White-box Multimodal Jailbreaks Against Large Vision-Language Models

Anonymous Authors

ABSTRACT

Recent advancements in Large Vision-Language Models (VLMs) have underscored their superiority in various multimodal tasks. However, the adversarial robustness of VLMs has not been fully explored. Existing methodologies mainly assess robustness through unimodal adversarial attacks that perturb images, while assuming inherent resilience against text-based attacks. In contrast, our methodology adopts a comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within VLMs. Furthermore, we propose a dual optimization objective aimed at guiding the model to generate affirmative responses with high toxicity. Specifically, we begin by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input, thus imbuing the image with toxic semantics. Subsequently, an adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions. The discovered adversarial image prefix and text suffix are collectively denoted as a Universal Master Key (UMK). When integrated into various malicious queries, UMK can circumvent the alignment defenses of VLMs and lead to the generation of objectionable content, known as jailbreaks. The experimental results demonstrate that our universal attack strategy can effectively jailbreak MiniGPT-4 with a 96% success rate, highlighting the fragility of VLMs and the exigency for new alignment strategies.

Disclaimer: This paper contains potentially disturbing and offensive content.

CCS CONCEPTS

• Computing methodologies → Artificial intelligence.

KEYWORDS

Universal Adversarial Attack, Multimodal Attack, Vision-Language Models

INTRODUCTION

The recent advancements in Large Vision-Language Models (VLMs) such as OpenAI's GPT-4 [1] and Google's Flamingo [2] have received broad attention from academics and industry to even the general public. These developments have also garnered widespread

Unpublished working draft. Not for distribution.

for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

- https://doi.org/10.1145/nnppppp.pp

Figure 1: Example of Jailbreak Attack on MiniGPT-4 [25]. The proposed Universal Master key (UMK) helps arbitrary harmful queries bypass alignment constraints.

attention from AI safety researchers, who are increasingly focused on assessing the adversarial robustness of these multimodal models. While VLMs are expected to exhibit the same alignment characteristics as Large Language Models (LLMs), providing helpful responses to user queries while rejecting requests that may cause harm, the integration of additional visual modality introduces novel vulnerabilities. Certain methods [3–5, 18, 21] have succeeded in inducing the VLMs to generate harmful content through single-modality attacks on the continuous and high-dimensional visual modality. Conversely, research on purely text-based attacks is limited, attributed to a prevailing consensus regarding their ineffectiveness in breaching the defense mechanisms of well-aligned VLMs, due to text's discrete and lower-dimensional properties [5].

In contrast, this paper presents an initial effort in introducing a text-image multimodal attack strategy, aiming to uncover a wide range of intrinsic vulnerabilities within VLMs. Additionally, we

republish, to post on servers or to redistribute to lists, requires prior specif

and/or a ree. Request permissions from permissions@acm.org.

⁵⁵ ACM MM, 2024, Melbourne, Australia

^{56 2024} Copyright new by the owner/author(s). Publication rights licensed to ACM.

find that while the previous unimodal universal attack strategy [18]
increases response toxicity by perturbing images in the absence of
text input, it also undermines the model's adherence to instructions.
Therefore, we propose a novel dual optimization objective strategy

121 to address this issue. Specifically, we employ white-box attacks to identify a multimodal adversarial example capable of jailbreaking VLMs, which we 123 refer to as the Universal Master Key (UMK). The proposed UMK 124 125 comprises an adversarial image prefix and an adversarial text suffix. 126 We expect that by attaching the UMK to arbitrary malicious user queries, it will circumvent the alignment defenses of VLMs and 127 provoke the generation of objectionable content. To discover such 128 a UMK, we start by initializing an adversarial image prefix from 129 random noise and optimizing it without text input to maximize the 130 model's probability in generating harmful content, thereby imbuing 131 132 the adversarial image prefix with toxic semantics. Subsequently, we introduce an adversarial text suffix for joint optimization with 133 the image prefix to maximize the probability of affirmative model 134 135 responses. This strategy is based on the intuition that encouraging the model to produce affirmative responses may increase its 136 137 tendency to engage in undesired behaviors, rather than rejecting 138 responses. Figure 1 exemplifies our proposed method's efficacy in 139 attacking MiniGPT-4 [25].

The main contributions of our work can be summarized as:

- To the best of our knowledge, we are the first to introduce text-image multimodal adversarial attack against VLMs, systematically exploiting the vulnerabilities inherent in these models.
 - We propose a multimodal attack strategy with dual optimization objectives. We first enhance image toxicity by optimizing the adversarial image prefix, and then jointly optimize both the adversarial image prefix and adversarial text suffix to maximize the probability of affirmative model responses.
 - Extensive experiments on benchmark datasets demonstrate that the proposed Universal Master Key (UMK) can universally jailbreak the VLMs with a remarkable success rate, surpassing existing unimodal methods.

2 RELATED WORK

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

174

2.1 Large Vision-Language Models

Large Vision-Language Models (VLMs) are vision-integrated Large 158 159 Language Models (LLMs) that receive input in text and image formats and generate free-form text output for multimodal tasks. 160 161 VLMs typically leverage pre-trained LLMs and image encoders, 162 connected by a text-image feature alignment module, enabling 163 the language model to comprehend image features and engage in 164 deeper question-answering reasoning. Taking several open-source 165 VLMs as examples, LLaVA [15] leverages the language-only GPT-4 [1] to generate multimodal language-image instruction-following 166 data, enhancing zero-shot capabilities on new tasks through in-167 168 struction tuning. It connects the open-source visual encoder CLIP [19] with the language decoder LLaMA [23], and performs end-to-169 end fine-tuning on the generated visual-language instruction data. 170 MiniGPT-4 [25] attributes the advanced multimodal generation 171 172 capabilities of GPT-4 [1] to its integration of more sophisticated 173 LLMs. To achieve similar capabilities, it employs a single linear

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

projection layer to align the pretrained ViT [8] and Q-Former [14] with a frozen Vicuna [6]. The model is first pre-trained on an extensive dataset of aligned image-text pairs to acquire foundational visual-language knowledge. Subsequently, it undergoes fine-tuning using a smaller, higher-quality dataset of image-text pairs. In addition, MiniGPT-4 carefully designs dialogue templates to enhance the model's generative reliability and usability. InstructBLIP [7] undertakes a rigorous and extensive analysis of vision-language instruction tuning, leveraging pre-trained BLIP-2 [14] models. The study compiles 26 publicly accessible datasets and reformats them for instruction tuning. Moreover, InstructBLIP introduces an innovative instruction-aware Query Transformer. This component is designed to extract informative features specifically aligned with the provided instructions, enhancing the model's capability to interpret and respond to instruction-based queries. Despite the exciting potential demonstrated by VLMs, the incorporation of an additional modality inadvertently introduces more vulnerabilities, thereby creating previously non-existent attack surfaces [22]. In our work, we evaluate the robustness of VLMs against the proposed multimodal attack, revealing an alarming attack success rate of 96% on MiniGPT-4 [25], emphasizing the urgent need for new alignment strategies to rectify this critical vulnerability.

2.2 Attacks Against Multimodal Models

To attack multimodal models, Greshake et al. [11] explored the effectiveness of manually injecting deceptive text into input images. In contrast, Other studies have proposed more sophisticated image-domain adversarial attack methods. Carlini et al. [5] fixed the beginning portion of toxic target output and optimized the input images to increase its likelihood. Bagdasaryan et al. [3] and Bailey et al. [4] employed a similar strategy by using teacher-forcing techniques to generate the attacker-chosen text that may not be directly related to toxic content. Another white-box attack proposed by Qi et al. [18] adopts principles similar to Bagdasaryan et al. [3], aiming to find an universal adversarial visual input. Specifically, the attack no longer focuses on specific output sentences but tries to maximize the probability of generating derogatory output from a corpus containing 66 harmful sample sentences. This strategy is inspired by Wallace et al. [24], who also utilized optimization algorithms based on discrete search [9] to find universal adversarial triggers in token space, increasing the probability of generating a small group of harmful sentences. Since Qi et al. [18] did not provide a name for their method, we designate it as the Visual Adversarial Jailbreak Method (VAJM) for easier reference in subsequent sections. Shayegani et al. [21] proposed attacking publicly available visual encoders such as CLIP [19] used in the multimodal models, thereby eliminating the need for complete white-box access. While the aforementioned approaches have demonstrated impressive results, they mainly focus on exploring the adversarial robustness under the unimodal attacks, based on the consensus that attacking in the continuous image space is more effective than attacking in the discrete token space. However, this focus may lead to underutilization of the full attack surfaces available in multimodal models. In contrast, our proposed method explores a broader range of vulnerabilities inherent in VLMs through attacks on text-image multimodalities. Moreover, the universal adversarial attack method proposed by

Figure 2: Overview of our multimodal attack strategy: The Universal Master Key (UMK) comprises an adversarial image prefix X_{adv}^p and an adversarial text suffix X_{adv}^s . We first optimize X_{adv}^p to maximize the generation probability of harmful content without text input to infuse toxic semantics. Subsequently, we concatenate the malicious user query with X_{adv}^s , and jointly optimize X_{adv}^p and X_{adv}^s to maximize the generation probability of affirmative responses, e.g., 'Sure, here's instruction for doing ******** (a bad thing)'.

Qi et al. [18] has been found to compromise the model's adherence to user instructions. In comparison, our method employs dual optimization objectives aimed at guiding the model to generate affirmative responses with high toxicity, effectively alleviating this issue.

3 METHODOLOGY

3.1 Threat Model

Attack Goals. We consider single-turn conversations between a malicious user and a VLM chatbot. The attacker attempts to trigger a number of harmful behaviors by circumventing VLM's security mechanisms, e.g., generating unethical content or dangerous instructions restricted by system prompts or RHLF alignment tech-nique. Adversary Capabilities. We assume that the attacker has white-box access to the target VLM, a reasonable assumption given the advanced capabilities and extensive pre-training knowledge inherent in state-of-the-art open-source VLMs. These models are sufficient to provide attackers with the insights necessary to gener-ate malicious content, such as detailed instructions for making a bomb or materials that promote gender discrimination.

3.2 Proposed Attack

3.2.1 **Formalization**. For simplicity, we omit the implementation details of converting raw input to feature embeddings. Consider a VLM f_{θ} as a mapping function from an image input X_i and a text input X_t to a probability distribution over the text output Y:

$$p(Y|X_i, X_t) = f_{\theta}([X_i, X_t])$$

The proposed Universal Master Key (UMK) comprises an adversarial image prefix X_{adv}^p and an adversarial text suffix X_{adv}^s . To jailbreak VLM f_{θ} and elicit harmful behavior Y_{harm} with malicious user query X_{harm} , the attack is constructed as:

$$p(Y_{harm}|X_{adv}^{p}, X_{harm}||X_{adv}^{s}) = f_{\theta}([X_{adv}^{p}, X_{harm}||X_{adv}^{s}])$$

where the adversarial image prefix X_{adv}^p serves as the image input, while the malicious user query X_{harm} is concatenated with the adversarial text suffix X_{adv}^s to form the text input. '||' denotes string concatenation.

3.2.2 **Methodology Intuition**. VAJM [18] generates universal adversarial images by guiding the model to produce harmful content in the absence of text input, but this approach undermines the model's ability to faithfully follow user instructions. In the

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

development of jailbreak attacks against Large Language Models 349 (LLMs), it is common practice to induce the model to respond to 350 351 user queries in an affirmative manner, prioritizing task completion over query rejection. In manual attacks, this often involves prompt-352 ing the model to begin its response with 'sure'. Similarly, in Greedy 353 Coordinate Gradient (GCG) [26], the optimization objective is to 354 induce the model to affirmatively repeat user queries. However, 355 we also discover that affirmatively repeating user queries does not 356 357 necessarily lead to the generation of harmful content. The models 358 still face conflicting objectives between task completion and benign alignment. Inspired by VAJM [18] and GCG [26], we propose a 359 dual optimization objective that combines the advantages of both 360 methods to maximize the probability of the model generating af-361 firmative responses with high toxicity. Specifically, we begin by 362 compromising the model's ethical alignment through the infusion 363 of toxic semantics into the adversarial image prefix. Subsequently, 364 we jointly optimize the adversarial image prefix and adversarial 365 text suffix to encourage the model to generate affirmative responses, 366 367 with the expectation that the model will accomplish tasks in a state conducive to producing harmful content. 368

3.2.3 Embedding Toxic Semantics into Adversarial Image **Prefix**. Inspired by [18], we establish a corpus containing several few-shot examples of harmful sentences $S := \{s_i\}_{i=1}^m$. The methodology for embedding toxic semantics into the adversarial image prefix X_{adv}^{P} is straightforward: we initialize X_{adv}^{P} with random noise and optimize it to maximize the generation probability of this few-shot corpus in the absence of text input. Our optimization objective is formulated as follows:

$$X_{adv}^{p} \coloneqq \underset{X_{adv}^{p}}{\operatorname{argmin}} \sum_{i=1}^{m} -\log\left(p(s_{i} \mid X_{adv}^{p}, \emptyset)\right)$$

where Ø denotes an empty text input. This optimization problem can be efficiently solved using prevalent techniques in image adversarial attacks, such as Projected Gradient Descent (PGD) [16].

3.2.4 Text-Image Multimodal Optimization for Maximizing Affirmative Response Probability. To maximize the probability of generating affirmative responses, we further introduce an adversarial text suffix X^s_{adv} in conjunction with the adversarial image prefix X_{adv}^p , which is imbued with toxic semantics. This multimodal attack strategy aims to thoroughly exploit the inherent vulnerabilities of VLMs. Specifically, our optimization objective is as follows:

$$X_{adv}^{p}, X_{adv}^{s} \coloneqq \underset{X_{adv}^{p}, X_{adv}^{s}}{\operatorname{argmin}} \sum_{i=1}^{n} -\log\left(p(t_{i} \mid X_{adv}^{p}, g_{i} \mid \mid X_{adv}^{s})\right)$$

A few-shot corpus composed of goal-target pairs $\{g_i, t_i\}_{i=1}^n$ is employed. Here, the goals $\{g_i\}_{i=1}^n$ represent the malicious user queries, while the targets $\{t_i\}_{i=1}^n$ are the corresponding affirmative repetitions of these queries, each prefixed with 'Sure, here is'.

The shared feature space between the image embeddings and the text token embeddings in VLMs facilitates concurrent updates of both X_{adv}^p and X_{adv}^s through a single backpropagation pass. This mechanism is analogous to the simultaneous update of distinct pixels in a single image in conventional image adversarial attack. We employ Projected Gradient Descent (PGD) [16] to update the

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

adversarial image prefix X_{adv}^p , and Greedy Coordinate Gradient (GCG) [26] to update the adversarial text suffix X_{adv}^s . GCG is the current state-of-the-art text-based attack strategy against LLMs. It utilizes the gradients with respect to the one-hot token indicators to identify a set of promising replacement candidates at each token position, and then chooses the substitution that results in the maximum loss reduction via a forward pass.

The overview of our attack is illustrated in Figure 2, while the detailed strategy is summarized in Algorithm 1.

Algorithm 1 Multimodal Attack Strategy with Dual Optimization Objectives

Require: VLM model f_{θ} , harmful sentences corpus $S := \{s_i\}_{i=1}^m$, goal-target pairs corpus $D := \{g_i, t_i\}_{i=1}^n$, image-text attack ratio *r*, batch size *b*, step size α , number of candidates *n*, iteration counts N_1, N_2 ;

- Initialize X^p_{adv} with random noise;
 for k = 1, ..., N₁ do

Select *b* samples from the corpus *S*, forming $S_k := \{s'_i\}_{i=1}^b$; $f(\mathbf{x}^p - \mathbf{s}_1) - \nabla^b = \log\left(p(\mathbf{s}' + \mathbf{x}^p, \mathbf{0})\right)$

4:
$$\mathcal{L}(x_{adv}^{*}, S_{k}) = \sum_{i=1}^{k} -\log\left(p(s_{i} \mid X_{adv}^{*}, \emptyset)\right);$$

5:
$$X_{adv}^{p} = \operatorname{clip}\left(X_{adv}^{p} + \alpha \operatorname{sign}\left(\nabla_{x^{p}}\mathcal{L}(X_{adv}^{p}, S_{k})\right)\right);$$

5: end for

- 7: Initialize X_{adv}^s using a predefined strategy;
- 8: **for** $j = 1, ..., N_2$ **do**
- Select b samples from the corpus D, forming $D_i :=$ $\{g'_i, t'_i\}_{i=1}^b;$

10:
$$\mathcal{L}(X_{adv}^{p}, X_{adv}^{s}, D_{j}) = \sum_{i=1}^{b} -\log\left(p(t_{i}' \mid X_{adv}^{p}, g_{i}' \mid \mid X_{adv}^{s})\right);$$

11:
$$X_{adv}^{P} = \operatorname{clip}\left(X_{adv}^{P} + \alpha \operatorname{sign}\left(\nabla_{x^{P}} \mathcal{L}(X_{adv}^{P}, X_{adv}^{s}, D_{j})\right)\right);$$

12: **if** $j\%r = 0$ **then**

13:

Compute coordinate gradient $\nabla_{x^s} \mathcal{L}(X_{adv}^p, X_{adv}^s, D_j)$; Obtain a set of candidate suffixes with single-token 14: substitution $\{X_{adn}^s\}^n$;

15:
$$X_{adv}^{s} = \underset{\{X_{adv}^{s}\}^{n}}{\operatorname{argmin}} \mathcal{L}(X_{adv}^{p}, X_{adv}^{s}, D_{j});$$

end if 16:

18: Obtain the Universal Master Key (UMK) composed of X_{adv}^p and $X_{adv}^{s};$

4 **EXPERIMENTS AND RESULTS**

4.1 **Experimental Setup**

4.1.1 **Datasets**. For the corpus of harmful sentences $S := \{s_i\}_{i=1}^m$, we utilize the same derogatory corpus as VAJM [18], which includes 66 toxic sentences against gender, race, and humanity. Regarding the corpus of goal-target pairs $D := \{g_i, t_i\}_{i=1}^n$, we randomly select 66 samples from Advbench's [26] harmful behaviors to serve as optimization samples. Advbench's harmful behaviors comprises 520 harmful instructions paired with affirmative responses, primarily focusing on suggestions or guidance that are dangerous or illegal, but also encompassing other types of content. To rigorously assess the performance of various methods in jailbreak attacks, we first prompt the VLMs with 100 instructions randomly selected from White-box Multimodal Jailbreaks Against Large Vision-Language Models

ACM MM, 2024, Melbourne, Australia

Figure 3: We present two examples of failed attacks. GCG-V produces benign content after affirmatively responding to malicious user requests, while VAJM generates harmful content without strictly adhering to user instructions.

the held-out subset of Advbench's [26] **harmful behaviors**, which mainly focus on eliciting dangerous or illegal suggestions. We then extend our assessment by employing the VAJM [18] evaluation set, which comprises 40 detrimental instructions across four distinct categories: Identity Attack, Disinformation, Violence/Crime, and Malicious Behaviors toward Humanity (X-risk). To further broaden our evaluation scope, we also employ an automated testing procedure using the RealToxicityPrompts benchmark [10]. Specifically, we focus on a particularly challenging subset of RealToxicityPrompts [17, 18, 20], consisting of 1,225 text prompts for triggering toxic continuations, which enables us to comprehensively evaluate the extent of harmful content produced by attacks.

4.1.2 Metrics. Here we describe the metrics used in our evaluations. Attack Success Rate (ASR). Given the tendency of keyword-based automated assessments to overinflate ASRs, we implement strict manual evaluation on both the Advbench's [26] harmful behaviors and the VAJM [18] evaluation set. Attacks that generate relevant and useful harmful output are defined as successful, with others considered failures. Toxicity Rate. To measure the toxicity of continuations generated on the RealToxicityPrompts benchmark [10], we utilize the Perspective API and the Detoxify classifier [12], both of which can calculate toxicity scores for a set of six toxic attributes. Scores range from 0 (least toxic) to 1 (most toxic). For each attribute, we calculate the proportion of texts whose toxicity scores exceed a 0.5 threshold.

4.1.3 Implementation Details. To evaluate our attack methodology, we employ the Vicuna-13B version of MiniGPT-4 [25]. It is
built on the frozen Vicuna-13B [6] backbone model, an aligned LLM
derived from LLaMA [23]. For the experimental setup, we adopt

the configuration utilized in VAJM [18], specifying a batch size *b* of 8, a step size α of 1, and an iteration count N_1 of 5000. Furthermore, we set image-text attack ratio *r* to 10, the length of the adversarial text suffix to 20 tokens, the number of candidates *n* to 250, and the iteration count N_2 to 2000 by default. We use a single A100 GPU with 80GB of memory in all experiments.

4.2 Comparison With Unimodal Attacks

In this subsection, we compare the proposed UMK with state-of-theart unimodal jailbreak attacks under different evaluation settings. Greedy Coordinate Gradient (GCG) [26] is a universal text-based attack devised for LLMs, optimizes an adversarial text suffix to enhance the model's propensity for generating affirmative responses. VAJM [18] targets VLMs with an image-based attack methodology, aiming to universally jailbreak VLMs by maximizing the probability of generating harmful sentences from a few-shot corpus. We reproduce GCG [26] and VAJM [18] with the official code and implement a visual version of GCG for a more comprehensive comparsion.

Table 1: Comparison of Train ASR (%) and Test ASR (%) on Advbench's [26] harmful behaviors. GCG-V refers to the visual version of GCG.

Method	Train ASR (%)	Test ASR (%)
Without Attack	/	37.0
GCG [26]	68.2	50.0
VAJM [18]	/	64.0
GCG-V	89.4	83.0
UMK(Ours)	100.0	96.0

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

In Table 1, the train ASR (%) and test ASR (%) of our proposed 581 method are compared with baseline unimodal attacks on 66 train-582 583 ing samples from Advbench's [26] harmful behaviors and 100 test samples from the held-out set. GCG demonstrates markedly 584 lower performance compared to visual attacks, with a test ASR of 585 only 50%. VAJM [18] is trained on a corpus of harmful sentences 586 $S := \{s_i\}_{i=1}^m$, rather than being trained to generate affirmative re-587 sponses to user queries. Consequently, we do not report its train 588 589 ASR for Advbench's harmful behaviors [26]. Training on aug-590 menting toxicity compromises VAJM's capacity for instruction adherence. This approach leads to the generation of responses with 591 high toxicity levels that fail to strictly follow user commands, culmi-592 nating in a test ASR of merely 64%. GCG-V is the visual version of 593 GCG, optimizing adversarial images to elicit affirmative responses. 594 Similar to VAJM, GCG-V operates in the image domain. However, its 595 training on Advbench's harmful behaviors specifically enhances 596 its ability to generate dangerous or illegal suggestions. Nonetheless, 597 it still encounters conflicts between benign alignment and task com-598 pletion, achieving a test ASR of 83%. Figure 3 showcases examples 599 of failed attacks for each method. In comparison, the proposed UMK 600 has addressed the aforementioned two issues and further improved 601 602 performance through multimodal attacks, achieving an impressive 603 100% train ASR and 96% test ASR.

Table 2: Comparison of average ASR (%) measured on the VAJM [18] evaluation set across 4 categories of harmful instructions.

ASR(%)	Identity Attack	Disinfo	Violence/Crime	X-risk
Without Attack	30.8	53.3	57.3	33.3
GCG [26]	49.2	48.9	57.3	40.0
VAJM [18]	81.5	82.2	85.3	60.0
GCG-V	66.2	64.4	84.0	6.7
UMK (Ours)	87.7	95.6	98.7	46.7

For the VAJM [18] evaluation set, we employ nucleus sampling [13] with p = 0.9 and temperature = 1, generating five independent outputs for each instruction. The average attack success rate for harmful instructions in each category is reported in Table 2. The text-based attack, GCG [26], still results in poor performance. In contrast, VAJM [18] consistently outperforms GCG-V across all four categories of harmful instructions. This discrepancy in performance can be attributed to the differing training objectives of the two methods. VAJM is specifically designed to generate toxic sentences against gender, race, and humanity, leading to significantly better performance than GCG-V in categories such as identity attack, disinformation, and x-risk, achieving attack success rates of 81.5%, 82.2%, and 60.0%, respectively. Due to the Advbench's [26] harmful behaviors being more closely aligned with the theme of violence/crime, GCG-V achieves a higher success rate in this category, while it reaches a notably low success rate of 6.7% in x-risk. Compared to others, our method achieves the best overall attack success rate. Notably, it even reaches an astonishing success rate of 98.7% in the category of violence/crime. However, it slightly falls short of VAJM's performance in the x-risk category. This discrepancy is because the majority of harmful instructions in the x-risk category are formulated as questions, which differ from the

639

640

641

642

643

declarative or directive formats used in the optimization samples for our adversarial attacks.

To further broaden our evaluation, we utilize the challenging subset of RealToxicityPrompts benchmark [10], which includes 1,225 text prompts designed to trigger toxic continuations. Given that this is a text continuation task, we exclude the GCG method [26], which focuses on generating text suffixes, from our comparison. Similarly, for our approach, we utilize only the adversarial image prefix. We pair each adversarial image with text prompts from the dataset as input, and then measure the toxicity of the outputs using both the Perspective API and the Detoxify classifier [31], each capable of calculating toxicity scores for a set of six toxic attributes. For each attribute, we calculate the ratio of the generated texts with scores exceed the threshold of 0.5. As shown in Table 3. VAJM [18] and GCG-V display different performances across two evaluation methods. Under the Perspective API, GCG-V achieves a 71.98% toxicity rate, higher than VAJM's 67.17%. Conversely, with the Detoxify classifier [12], VAJM records a 61.96% rate, exceeding GCG-V's 56.34%. Although VAJM achieves results superior to those of our method in certain categories such as Identity Attack, this is attributable to its optimization objective being primarily focused on generating harmful statements against gender, race, and humanity. In contrast, our method's optimization objectives are more comprehensive. Although our method only utilizes adversarial image prefix in this experiment, it achieves overall best results, recording Any* toxicity rates of 76.98% and 68.70% under the Perspective API and Detoxify classifier tests, respectively. These results significantly outperform the previous best rates of 71.98% from GCG-V and 61.96% from VAJM. This demonstrates the effectiveness of our dual optimization objective strategy: even though the second phase is aimed at guiding the model to generate affirmative responses, it successfully enhances the toxic semantics of the adversarial image. Moreover, the joint attack of the text-image multimodalities may have uncovered a more optimal solution space for the adversarial image.

4.3 Ablation Studies

In this subsection, we conduct ablation studies on two key designs of the proposed attack strategy, i.e., the dual optimization objectives and the text-image multimodal attack. The unimodal attack method, which employs dual optimization objectives to guide the model towards affirmative responses after injecting toxic semantics within the image domain, achieves an 88% test ASR. The multimodal attack method, leveraging a single optimization objective to guide the model towards affirmative responses, achieves a 92% test ASR. Unimodal Attack with dual optimization objectives, compared to GCG-V shown in Table 1, results in a 6% increase in test ASR, demonstrating that the dual optimization objectives help induce the model to generate affirmative responses with higher toxicity. Moreover, the multimodal attack strategy utilizing a single optimization objective yields better results than the unimodal attack with dual optimization objectives, underscoring the effectiveness of multimodal attacks. However, both methods are surpassed by our proposed multimodal attack strategy with dual optimization objectives. This strategy begins by injecting toxic semantics into the adversarial image, then jointly optimizes both modalities to

685

686

687

688

689

690

691

692

693

694

695

Table 3: Percentages (%) of outputs that display specific toxic attributes evaluated by the Perspective API and Detoxify classifier [12]. These outputs are generated on the 'challenging' subset from RealToxicityPrompts benchmark [10]. 'Any*' indicates the text exhibits at least one of the six toxic attributes.

Perspective API (%)							
(%)	Identity Attack	Profanity	Severe Toxicity	Sexually Explicit	Threat	Toxicity	Any*
Without Attack	1.60	25.23	1.18	12.62	1.60	29.18	34.31
VAJM [18]	18.05	43.44	7.69	14.70	6.35	62.66	67.17
GCG-V	6.42	57.05	2.09	21.02	3.67	64.22	71.98
UMK (Ours)	7.34	62.80	1.67	22.77	2.75	72.56	76.98
			Detoxify (%)				
(%)	Identity Attack	Obscene	Severe Toxicity	Insult	Threat	Toxicity	Any*
Without Attack	1.18	21.63	0.34	10.10	1.01	28.03	28.62
VAJM [18]	10.79	44.06	2.93	33.70	3.68	61.79	61.96
GCG-V	2.92	48.50	1.09	21.37	1.50	54.76	56.34
UMK (Ours)	3.92	58.51	0.92	28.46	1.00	67.86	68.70

Table 4: Comparison of Train ASR (%) and Test ASR (%) for ablation studies on Advbench's [26] harmful behaviors.

Method	Train ASR (%)	Test ASR (%)
Dual Objectives+Unimodal Attack	92.4	89.0
Single Objective+Multimodal Attack	95.5	92.0
Dual Objectives+Multimodal Attack	100.0	96.0

guide the model towards affirmative responses, achieving a 96% test ASR.

4.4 Understanding the Role of Text Attack in Multimodal Strategy

Figure 4: Comparative Analysis of Loss Before and After Text Attack. The X-axis represents 'Steps', while the Y-axis denotes 'Loss'.

In this subsection, we explore the role of text in the text-image multimodal attack strategy. Figure 4 illustrates the variance in batch loss before and after text attack throughout the execution of our attack methodology. For ease of analysis, we employ linear regression models to fit the curve. Observations at different steps indicate a significant reduction in batch loss after the text attack. As the number of steps increases, an overall downward trend in loss can be observed, demonstrating the efficacy of our method. Notably, even in the later stages of the attack, the reduction in batch loss before and after the text attack remains evident, emphasizing the pivotal contribution of text in amplifying the effectiveness of our strategy.

Figure 5: Overview of the image-image attack strategy. We adopt the same dual optimization objectives as used in the text-image attack.

To better understand the role of text in our proposed text-image multimodal attack strategy, we introduce an image-image attack for comparative analysis. As illustrated in Figure 5, during the attack, we input two adversarial images and optimized them simultaneously. In the case of MiniGPT-4 [25], the adversarial images we input each occupies 32 tokens, while the adversarial text suffix proposed in our attack utilizes only 20 tokens. Given that the textual space being discrete and denser compared to the visual space, adversarial attacks in the textual domain are generally more demanding. Intuitively, one might anticipate that image-image attacks, which are optimized over a larger volume of tokens, would yield superior results. However, this is not the case. In Table 5, we report the average ASR for both the image-image attack and the proposed text-image attack on the VAJM [18] evaluation set. It is evident that the efficacy of the image-image attack is significantly inferior to that of our

Anonymous Authors

attack. We observe that the image-image attacks are more likely to trigger the model to repeat affirmative responses twice or to cease output after the affirmative response. We believe this is because the optimization objectives for both adversarial images in the second phase are to maximize the probability of the model's affirmative responses. In this context, the semantics of the two images tend to overshadow that of the text input. Consequently, during the testing phase, two adversarial images containing the same semantics are more likely to cause the model to duplicate affirmative reactions or only produce affirmative responses. On the other hand, this phenomenon can also be attributed to the training strategies employed by VLMs. Since VLMs are typically trained on image-text pairs, they tend to experience a performance degradation when encountering out-of-distribution inputs such as image-image-text trios.

4.5 Qualitative Analysis

In Figure 6, we present two challenging attack examples. Our textimage multimodal attack strategy can effectively circumvent the safety alignments of MiniGPT-4 [25], generating content such as messages that encourage self-harm or suicide and comments that comparing politicians to Nazis.

5 CONCLUSIONS

In this paper, we propose a text-image multimodal attack strategy with dual optimization objectives that can effectively jailbreak Large Vision-Language Models. Specifically, we first initialize the adversarial image prefix with random noise, then optimize it to Table 5: Comparative analysis of average ASR (%) between image-image and text-image attacks on the VAJM [18] evaluation set.

ASR(%)	Identity Attack	Disinfo	Violence/Crime	X-risk
Image-Image Attack	78.5	68.9	85.3	6.7
Text-Image Attack	87.7	95.6	98.7	46.7

generate harmful sentences without any text input, thereby infusing toxic semantic information into the image. We then introduce an adversarial text suffix and jointly optimize both the adversarial image prefix and the adversarial text suffix to generate affirmative responses to malicious user requests. By employing these two optimization objectives, we address the issues of insufficient toxicity in generated responses and the inability to adequately follow instructions. Through our text-image multimodal attack, we exploit a broader spectrum of attack surfaces exposed in VLMs, thereby enhancing the effectiveness of the attack. Experimental results indicate that our method significantly outperforms previous stateof-the-art unimodal attack approaches, achieving an attack success rate of 96% on MiniGPT-4 [25]. However, a limitation of the proposed method is its constrained transferability. We believe this is due to the varying model architectures, parameters, and even tokenizers among different VLMs. The proposed Universal Master Key (UMK), which presents itself in a form close to gibberish, carries semantic information that varies significantly across models, resulting in poor transferability. Enhancing this aspect of the proposed attack constitutes a significant direction for our future research.

White-box Multimodal Jailbreaks Against Large Vision-Language Models

ACM MM, 2024, Melbourne, Australia

929 **REFERENCES**

930

931

932

933

934

935

936

937

938

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).
- [2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. 2022. Flamingo: a visual language model for few-shot learning. Advances in Neural Information Processing Systems 35 (2022), 23716–23736.
- [3] Eugene Bagdasaryan, Tsung-Yin Hsieh, Ben Nassi, and Vitaly Shmatikov. 2023. (Ab) using Images and Sounds for Indirect Instruction Injection in Multi-Modal LLMs. arXiv preprint arXiv:2307.10490 (2023).
- [4] Luke Bailey, Euan Ong, Stuart Russell, and Scott Emmons. 2023. Image hijacks: Adversarial images can control generative models at runtime. arXiv preprint arXiv:2309.00236 (2023).
- [5] Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Pang Wei W Koh, Daphne Ippolito, Florian Tramer, and Ludwig Schmidt. 2024. Are aligned neural networks adversarially aligned? Advances in Neural Information Processing Systems 36 (2024).
- [6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 2023. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023) (2023).
- [7] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. 2023. InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning. arXiv:2305.06500 [cs.CV]
- [8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
- [9] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2017. Hotflip: Whitebox adversarial examples for text classification. arXiv preprint arXiv:1712.06751 (2017).
- [10] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. 2020. Realtoxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462 (2020).
- [11] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz. 2023. More than you've asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models. arXiv e-prints (2023), arXiv-2302.
- [12] Laura Hanu and Unitary team. 2020. Detoxify. Github. https://github.com/unitaryai/detoxify.
- [13] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).
- [14] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023).
- [15] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024. Visual instruction tuning. Advances in neural information processing systems 36 (2024).
- [16] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).
- [17] Ninareh Mehrabi, Ahmad Beirami, Fred Morstatter, and Aram Galstyan. 2022. Robust conversational agents against imperceptible toxicity triggers. arXiv preprint arXiv:2205.02392 (2022).
- [18] Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Mengdi Wang, and Prateek Mittal. 2023. Visual Adversarial Examples Jailbreak Large Language Models. arXiv preprint arXiv:2306.13213 (2023).
- [19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International conference on machine learning. PMLR, 8748–8763.
- [20] Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021. Self-diagnosis and selfdebiasing: A proposal for reducing corpus-based bias in nlp. Transactions of the Association for Computational Linguistics 9 (2021), 1408–1424.
- [21] Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. 2023. Plug and Pray: Exploiting off-the-shelf components of Multi-Modal Models. arXiv preprint arXiv:2307.14539 (2023).
- [22] Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pedram Zaree, Yue Dong, and Nael Abu-Ghazaleh. 2023. Survey of vulnerabilities in large language models revealed by adversarial attacks. arXiv preprint arXiv:2310.10844 (2023).
- [23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).

- [24] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal adversarial triggers for attacking and analyzing NLP. arXiv preprint arXiv:1908.07125 (2019).
- [25] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592 (2023).
- [26] Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. 2023. Universal and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043 (2023).
- 991 992 993 994 995 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

987

988

989

990

1042 1043 1044

1041