a union bound on
λ2(LA), nmax, and nmin to the sample-wise bounds in The-
orem 1, we obtain a corollary in the setting where the com-
parison graph follows the Erdös-Rényi model ER(n, p).

Corollary 2 (Erdös-Rényi graph). As a corollary to Theo-
rem 1, suppose that the comparison graph comes from an
Erdös-Rényi graph ER(n, p), then under the same condi-
tions, with probability at least 1−O(n−4), it holds that

∥θ̂ρ − θ∗∥∞ ≲ e2κE

√
log n

np2L
, ∥θ̂ρ − θ∗∥2 ≲ eκE

√
1

pL
.

The full form of Corollary 2 with a proof can be found
at the end of Appendix A.2. For the Erdös-Rényi compar-
ison graph ER(n, p), the tightest ℓ∞-norm error bound

e2κ
√

logn
npL is proved in Chen et al. (2019) and Chen et al.

(2020). Han et al. (2020) establish an ℓ∞-norm upper bound

of e2κ
√

logn
np · logn

log(np) . Negahban et al. (2017) obtain an ℓ2-

norm upper bound of e4κ logn
pL and a lower bound of e−κ 1

pL .
Thus the derived ℓ2-bound in Corollary 2 in Erdös-Rényi
case is minimax optimal.

In this case our derived ℓ∞-bound cannot achieve the rate
established in Chen et al. (2019), Chen et al. (2020), though
our ℓ2-bound exhibits the optimal rate proved in Negahban
et al. (2017). The reason why our bound does not imply
the optimal ℓ∞-rate under a Erdös-Rényi comparison graph
is that our bound is a sample-wise bound and thus cannot
leverage some regular property of Erdös-Rényi graph be-
yond algebraic connectivity and degree homogeneity that is
exhibited with high probability.

Tree graphs: For extremely sparse graphs like tree graphs,
the general upper bound in Theorem 1 is loose compared
to the lower bound in Theorem 5. Therefore, we separately
prove some sharp upper bounds for path and star graphs
as a complement to our general theory, in these frequently
studied cases. For example, single-elimination sports tourna-
ments are commonly designed as a binary tree graph. By the
spectral property of path and star graphs (see Appendix A.6),
one can verify that the upper bounds in both norms match
the ℓ∞ lower bound in Theorem 5 and the ℓ2 lower bound
in Shah et al. (2016), up to

√
log n and e2κE factors.



Proposition 3 (Path graph). Suppose the comparison graph
is a path graph ([n], E) with E = {(i, i + 1)}i∈[n−1] and
L > ce2κEn log n for some universal constant c, then with
probability at least 1− n−4, the vanilla MLE θ̂0 satisfies

∥θ̂0 − θ∗∥∞ ≲ eκE

√
n log n

L
,

∥θ̂0 − θ∗∥2 ≲ eκEn

√
log n

L
.

Proposition 4 (General tree graph). Suppose the graph is a
tree graph ([n], E) where each item i and j are compared
L times such that L > ce2κEn log n for some universal
constant c. Then with probability at least 1−n−4, the vanilla
MLE θ̂0 satisfies

∥θ̂0 − θ∗∥∞ ≲ eκE

√
D log n

L
,

∥θ̂0 − θ∗∥2 ≲ eκE

√
Dn log n

L
,

where D := maxi,j |path(i, j)| is the diameter. In particu-
lar, for star graph, the upper bound is given by D = 1.

The full form of Proposition 3 and Proposition 4 with proofs
are found in Appendix A.2. Briefly, the proofs leverage the
closed-form solution of vanilla MLE under the tree graph.

3 LOWER BOUNDS

In this section, we derive a minimax lower bound for the
ℓ∞ loss. Towards that end, we first introduce some new
notation. Let Ncomp be the total number of comparisons that
have been observed, so in our setting, Ncomp = |E|L where
|E| is number of edges in the comparison graph G. Denote
the two items involved in the i-th comparison as (i1, i2) such
that i1 < i2. Let L̃A = 1

Ncomp

∑Ncomp
i=1 (ei1−ei2)(ei1−ei2)

⊤

be the normalized graph Laplacian with pseudo inverse L̃†
A

and eigenvalues 0 = λ1(L̃A) ≤ λ2(L̃A) ≤ · · · ≤ λn(L̃A).
With the main notation in place, our minimax lower bound
is summarized in the following result.

Theorem 5. Assume that the comparison graph G is con-

nected and the sample size Ncomp ≥ c2 tr(L̃†
A)

e2κκ2 , any estima-
tor θ̃ based on Ncomp comparisons with outcomes from the
BTL model satisfies

sup
θ∗∈Θκ

E
[
∥θ̃ − θ∗∥2∞

]
≳

e−2κ

nNcomp
×

max
{
n2, max

n′∈{2,...,n}

n′∑
i=⌈0.99n′⌉

[λi(L̃A)]
−1
}

where Θκ = {θ ∈ Rn : 1⊤
n θ = 0, ∥θ∥∞ ≤ κ}.

The proof of Theorem 5 largely leverages the lower bound
construction from Theorem 2 in Shah et al. (2016). The
main modification in adapting it to our setting is to construct
an ℓ∞-packing set. This is done by utilizing the tight topo-
logical equivalence of ℓ∞ and ℓ2 norms in finite dimensions.

We can compare this lower bound with the upper bound in
Theorem 1. In our setting, the comparisons distribute evenly
over all pairs, so Ncomp = |E|L, and λi(L̃A) =

1
|E|λi(LA).

Thus, given a comparison graph with λ2(L̃A) ≍ 1
n , the

lower bound becomes

sup
θ∗∈Θκ

E
[
∥θ̃ − θ∗∥∞

]
≳ e−κ

√
n

Ncomp
(7)

In ER(n, p) case, this lower bound becomes e−κ
√

1
npL

which matches the upper bound in Chen et al. (2019). For
some “regular” graph topology with λ2(L̃A) ≍ 1

n like com-
plete graph, expander graph with ϕ = Ω(n) and complete
bipartite graph with two partition sets of size Ω(n), the
upper bound becomes

∥θ̂ρ − θ∗∥∞ ≲ e2κ

√
n log n

Ncomp
.

Therefore, when the comparison graph topology is suffi-
ciently regular, our upper bound matches the lower bound
up to a log n factor and a factor of e3κ. As a final remark,
Negahban et al. (2017) show that the minimax lower bound
for ℓ2-loss and Erdös-Rényi comparison graph ER(n, p) is
e−κ 1

pL , which matches our ℓ2 upper bound up to a factor of
e2κ.

4 IMPLICATIONS FOR TOURNAMENT
DESIGN

In this section, we discuss how our results can be leveraged
to construct more efficient tournament design from a ranking
perspective in sports leagues.

As discussed in Section 2.2, for some comparison graphs
with small λ2(LA), the requirement on L and Ncomp for
consistency is stringent. However, as we show next, we
can significantly relax the requirement on the sample com-
plexity Ncomp by adaptively varying the number pairwise
comparisons observed over different subsets of the items in
a manner that leverages different degrees of connectivity of
the comparison graphs.

The basic idea is that model parameters corresponding to
a subset of items inducing a highly connected sub-graph
require relatively few observations. On the other hand, the
outcomes of comparisons with items corresponding to nodes
of the comparison graph that are part of a “graph bottleneck”
are especially important in yielding accurate global rank-
ing and, therefore, should be more heavily sampled (in the



sense of having a larger number L of observations). The
case of a Barbell graph consisting of two complete sub-
graphs connected by few “bridge” edges (as is shown in
Figure 2) is an extreme illustration of this situation and will
be discussed below. In this case, it is clear that the param-
eters corresponding the items adjacent to the bridge edges
ought to be estimated with higher accuracy and therefore,
for those items L should be set larger. Furthermore, it is
possible to estimate the model parameters separately over
different sub-graphs and combine these estimators in a way
that could lead to an improved rate, compared to a joint or
omnibus estimator. Indeed, the next result shows that the
ℓ∞-error rate of the combined estimator is bounded by the
sum of the error rates for estimating the parameters of the
individual sub-graphs.

Formally, let I1, I2, I3 be three subsets of [n] such that
∪3
j=1Ij = [n] and, for each j ̸= k, Ij ̸⊆ Ik and for i = 1, 2,

Ii ∩ I3 ̸= ∅. Assume that the sub-graphs induced by Ij’s
are connected and the number of comparisons for all pairs
can be different across sub-graphs. Let θ∗ be the vector of
preference scores in the BTL model over n items and θ̂(j)
be the MLE of θ∗

(j) ∈ R|Ij | for the BTL model involving
only items in Ij , j = 1, 2, 3. Also define the augmented
version θ̃(j) ∈ Rn such that θ̃(j)(Ij) = θ̂(j).

Now take two nodes t1 ∈ I1 ∩ I3, t2 ∈ I2 ∩ I3, and let
δ3 = θ̃(1)(t1) − θ̃(3)(t1), δ2 = θ̃(3)(t2) − θ̃(2)(t2). An
ensemble estimator add-MLE θ̂ ∈ Rn is a vector such that
θ̂(I1) = θ̂(1), θ̂(S2) = θ̂(2)(S2) + δ3 + δ2, and θ̂(S3) =

θ̃(3)(S3) + δ3, where S2 = I2 \ I1 and S3 = I3 \ (I1 ∪ I2).
Notice that the value of θ̂ depends on the choice of t1, t2,
but the estimation error of all ensemble estimators can be
well-bounded, as is shown in Proposition 6.

Proposition 6 (Subadditivity of ℓ∞-loss in BTL). Under
the setting above, for any add-MLE θ̂ ∈ Rn based on
θ̂(1), θ̂(2), θ̂(3), it holds that

d∞(θ̂,θ∗) ≤ 4

3∑
i=1

d∞(θ̂(i),θ
∗
(i)), (8)

where d∞(v1,v2) := ∥(v1 − avg(v1)1) − (v2 −
avg(v2)1)∥∞ and avg(x) := 1

n1
⊤
nx for x ∈ Rn.

The proof of Proposition 6 is found in Appendix A.5. For
some types of graph topologies the above result can be used
to devise a divide-and-conquer strategy for estimating the
model parameters with better sample complexity than that
of an omnibus estimator, i.e., the joint-MLE in our setting.
Indeed, as discussed in Section 2.2, for a barbell graph con-
taining two size-n/2 complete sub-graphs connected by a
single edge, we need Ncomp = Ω(n5 log n) for an o(1) error
bound of the joint-MLE. From a practical perspective, we
note that such a divide and conquer strategy gives flexibility
in the number of comparisons in each sub-graph. For exam-
ple, if we set L = 1 for the two complete sub-graphs to get

MLEs θ̂1, θ̂2, and set L = n for the two items linking the
two sub-graphs to get an MLE θ̂3, and combine them by
shifting θ̂2 by the difference of two entries of θ̂3, then a total
sample complexity reduction to Ncomp = Ω(n2) will en-
sure ℓ∞-norm error of order O(e2κE

√
log n /

√
n ) = o(1),

because for a complete graph of size m, the ℓ∞-norm
error is O(e2κE

√
logm/

√
mL ). In Example 7 and Ap-

pendix A.4.1, we show some simulation results illustrating
the advantage of using subadditivity in estimation, where we
generalize the add-MLE to Island graph and Barbell graph
with multiple bridge edges that can have more than 3 dense
sub-graphs.

Note that such flexible tournament design is similar to the
idea of active ranking (Heckel et al., 2019; Ren et al., 2019),
but there is still a substantial difference between our set-
ting and active ranking. Active ranking assumes that one
can design the tournament in an online manner, so that
the next pair of items to be compared is determined by
the newest outcomes of comparisons. However, in practice
many tournaments can only be designed offline, i.e., before
any games are played. Under this common setting, our ℓ∞-
subadditivity property provides a useful offline approach to
efficient tournament design.

5 EXAMPLES AND SIMULATIONS

In this section, we conduct numerical experiments on simu-
lated data with two main goals. First, we illustrate the utility
of the subadditivity property in Proposition 6 in the case
of Island graphs (see Example 7). Second, we demonstrate
the relative tightness of our ℓ∞ upper bound compared to
Yan et al. (2012), since their work is closest in spirit to ours.
Specifically, we compare the two bounds in a setting where
analytical comparison is not directly feasible (see Exam-
ple 8). All of our reproducible code is openly accessible2.

In the BTL model, the maximal winning probability is
pmax(κ) = 1/(1 + e−κ). To get a sense, pmax(2.20) =
0.900, pmax(4.59) = 0.990. A winning probability larger
than 0.99 is fairly rare in practice, so it would not be too con-
straining to set κ = 2.2 in our simulation. But analytically
our result allows κ to diverge with n.

In our experiments, we set θ∗i = θ∗1+(i−1)δ for i > 1 with
δ = κ/(n − 1). We additionally assign θ∗1 to ensure that
1⊤
n θ

∗ = 0, for parameter identifiability. Under this setting,
for some special graphs, e.g., the Island graph in Example 7,
κE can be much smaller than κ, showing an advantage of our
upper bound in representing the dependency on the maximal
performance gap κE along the edge set, rather than κ the
whole vertex set. However, there may be some cases where
the majority of edges have small performance gaps and only
a few edges have large gaps. Here, the control in the upper
bound purely by κE can again be loose. An interesting future

2Repo: https://github.com/MountLee/btl_mle_l_inf

https://github.com/MountLee/btl_mle_l_inf


direction is to make upper bounds tighter in such cases by
including more structural parameters, like the proportion of
small-gap edges. We include some illustrative examples in
Appendix A.4.
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Figure 1: Left: Adjacency matrix of a 3-Island graph, with
yellow indicating 1 and purple indicating 0; λ2(LA) =
11.92. Right: Adjacency matrix of a general Island graph,
with nisland = 30, noverlap = 5, n = 120; λ2(LA) = 1.19.
Bottom: comparison of the error of the joint-MLE and the
add-MLE. The curve is obtained as the average of 100 trials
with one standard deviation shown by the colored area.

Example 7 (Graph with mini,j nij = 0). In this case, we
intend to illustrate that mini,j nij could be 0 or quite close
to 0 for even fairly dense graphs, making the upper bound in
Yan et al. (2012) less effective. Consider a 3-Island compar-
ison graph G with n nodes. The induced sub-graphs on node
sets V1, V2, V3 with |Vi| = ni are complete graphs, where
V1∩V3 = ∅, V1∪V2∪V3 = [n], and Vi∩V2 ̸= ∅ for i = 1, 3.
There is no edge except for those within V1, V2, V3. This
graph G is connected, and can be fairly dense if we make n2
large, but mini,j nij = 0 always holds since V1 ∩ V3 = ∅
and the two induced sub-graphs are complete. See Figure 1
left panel for a visualization of the adjacency matrix of such
a graph.

We can also consider more general Island graphs. A gen-
eral Island graph is determined by n, the size of the graph,
nisland, the size of island sub-graphs, and noverlap, the num-
ber of overlapped nodes between islands. Each island sub-
graph is a complete graph, and there is no edge outside
islands. For Island graphs, it holds that mini,j nij = 0
and κE ≈ κ · nisland/n. Figure 1 top panel shows the
adjacency matrix of two Island graphs. Figure 1 bottom
panel shows the comparison of the ℓ∞-error of the joint-
MLE and the add-MLE (see the detailed definition in Ap-

pendix A.4) while varying the difference in the average of
preference scores of each island sub-graph, where we set
nisland = 50, noverlap = 5, L = 10. Every point on the lines
is the average of 100 trials. It can be seen that the add-MLE
by the divide-and-conquer strategy largely dominates the
joint-MLE in ℓ∞-error.

In Example 7, we show a common family of graphs which is
fairly dense while mini,j nij = 0, so that the upper bound
in Yan et al. (2012) does not hold. Next in Example 8 we
consider another family of graphs where their upper bound
holds but still relatively looser than our bound.

Example 8 (Barbell graph with random bridge edges). Con-
sider a generalized Barbell graph G containing n = n1+n2
nodes, where the induced sub-graph on nodes {1, · · · , n1}
and {n1 + 1, · · · , n} are complete graphs, and the two sub-
graphs are connected by some bridge edges (i, j) for some
1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n. Denote the set of bridge
edges as El, then |El|/(n1n2) quantifies the connectivity
of G: the larger |El|/(n1n2) is, the denser or more regular
G is.
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Figure 2: Top: visualization of a Barbell graph with random
bridge edges. Bottom: The ratio of our bound and the bound
in Yan et al. (2012) under the Barbell graph with random
bridge edges and sub-graph size n1 = n2 = ns varying.
The curve is obtained as the average of 100 trials with one
standard deviation shown by the colored area.

In Figure 2 we show a comparison of the real ℓ∞-loss
∥θ̂ − θ∗∥∞, and the upper bounds of ℓ∞-error in Yan et al.
(2012) and our paper. We include this relative comparison
to numerically demonstrate that our bound is in general
tighter than Yan et al. (2012), since there is no known analyt-



ical relationship between mini,j nij and λ2(LA) for general
graphs. In our experiment, we set n1 = n2 = ns, L = 10,
and randomly link |El| = n1n2p edges between the two
complete sub-graphs, and vary ns from 50 to 1000 with
p = 3 log(ns)/ns. Every point on the line is the average of
100 trials. It can be seen that our upper bound has a faster
vanishing rate, compared to Yan et al. (2012) for this sim-
ulated scenario. This is evident as the plotted ratio of our
upper bound relative to the upper bound in Yan et al. (2012)
has a steady decreasing trend, as n increases. It should be
noted that there are leading constant factors in both upper
bounds, and for convenience we set them to be 1 for both
bounds. Thus, one should focus on the trend of the curve
rather than the magnitude of the ratio in Figure 2.

6 DISCUSSION

In this work we provide a sharp risk analysis of the MLE
for the BTL global ranking model, under a more general
graph topology, in the ℓ∞-loss. This addresses a major gap
in the BTL literature, in extending the comparison graph
to more general and thus more practical settings, compared
to dense graph setting in Yan et al. (2012). Specifically we
derive a novel upper bound for the ℓ∞ and ℓ2-loss of the
BTL-MLE, showing explicit dependence on the algebraic
connectivity of the graph, the sample complexity, and the
maximal performance gap between compared items. We
also derive lower bounds for the ℓ∞-loss and analyze spe-
cific topologies under which the MLE is nearly minimax
optimal. We also show that the ℓ∞-loss satisfies a unique
subadditivity property for the BTL MLE and utilize our
derived bounds for efficient tournament design. We note
that our upper bound is suboptimal in the cases where the
graph topology is extremely sparse or irregular. Although
we provide sharp upper bounds for path and star graphs as
separate propositions, we still miss optimality other graph
topologies. A good future direction would be to optimize the
upper and lower bounds in such comparison graph regimes.
Another promising direction is to extend this analysis to the
multi-user ranking models as in Jin et al. (2020).
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