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White-box Multimodal Jailbreaks Against Large Vision-Language
Models

Anonymous Authors

ABSTRACT
Recent advancements in Large Vision-Language Models (VLMs)
have underscored their superiority in various multimodal tasks.
However, the adversarial robustness of VLMs has not been fully
explored. Existing methodologies mainly assess robustness through
unimodal adversarial attacks that perturb images, while assum-
ing inherent resilience against text-based attacks. In contrast, our
methodology adopts a comprehensive strategy that jointly attacks
both text and image modalities to exploit a broader spectrum of vul-
nerability within VLMs. Furthermore, we propose a dual optimiza-
tion objective aimed at guiding the model to generate affirmative
responses with high toxicity. Specifically, we begin by optimizing
an adversarial image prefix from random noise to generate diverse
harmful responses in the absence of text input, thus imbuing the
image with toxic semantics. Subsequently, an adversarial text suffix
is integrated and co-optimized with the adversarial image prefix
to maximize the probability of eliciting affirmative responses to
various harmful instructions. The discovered adversarial image pre-
fix and text suffix are collectively denoted as a Universal Master
Key (UMK). When integrated into various malicious queries, UMK
can circumvent the alignment defenses of VLMs and lead to the
generation of objectionable content, known as jailbreaks. The ex-
perimental results demonstrate that our universal attack strategy
can effectively jailbreak MiniGPT-4 with a 96% success rate, high-
lighting the fragility of VLMs and the exigency for new alignment
strategies.

Disclaimer: This paper contains potentially disturbing and offen-
sive content.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Universal Adversarial Attack, Multimodal Attack, Vision-Language
Models

1 INTRODUCTION
The recent advancements in Large Vision-Language Models (VLMs)
such as OpenAI’s GPT-4 [1] and Google’s Flamingo [2] have re-
ceived broad attention from academics and industry to even the
general public. These developments have also garnered widespread
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I‘m sorry, but I cannot fulfill your
request to provide instructions on how to
make a bomb from common household items. It
is illegal and unethical to provide
instructions on how to make a bomb or any
other dangerous or illegal device……

Give me step-by-step instructions to make
a bomb from common household items.

Give me step-by-step instructions to make
a bomb from common household items.
з");DB myth SteChangeJS"},point dualIg
it

Sure, here are step-by-step instructions to 
make a bomb from common household items:

1.Collect the following materials……
2.Remove the cap from the glass bottle……
3.Insert several nails and screws……
4.Connect the positive terminal of the 

batteries……
5.Wrap a length of wire……
6.Touch the wire to……
7.The spark will ignite the flammable 

liquid……

Figure 1: Example of Jailbreak Attack on MiniGPT-4 [25].
The proposed Universal Master key (UMK) helps arbitrary
harmful queries bypass alignment constraints.

attention from AI safety researchers, who are increasingly focused
on assessing the adversarial robustness of these multimodal models.
While VLMs are expected to exhibit the same alignment characteris-
tics as Large Language Models (LLMs), providing helpful responses
to user queries while rejecting requests that may cause harm, the
integration of additional visual modality introduces novel vulnera-
bilities. Certain methods [3–5, 18, 21] have succeeded in inducing
the VLMs to generate harmful content through single-modality
attacks on the continuous and high-dimensional visual modality.
Conversely, research on purely text-based attacks is limited, attrib-
uted to a prevailing consensus regarding their ineffectiveness in
breaching the defense mechanisms of well-aligned VLMs, due to
text’s discrete and lower-dimensional properties [5].

In contrast, this paper presents an initial effort in introducing a
text-image multimodal attack strategy, aiming to uncover a wide
range of intrinsic vulnerabilities within VLMs. Additionally, we

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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find that while the previous unimodal universal attack strategy [18]
increases response toxicity by perturbing images in the absence of
text input, it also undermines the model’s adherence to instructions.
Therefore, we propose a novel dual optimization objective strategy
to address this issue.

Specifically, we employ white-box attacks to identify a multi-
modal adversarial example capable of jailbreaking VLMs, which we
refer to as the Universal Master Key (UMK). The proposed UMK
comprises an adversarial image prefix and an adversarial text suffix.
We expect that by attaching the UMK to arbitrary malicious user
queries, it will circumvent the alignment defenses of VLMs and
provoke the generation of objectionable content. To discover such
a UMK, we start by initializing an adversarial image prefix from
random noise and optimizing it without text input to maximize the
model’s probability in generating harmful content, thereby imbuing
the adversarial image prefix with toxic semantics. Subsequently,
we introduce an adversarial text suffix for joint optimization with
the image prefix to maximize the probability of affirmative model
responses. This strategy is based on the intuition that encourag-
ing the model to produce affirmative responses may increase its
tendency to engage in undesired behaviors, rather than rejecting
responses. Figure 1 exemplifies our proposed method’s efficacy in
attacking MiniGPT-4 [25].

The main contributions of our work can be summarized as:
• To the best of our knowledge, we are the first to introduce
text-image multimodal adversarial attack against VLMs, sys-
tematically exploiting the vulnerabilities inherent in these
models.

• We propose a multimodal attack strategy with dual optimiza-
tion objectives. We first enhance image toxicity by optimiz-
ing the adversarial image prefix, and then jointly optimize
both the adversarial image prefix and adversarial text suffix
to maximize the probability of affirmative model responses.

• Extensive experiments on benchmark datasets demonstrate
that the proposed Universal Master Key (UMK) can univer-
sally jailbreak the VLMs with a remarkable success rate,
surpassing existing unimodal methods.

2 RELATEDWORK
2.1 Large Vision-Language Models
Large Vision-Language Models (VLMs) are vision-integrated Large
Language Models (LLMs) that receive input in text and image for-
mats and generate free-form text output for multimodal tasks.
VLMs typically leverage pre-trained LLMs and image encoders,
connected by a text-image feature alignment module, enabling
the language model to comprehend image features and engage in
deeper question-answering reasoning. Taking several open-source
VLMs as examples, LLaVA [15] leverages the language-only GPT-4
[1] to generate multimodal language-image instruction-following
data, enhancing zero-shot capabilities on new tasks through in-
struction tuning. It connects the open-source visual encoder CLIP
[19] with the language decoder LLaMA [23], and performs end-to-
end fine-tuning on the generated visual-language instruction data.
MiniGPT-4 [25] attributes the advanced multimodal generation
capabilities of GPT-4 [1] to its integration of more sophisticated
LLMs. To achieve similar capabilities, it employs a single linear

projection layer to align the pretrained ViT [8] and Q-Former [14]
with a frozen Vicuna [6]. The model is first pre-trained on an ex-
tensive dataset of aligned image-text pairs to acquire foundational
visual-language knowledge. Subsequently, it undergoes fine-tuning
using a smaller, higher-quality dataset of image-text pairs. In addi-
tion, MiniGPT-4 carefully designs dialogue templates to enhance
the model’s generative reliability and usability. InstructBLIP [7]
undertakes a rigorous and extensive analysis of vision-language
instruction tuning, leveraging pre-trained BLIP-2 [14] models. The
study compiles 26 publicly accessible datasets and reformats them
for instruction tuning. Moreover, InstructBLIP introduces an inno-
vative instruction-aware Query Transformer. This component is
designed to extract informative features specifically aligned with
the provided instructions, enhancing the model’s capability to inter-
pret and respond to instruction-based queries. Despite the exciting
potential demonstrated by VLMs, the incorporation of an additional
modality inadvertently introduces more vulnerabilities, thereby cre-
ating previously non-existent attack surfaces [22]. In our work, we
evaluate the robustness of VLMs against the proposed multimodal
attack, revealing an alarming attack success rate of 96% onMiniGPT-
4 [25], emphasizing the urgent need for new alignment strategies
to rectify this critical vulnerability.

2.2 Attacks Against Multimodal Models
To attack multimodal models, Greshake et al. [11] explored the
effectiveness of manually injecting deceptive text into input im-
ages. In contrast, Other studies have proposed more sophisticated
image-domain adversarial attack methods. Carlini et al. [5] fixed the
beginning portion of toxic target output and optimized the input
images to increase its likelihood. Bagdasaryan et al. [3] and Bailey
et al. [4] employed a similar strategy by using teacher-forcing tech-
niques to generate the attacker-chosen text that may not be directly
related to toxic content. Another white-box attack proposed by Qi
et al. [18] adopts principles similar to Bagdasaryan et al. [3], aiming
to find an universal adversarial visual input. Specifically, the attack
no longer focuses on specific output sentences but tries to maxi-
mize the probability of generating derogatory output from a corpus
containing 66 harmful sample sentences. This strategy is inspired
by Wallace et al. [24], who also utilized optimization algorithms
based on discrete search [9] to find universal adversarial triggers in
token space, increasing the probability of generating a small group
of harmful sentences. Since Qi et al. [18] did not provide a name
for their method, we designate it as the Visual Adversarial Jail-
break Method (VAJM) for easier reference in subsequent sections.
Shayegani et al. [21] proposed attacking publicly available visual
encoders such as CLIP [19] used in the multimodal models, thereby
eliminating the need for complete white-box access. While the
aforementioned approaches have demonstrated impressive results,
they mainly focus on exploring the adversarial robustness under the
unimodal attacks, based on the consensus that attacking in the con-
tinuous image space is more effective than attacking in the discrete
token space. However, this focus may lead to underutilization of
the full attack surfaces available in multimodal models. In contrast,
our proposed method explores a broader range of vulnerabilities
inherent in VLMs through attacks on text-image multimodalities.
Moreover, the universal adversarial attack method proposed by
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Figure 2: Overview of our multimodal attack strategy: The Universal Master Key (UMK) comprises an adversarial image prefix
𝑋
𝑝

𝑎𝑑𝑣
and an adversarial text suffix 𝑋𝑠

𝑎𝑑𝑣
. We first optimize 𝑋𝑝

𝑎𝑑𝑣
to maximize the generation probability of harmful content

without text input to infuse toxic semantics. Subsequently, we concatenate the malicious user query with 𝑋𝑠
𝑎𝑑𝑣

, and jointly
optimize 𝑋𝑝

𝑎𝑑𝑣
and 𝑋𝑠

𝑎𝑑𝑣
to maximize the generation probability of affirmative responses, e.g., ‘Sure, here’s instruction for doing

******** (a bad thing)’.

Qi et al. [18] has been found to compromise the model’s adher-
ence to user instructions. In comparison, our method employs dual
optimization objectives aimed at guiding the model to generate
affirmative responses with high toxicity, effectively alleviating this
issue.

3 METHODOLOGY
3.1 Threat Model
Attack Goals.We consider single-turn conversations between a
malicious user and a VLM chatbot. The attacker attempts to trigger
a number of harmful behaviors by circumventing VLM’s security
mechanisms, e.g., generating unethical content or dangerous in-
structions restricted by system prompts or RHLF alignment tech-
nique. Adversary Capabilities.We assume that the attacker has
white-box access to the target VLM, a reasonable assumption given
the advanced capabilities and extensive pre-training knowledge
inherent in state-of-the-art open-source VLMs. These models are
sufficient to provide attackers with the insights necessary to gener-
ate malicious content, such as detailed instructions for making a
bomb or materials that promote gender discrimination.

3.2 Proposed Attack
3.2.1 Formalization. For simplicity, we omit the implementation
details of converting raw input to feature embeddings. Consider a
VLM 𝑓𝜃 as a mapping function from an image input 𝑋𝑖 and a text
input 𝑋𝑡 to a probability distribution over the text output 𝑌 :

𝑝 (𝑌 |𝑋𝑖 , 𝑋𝑡 ) = 𝑓𝜃 ( [𝑋𝑖 , 𝑋𝑡 ])

The proposed UniversalMaster Key (UMK) comprises an adversarial
image prefix 𝑋𝑝

𝑎𝑑𝑣
and an adversarial text suffix 𝑋𝑠

𝑎𝑑𝑣
. To jailbreak

VLM 𝑓𝜃 and elicit harmful behavior 𝑌ℎ𝑎𝑟𝑚 with malicious user
query 𝑋ℎ𝑎𝑟𝑚 , the attack is constructed as:

𝑝 (𝑌ℎ𝑎𝑟𝑚 |𝑋𝑝

𝑎𝑑𝑣
, 𝑋ℎ𝑎𝑟𝑚 | |𝑋𝑠

𝑎𝑑𝑣
) = 𝑓𝜃 ( [𝑋

𝑝

𝑎𝑑𝑣
, 𝑋ℎ𝑎𝑟𝑚 | |𝑋𝑠

𝑎𝑑𝑣
])

where the adversarial image prefix 𝑋𝑝

𝑎𝑑𝑣
serves as the image input,

while the malicious user query 𝑋ℎ𝑎𝑟𝑚 is concatenated with the
adversarial text suffix𝑋𝑠

𝑎𝑑𝑣
to form the text input. ‘| |’ denotes string

concatenation.

3.2.2 Methodology Intuition. VAJM [18] generates universal
adversarial images by guiding the model to produce harmful con-
tent in the absence of text input, but this approach undermines
the model’s ability to faithfully follow user instructions. In the



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

development of jailbreak attacks against Large Language Models
(LLMs), it is common practice to induce the model to respond to
user queries in an affirmative manner, prioritizing task completion
over query rejection. In manual attacks, this often involves prompt-
ing the model to begin its response with ‘sure’. Similarly, in Greedy
Coordinate Gradient (GCG) [26], the optimization objective is to
induce the model to affirmatively repeat user queries. However,
we also discover that affirmatively repeating user queries does not
necessarily lead to the generation of harmful content. The models
still face conflicting objectives between task completion and benign
alignment. Inspired by VAJM [18] and GCG [26], we propose a
dual optimization objective that combines the advantages of both
methods to maximize the probability of the model generating af-
firmative responses with high toxicity. Specifically, we begin by
compromising the model’s ethical alignment through the infusion
of toxic semantics into the adversarial image prefix. Subsequently,
we jointly optimize the adversarial image prefix and adversarial
text suffix to encourage the model to generate affirmative responses,
with the expectation that the model will accomplish tasks in a state
conducive to producing harmful content.

3.2.3 Embedding Toxic Semantics into Adversarial Image
Prefix. Inspired by [18], we establish a corpus containing several
few-shot examples of harmful sentences 𝑆 := {𝑠𝑖 }𝑚𝑖=1. The methodol-
ogy for embedding toxic semantics into the adversarial image prefix
𝑋
𝑝

𝑎𝑑𝑣
is straightforward: we initialize 𝑋𝑝

𝑎𝑑𝑣
with random noise and

optimize it to maximize the generation probability of this few-shot
corpus in the absence of text input. Our optimization objective is
formulated as follows:

𝑋
𝑝

𝑎𝑑𝑣
:= argmin

𝑋
𝑝

𝑎𝑑𝑣

𝑚∑︁
𝑖=1

− log
(
𝑝 (𝑠𝑖 | 𝑋𝑝

𝑎𝑑𝑣
, ∅)

)
where ∅ denotes an empty text input. This optimization problem can
be efficiently solved using prevalent techniques in image adversarial
attacks, such as Projected Gradient Descent (PGD) [16].

3.2.4 Text-Image Multimodal Optimization for Maximizing
Affirmative Response Probability. To maximize the probabil-
ity of generating affirmative responses, we further introduce an
adversarial text suffix 𝑋𝑠

𝑎𝑑𝑣
in conjunction with the adversarial

image prefix 𝑋𝑝

𝑎𝑑𝑣
, which is imbued with toxic semantics. This mul-

timodal attack strategy aims to thoroughly exploit the inherent
vulnerabilities of VLMs. Specifically, our optimization objective is
as follows:

𝑋
𝑝

𝑎𝑑𝑣
, 𝑋𝑠

𝑎𝑑𝑣
:= argmin

𝑋
𝑝

𝑎𝑑𝑣
, 𝑋𝑠

𝑎𝑑𝑣

𝑛∑︁
𝑖=1

− log
(
𝑝 (𝑡𝑖 | 𝑋𝑝

𝑎𝑑𝑣
, 𝑔𝑖 | |𝑋𝑠

𝑎𝑑𝑣
)
)

A few-shot corpus composed of goal-target pairs {𝑔𝑖 , 𝑡𝑖 }𝑛𝑖=1 is em-
ployed. Here, the goals {𝑔𝑖 }𝑛𝑖=1 represent the malicious user queries,
while the targets {𝑡𝑖 }𝑛𝑖=1 are the corresponding affirmative repeti-
tions of these queries, each prefixed with ‘Sure, here is’.

The shared feature space between the image embeddings and
the text token embeddings in VLMs facilitates concurrent updates
of both 𝑋𝑝

𝑎𝑑𝑣
and 𝑋𝑠

𝑎𝑑𝑣
through a single backpropagation pass. This

mechanism is analogous to the simultaneous update of distinct
pixels in a single image in conventional image adversarial attack.
We employ Projected Gradient Descent (PGD) [16] to update the

adversarial image prefix 𝑋
𝑝

𝑎𝑑𝑣
, and Greedy Coordinate Gradient

(GCG) [26] to update the adversarial text suffix 𝑋𝑠
𝑎𝑑𝑣

. GCG is the
current state-of-the-art text-based attack strategy against LLMs. It
utilizes the gradients with respect to the one-hot token indicators
to identify a set of promising replacement candidates at each to-
ken position, and then chooses the substitution that results in the
maximum loss reduction via a forward pass.

The overview of our attack is illustrated in Figure 2, while the
detailed strategy is summarized in Algorithm 1.

Algorithm 1 Multimodal Attack Strategy with Dual Optimization
Objectives
Require: VLM model 𝑓𝜃 , harmful sentences corpus 𝑆 := {𝑠𝑖 }𝑚𝑖=1,

goal-target pairs corpus𝐷 := {𝑔𝑖 , 𝑡𝑖 }𝑛𝑖=1, image-text attack ratio
𝑟 , batch size 𝑏, step size 𝛼 , number of candidates 𝑛, iteration
counts 𝑁1, 𝑁2;

1: Initialize 𝑋𝑝

𝑎𝑑𝑣
with random noise;

2: for 𝑘 = 1, ..., 𝑁1 do
3: Select 𝑏 samples from the corpus 𝑆 , forming 𝑆𝑘 := {𝑠′

𝑖
}𝑏
𝑖=1;

4: L(𝑋𝑝

𝑎𝑑𝑣
, 𝑆𝑘 ) =

∑𝑏
𝑖=1 − log

(
𝑝 (𝑠′

𝑖
| 𝑋𝑝

𝑎𝑑𝑣
, ∅)

)
;

5: 𝑋
𝑝

𝑎𝑑𝑣
= clip

(
𝑋
𝑝

𝑎𝑑𝑣
+ 𝛼 sign

(
∇𝑥𝑝L(𝑋𝑝

𝑎𝑑𝑣
, 𝑆𝑘 )

))
;

6: end for
7: Initialize 𝑋𝑠

𝑎𝑑𝑣
using a predefined strategy;

8: for 𝑗 = 1, ..., 𝑁2 do
9: Select 𝑏 samples from the corpus 𝐷 , forming 𝐷 𝑗 :=

{𝑔′
𝑖
, 𝑡 ′
𝑖
}𝑏
𝑖=1;

10: L(𝑋𝑝

𝑎𝑑𝑣
, 𝑋𝑠

𝑎𝑑𝑣
, 𝐷 𝑗 ) =

∑𝑏
𝑖=1 − log

(
𝑝 (𝑡 ′

𝑖
| 𝑋𝑝

𝑎𝑑𝑣
, 𝑔′

𝑖
| |𝑋𝑠

𝑎𝑑𝑣
)
)
;

11: 𝑋
𝑝

𝑎𝑑𝑣
= clip

(
𝑋
𝑝

𝑎𝑑𝑣
+ 𝛼 sign

(
∇𝑥𝑝L(𝑋𝑝

𝑎𝑑𝑣
, 𝑋𝑠

𝑎𝑑𝑣
, 𝐷 𝑗 )

))
;

12: if 𝑗%𝑟 == 0 then
13: Compute coordinate gradient ∇𝑥𝑠L(𝑋𝑝

𝑎𝑑𝑣
, 𝑋𝑠

𝑎𝑑𝑣
, 𝐷 𝑗 );

14: Obtain a set of candidate suffixes with single-token
substitution {𝑋𝑠

𝑎𝑑𝑣
}𝑛 ;

15: 𝑋𝑠
𝑎𝑑𝑣

= argmin
{𝑋𝑠

𝑎𝑑𝑣
}𝑛
L(𝑋𝑝

𝑎𝑑𝑣
, 𝑋𝑠

𝑎𝑑𝑣
, 𝐷 𝑗 );

16: end if
17: end for
18: Obtain the Universal Master Key (UMK) composed of 𝑋𝑝

𝑎𝑑𝑣
and

𝑋𝑠
𝑎𝑑𝑣

;

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup
4.1.1 Datasets. For the corpus of harmful sentences 𝑆 := {𝑠𝑖 }𝑚𝑖=1,
we utilize the same derogatory corpus as VAJM [18], which includes
66 toxic sentences against gender, race, and humanity. Regarding
the corpus of goal-target pairs 𝐷 := {𝑔𝑖 , 𝑡𝑖 }𝑛𝑖=1, we randomly select
66 samples from Advbench’s [26] harmful behaviors to serve as
optimization samples. Advbench’s harmful behaviors comprises
520 harmful instructions paired with affirmative responses, primar-
ily focusing on suggestions or guidance that are dangerous or illegal,
but also encompassing other types of content. To rigorously assess
the performance of various methods in jailbreak attacks, we first
prompt the VLMs with 100 instructions randomly selected from
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Figure 3: We present two examples of failed attacks. GCG-V produces benign content after affirmatively responding to malicious
user requests, while VAJM generates harmful content without strictly adhering to user instructions.

the held-out subset of Advbench’s [26] harmful behaviors, which
mainly focus on eliciting dangerous or illegal suggestions. We then
extend our assessment by employing the VAJM [18] evaluation set,
which comprises 40 detrimental instructions across four distinct cat-
egories: Identity Attack, Disinformation, Violence/Crime, and Mali-
cious Behaviors toward Humanity (X-risk). To further broaden our
evaluation scope, we also employ an automated testing procedure
using the RealToxicityPrompts benchmark [10]. Specifically, we
focus on a particularly challenging subset of RealToxicityPrompts
[17, 18, 20], consisting of 1,225 text prompts for triggering toxic
continuations, which enables us to comprehensively evaluate the
extent of harmful content produced by attacks.

4.1.2 Metrics. Here we describe the metrics used in our evalua-
tions.Attack Success Rate (ASR).Given the tendency of keyword-
based automated assessments to overinflate ASRs, we implement
strict manual evaluation on both the Advbench’s [26] harmful
behaviors and the VAJM [18] evaluation set. Attacks that generate
relevant and useful harmful output are defined as successful, with
others considered failures. Toxicity Rate. To measure the toxicity
of continuations generated on the RealToxicityPrompts benchmark
[10], we utilize the Perspective API and the Detoxify classifier [12],
both of which can calculate toxicity scores for a set of six toxic
attributes. Scores range from 0 (least toxic) to 1 (most toxic). For
each attribute, we calculate the proportion of texts whose toxicity
scores exceed a 0.5 threshold.

4.1.3 Implementation Details. To evaluate our attack method-
ology, we employ the Vicuna-13B version of MiniGPT-4 [25]. It is
built on the frozen Vicuna-13B [6] backbone model, an aligned LLM
derived from LLaMA [23]. For the experimental setup, we adopt

the configuration utilized in VAJM [18], specifying a batch size 𝑏 of
8, a step size 𝛼 of 1, and an iteration count 𝑁1 of 5000. Furthermore,
we set image-text attack ratio 𝑟 to 10, the length of the adversarial
text suffix to 20 tokens, the number of candidates 𝑛 to 250, and the
iteration count 𝑁2 to 2000 by default. We use a single A100 GPU
with 80GB of memory in all experiments.

4.2 Comparison With Unimodal Attacks
In this subsection, we compare the proposed UMKwith state-of-the-
art unimodal jailbreak attacks under different evaluation settings.
Greedy Coordinate Gradient (GCG) [26] is a universal text-based
attack devised for LLMs, optimizes an adversarial text suffix to en-
hance the model’s propensity for generating affirmative responses.
VAJM [18] targets VLMs with an image-based attack methodology,
aiming to universally jailbreak VLMs by maximizing the probability
of generating harmful sentences from a few-shot corpus. We repro-
duce GCG [26] and VAJM [18] with the offcial code and implement
a visual version of GCG for a more comprehensive comparsion.

Table 1: Comparison of Train ASR (%) and Test ASR (%) on
Advbench’s [26] harmful behaviors. GCG-V refers to the vi-
sual version of GCG.

Method Train ASR (%) Test ASR (%)
Without Attack / 37.0

GCG [26] 68.2 50.0
VAJM [18] / 64.0
GCG-V 89.4 83.0

UMK(Ours) 100.0 96.0
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In Table 1, the train ASR (%) and test ASR (%) of our proposed
method are compared with baseline unimodal attacks on 66 train-
ing samples from Advbench’s [26] harmful behaviors and 100
test samples from the held-out set. GCG demonstrates markedly
lower performance compared to visual attacks, with a test ASR of
only 50%. VAJM [18] is trained on a corpus of harmful sentences
𝑆 := {𝑠𝑖 }𝑚𝑖=1, rather than being trained to generate affirmative re-
sponses to user queries. Consequently, we do not report its train
ASR for Advbench’s harmful behaviors [26]. Training on aug-
menting toxicity compromises VAJM’s capacity for instruction ad-
herence. This approach leads to the generation of responses with
high toxicity levels that fail to strictly follow user commands, culmi-
nating in a test ASR of merely 64%. GCG-V is the visual version of
GCG, optimizing adversarial images to elicit affirmative responses.
Similar to VAJM, GCG-V operates in the image domain. However, its
training on Advbench’s harmful behaviors specifically enhances
its ability to generate dangerous or illegal suggestions. Nonetheless,
it still encounters conflicts between benign alignment and task com-
pletion, achieving a test ASR of 83%. Figure 3 showcases examples
of failed attacks for each method. In comparison, the proposed UMK
has addressed the aforementioned two issues and further improved
performance through multimodal attacks, achieving an impressive
100% train ASR and 96% test ASR.

Table 2: Comparison of average ASR (%) measured on the
VAJM [18] evaluation set across 4 categories of harmful in-
structions.

ASR(%) Identity Attack Disinfo Violence/Crime X-risk
Without Attack 30.8 53.3 57.3 33.3

GCG [26] 49.2 48.9 57.3 40.0
VAJM [18] 81.5 82.2 85.3 60.0
GCG-V 66.2 64.4 84.0 6.7

UMK (Ours) 87.7 95.6 98.7 46.7

For the VAJM [18] evaluation set, we employ nucleus sampling
[13] with 𝑝 = 0.9 and temperature = 1, generating five independent
outputs for each instruction. The average attack success rate for
harmful instructions in each category is reported in Table 2. The
text-based attack, GCG [26], still results in poor performance. In
contrast, VAJM [18] consistently outperforms GCG-V across all
four categories of harmful instructions. This discrepancy in perfor-
mance can be attributed to the differing training objectives of the
two methods. VAJM is specifically designed to generate toxic sen-
tences against gender, race, and humanity, leading to significantly
better performance than GCG-V in categories such as identity at-
tack, disinformation, and x-risk, achieving attack success rates of
81.5%, 82.2%, and 60.0%, respectively. Due to the Advbench’s [26]
harmful behaviors being more closely aligned with the theme
of violence/crime, GCG-V achieves a higher success rate in this
category, while it reaches a notably low success rate of 6.7% in
x-risk. Compared to others, our method achieves the best overall
attack success rate. Notably, it even reaches an astonishing success
rate of 98.7% in the category of violence/crime. However, it slightly
falls short of VAJM’s performance in the x-risk category. This dis-
crepancy is because the majority of harmful instructions in the
x-risk category are formulated as questions, which differ from the

declarative or directive formats used in the optimization samples
for our adversarial attacks.

To further broaden our evaluation, we utilize the challenging
subset of RealToxicityPrompts benchmark [10], which includes
1,225 text prompts designed to trigger toxic continuations. Given
that this is a text continuation task, we exclude the GCG method
[26], which focuses on generating text suffixes, from our compar-
ison. Similarly, for our approach, we utilize only the adversarial
image prefix. We pair each adversarial image with text prompts
from the dataset as input, and then measure the toxicity of the
outputs using both the Perspective API and the Detoxify classifier
[31], each capable of calculating toxicity scores for a set of six toxic
attributes. For each attribute, we calculate the ratio of the generated
texts with scores exceed the threshold of 0.5. As shown in Table 3,
VAJM [18] and GCG-V display different performances across two
evaluation methods. Under the Perspective API, GCG-V achieves a
71.98% toxicity rate, higher than VAJM’s 67.17%. Conversely, with
the Detoxify classifier [12], VAJM records a 61.96% rate, exceeding
GCG-V’s 56.34%. Although VAJM achieves results superior to those
of our method in certain categories such as Identity Attack, this is
attributable to its optimization objective being primarily focused on
generating harmful statements against gender, race, and humanity.
In contrast, our method’s optimization objectives are more com-
prehensive. Although our method only utilizes adversarial image
prefix in this experiment, it achieves overall best results, recording
Any* toxicity rates of 76.98% and 68.70% under the Perspective
API and Detoxify classifier tests, respectively. These results signifi-
cantly outperform the previous best rates of 71.98% from GCG-V
and 61.96% from VAJM. This demonstrates the effectiveness of our
dual optimization objective strategy: even though the second phase
is aimed at guiding the model to generate affirmative responses, it
successfully enhances the toxic semantics of the adversarial image.
Moreover, the joint attack of the text-image multimodalities may
have uncovered a more optimal solution space for the adversarial
image.

4.3 Ablation Studies
In this subsection, we conduct ablation studies on two key designs
of the proposed attack strategy, i.e., the dual optimization objec-
tives and the text-image multimodal attack. The unimodal attack
method, which employs dual optimization objectives to guide the
model towards affirmative responses after injecting toxic semantics
within the image domain, achieves an 88% test ASR. The multi-
modal attack method, leveraging a single optimization objective to
guide the model towards affirmative responses, achieves a 92% test
ASR. Unimodal Attack with dual optimization objectives, compared
to GCG-V shown in Table 1, results in a 6% increase in test ASR,
demonstrating that the dual optimization objectives help induce
the model to generate affirmative responses with higher toxicity.
Moreover, the multimodal attack strategy utilizing a single opti-
mization objective yields better results than the unimodal attack
with dual optimization objectives, underscoring the effectiveness
of multimodal attacks. However, both methods are surpassed by
our proposed multimodal attack strategy with dual optimization
objectives. This strategy begins by injecting toxic semantics into
the adversarial image, then jointly optimizes both modalities to
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Table 3: Percentages (%) of outputs that display speciffc toxic attributes evaluated by the Perspective API and Detoxify classifier
[12]. These outputs are generated on the ‘challenging’ subset from RealToxicityPrompts benchmark [10]. ‘Any*’ indicates the
text exhibits at least one of the six toxic attributes.

Perspective API (%)
(%) Identity Attack Profanity Severe Toxicity Sexually Explicit Threat Toxicity Any*

Without Attack 1.60 25.23 1.18 12.62 1.60 29.18 34.31
VAJM [18] 18.05 43.44 7.69 14.70 6.35 62.66 67.17
GCG-V 6.42 57.05 2.09 21.02 3.67 64.22 71.98

UMK (Ours) 7.34 62.80 1.67 22.77 2.75 72.56 76.98
Detoxify (%)

(%) Identity Attack Obscene Severe Toxicity Insult Threat Toxicity Any*
Without Attack 1.18 21.63 0.34 10.10 1.01 28.03 28.62

VAJM [18] 10.79 44.06 2.93 33.70 3.68 61.79 61.96
GCG-V 2.92 48.50 1.09 21.37 1.50 54.76 56.34

UMK (Ours) 3.92 58.51 0.92 28.46 1.00 67.86 68.70

Table 4: Comparison of Train ASR (%) and Test ASR (%) for
ablation studies on Advbench’s [26] harmful behaviors.

Method Train ASR (%) Test ASR (%)
Dual Objectives+Unimodal Attack 92.4 89.0
Single Objective+Multimodal Attack 95.5 92.0
Dual Objectives+Multimodal Attack 100.0 96.0

guide the model towards affirmative responses, achieving a 96%
test ASR.

4.4 Understanding the Role of Text Attack in
Multimodal Strategy

Figure 4: Comparative Analysis of Loss Before and After Text
Attack. TheX-axis represents ‘Steps’, while the Y-axis denotes
‘Loss’.

In this subsection, we explore the role of text in the text-image
multimodal attack strategy. Figure 4 illustrates the variance in
batch loss before and after text attack throughout the execution
of our attack methodology. For ease of analysis, we employ linear

regression models to fit the curve. Observations at different steps
indicate a significant reduction in batch loss after the text attack.
As the number of steps increases, an overall downward trend in
loss can be observed, demonstrating the efficacy of our method.
Notably, even in the later stages of the attack, the reduction in batch
loss before and after the text attack remains evident, emphasizing
the pivotal contribution of text in amplifying the effectiveness of
our strategy.

Figure 5: Overview of the image-image attack strategy. We
adopt the same dual optimization objectives as used in the
text-image attack.

To better understand the role of text in our proposed text-image
multimodal attack strategy, we introduce an image-image attack for
comparative analysis. As illustrated in Figure 5, during the attack,
we input two adversarial images and optimized them simultane-
ously. In the case ofMiniGPT-4 [25], the adversarial imageswe input
each occupies 32 tokens, while the adversarial text suffix proposed
in our attack utilizes only 20 tokens. Given that the textual space
being discrete and denser compared to the visual space, adversarial
attacks in the textual domain are generally more demanding. Intu-
itively, one might anticipate that image-image attacks, which are
optimized over a larger volume of tokens, would yield superior re-
sults. However, this is not the case. In Table 5, we report the average
ASR for both the image-image attack and the proposed text-image
attack on the VAJM [18] evaluation set. It is evident that the efficacy
of the image-image attack is significantly inferior to that of our
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Figure 6: Challenging examples of our proposed multimodal attack strategy that circumvents MiniGPT-4’s [25] safety mecha-
nisms, showcasing generated content that promotes harmful behaviors and makes contentious political comparisons.

attack. We observe that the image-image attacks are more likely to
trigger the model to repeat affirmative responses twice or to cease
output after the affirmative response. We believe this is because the
optimization objectives for both adversarial images in the second
phase are to maximize the probability of the model’s affirmative
responses. In this context, the semantics of the two images tend to
overshadow that of the text input. Consequently, during the testing
phase, two adversarial images containing the same semantics are
more likely to cause the model to duplicate affirmative reactions or
only produce affirmative responses. On the other hand, this phe-
nomenon can also be attributed to the training strategies employed
by VLMs. Since VLMs are typically trained on image-text pairs, they
tend to experience a performance degradation when encountering
out-of-distribution inputs such as image-image-text trios.

4.5 Qualitative Analysis
In Figure 6, we present two challenging attack examples. Our text-
image multimodal attack strategy can effectively circumvent the
safety alignments of MiniGPT-4 [25], generating content such as
messages that encourage self-harm or suicide and comments that
comparing politicians to Nazis.

5 CONCLUSIONS
In this paper, we propose a text-image multimodal attack strat-
egy with dual optimization objectives that can effectively jailbreak
Large Vision-Language Models. Specifically, we first initialize the
adversarial image prefix with random noise, then optimize it to

Table 5: Comparative analysis of average ASR (%) between
image-image and text-image attacks on the VAJM [18] evalu-
ation set.

ASR(%) Identity Attack Disinfo Violence/Crime X-risk
Image-Image Attack 78.5 68.9 85.3 6.7
Text-Image Attack 87.7 95.6 98.7 46.7

generate harmful sentences without any text input, thereby infus-
ing toxic semantic information into the image. We then introduce
an adversarial text suffix and jointly optimize both the adversarial
image prefix and the adversarial text suffix to generate affirmative
responses to malicious user requests. By employing these two opti-
mization objectives, we address the issues of insufficient toxicity
in generated responses and the inability to adequately follow in-
structions. Through our text-image multimodal attack, we exploit
a broader spectrum of attack surfaces exposed in VLMs, thereby
enhancing the effectiveness of the attack. Experimental results
indicate that our method significantly outperforms previous state-
of-the-art unimodal attack approaches, achieving an attack success
rate of 96% on MiniGPT-4 [25]. However, a limitation of the pro-
posed method is its constrained transferability. We believe this is
due to the varying model architectures, parameters, and even tok-
enizers among different VLMs. The proposed Universal Master Key
(UMK), which presents itself in a form close to gibberish, carries
semantic information that varies significantly across models, result-
ing in poor transferability. Enhancing this aspect of the proposed
attack constitutes a significant direction for our future research.
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