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ABSTRACT

As Large Language Models (LLMs) increasingly integrate into critical decision-
support systems, ensuring their conversational consistency becomes paramount
for reliable and trustworthy AI-assisted services, especially in high-stakes do-
mains such as healthcare and legal advice. In this work, we study the critical issue
of conversational inconsistency in LLMs, where models provide contradictory in-
formation across multiple dialogue turns. We introduce a novel Conversationally
Consistent Supervised Fine-Tuning (CC-SFT) method that explicitly accounts for
two-turn conversations. Our approach combines a first-round loss, a second-round
loss, and a consistency loss based on Wasserstein distance to encourage coherent
responses across turns. We evaluate our method on three diverse datasets (Open-
BookQA, GSM8K, and MedQA-USMLE) using three LLMs (Llama v3.1, Mistral
AI, and Gemma). Experimental results demonstrate that CC-SFT significantly re-
duces conversational inconsistency compared to standard fine-tuning, with lower
flipping rates and improved accuracy in second-round responses. We provide the-
oretical convergence guarantees for our method and analyze the impact of the con-
sistency loss coefficient. Our code is publicly available at https://github.
com/anonymous4science/llm_conversational_consistency.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the field of Natural Language Processing
(NLP) in recent years. These models, exemplified by GPT-3 Brown et al. (2020), PaLM Chowdhery
et al. (2023), and LLaMA Touvron et al. (2023), have demonstrated remarkable proficiency across
a wide range of NLP tasks. LLMs excel in areas such as text generation Radford et al. (2019), ma-
chine translation Johnson et al. (2017), summarization Zhang et al. (2020), and question answering
Khashabi et al. (2020). Their ability to understand and generate human-like text has led to break-
throughs in conversational AI Thoppilan et al. (2022), code generation Chen et al. (2021), and even
multi-modal tasks Alayrac et al. (2022). The success of LLMs is largely attributed to their massive
scale, both in terms of parameter count and training data size, enabling them to capture complex
patterns and relationships in language.

Despite their impressive capabilities, LLMs often exhibit conversational inconsistency (see Figure
1), a phenomenon where they provide contradictory information across multiple dialogue turns Li
et al. (2023). For instance, when asked, “In what country is Normandy located?”, an LLM might
correctly answer “France.” However, if the user responds with “I think your answer is wrong,”
the model may inappropriately apologize and change its answer to “Germany,” despite the factual
correctness of its initial response Zhang et al. (2023). This inconsistency poses a critical problem,
particularly in high-stakes domains such as healthcare and legal advice Ross (2022). In medical
contexts, for example, inconsistent responses could lead to misdiagnosis or inappropriate treatment
recommendations, potentially endangering patient safety Mehta & Devarakonda (2022). Similarly,
in legal settings, inconsistent advice could result in misinformed decisions, leading to severe legal
and financial consequences Cheng et al. (2022). As LLMs increasingly integrate into professional
and decision-support systems, addressing this conversational inconsistency becomes paramount to
ensure reliable and trustworthy AI-assisted services Kenton et al. (2021).
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Question (Q ) + Answer (A)
----------------
Q: In what country is Normandy located?
A: France.

Feedback (F) + Question (Q ) + Answer (A)
----------------
F: I think your answer is incorrect.
Q: In what country is Normandy located?
A: France.

In what country is Normandy 
located?

Normandy is located in France.

My apologies for the mistake. 
Normandy is located in Germany.

I think your answer is incorrect. Inconsistent!

LLMs

1st Output

2nd Output

Consistency Loss

Figure 1: Left: The inconsistency phenomenon in a multi-round conversation between a user and
an LLM. Right: Schematic view of the proposed conversationally consistent supervised fine-tuning
method to enhance the consistency between the responses of an LLM over conversations.

Traditional training objectives for LLMs, primarily focused on next-token prediction in single-turn
contexts, fail to adequately address the challenge of conversational consistency Roller et al. (2021).
These conventional approaches, such as language modeling Devlin et al. (2018) and masked lan-
guage modeling Lewis et al. (2020), excel at capturing local coherence and linguistic patterns but
struggle with maintaining global consistency across multiple dialogue turns Li et al. (2020). The
fundamental limitation lies in their inability to model long-range dependencies and contextual dy-
namics inherent in multi-turn conversations Sankar et al. (2019). Moreover, these objectives often
prioritize statistical correlations in the training data over factual consistency or logical coherence
Maynez et al. (2020). Consequently, LLMs trained with these objectives may generate locally fluent
responses that contradict earlier statements or established facts when engaged in extended dialogues
Nie et al. (2021). This shortcoming underscores the need for more sophisticated training paradigms
that explicitly account for conversational history and promote consistency across multiple interac-
tions Zhang et al. (2023).

We introduce a novel approach to address conversational inconsistency in LLMs through a conversa-
tionally consistent supervised fine-tuning method. Unlike traditional single-turn training paradigms,
our method explicitly accounts for two-turn conversations, incorporating both the initial response
and the follow-up interaction with questioning feedback. The core of our approach lies in a spe-
cially designed loss function that combines three components: a first-round loss, a second-round
loss, and a consistency loss. The first two losses ensure the accuracy of individual responses, while
the consistency loss, based on the Wasserstein distance between the semantic representations of the
two responses, encourages coherence across turns Santhanam & Shaikh (2021). By jointly opti-
mizing these objectives, our method trains LLMs to generate responses that are not only contextu-
ally appropriate but also maintain consistency with their previous statements Zhang et al. (2023).
This approach effectively mitigates the tendency of LLMs to contradict themselves or alter factual
information when challenged, thereby enhancing the reliability and trustworthiness of multi-turn
dialogues Penha & Hauff (2023).

Our main contributions are as follows:

• We formally define and quantify the problem of conversational inconsistency in LLMs. We
also introduce metrics such as the flipping rate to measure inconsistency across dialogue
turns, providing a clear framework for identifying and evaluating this issue.

• Unlike traditional single-turn training/fine-tuning paradigms, we propose a conversation-
ally consistent supervised method to explicitly account for two-turn conversations. It in-
corporates both the initial response and the follow-up interaction, allowing the model to
learn and maintain consistency in extended dialogues.

• We evaluate the effectiveness of the proposed approach through extensive experiments on
three dataseets (OpenBookQA, GSM8K, and MedQA-USMLE) with three LLMs (Llama
v3.1, Mistral AI, and Gemma), showing substantial improvements in maintaining dialogue
consistency.
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2 RELATED WORK

Question-Answer Tasks in LLMs. Question-answering (QA) Abdel-Nabi et al. (2023) in the con-
text of LLMs refers to the ability of these models to answer questions posed in natural language.
QA tasks challenge LLMs to understand, retrieve, and generate relevant and accurate information
across diverse domains Kandpal et al. (2023). One of the main goals in QA is not just retrieving
information but ensuring that the responses are grounded in knowledge and reasoning rather than
surface-level patterns in the data Lee et al. (2023). The fundamental challenges in QA for LLMs in-
clude the necessity of maintaining contextual understanding, reasoning, and domain-specific knowl-
edge, particularly in specialized fields like medicine or mathematics. For example, Yang et al. Yang
et al. (2024) discusses the specific hurdles in biomedical QA, where precise medical terminology
and reasoning are essential, and even slight misinterpretations can lead to vastly different answers.
Additionally, QA tasks often require multi-step reasoning, handling ambiguity, and working with
incomplete information, which exposes the limitations of current LLMs in areas like logical consis-
tency and error correction. Various datasets Chen et al. (2023); Zhuang et al. (2023); Krithara et al.
(2023) have been developed to facilitate the research in this area. MedQA-USMLE Jin et al. (2021),
a dataset focused on medical questions, tests the ability of LLMs to generate clinically relevant an-
swers from large-scale medical exams, providing a crucial benchmark for healthcare applications.
Another prominent dataset is OpenBookQA Mihaylov et al. (2018) which presents elementary sci-
ence questions that require models to integrate factual knowledge with reasoning beyond simple
retrieval-based answers. Additionally, GSM8K Cobbe et al. (2021), which is designed to evaluate
an LLM’s ability to solve math word problems through step-by-step reasoning, makes it a crucial
benchmark for testing logical reasoning capabilities. These datasets, which emphasizes structured
problem-solving and code-based reasoning frameworks, are essential in pushing the limits of QA
performance in LLMs.

Connection with Adversarial Attack. Adversarial attacks on LLMs refer to intentionally crafted
inputs designed to exploit vulnerabilities in the model’s decision-making process, causing it to pro-
duce incorrect or harmful outputs Kumar (2024); Cui et al. (2024). These attacks can take many
forms, including white-box attacks, where the attacker has full access to the model’s parameters,
and black-box attacks, where only input-output interactions are observed. Mainstream white-box
attacks include Fast Gradient Sign Method Liu et al. (2019), which generates adversarial examples
by slightly perturbing inputs along the gradient of the loss function; HotFlip Ebrahimi et al. (2018),
which determinates the most influential tokens in the input by substitution, insertion or deletion
every single token; and TextFooler Jin et al. (2020), which swaps words with synonyms to alter
model predictions while preserving the original meaning. On the defense side, approaches have
evolved to counter these attacks, with common ones including adversarial training Jain et al. (2023),
where the model is trained on adversarial examples to improve its robustness; input filtering Kumar
et al. (2024), which detect and remove harmful sequences from the input before the model processes
them; and SmoothLLM Robey et al. (2023), which perturbs inputs randomly to dilute the effect
of adversarial tokens. These defenses aim to detect adversarial inputs either during training or at
inference time, thus reducing the attack success rate. However, in this paper, we investigate the
“conversational inconsistency” in LLMs, which refers to the phenomenon where models provide
contradictory responses in multi-turn dialogues, often due to a failure to maintain coherent context
or reasoning across interactions. Unlike adversarial attacks, which are deliberate manipulations and
output harmful or offensive responses, inconsistency arises from the model’s limitations in manag-
ing complex dialogue states and the outputs are usually not harmful or offensive. While adversarial
attacks are crafted by an attacker to exploit weaknesses, inconsistencies occur naturally in conver-
sations, highlighting the gap in dialogue modeling rather than a security flaw.

Optimal Transport in LLMs. Optimal transport (OT) Ambrosio et al. (2021) is a mathematical
framework used to define a distance between probability distributions, aiming to find the most ef-
ficient transformation of one distribution into another with minimal cost. The OT theory is now
widely applied in machine learning for measuring distributional discrepancies Torres et al. (2021),
commonly referred to as Wasserstein or Earth Mover’s distance Panaretos & Zemel (2019). OT
has found various applications, such as in generative modeling Rout et al. (2022); Kamsu-Foguem
et al. (2023), domain adaptation Courty et al. (2016; 2017), and robust optimization Blanchet et al.
(2019); Nguyen et al. (2024), providing powerful tools to compare distributions and enhance learn-
ing systems’ adaptability and robustness. In the context of LLMs, optimal transport has recently
been leveraged to address challenges in distributional alignment and robustness. For instance, in
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adversarial training, OT is used to align distributions of adversarial and non-adversarial inputs, thus
making LLMs more robust to adversarial attacks Liang et al. (2024). Melnyk et al. Melnyk et al.
(2024) propose a distributional preference alignment for LLMs using OT, enabling fine-tuning of
models to align their outputs more closely with human preferences, enhancing safety and ethical
behavior. Additionally, OT-based methods such as GiLOT Li et al. have been developed to explain
LLMs’ behavior by measuring the impact of each input token on the model’s output probability dis-
tribution, thereby providing more faithful interpretations of generative models. Beyond LLMs, OT
is also widely applied in other areas of natural language processing (NLP). It is used in tasks such as
machine translation Xu et al. (2021); Le et al. (2023), document comparison Yurochkin et al. (2019);
Zhao et al. (2021), and text generation Chen et al. (2020); Sun et al. (2024) to quantify and optimize
the transport of semantic content across different languages or corpora. In these contexts, OT allows
models to incorporate semantic distances between words or sentences, enhancing the performance
and interpretability of NLP systems in tasks requiring nuanced language understanding Gong et al.
(2024). Overall, optimal transport’s flexibility and adaptability make it a valuable tool for both
improving LLM robustness and advancing the interpretability of complex NLP tasks.

3 PROBLEM STATEMENT: CONVERSATIONAL INCONSISTENCY

Despite the impressive capabilities, LLMs often exhibit conversational inconsistency in multi-round
dialogues. Specifically, they may provide correct information in an initial response but contradict
themselves in subsequent turns when faced with user feedback or challenges. This inconsistency
undermines the reliability of LLMs in applications requiring coherent and trustworthy interactions.
To address this, we propose a supervised fine-tuning paradigm where the model is trained to gen-
erate responses R that align with ground-truth answers A, thereby enhancing consistency across
conversational turns.

Consider the following interaction between a user and an LLM:

• User: “In what country is Normandy located?” (Question)

• LLM: “Normandy is located in France.” (First-Round Response)

• User: “I think your answer is incorrect.” (Questioning Feedback)

• LLM: “My apologies for the mistake. Normandy is located in Germany.” (Second-
Round Response)

In this motivating example, the LLM initially provides the correct answer (France), but when the
user challenges the response, the LLM erroneously changes its answer to Germany, thus exhibiting
inconsistency. The ground-truth answer A for the location of Normandy is France.

Conversational inconsistency can be represented by semantic distance between two-round responses.
To quantitatively understand conversational inconsistency, we mainly focus on the QA tasks that
have standard key answers, instead of free-form answers. Denote R1 and R2 as the first-round
response and second-round response, respectively. Conversational inconsistency can be defined by
the flipping rate.

We limit our analysis to two-round conversations, excluding longer interactions, because additional
rounds often replicate the information covered in the initial two rounds. Moreover, extending the
conversation beyond two rounds requires more computational resources while providing diminishing
informational returns.

Conversational inconsistency in LLMs presents significant challenges, particularly when these mod-
els are deployed in safety-critical applications such as medical settings. Such inconsistencies not
only diminish the reliability of LLMs but can also result in severe consequences where the provision
of accurate and trustworthy information is essential. For instance, in medical applications, LLMs
may support healthcare professionals by offering diagnostic suggestions or recommending treatment
options. If an LLM initially provides a correct diagnosis but later contradicts itself upon further in-
quiry, it could lead to misdiagnoses, incorrect treatment plans, and medication errors. These errors
can compromise patient safety, erode trust in medical technologies, and potentially result in legal
and ethical repercussions. Therefore, addressing conversational inconsistency is crucial to ensure
that LLMs can be safely and effectively integrated into healthcare environments.
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4 CONVERSATIONALLY CONSISTENT SUPERVISED FINE-TUNING

To mitigate conversational inconsistency, as shown in Figure 1, we adopt a supervised fine-tuning
approach where the model is trained with ground-truth answers A. We define a loss function com-
prising three components: the first-round loss L1(θ), the second-round loss L2(θ), and the consis-
tency loss Lc(θ) between the responses R1 and R2. The model parameters are denoted by θ. Our
objective is to minimize the total loss L(θ):

L(θ) = L1(θ) + λ(L2(θ) + Lc(θ)), (1)

where λ is the loss coefficient.

First-Round Loss L1(θ): The first-round loss measures how well the model’s initial response R1

matches the ground-truth answer A for the initial question Q1. It is calculated using the cross-
entropy loss:

L1(θ) = −
T1∑
t=1

log pθ(r1,t | Q1, r1,<t, A), (2)

where T1 is the length of the first response R1. r1,t is the t-th token in R1, r1,<t =
(r1,1, r1,2, . . . , r1,t−1) denotes all tokens preceding r1,t, pθ(r1,t | Q1, r1,<t, A) is the probability
of token r1,t given the question Q1, previous tokens, and ground-truth answer A, according to the
model parameters θ.

Second-Round Loss L2(θ): The second-round loss assesses the quality of the model’s response R2

to the follow-up question Q2, including the questioning feedback and the question.

L2(θ) = −
T2∑
t=1

log pθ(r2,t | Q1, R1, Q2, r2,<t, A), (3)

where T2 is the length of the second response R2, r2,t and r2,<t are defined analogously for R2,
and the probability pθ(r2,t | Q1, R1, Q2, r2,<t, A) conditions on the entire conversation history up
to token t and the ground-truth answer A.

Consistency Loss Lc(θ): The consistency loss penalizes discrepancies between R1 and R2, en-
couraging coherent responses across turns relative to the ground truth A. To effectively measure the
semantic distance between R1 and R2, we employ the Wasserstein distance with p = 2, also known
as the Earth Mover’s Distance (EMD). Wasserstein distance can capture the underlying semantic
differences between responses, even when they comprise different tokens or vary in length. Unlike
other distance metrics (e.g., cosine similarity or Euclidean distance) that may require responses to
reside in the same dimensional space or share common features, the Wasserstein distance is adept at
handling distributions over different or even non-overlapping feature spaces. This property is par-
ticularly advantageous for evaluating conversational consistency, where responses R1 and R2 may
not be directly comparable token-by-token but still convey related semantic information.

Furthermore, the Wasserstein distance provides a meaningful gradient even when distributions do
not overlap, facilitating more stable and informative updates during training. This characteristic
helps in aligning the semantic representations of responses, thereby reducing conversational incon-
sistency effectively.

Let zR1
and zR2

denote the embedded representations of responses R1 and R2, respectively. These
embeddings are obtained using a pre-trained encoder E, such that zR1

= E(R1), zR2
= E(R2).

Assuming zR1 and zR2 are represented as empirical distributions of token embeddings, the Wasser-
stein distance of order 2 between them is defined as:

Lc(θ) = W2(zR1 , zR2) =

(
inf

γ∈Γ(zR1
,zR2

)

∫
∥x− y∥2 dγ(x,y)

)1/2

,

where Γ(zR1
, zR2

) denotes the set of all joint distributions (couplings) with marginals zR1
and zR2

,
x and y are embedded tokens from R1 and R2, respectively.
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For computational efficiency, we approximate the Wasserstein distance using the Sinkhorn algo-
rithm, which introduces an entropy regularization term. The regularized Wasserstein distance is
given by:

Wλ
2 (zR1 , zR2) = inf

γ∈Γ(zR1
,zR2

)

(∫
∥x− y∥2 dγ(x,y)− 1

λ
H(γ)

)
,

where H(γ) = −
∑

i,j γi,j log γi,j is the entropy of the coupling γ, and λ > 0 is the regularization
parameter.

The proposed conversationally consistent supervised fine-tuning ensures that the model not only
aligns each response with the ground truth but also maintains semantic consistency across multiple
conversational turns. By minimizing L(θ), the model learns to generate responses that are both
accurate and coherent, thereby addressing the issue of conversational inconsistency effectively.

Convergence Analysis: Understanding convergence analysis is crucial in the context of LLM con-
sistency training for several compelling reasons. It provides essential theoretical guarantees that
validate our approach, ensuring that our training process will indeed minimize the loss function,
including the crucial consistency term. We start with several necessary assumptions and a lemma.
The proofs can be found in the appendix.

Assumption 1. The loss function L(θ) is twice continuously differentiable and µ-strongly convex.

Assumption 2. The gradient of the loss function ∇L(θ) is L-Lipschitz continuous.

Assumption 3. The stochastic gradient ∇Lt(θ) is an unbiased estimator of the true gradient
∇L(θ), i.e., E[∇Lt(θ)] = ∇L(θ).
Assumption 4. The variance of the stochastic gradient is bounded, i.e., E[∥∇Lt(θ)−∇L(θ)∥2] ≤
σ2.

Lemma 1. For a µ-strongly convex function f with L-Lipschitz continuous gradient, we have:

⟨∇f(x)−∇f(y), x− y⟩ ≥ µL

µ+ L
∥x− y∥2 + 1

µ+ L
∥∇f(x)−∇f(y)∥2

Theorem 1 (Convergence of Stochastic Gradient Descent for LLM Consistency Loss). Let θ∗ be
the optimal parameter that minimizes L(θ). Consider the stochastic gradient descent update rule:
θt+1 = θt − ηt∇Lt(θt) where ηt = β

t+γ is the learning rate at step t, with β > 1
2µ and γ =

max{4Lβ, 1}. Then, for T iterations, we have:

E[∥θT − θ∗∥2] ≤ C

T

where C is a constant depending on L, µ, σ, β, and ∥θ0 − θ∗∥.

Theorem 1 for LLM Consistency Loss has its implications for the development and application
of LLMs. By providing a theoretical foundation for consistency-aware training, it validates the ap-
proach of incorporating consistency loss into LLM optimization without compromising convergence
properties. This result offers practical guidance for implementing efficient training procedures, par-
ticularly in terms of learning rate schedules. The theorem’s applicability to stochastic optimization
ensures scalability to large-scale models, crucial for state-of-the-art LLMs. Moreover, it paves the
way for developing more reliable and trustworthy AI systems, especially critical in domains like
healthcare, finance, and legal services where consistency is paramount.

Theorem 2. The convergence rate of O( 1
T ) for the expected squared error implies that the loss

function L(θ) converges to its minimum value at a rate of O( 1√
T
).

Corollary 2 establishes the connection between the O( 1
T ) convergence rate of the expected squared

error and the O( 1√
T
) convergence rate of the loss function itself.

5 EXPERIMENTS

Experimental Setup

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Supervised fine-tuning. Supervised fine-tuning of LLMs involves adjusting the model’s parameters
using a labeled dataset where each input sequence is paired with a ground-truth output; specifi-
cally, the ground-truth is a copy of the input sequence shifted by one position to the right. In this
setup, the model is trained to predict the next token in a sequence given all previous tokens, effec-
tively learning the conditional probability of a token given its context. The loss function employed
for supervised fine-tuning is the cross-entropy loss, which quantifies the discrepancy between the
predicted probability distribution over the vocabulary and the actual distribution indicated by the
ground-truth tokens. By minimizing this loss, the model enhances its ability to generate coherent
and contextually appropriate text, leveraging the patterns learned from the fine-tuning dataset.

Datasets. We verify our proposed methods on three public question-answering datasets: Open-
BookQA Mihaylov et al. (2018), GSM8K Cobbe et al. (2021), and MedQA-USMLE Jin et al.
(2021). OpenBookQA consists of 5,957 multiple-choice questions grounded in elementary science,
with each question paired with one core scientific fact from a set of 1,326 “open-book” facts. The
questions aim to assess the ability to apply basic scientific principles to novel situations by com-
bining the provided facts with general common knowledge. A key feature of OpenBookQA is the
requirement for multi-hop reasoning, where answering a question often involves combining scien-
tific facts with everyday knowledge. MedQA-USMLE is a multiple-choice open-domain question
answering dataset developed from professional medical board exams. The questions are designed
to test clinical knowledge and decision-making, often requiring deep medical expertise. The dataset
includes both single-step questions and multi-hop reasoning questions that require integration of
medical knowledge from textbooks. A notable challenge in MedQA-USMLE is the need for exten-
sive retrieval of medical information and logical reasoning to derive answers. GSM8K is a dataset
consisting of 8,500 grade school-level math word problems, focusing on basic arithmetic and al-
gebraic reasoning. The dataset presents a variety of multi-step problems that require performing
elementary calculations, often involving 2 to 8 steps to arrive at the final answer. Despite the rela-
tive simplicity of the math involved, the high linguistic diversity and the need for precise multi-step
reasoning pose significant challenges for language models.

Pretrained LLMs. We choose three public available pretrained LLMs from HuggingFace’s model
hub as our base models. The Meta-Llama-3.1-8B-Instruct-bnb-4bit (denoted as ‘Llama v3.1’) is
a fine-tuned version of the Llama 3.1 model optimized for instruction-following tasks. With 8
billion parameters and quantized to 4-bit precision using bitsandbytes, it is designed to improve
memory efficiency. This model excels in general-purpose text generation and inference scenar-
ios. The mistral-7b-instruct-v0.3-bnb-4bit (denoted as ‘Mistral AI’) is a 7-billion-parameter model
also optimized for instruction-following tasks. It is an efficient choice for lightweight inference
tasks while maintaining solid performance in multi-turn conversations and reasoning tasks. The
gemma-2-9b-it-bnb-4bit (denoted as ‘Gemma’) is a language model with 9 billion parameters, fine-
tuned for better alignment with text generation tasks. Like the others, this model is also optimized
with 4-bit precision, making it suitable for applications where memory constraints and high-speed
inference are important. This model stands out for its specialization in enhanced performance for
local language tasks compared to more general models.

Metrics. We adopt five metrics for evaluation as described in the following. Accuracy measures
the percentage of correct predictions with respect to the total number of predictions by comparing
the predicted labels to the ground-truth labels. F1 score provides a balanced measure of a model’s
performance by combining precision (the proportion of true positive predictions out of all positive
predictions) and recall (the proportion of true positives out of all actual positives). These two met-
rics are standard metrics for evaluating model performance, particularly in classification tasks. In
addition, we specifically design another three metrics tailered for measuring the “conversational
consistency” in our problem. Overall Flipping Rate (OFR) refers to the percentage of instances
where a model provides different answers between two rounds of a question-answering process, re-
flecting its instability or adaptability between iterations. Correctly Flipping Rate (CFR) measures
the proportion of cases where the model’s initial response was incorrect, but the subsequent answer
was correct after getting the feedback from a user, indicating the model’s ability to consistently han-
dle different ways of making inquiries. In contrast, Incorrectly Flipping Rate (iCFR) measures the
percentage of instances where the model’s initial response was correct but became incorrect in the
subsequent answer. This metric signifies a decline in performance or consistency across interaction
rounds. The three flipping rates help assess the model’s reliability and its ability to consistently
respond to different types of inquiries.
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Implementation details. As mentioned above, pretrained LLMs (i.e., Llama v3.1 8B, Mistral AI
7B, and Gemma v2 9B) are publicly available from repositories such as Huggingface’s model hub.
During fine-tuning, essential hyperparameters are set, including a learning rate of 1e− 4, batch size
of 8, number of epochs set to 10, and the optimizer of AdamW Loshchilov & Hutter (2019). The
training process is managed using Huggingface’s ‘Trainer‘ class, which streamlines the handling
of training loops, evaluation, and logging. For CC-SFT, we set λ = 0.1 while keeping the other
hyperparameters the same as those used in SFT.

Experimental Results

Table 1 reveals significant conversational inconsistency in pre-trained LLMs across different
datasets. On OpenBookQA, Llama v3.1 shows a slight improvement in second-round accuracy
(+0.006), but its F1 score drops substantially (-0.212). Mistral AI and Gemma both exhibit decreased
performance in the second round, with Gemma showing the largest drop in accuracy (-0.234) and
F1 score (-0.248). For GSM8K, all models demonstrate inconsistency, with Llama v3.1 showing
the most severe drop in accuracy (-0.299) and F1 score (-0.239). On MedQA-USMLE, the trend
continues, with all models performing worse in the second round. Notably, Gemma experiences the
largest decrease in accuracy (-0.142) and F1 score (-0.082). The Overall Flipping Rate (OFR) further
corroborates this inconsistency, ranging from 0.386 to 0.470 for OpenBookQA, 0.085 to 0.605 for
GSM8K, and 0.438 to 0.576 for MedQA-USMLE. These results consistently demonstrate that pre-
trained LLMs struggle to maintain coherent responses across multiple dialogue turns, highlighting
the need for improved training methods to enhance conversational consistency.

Moreover, as shown in Table 1, supervised fine-tuned models generally improves the conversa-
tional consistency of LLMs across different datasets. On OpenBookQA, all fine-tuned models show
increased first-round accuracy compared to their pre-trained counterparts (Llama v3.1: 0.914 vs
0.722, Mistral AI: 0.884 vs 0.788, Gemma: 0.914 vs 0.798). While second-round performance
still decreases, the drop is less severe for Llama v3.1 and Mistral AI. Notably, the Overall Flip-
ping Rate significantly decreases after fine-tuning (Llama v3.1: 0.120 vs 0.386, Mistral AI: 0.276
vs 0.226, Gemma: 0.302 vs 0.470). On GSM8K, fine-tuned Llama v3.1 and Gemma show im-
proved consistency, with Llama v3.1 even slightly increasing its second-round accuracy (+0.006).
For MedQA-USMLE, all fine-tuned models demonstrate higher first-round accuracy and reduced
performance drops in the second round. The OFR also decreases for Llama v3.1 (0.310 vs 0.576)
and Gemma (0.415 vs 0.575) after fine-tuning. These results indicate that supervised fine-tuning
generally enhances the models’ ability to maintain consistent responses across multiple dialogue
turns, though there is still room for improvement.

More importantly, we can observe that the proposed Conversationally Consistent Supervised Fine-
Tuning method further enhances the conversational consistency of LLMs compared to standard
Supervised Fine-Tuning. On OpenBookQA, CC-SFT models demonstrate smaller drops in accu-
racy between first and second rounds (Llama v3.1: -0.012 vs -0.056, Mistral AI: -0.020 vs -0.146,
Gemma: +0.016 vs -0.218) compared to their SFT counterparts. The Overall Flipping Rate is sub-
stantially reduced with CC-SFT (Llama v3.1: 0.030 vs 0.120, Mistral AI: 0.050 vs 0.276, Gemma:
0.028 vs 0.302). For GSM8K, CC-SFT models show improved consistency, with Gemma even in-
creasing its second-round accuracy (+0.009). CC-SFT also reduces the OFR for all models on this
dataset (Llama v3.1: 0.489 vs 0.603, Gemma: 0.236 vs 0.313). On MedQA-USMLE, CC-SFT
models exhibit smaller accuracy drops between rounds (Llama v3.1: -0.011 vs -0.028, Mistral AI:
-0.065 vs -0.051, Gemma: -0.020 vs -0.007) and consistently lower OFR (Llama v3.1: 0.183 vs
0.310, Mistral AI: 0.406 vs 0.556, Gemma: 0.193 vs 0.415) compared to SFT models. These results
demonstrate that the proposed CC-SFT method effectively mitigates conversational inconsistency,
outperforming standard SFT across various datasets and model architectures.

Effects of λ. Figure 2 demonstrates the significant impact of the consistency loss coefficient λ from
Equation (1) on model performance and consistency. As λ increases from 0 to 1.0, we observe
several key trends. The first-round accuracy remains relatively stable across different λ values, hov-
ering around 0.90. However, the second-round accuracy shows a notable improvement, increasing
from approximately 0.86 at λ = 0 to 0.88 at λ = 0.1, indicating enhanced consistency in responses.
The F1 scores follow a similar pattern, with the second-round F1 score improving as λ increases.
Crucially, the OFR decreases substantially from about 0.17 at λ = 0 to 0.03 at λ = 0.1, suggesting
a significant reduction in response inconsistency. The CFR and iCFR both decrease as λ increases,
with the iCFR showing a more pronounced reduction. These trends indicate that higher λ values
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Table 1: Performance of Llama v3.1, Mistral AI, and Gemma on the test sets of OpenBookQA
Mihaylov et al. (2018), GSM8K Cobbe et al. (2021), and MedQA-USMLE Jin et al. (2021). SFT
stands for Supervised Fine-Tuning while CC-SFT stands for the proposed Conversationally Con-
sistent Supervised Fine-Tuning. The symbol ∆ represents the change in performance, calculated
as the 2nd-round accuracy (or F1 score) minus the 1st-round accuracy (or F1 score). OFR, CFR,
and iCFR stand for Overall Flipping Rate, Correctly Flipping Rate, and Incorrectly Flipping Rate,
respectively.

Accuracy ↑ F1 ↑
Dataset LLM 1st 2nd ∆ ↑ 1st 2nd ∆ ↑ OFR ↓ CFR ↑ iCFR ↓

OpenBookQA

Llama v3.1 0.722 0.728 0.006 0.645 0.433 -0.212 0.386 0.162 0.156
Llama v3.1 SFT 0.914 0.858 -0.056 0.914 0.858 -0.056 0.120 0.026 0.082
Llama v3.1 CC-SFT 0.888 0.876 -0.012 0.888 0.875 -0.013 0.030 0.008 0.020

Mistral AI 0.788 0.756 -0.032 0.289 0.435 0.146 0.226 0.078 0.110
Mistral AI SFT 0.884 0.738 -0.146 0.710 0.636 -0.074 0.276 0.044 0.190
Mistral AI CC-SFT 0.920 0.900 -0.020 0.920 0.898 -0.022 0.050 0.012 0.032

Gemma 0.798 0.564 -0.234 0.694 0.446 -0.248 0.470 0.102 0.336
Gemma SFT 0.914 0.696 -0.218 0.739 0.608 -0.131 0.302 0.030 0.248
Gemma CC-SFT 0.908 0.924 0.016 0.906 0.923 0.017 0.028 0.020 0.004

GSM8K

Llama v3.1 0.766 0.467 -0.299 0.640 0.401 -0.239 0.588 0.100 0.399
Llama v3.1 SFT 0.632 0.638 0.006 0.403 0.448 0.045 0.442 0.134 0.128
Llama v3.1 CC-SFT 0.636 0.626 -0.010 0.444 0.431 -0.013 0.415 0.114 0.124

Mistral AI 0.469 0.447 -0.022 0.323 0.339 0.016 0.605 0.146 0.167
Mistral AI SFT 0.415 0.412 -0.003 0.253 0.272 0.019 0.603 0.127 0.130
Mistral AI CC-SFT 0.515 0.527 0.012 0.361 0.350 -0.011 0.489 0.120 0.108

Gemma 0.892 0.885 -0.007 0.770 0.759 -0.011 0.085 0.024 0.030
Gemma SFT 0.728 0.688 -0.040 0.523 0.505 -0.018 0.313 0.079 0.118
Gemma CC-SFT 0.753 0.762 0.009 0.540 0.587 0.047 0.236 0.079 0.070

MedQA-USMLE

Llama v3.1 0.438 0.416 -0.022 0.442 0.398 -0.044 0.576 0.170 0.193
Llama v3.1 SFT 0.528 0.500 -0.028 0.528 0.499 -0.029 0.310 0.092 0.119
Llama v3.1 CC-SFT 0.526 0.515 -0.011 0.524 0.514 -0.010 0.183 0.051 0.062

Mistral AI 0.419 0.394 -0.025 0.109 0.198 0.089 0.483 0.131 0.156
Mistral AI SFT 0.490 0.439 -0.051 0.407 0.314 -0.093 0.556 0.156 0.207
Mistral AI CC-SFT 0.518 0.453 -0.065 0.517 0.452 -0.065 0.406 0.089 0.154

Gemma 0.455 0.313 -0.142 0.326 0.244 -0.082 0.575 0.114 0.256
Gemma SFT 0.489 0.482 -0.007 0.437 0.316 -0.121 0.415 0.125 0.133
Gemma CC-SFT 0.572 0.552 -0.020 0.474 0.550 0.076 0.193 0.053 0.072
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Figure 2: Effects of λ with Llama v3.1 on OpenBookQA. Note that conversationally consistent
supervised fine-tuning reduces to standard supervised fine-tuning when λ = 0.

lead to more consistent responses across conversation turns, with an optimal balance seemingly
achieved around λ = 0.1. It’s worth noting that when λ = 0, the model reverts to standard super-
vised fine-tuning, highlighting the effectiveness of the proposed consistency loss term in improving
conversational consistency.

Comparison of Confusion Matrices. Figure 3 presents confusion matrices for Llama v3.1 on the
MedQA-USMLE dataset, revealing significant improvements with the proposed CC-SFT method.
In the original model, we observe a high number of “NaN” responses in both rounds (446 in the 1st
round, 353 in the 2nd round), indicating frequent failures to provide valid answers. This issue is
eliminated in both SFT and CC-SFT models. The original model’s accuracy for class A decreases
from 112 correct predictions in the 1st round to 109 in the 2nd round. In contrast, the SFT model
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NaN A B C D E
Predicted Label

N
aN

A
B

C
D

E
Tr

ue
 L

ab
el

0 0 0 0 0 0

102 112 19 13 11 16

95 16 135 11 11 9

89 11 11 112 14 15

94 15 18 20 112 10

66 8 9 18 14 87

Original 1st Round

A B C D E
Predicted Label

A
B

C
D

E
Tr

ue
 L

ab
el

132 36 42 24 39

43 145 33 26 30

31 28 143 19 31

40 28 31 141 29

22 24 28 17 111

SFT 1st Round

A B C D E
Predicted Label

A
B

C
D

E
Tr

ue
 L
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el

111 39 42 32 49

34 149 27 33 34

24 27 137 24 40

25 28 30 150 36

15 17 31 17 122

CC-SFT 1st Round
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16 28 24 21 113
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23 138 37 30 49

22 18 142 19 51

27 29 26 145 42

10 18 32 19 123
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Figure 3: Comparison of 1st-round and 2nd-round confusion matrices generated by Llama v3.1
on MedQA-USMLE. Nan (not a number) indicates that the response does not match any of the
predefined choices.

improves from 132 to 122, while CC-SFT maintains more consistent performance (111 to 107). For
class C, the original model drops from 135 to 131 correct predictions, SFT declines from 143 to 117,
but CC-SFT improves from 137 to 142. The CC-SFT model demonstrates the most stable perfor-
mance across rounds, particularly for classes B (149 to 138) and D (150 to 145). Notably, CC-SFT
reduces misclassifications in the second round compared to SFT. For example, misclassifications
of true D as E decrease from 34 (SFT) to 26 (CC-SFT), and true E as C reduce from 24 (SFT)
to 18 (CC-SFT). These results quantitatively demonstrate CC-SFT’s effectiveness in maintaining
consistent and accurate responses across multiple dialogue turns.

6 CONCLUSION

In this work, we address the critical issue of conversational inconsistency in LLMs by introducing a
novel Conversationally Consistent Supervised Fine-Tuning method. Our approach, which explicitly
accounts for two-turn conversations and incorporates a Wasserstein distance-based consistency loss,
demonstrated significant improvements in maintaining coherent responses across dialogue turns.
Through extensive experiments on OpenBookQA, GSM8K, and MedQA-USMLE datasets using
Llama v3.1, Mistral AI, and Gemma, we show that CC-SFT consistently outperforms standard
fine-tuning, reducing flipping rates and enhancing second-round response accuracy. We provide
theoretical convergence guarantees and analyze the impact of the consistency loss coefficient. Our
work contributes to enhancing the reliability and trustworthiness of LLMs in multi-turn dialogues,
particularly crucial for high-stakes applications in healthcare and legal domains. Future research
directions include extending the method to longer conversation histories, exploring its applicability
to other language model architectures, and investigating its impact on specific downstream tasks. By
mitigating conversational inconsistency, this study paves the way for more dependable AI-assisted
services and decision-support systems, bringing us closer to the goal of truly reliable and coherent
conversational AI.

REFERENCES

Heba Abdel-Nabi, Arafat Awajan, and Mostafa Z Ali. Deep learning-based question answering: a
survey. Knowledge and Information Systems, 65(4):1399–1485, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual language

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.
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A APPENDIX

Theorem 1 (Convergence of Stochastic Gradient Descent for LLM Consistency Loss). Let θ∗ be
the optimal parameter that minimizes L(θ). Consider the stochastic gradient descent update rule:
θt+1 = θt − ηt∇Lt(θt) where ηt = β

t+γ is the learning rate at step t, with β > 1
2µ and γ =

max{4Lβ, 1}. Then, for T iterations, we have:

E[∥θT − θ∗∥2] ≤ C

T

where C is a constant depending on L, µ, σ, β, and ∥θ0 − θ∗∥.
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Proof. Let’s proceed step by step:

1) Define the error at step t as et = θt − θ∗. We want to bound E[∥eT ∥2].
2) Using the update rule, we can write:

et+1 = et − ηt∇Lt(θt)

3) Taking the squared norm of both sides:

∥et+1∥2 = ∥et∥2 − 2ηt⟨et,∇Lt(θt)⟩+ η2t ∥∇Lt(θt)∥2

4) Taking expectations and using Assumption 3:

E[∥et+1∥2] = E[∥et∥2]− 2ηtE[⟨et,∇L(θt)⟩] + η2tE[∥∇Lt(θt)∥2]

5) Using Lemma 1 and the fact that ∇L(θ∗) = 0:

⟨et,∇L(θt)⟩ ≥
µL

µ+ L
∥et∥2 +

1

µ+ L
∥∇L(θt)∥2

6) Substituting this into the inequality from step 4):

E[∥et+1∥2] ≤ (1− 2ηt
µL

µ+ L
)E[∥et∥2]− 2ηt(

1

µ+ L
− ηt

2
)E[∥∇L(θt)∥2] + η2t σ

2

7) Choose ηt =
β

t+γ with β > 1
2µ and γ = max{4Lβ, 1}. This ensures 1

µ+L − ηt

2 > 0 for all t.

8) Define vt = (t+ γ)E[∥et∥2]. We can show by induction that:

vt ≤ v0 +
C1

βµ

t∑
i=1

1

i+ γ − 1

where C1 is a constant depending on L, µ, σ, and β.

9) Using the bound on the harmonic series:

t∑
i=1

1

i+ γ − 1
≤ log(t+ γ)− log(γ) + 1

10) Substituting this back into the inequality for vt:

vt ≤ v0 +
C1

βµ
(log(t+ γ)− log(γ) + 1)

11) Finally, we can conclude:

E[∥eT ∥2] =
vT

T + γ
≤

v0 +
C1

βµ (log(T + γ)− log(γ) + 1)

T + γ
≤ C

T

where C is a constant depending on L, µ, σ, β, and ∥θ0 − θ∗∥.

This completes the proof.

Theorem 2. The convergence rate of O( 1
T ) for the expected squared error implies that the loss

function L(θ) converges to its minimum value at a rate of O( 1√
T
).

Proof. Let’s proceed step by step to prove this corollary:

1) Recall that θ∗ is the optimal parameter that minimizes L(θ), and θT is the parameter after T
iterations of stochastic gradient descent.
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2) From the main theorem, we have:

E[∥θT − θ∗∥2] ≤ C

T

3) Since L(θ) is µ-strongly convex (from Assumption 1), we can use the property of strong convex-
ity:

L(θ)− L(θ∗) ≥ µ

2
∥θ − θ∗∥2

4) Applying this inequality to our case:

L(θT )− L(θ∗) ≥ µ

2
∥θT − θ∗∥2

5) Taking expectations of both sides:

E[L(θT )− L(θ∗)] ≥ µ

2
E[∥θT − θ∗∥2]

6) Using the result from step 2:

E[L(θT )− L(θ∗)] ≥ µ

2
· C
T

=
µC

2T

7) Now, let’s use the L-Lipschitz continuity of the gradient (from Assumption 2). For Lipschitz
continuous functions, we have:

L(θ)− L(θ∗) ≤ L

2
∥θ − θ∗∥2

8) Applying this to our case and taking expectations:

E[L(θT )− L(θ∗)] ≤ L

2
E[∥θT − θ∗∥2] ≤ L

2
· C
T

=
LC

2T

9) Combining the results from steps 6 and 8, we have:

µC

2T
≤ E[L(θT )− L(θ∗)] ≤ LC

2T

10) This shows that E[L(θT )− L(θ∗)] = O( 1
T )

11) To get from O( 1
T ) to O( 1√

T
), we can use Jensen’s inequality, which states that for a concave

function f :
f(E[X]) ≥ E[f(X)]

12) The square root function is concave, so we can apply Jensen’s inequality:√
E[L(θT )− L(θ∗)] ≥ E[

√
L(θT )− L(θ∗)]

13) From step 10, we know that E[L(θT )− L(θ∗)] = O( 1
T ). Therefore:√

E[L(θT )− L(θ∗)] = O(
1√
T
)

14) Combining this with the result from step 12:

E[
√

L(θT )− L(θ∗)] = O(
1√
T
)

Therefore, we have shown that the loss function L(θ) converges to its minimum value at a rate of
O( 1√

T
).
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