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Abstract. Embodied vision-based real-world systems, such as mobile robots, re-
quire a careful balance between energy consumption, compute latency, and safety
constraints to optimize operation across dynamic tasks and contexts. As local
computation tends to be restricted, offloading the computation, i.e., to a remote
server, can save local resources while providing access to high-quality predic-
tions from powerful and large models. However, the resulting communication
and latency overhead has led to limited usability of cloud models in dynamic,
safety-critical, real-time settings. To effectively address this trade-off, we intro-
duce UniLCD, a novel hybrid inference framework for enabling flexible local-
cloud collaboration. By efficiently optimizing a flexible routing module via re-
inforcement learning and a suitable multi-task objective, UniLCD is specifically
designed to support the multiple constraints of safety-critical end-to-end mobile
systems. We validate the proposed approach using a challenging, crowded navi-
gation task requiring frequent and timely switching between local and cloud op-
erations. UniLCD demonstrates improved overall performance and efficiency, by
over 23% compared to state-of-the-art baselines based on various split computing
and early exit strategies. Our code is available at https://unilcd.github.io/.
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1 Introduction

We are currently undergoing a transformative societal phase as vision-based systems,
such as mobile robots and personalized devices, transition from their controlled lab
environments and into the real world. However, computational and energy constraints
currently hinder the performance of deployed real-world systems, e.g., high-cost sys-
tems today may only be able to support lightweight neural network models with limited
accuracy and runtime of about an hour before the on-board battery is depleted [23, 26,
40,61,66,116]. Current efficiency bottlenecks may only become worse over time given
ever-increasing sensor resolutions and larger models [2, 6, 56, 59, 84, 90].

To address the need for reliable and accurate inference, the currently prevailing ap-
proach for processing with increasingly powerful models involves sending data, e.g.,
an image, to remote cloud servers in order to offload computation [2, 6, 40, 54, 57,
111]. While this practice can benefit real-world systems through delivering high-quality
model predictions, the transmission and cloud processing overhead incurs a high la-
tency cost and is therefore not suitable for dynamic real-world agents, such as mobile
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systems, which must continuously anticipate and respond to dynamic settings. Safety-
critical systems with hard real-time constraints and responsiveness may solely rely on
local processing, while leveraging strategies such as model pruning [24, 36, 46, 102]
and quantization [47, 77, 94] to support embodied constraints, e.g., limited hardware
and battery life. However, on-device lightweight models often suffer from significantly
degraded accuracy and in turn can hinder safe decision-making, i.e., missing or falsely
detecting nearby pedestrian. Thus, we seek to address a fundamental research ques-
tion: How to realize robust vision-based systems that can be flexibly optimized for both
safety and real-time efficiency while operating in dynamic real-world settings?

While shared local-cloud computation frameworks have been extensively studied
by prior works, e.g., for various Internet of Things applications [25, 31, 32, 39, 39, 40,
54, 74, 111], the aforementioned methods rarely analyze safety-critical, real-time oper-
ation. Instead, standard off-loading frameworks rely on various ad-hoc and inadequate
heuristics, e.g., based on a task-agnostic layer-wise split or simplistic statistics [39,40],
and thus cannot accommodate dynamic inference, i.e., based on the difficulty or safety-
constraints of the current scenario. For instance, some scenarios may require split-
second decisions, such as in the case of dense and dynamic scenarios with crowded
surrounding pedestrians. In this work, we develop a more generalized paradigm en-
abling situation-specific collaboration between cloud computing and local inference to
balance the energy cost while maintaining high system accuracy. Our method can be
used to flexibly optimize for multiple constraints, i.e., latency, accuracy, efficiency, and
safety, while also enabling systems with a highly sustainable operation (a critical need
as compute-intensive systems become more widely adopted [87]).

Contributions: Towards facilitating real-time, cloud-enabled systems, we make three
key contributions. First, we introduce a novel cloud-local hybrid collaboration frame-
work, UniLCD. Our proposed reinforcement learning-based framework is inspired by
the observation that small, low-power consumption models on edge devices are suffi-
cient in some scenarios, while more complex conditions may call for powerful cloud
resources. Our approach employs a conditional routing module that learns to dynam-
ically route computation between local and cloud resources. Second, we demonstrate
the importance of carefully designing the reward function in order to effectively bal-
ance over multiple constraints, i.e., energy consumption, latency, and safe performance
in a context-dependent manner. Third, we validate our method and several state-of-the-
art baselines by introducing a novel benchmark comprising challenging vision-based
crowded navigation tasks that require seamless decision-making with frequent cloud-
local switching. We demonstrate our approach to significantly outperform prior meth-
ods [39, 40] by 17% across multiple metrics, as well as a proposed ecological score.
Our code and benchmark are available at https://unilcd.github.io/ for future researchers
tackling multifaceted challenges in practical, real-world, vision-based systems.

2 Related Work

Cloud-Edge Collaborative Systems: The integration of cloud computing and edge de-
vices has attracted increasing attention in recent years as it can potentially combine the
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Table 1: Comparison with Prior Work. By holistically tackling aspects of system safety, effi-
ciency, and latency, our framework is suitable for real-time decision-making in dynamic scenes.

Method Low Edge End-to-End Situational Embedding High Real
Latency Deployment Training Accuracy Time

On-Device ✓ ✓ - ✓ ✗ ✗ ✓

On-Cloud ✗ ✗ - ✓ ✗ ✓ ✗

Neurosurgeon [40] ✗ ✓ ✓ ✓ ✓ ✓ ✗

Dynamic [27] ✓ ✓ ✗ ✗ ✓ ✗ ✗

Selective Query [39] ✓ ✓ ✓ ✗ ✗ ✓ ✗

Compressive Offloading [105] ✗ ✗ ✓ ✓ ✓ ✓ ✗

Adaptive Offloading [93] ✓ ✓ ✓ ✓ ✗ ✗ ✗

Deep Sequential RL [95] ✓ ✓ ✓ ✓ ✓ ✗ ✗

UniLCD (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

advantages from both [17, 25, 76, 81]. Leveraging the cloud’s capacity to employ ad-
vanced hardware and deploy large models allows quick execution of computationally
intensive tasks with accurate results, while edge devices enable real-time processing
and diminish latency by accessing data close to the source. Thus, cloud-edge collabo-
ration systems have been developed across various domains, such as autonomous driv-
ing [43] and smart cities [100]. Recently, Kag et al. [39] proposed a hybrid approach that
learns to efficiently select queries for cloud processing. However, the method focuses on
simplistic image classification domains without integrating sensitivity to computational
delays. In contrast, our framework emphasizes the importance of both prompt and ac-
curate cloud-edge collaboration and can thus more flexibly support broad applications,
e.g., with handling of dynamic and complex safety-critical scenarios.

Real-Time Decision-Making: Real-time decision-making is critical for scenarios that
require fast and accurate responses (e.g., autonomous driving [48, 49, 58, 107], energy
grid management [85, 101], assistive technologies [16, 33, 91]). State-of-the-art models
usually have billions of parameters, resulting in long inference times. Notably, on-going
work is primarily concentrated on enhancing data and model processing speed [22,
97], as well as designing dedicated processing chips [41, 86]. In this work, we tackle a
complementary direction of cloud-edge collaboration, where we explore the integration
of the cloud’s accelerated processing speeds with the deployment of edge devices. This
integration aims to effectively mitigate latency concerns while ensuring the reliability
of prompt decision-making, which generally results in efficiency and latency costs [4,
63, 75].

Early-Exit Models: Early exit techniques are closely related to our work as they incor-
porate internal classifiers at various shallow layers, allowing the model to exit earlier
during inference while still predicting the correct label, i.e., to save time and energy
costs [35, 40, 50, 53, 78, 88, 103]. Yet, despite the fast inference, models can still suffer
in latency and accuracy [40]. Li et al. introduced AppealNet [53], an architecture that
efficiently processes deep learning tasks by predicting whether inputs can be managed
by a resource-constrained edge device or need to be offloaded to a cloud-based model.
However, such early exit strategies only addresses on-device efficiency without con-
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sidering overall task and safety, leading to potentially unsafe and frequent navigation
errors in our robot navigation task, as will be shown in our analysis in Sec 4.

Energy-Efficient Models: Our proposed method primarily aims to present timely re-
sults while minimizing the energy cost from both cloud servers and edge devices, which
can not only help reduce carbon emissions [3, 12, 44, 114] but also increase battery life
and reduce total overhead costs [21, 26, 57]. The promise of energy-efficient models
has been substantially developed through various research fields, focusing on optimiz-
ing computational efficiency and resource utilization. One aspect of the field of energy-
efficient models emphasizes hardware design [38,70]. However, hardware development
is often time-consuming and expensive. Another aspect provides insight into the effi-
cacy of model pruning and quantization techniques that can minimize model size thus
helping save energy [37, 104, 115] consumption. In our work, we delve into resource
allocation and optimization strategies, seeking to further improve energy efficiency.

Decision-Making Models for Mobile Systems: Robotic companions and assistants
designed to operate in human-inhabited environments has made significant progress [9,
42, 108]. Imitation learning [34, 106, 109, 113] involves the system learning from ob-
served behavior, typically demonstrated by a human or professional operator, to guide
its decision-making process in mobile systems, such as autonomous vehicles [72, 89]
or drones [98]. Reinforcement learning (RL) [67, 99] has also been applied to opti-
mize decision-making processes, allowing robots to navigate efficiently while avoiding
obstacles and optimizing path planning [7, 95, 112]. However, the wide-scale deploy-
ment of real-time vision-based navigation models on robots today is hindered by ever-
increasing computational and hardware constraints [20, 55], making it difficult to de-
ploy accurate but large models on systems. In our work, our RL-based framework can
be used to query the cloud efficiently, i.e., to reduce overall energy cost without sacri-
ficing local resources. [28, 60, 96, 105]. Our flexible framework is model and platform-
agnostic, while automatically adapting across situations and communication settings.

3 Method

Our objective is to learn a policy that determines the dynamic allocation of local and
cloud resources, optimizing energy efficiency and real-time performance. In the follow-
ing, we discuss the main components of our method. First, we formulate our real-time
task of navigating to a specific goal in Sec. 3.1. Next, we employ imitation learning to
train two navigation policies tailored for local and cloud settings, respectively (Sec. 3.2).
Third, we discuss how we train our sample-efficient routing policy via Proximal Pol-
icy Optimization (PPO) [83] (Sec. 3.3). In particular, we introduce our multi-objective
reward, designed to optimize energy efficiency while maintaining navigation perfor-
mance. Fig. 1 depicts an overview of our method.

3.1 Problem Formulation

We formulate our robot navigation task as a real-time sequential decision-making prob-
lem from a set of observations o = {I,p} ∈ O, comprising a front-view camera image
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Fig. 1: Overview of UniLCD. Our system comprises a situational routing module, which takes
the current embedding and a history of previous actions. Local actions are predicted by a pre-
trained lightweight model that can be deployed efficiently on a the mobile system. The sample-
efficient routing module, trained via RL, determines whether to implement the local action or
transmit the scene embedding to the cloud server model, which is more accurate but computa-
tionally expensive and induces latency.

I ∈ RW×H×3, the next waypoint p ∈ R2, to a set of actions a = {d, v} ∈ A, where
d ∈ R represents the orientation and v ∈ R is the speed [14, 19]. Our objective is to
obtain a mapping function fΘ:O → A parameterized by Θ = [θ,ϕ,ω] for generat-
ing actions at each time step to minimize the overall energy cost from both the local
device and cloud server [10]. Our approach consists of three policies: a local and a
cloud navigation policy πl

θ and πc
ϕ with weights [θ,ϕ] that map the observations to

actions, producing alt and act , respectively. Additionally, we introduce a routing policy
πr
ω(o|πl

θ, π
c
ϕ) parameterized by ω, to dynamically determine the optimal utilization of

local resources versus offloading to the cloud server.

While our method can be optimized end-to-end, we initialize the two navigation
policies in an imitation learning manner [14, 29, 73]. We also note that, given the con-
straints of local device hardware in our setting, the number of parameters for the local
navigation policy is generally smaller than that of the cloud navigation policy. For com-
parative analysis and sample efficiency, after training the navigation policies, we freeze
the parameters θ,ϕ and train the routing policy πr

ω(o|πl
θ, π

c
ϕ) based on the observa-

tions and the two navigation policies using residual RL. It’s noteworthy that both the
local navigation policy and the routing policy are deployed on a local device, sharing
parameters for the initial layers of the neural network, as shown in Fig. 1.

Cloud-Aware Robot Navigation Task: Due to the challenges of obtaining sufficient
data in the dynamic real-world scenario [13, 64, 92], we develop a simulation envi-
ronment tailored for robot navigation through a crowded outdoor setting. Our envi-
ronment is built upon CARLA (version 0.9.13) [19], an open-source simulator typi-
cally employed for testing autonomous driving algorithms. The information transmis-
sion between the local and the cloud server potentially introduces a stochastic de-
lay [8, 30, 40, 110].
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Algorithm 1 UniLCD’s Routing Policy Training with Reinforcement Learning

1: Input: Image I, next waypoint p, local policy πl
θ , cloud policy πc

ϕ

2: Initialize: Number of iterations T , history H, routing policy πr
ω , reply buffer S

3: Collect on policy samples:
4: for t = 1 to T do
5: Obtain local action al

t and embeddings et using local policy πl
θ(It,pt)

6: Append (al
t, 0) to history Ht

7: if πr
ωt

(Ht, et) = 0 then at = al
t

8: else
9: Send et to cloud, at = πc

ϕ(It,pt)
10: Update last value of Ht to (at, 1)
11: end if
12: Compute instant reward using Eq. (2)
13: if Arrived destination then break
14: end if
15: Update replay buffer S = S ∪ {It,pt,Ht, rt}
16: Update routing policy parameters with PPO
17: end for

Toward Energy-Efficiency: The primary objective of our research is to enhance energy
efficiency while preserving task performance [31, 40, 74]. In our study, the navigation
task is offloaded to the cloud for processing only when local computation is insufficient
for achieving optimal task performance. However, communication bottlenecks necessi-
tate prioritizing local processing to conserve energy and minimize latency. Offloading
to the cloud is reserved for situations where only the cloud can meet the task perfor-
mance requirements, such as challenging scenarios like navigating in bad weather [69]
or crowded environments. Consequently, we leverage a routing network trained with
PPO and suitable for running on local devices. This modular architecture is then opti-
mized for energy efficiency, as discussed below.

3.2 Learning Local and Cloud Policies

In our work, we follow the standard imitation learning approach to train our navigation
policies in an offline manner. Specifically, we first collect a dataset D = {Ii,pi,ai}Ni=1

on diverse and complex routes and weathers using CARLA [19, 71] to simulate real-
world scenarios to provide the basis for our navigation policies.

As shown in Fig. 1, both the local and cloud navigation policies comprise (i) a visual
semantics feature extractor module for obtaining embeddings from input images, (ii) a
multilayer perceptron to extract the feature associated with the robot’s imminent goal
point, and (iii) a goal-conditional module that takes concatenation of image embeddings
and goal features to predict robot actions, encompassing both direction d and speed v.
To share common features and accommodate local computing resource constraints, we
first train a robust cloud policy with a large neural network. Subsequently, we freeze
the parameters of the first few layers of the pre-trained cloud policy to serve as a shared
feature extractor for the local policy. Additional fully connected layers are then added to
the extracted features to form the local policy. Therefore, the local policy is significantly
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smaller compared to the cloud policy. Only the parameters of the fully connected layer
in the local policy are optimized, leading to reduced computational consumption and
improved efficiency in both training and inference time. The learning objective for both
local and cloud policies is achieved by minimizing the L1 distance:

minimizeE(I,p,a)∼D[L1(a, π(I,p))] (1)

where π represents navigation policy {πl
θ, π

c
ϕ}.

3.3 Learning a Routing Policy

To effectively balance cloud and local computing resources while achieving good per-
formance at the same time, our study proposes a routing policy that seamlessly switches
between local and cloud. We follow the standard PPO training process as shown in Al-
gorithm 1 and the formulation of our routing policy is introduced below.

State Space: We denoted the current state as st = {et,Ht}, where et represents the im-
age embeddings and goal features extracted from the shared feature extractor employed
by both local and cloud policies, as discussed in Sec. 3.2, and Ht = {(ai,1i)}tt−k is a
sequence of the last k history actions, where ai represents previous navigation actions
and 1i is an indicator function indicating whether the action is obtained locally or from
the cloud.

Action Space: The action produced by our router policy is a binary discrete value,
indicating whether to accept the local navigation policy πl

θ or transmit the embeddings
et to the cloud navigation policy πc

ϕ.

Task Reward: It is challenging to optimize task performance and energy efficiency
while considering the sub-optimal actions generated from a small local model and
latency-induced cloud model. We design our reward function encompassing five key
components: geodesic reward rgeo, speed reward rspeed, energy disadvantage bonus
renergy, extreme action clip raction, and collision penalty rcollision. The overall reward
function is defined as

r = (rgeo · rspeed · renergy · raction)α − rcollision (2)

where α = 1/4 is a scaling factor that scales the overall reward between [0, 1]. By using
a multiplicative objective, we ease optimization across different instantaneous compo-
nents of the reward, i.e., if one of the terms is low, the entire reward is affected. Hence,
the multiplicative overall reward objective can also be scale invariant to some extent
(however, clipping one of the reward terms can change its importance). In our analy-
sis, we find it to improve optimization and reduce the need for careful hyper-parameter
tuning in multi-objective RL. For collision reward, we treat the term separately as it is
sparsely observed over selected frames as a large negative reward, as defined below.

Geodesic Reward: We introduce rgeo to align the robot’s trajectory with the pre-
defined path, penalizing the robot for movements that deviate from the path.

rgeo = (1− tanh(dgeo)) (3)
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where dgeo represents the Euclidean distance from the robot’s current position to the
nearest waypoint on the pre-defined path.

Speed Reward: The speed reward, denoted as rspeed, is designed to motivate robots
to reach their destination in the shortest time. Considering the impact of GPU resource
utilization on task execution duration, speed reward encourages quick task completion
thus minimizing the overall computing resource usage. The maximum speed of a robot
in our environment is set to mv = 1.5m/s according to [52, 68], and we define the
speed reward as

rspeed = v/mv (4)

where v represents the current speed.

Energy Disadvantage: In our pursuit of minimizing energy consumption as the pri-
mary objective, and considering the significantly lower energy cost of local computa-
tion compared to cloud transmission and computation, we introduce penalties when the
robot seeks cloud assistance. Similar to the speed component, we formulate the normal-
ized energy disadvantage reward as

renergy = 1− e/me (5)

where me is the maximum energy cost at one step.

Extreme Action Clip: Due to the property that tanh converges at extreme action val-
ues, leading to a potential risk of converging to local maxima, we introduce an action
clipping mechanism to address this concern. Specifically, actions exceeding the maxi-
mum allowed value will be directly assigned a reward of 0. This precautionary measure
is extended to both standardized directional and speed actions, as shown in Eq. (6)

raction = 1(|rspeed|< ϵ) · 1(| d

dm
|< ϵ) (6)

where ϵ = 0.97 is the threshold for clipping the actions, d is the next rotation angle
suggested by the navigation model chosen and dm is the maximum possible rotation,
ensuring that extreme actions do not unduly influence the reward function.

Collision Disadvantage: Robot navigation needs to emphasize safety and endeavor to
avoid collisions with obstacles, ensuring the successful accomplishment to the destina-
tion. To underscore the significance of collision avoidance, we include an episodic ter-
mination mechanism to emphasize the severity of collisions. Specifically, a substantially
higher negative penalty rcollision is assigned and the episode is terminated whenever a
collision happens.

4 Experiments

4.1 Implementation Details

Data Collection: To learn the local and cloud navigation policies using imitation learn-
ing, we collect crowd navigation data from our CARLA environment. We simulate
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environments with varying densities by introducing five, 15, 30, and 70 pedestrians into
the ego robot’s path, corresponding to low, medium, dense, and crowd-density settings,
respectively. This data is then aggregated to form a comprehensive training dataset for
both local and cloud navigation policies. Our data collection approach employs a heuris-
tic policy: we establish 10 different paths with predefined waypoints, which the robot
follows from the starting position to the destination. The robot avoids static obstacles
and halts when other pedestrians block its path, resuming moving once the path is clear.

Local and Cloud Policies: As discussed in Sec. 3.2, our local and cloud policies share
a common feature extractor that processes a 480× 480 image and a 2D imminent posi-
tion vector. Specifically, we utilize the initial layers of RegNet [82] to extract the image
features, and two fully connected (FC) layers to capture the position features. For the
local policy, the image feature is flattened and concatenated with the position feature,
followed by additional FC layers to generate the local actions. For the cloud policy,
both the image feature and position feature are transmitted from the local to the cloud.
The image feature is then processed by the remaining layers of RegNet [82] and con-
catenated with the position feature. An MLP is built on top of the combined features to
generate the cloud actions.

Routing Policy: Our routing policy follows the standard PPO training process, with a
policy network that decides whether to route locally or to the cloud, and a value network
that evaluates the chosen actions by estimating the value function. Both the policy and
value networks are MLPs with two hidden layers, with the hidden size being 16 for the
policy network and 256 for the value network.

Training Protocol: We use AdamW [62] optimizer and train for 200 epochs with a
learning rate of 0.0001 using our robot navigation dataset for both local and cloud
navigation policies. The routing policy is trained for 1,000 episodes, each consisting
at most 1,500 steps, with a discount factor γ set to 0.99. Episodes are truncated if the
agent collides with other objects, completes the designated number of steps, reaches the
predefined destination, or deviates more than three meters from the predefined route.

4.2 Evaluation Metrics

Task Performance Evaluation: We adapt CARLA’s evaluation metrics [1] to assess
the navigation performance of our ego robot. In addition to commonly used metrics
(e.g., success rate, route completion, etc.), we propose Navigation Score, denoted as
NS, similar to the driving score [1], by normalizing the infraction counts per meter. NS
is defined as

NS = RC · PI
IC · PRD (7)

where RC is route completion, PI represents the infraction penalty for collisions, IC
represents the number of robot collisions per meter, and PRD represents the penalty for
route deviation. Following the CARLA leaderboard settings, PI is set to 0.5, and PRD

is defined as

PRD =

{
0.8, if RD > ϵRD

1.0, otherwise
(8)
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where ϵRD = 1.5m is the route deviation threshold.

Energy Evaluation: In addition to the navigation-specific evaluations, we introduce
metrics to assess the computational and communication overhead incurred during the
execution of our algorithm. Specifically, the total energy consumption for each episode
is defined as

Energy = Elocal ·Nlocal + Ecloud ·Ncloud (9)

where Nlocal and Ncloud represent the number of steps the local and cloud models are
chosen by the routing policy in one episode, respectively. Elocal and Ecloud are the
energy costs for processing one observation locally or on the cloud server. We refer
to the energy values suggested by [40] and scale them according to our model and
image size. In our study, Elocal = 0.15J is the computation energy cost of the local
policy, and Ecloud = 1.5J comprises both the computation and communication energy
costs of the cloud policy. Further details regarding the calculation can be found in the
supplementary material.

Ecological Navigation Score: As our primary objective is to optimize the overall en-
ergy consumption while ensuring robot navigation performance, we introduce an Eco-
logical Navigation Score (ENS) that balances navigation performance and efficiency
considerations. The ENS is defined as

ENS = PE · NS (10)

where PE is the penalty term for energy consumption, and defined as

PE = 1− Energy
NE

(11)

where NE = (Elocal + Ecloud) · (Nlocal +Ncloud) is a normalization factor.

Run-Time: Real-time decision-making is crucial for robot navigation. In our study, the
robots need to respond instantly to environmental changes and swiftly switch between
local and cloud-based navigation policies to adjust path planning. To demonstrate this
real-time response, we report our run-time Frames Per Second (FPS), which includes
both the model processing time and the communication time between a local device and
the cloud server.

4.3 Results

We use the CARLA simulator (version 0.9.13) [19] to validate the effectiveness of
our proposed method. We tested our algorithm on five different routes in CARLA’s
Town 10, each with 30 episodes. In testing time, we explored diverse weather condi-
tions (including hard rain, sunny, wet, and sunset) and varying traffic density to simu-
late realistic conditions [15]. The maximum length of the routes is 40 meters. In this
section, we first compare UniLCD with state-of-the-art local-cloud collaboration solu-
tions [39, 40, 93, 95, 105]. Subsequently, we evaluate the performance of UniLCD with
various sizes of local models and data-transmission settings. Third, we conduct abla-
tion studies across different crowd-density settings. Finally, we systematically assess



Unified Local-Cloud Decision-Making via Reinforcement Learning 11

Table 2: Comparing UniLCD with Baselines. We categorize our comparative analysis between
individual models (Local and Cloud only), baselines (Deep Learning and RL-based computa-
tional offloading research), and our proposed UniLCD variations, which show progressive im-
provement. † denotes methods transmitting to the cloud raw input data, i.e., instead of an embed-
ding. ENS is Ecological Navigation Score (%), NS is Navigation Score (%), SR is Success Rate
(%), RC is Route Completion (%), Infract. is Infraction Rate (/m), Energy is measured in Joules
per meter (J/m) and FPS is Frames Per Second.

Method ENS↑ NS↑ SR↑ RC↑ Infract.↓ Energy↓ FPS↑
† Cloud-Only [82] 0.00 96.47 93.33 98.50 0.03 36.49 7.11
Local-Only [80] 63.43 67.33 0.00 75.23 0.16 4.33 65.40

Baseline Methods:
Compressive Offloading [105] 13.98 80.16 0.00 80.16 0.00 90.66 1.82
† Selective Query [39] 24.14 61.28 0.00 82.68 0.11 45.35 18.14
† Adaptive Offloading [93] 37.42 40.37 70.00 94.05 1.22 4.80 30.14
Neurosurgeon [40] 39.85 63.10 0.00 80.54 0.03 28.31 12.53
SPINN [51] 36.31 72.75 60.00 92.73 0.35 18.94 20.37
Deep Sequential RL [95] 58.84 61.83 0.00 79.36 0.36 3.77 77.94

UniLCD Module Ablations:
† Standard Reward 48.35 54.99 0.00 75.23 0.13 3.57 50.20
† Standard Reward w/ History 50.04 57.21 10.00 77.71 0.12 8.38 49.07
† Our Reward (Eq. (2)) 48.30 79.90 56.66 91.15 0.19 21.72 16.05
† Our Reward w/ History 71.70 87.71 83.33 94.66 0.11 7.83 33.98
Our Reward (Eq. (2)) 57.20 87.39 60.00 91.10 0.06 6.60 12.49
Our Reward w/ History 85.97 94.58 93.33 95.90 0.02 2.90 26.49

the significance of each reward term by omitting one at a time and analyzing their re-
spective impacts, thereby reinforcing the foundational rationale of our reward design.
The last two ablation studies can be found in our supplementary.

Comparing UniLCD with Baselines: Tab. 2 depicts our main results, comparing against
multiple baselines, including local and cloud-only models. We emphasize that prior
work does not usually consider safety-critical, real-time tasks such as social naviga-
tion. As shown in Tab. 2, several baselines can achieve a viable route completion (RC)
score, however, this comes at a cost, e.g., high infraction rates. This includes early-exit
baselines, which provide a limited offloading mechanism. We show the ENS metric
to drop to zero when assessing the high energy-consuming cloud model exclusively,
demonstrating that conducting all computations in the cloud with the computation-
heavy model is energy-consuming. Moreover, the local-only model demonstrates a
poor navigation score of 67.33% and a high collision rate of 0.16, indicating that low-
accuracy, device-only models are more susceptible to navigation errors. The baseline
models show comparable ENS scores to the local-only method but do not improve much
in other metrics. Early-exit strategies such as SPINN [51] and Neurosurgeon [40] ad-
dress on-device efficiency with improved ENS scores up to 39.85%, but perform worse
than offloading-based methods in other metrics. Furthermore, we compare our method
with DNN-based offloading (Selective Query [39]), which fails to improve due to the
dynamic nature of the task and over-reliance on the cloud. This particular baseline also
requires transmitting raw data to the cloud, which is inefficient. The best performing
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baseline, of Deep Sequential RL [95], achieves an ENS of 58.84%. UniLCD achieves a
state-of-the-art results, with an ENS of 85.97%, achieving state-of-the-art performance.
Our analysis also highlights the need for cloud-edge collaborative methods that can
combine both the strengths of fast local inference and high-capacity cloud computa-
tion.

Impact of Reward Design: Tab. 2 also shows ablation of UniLCD using various re-
wards. We evaluate UniLCD using the standard reward design (e.g., [116]), where indi-
vidual reward terms are added. We initially find the additive reward to result in compa-
rable performance to our reward design (ENS of 48.35% compared to 48.30%). How-
ever, when added history, the additive reward does not improve, while ours is shown
to outperform significantly (ENS of 50.04% for standard reward compared to 71.70%
with ours). We attribute this to the normalization effect of the multiplicative function
during training. This eases optimization, whereas, in additive overall reward, the contri-
bution of each term may need to be carefully optimized. While it is possible that careful
hyperparameter optimization can match these results, this highlights the flexibility and
generalization of our objective, which performs well across different model inputs. This
finding also uncovers the sensitivity of current methods for the reward design. Finally,
we utilize an embedding from the local model as input to UniLCD to provide the neces-
sary context for collision handling and transmit it to the cloud, i.e., instead of raw data to
reduce energy costs. This improves overall performance, achieving an ENS of 85.97%,
mostly due to reduced energy consumption, while maintaining high performance. The
embedding-based communication architecture also reduces collisions due to a higher
FPS, resulting in a higher NS.

Local Policy Backbone Ablations: Tab. 3 shows ablations of UniLCD for local back-
bones of various sizes. We run experiments with UniLCD that transmit raw image data
to the cloud using local backbones such as MobileNetV2 (medium), MobileNetV3small
(small), and MobileVIT (tiny), coupled with a RegNet (cloud) model. As an imita-
tion model, the medium backbone demonstrates task performance closest to the cloud,
with minimal instances of infractions followed by the small and tiny backbones. The
UniLCD with history model consistently favors local at instances where both local and
cloud models have similar capacity, i.e., the medium backbone. The algorithm success-
fully sustains an impressive average route completion rate of 94.66% with occasional
cloud support and significantly reduces energy consumption to 7.83 J/m using a compar-
atively weaker local model with a smaller backbone. Further, testing local policy inca-
pable of path-following or collision avoidance with a tiny backbone reveals a complete
reliance on cloud assistance but results in the successful completion of all episodes.

We also run ablations of UniLCD that transmit embeddings to the cloud. The local
models for these experiments are trained by freezing pre-trained cloud weights where
stage 1 is fine-tuned with the feature extractor containing the early layers of the cloud
model and stage 2 is fine-tuned with the feature extractor containing the final layers of
the cloud model. Observations indicate that UniLCD with history model achieves an
ENS of 85.97% solely with the stage 1 backbone. It is noteworthy that both models ex-
hibit a bias towards local processing when a backbone comparable to cloud performance
(stage 2) is employed, resulting in the highest ENS of 86.78%, and a route completion
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Table 3: Local Policy Backbone Ablations. We test the task performance in the dense crowd
setting for UniLCD and UniLCD w/ History. † denotes methods transmitting to the cloud raw
input data, i.e., instead of an embedding. For UniLCD transmitting data, we use three dimensions
of local models: Tiny, Small, and Medium. For UniLCD transmitting embedding, we use local
models trained up to two stages: Stage 1 trained with fewer parameters and Stage 2 trained with
more parameters. Params is Number of Parameters in each local model (M), ENS is Ecological
Navigation Score (%), NS is Navigation Score (%), SR is Success Rate (%), RC is Route Com-
pletion (%), Infract. is Infraction Rate (/m), Energy is measured in Joules per meter (J/m), and
FPS is Frames Per Second.

Local Model Size Params ENS↑ NS↑ SR↑ RC↑ Infract.↓ Energy↓ FPS↑
UniLCD:
† Tiny 1.37 12.80 93.29 90.00 97.93 0.07 34.01 7.35
† Small 2.54 48.30 79.90 56.66 91.15 0.19 21.72 16.05
† Medium 3.50 50.92 87.87 80.00 95.50 0.12 21.19 15.10

UniLCD w/ History:
† Tiny 1.37 0.00 91.27 93.33 98.50 0.11 36.52 6.42
† Small 2.54 71.70 87.71 83.33 94.66 0.11 7.83 33.98
† Medium 3.50 73.46 83.86 90.00 96.22 0.15 5.22 11.53
UniLCD:
Stage 1 0.53 57.20 87.39 60.00 91.10 0.06 6.60 12.49
Stage 2 0.95 74.12 81.54 93.33 91.10 0.16 1.80 65.40

UniLCD w/ History:
Stage 1 0.53 85.97 94.58 93.33 95.99 0.02 2.90 26.49
Stage 2 0.95 86.78 95.47 93.33 98.15 0.04 1.77 36.50

of 98.15% with minimal infractions, averaging 0.04 per meter. Overall, these findings
underscore UniLCD’s proficiency in leveraging cloud resources only when local pro-
cessing is inadequate.

Performance over Training Progress: We also investigate the evolution of the ENS
task metric over the training progress as shown in Fig. 2. Remarkably, our model and
reward outperform the standard reward even at the onset of training despite not requir-
ing careful hyper-parameter tuning. Nonetheless, as training progresses, the difference
in the baselines becomes even more apparent. The ENS performance is presented over
training iterations and averaged over 10 tests, i.e., using different environmental seeds.
Results for performance in different environments and settings (e.g., crowd density)
can be found in the supplementary. In our comparative analysis, we note that as the
complexity of the scenario increases, our baseline approaches show a decline in task
performance. This decline is evidenced by an increase in route deviation and infraction
rates. While UniLCD can easily navigate comparatively simpler scenarios, its infraction
rate increases only slightly. This observation suggests the algorithm’s robust adaptabil-
ity for effective navigation in diverse and intricate environments.
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Fig. 2: Training Progress Results. We evaluate performance for different models, including
UniLCD trained with a standard, carefully tuned, additive reward vs. UniLCD with the proposed
reward function. We find consistently improved performance throughout the entire model train-
ing process. Results are shown for averaging across 10 evaluation seeds.

5 Conclusion and Future Work

We envision large-scale robot agents that collaborate and actively execute tasks in com-
plex real-world scenarios. To this end, we design a PPO-based routing policy that learns
to seamlessly switch between local and cloud policies depending on the situation and
task objective of the observations. Specifically, we address the challenging task of
real-time social robot navigation. We demonstrate that the proposed approach results
in reduced overall energy cost while maintaining robust navigation performance. Our
simulation environment can be used to facilitate more research into both effective and
efficient navigation in the future. Thus, we aim to facilitate the development of more
sustainable and robust societal-scale AI-based systems. Moreover, our approach can
be extended to various platforms and real-time decision-making tasks that require both
seamless communication and high performance. While we take a step towards quanti-
fying trade-offs in real-time, safety-critical systems in challenging simulation settings,
the next step would be to analyze UniLCD within diverse real-world environments and
ambient settings (e.g., different communication settings, larger cloud models). Finally,
although we consider the overarching objective of minimizing processing computation
across both local and cloud devices, other aspects of efficiency can also be considered.
For instance, maintaining local infrastructure often requires additional battery and hard-
ware resources, which can be better optimized with cloud-based solutions especially
when leveraging large, high-capacity models [11, 18].
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35. Jazbec, M., Timans, A., Veljković, T.H., Sakmann, K., Zhang, D., Naesseth, C.A., Nalis-
nick, E.: Fast yet safe: Early-exiting with risk control. arXiv (2024)

36. Jiang, Y., Wang, S., Valls, V., Ko, B.J., Lee, W.H., Leung, K.K., Tassiulas, L.: Model prun-
ing enables efficient federated learning on edge devices. Trans. Neural Netw. Learn. Syst.
(2022)

37. Jin, C., Che, T., Peng, H., Li, Y., Pavone, M.: Learning from teaching regularization: Gen-
eralizable correlations should be easy to imitate. arXiv (2024)

38. Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M., Moshovos, A.: Stripes: Bit-serial
deep neural network computing. In: MICRO (2016)

39. Kag, A., Fedorov, I., Gangrade, A., Whatmough, P., Saligrama, V.: Efficient edge inference
by selective query. In: ICLR (2022)

40. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.: Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge. SIGARCH (2017)

41. Karras, K., Pallis, E., Mastorakis, G., Nikoloudakis, Y., Batalla, J.M., Mavromoustakis,
C.X., Markakis, E.: A hardware acceleration platform for AI-based inference at the edge.
CSSP (2020)

42. Katyal, K.D., Hager, G.D., Huang, C.M.: Intent-aware pedestrian prediction for adaptive
crowd navigation. In: ICRA (2020)

43. Kim, S.W., Ko, K., Ko, H., Leung, V.C.: Edge-network-assisted real-time object detection
framework for autonomous driving. Network (2021)

44. Kimovski, D., Mathá, R., Hammer, J., Mehran, N., Hellwagner, H., Prodan, R.: Cloud, fog,
or edge: Where to compute? Internet Comput. (2021)

45. Knox, W.B., Allievi, A., Banzhaf, H., Schmitt, F., Stone, P.: Reward (mis) design for au-
tonomous driving. J. Artif. Intell. (2023)

46. Kong, Z., Dong, P., Ma, X., Meng, X., Sun, M., Niu, W., Shen, X., Yuan, G., Ren, B., Qin,
M., et al.: SPViT: Enabling faster vision transformers via soft token pruning. arXiv (2021)

47. Kryzhanovskiy, V., Balitskiy, G., Kozyrskiy, N., Zuruev, A.: Qpp: Real-time quantization
parameter prediction for deep neural networks. In: CVPR (2021)



Unified Local-Cloud Decision-Making via Reinforcement Learning 17

48. Lai, L., Ohn-Bar, E., Arora, S., Yi, J.S.K.: Uncertainty-guided never-ending learning to
drive. In: CVPR (2024)

49. Lai, L., Shangguan, Z., Zhang, J., Ohn-Bar, E.: XVO: Generalized visual odometry via
cross-modal self-training. In: ICCV (2023)

50. Laskaridis, S., Kouris, A., Lane, N.D.: Adaptive inference through early-exit networks:
Design, challenges and directions. In: IWEMDL (2021)

51. Laskaridis, S., Venieris, S.I., Almeida, M., Leontiadis, I., Lane, N.D.: Spinn: synergistic
progressive inference of neural networks over device and cloud. In: MobiCom (2020)

52. Levine, R.V., Norenzayan, A.: The pace of life in 31 countries. J. Cross-Cult. Psychol.
(1999)

53. Li, M., Li, Y., Tian, Y., Jiang, L., Xu, Q.: Appealnet: An efficient and highly-accurate
edge/cloud collaborative architecture for dnn inference. In: DAC (2021)

54. Li, X., Dang, Y., Aazam, M., Peng, X., Chen, T., Chen, C.: Energy-efficient computation
offloading in vehicular edge cloud computing. Access (2020)

55. Li, Z., Ren, T., He, X., Liu, C.: Red: A systematic real-time scheduling approach for robotic
environmental dynamics. In: RTSS (2023)

56. Lin, B., Zhu, B., Ye, Y., Ning, M., Jin, P., Yuan, L.: Video-LLaVA: Learning united visual
representation by alignment before projection. arXiv (2023)

57. Lin, B., Huang, Y., Zhang, J., Hu, J., Chen, X., Li, J.: Cost-driven off-loading for dnn-based
applications over cloud, edge, and end devices. Trans. Ind. Inform. (2019)

58. Lin, Y., Zhang, J.w., Liu, H.: Deep learning based short-term air traffic flow prediction
considering temporal–spatial correlation. Aerosp. Sci. Technol. (2019)

59. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. NeurIPS (2023)
60. Liu, L., Li, H., Gruteser, M.: Edge assisted real-time object detection for mobile augmented

reality. In: ICMCN (2019)
61. Liu, R., Xu, X., Shen, Y., Zhu, A., Yu, C., Chen, T., Zhang, Y.: Enhanced detection classi-

fication via clustering svm for various robot collaboration task. arXiv (2024)
62. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv (2017)
63. Masoudi, M., Cavdar, C.: Device vs edge computing for mobile services: Delay-aware de-

cision making to minimize power consumption. Trans. Mob. Comput. (2020)
64. Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core

challenges of social robot navigation: A survey. T-HRI (2023)
65. Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-friendly vi-

sion transformer. arXiv (2021)
66. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust

perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. (2022)
67. Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M., et al.: Model-based reinforcement

learning: A survey. Found. Trends Mach. Learn. (2023)
68. Mohler, B.J., Thompson, W.B., Creem-Regehr, S.H., Pick, H.L., Warren, W.H.: Visual flow

influences gait transition speed and preferred walking speed. Exp. Brain Res. (2007)
69. Mus, at, V., Fursa, I., Newman, P., Cuzzolin, F., Bradley, A.: Multi-weather city: Adverse

weather stacking for autonomous driving. In: CVPR (2021)
70. Nguyen, D.T., Nguyen, T.N., Kim, H., Lee, H.J.: A high-throughput and power-efficient

fpga implementation of yolo cnn for object detection. VLSI (2019)
71. Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.: Learning situational driving. In:

CVPR (2020)
72. Pan, Y., Cheng, C.A., Saigol, K., Lee, K., Yan, X., Theodorou, E., Boots, B.: Agile au-

tonomous driving using end-to-end deep imitation learning. arXiv (2017)
73. Pan, Y., Cheng, C.A., Saigol, K., Lee, K., Yan, X., Theodorou, E.A., Boots, B.: Imitation

learning for agile autonomous driving. Int. J. Robot. Res. (2020)



18 Sengupta et al.

74. Park, S.H., Jeong, S., Na, J., Simeone, O., Shamai, S.: Collaborative cloud and edge mobile
computing in c-ran systems with minimal end-to-end latency. Trans. Signal Inf. Process.
(2021)

75. Park, S., Kwon, D., Kim, J., Lee, Y.K., Cho, S.: Adaptive real-time offloading decision-
making for mobile edges: deep reinforcement learning framework and simulation results.
Appl. Sci. (2020)

76. Penmetcha, M., Min, B.C.: A deep reinforcement learning-based dynamic computational
offloading method for cloud robotics. Access (2021)

77. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization.
In: ICLR (2018)

78. Qendro, L., Campbell, A., Lio, P., Mascolo, C.: Early exit ensembles for uncertainty quan-
tification. In: ML4H (2021)

79. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design
spaces. In: CVPR (2020)

80. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted resid-
uals and linear bottlenecks. In: CVPR (2018)

81. Satyanarayanan, M., Beckmann, N., Lewis, G.A., Lucia, B.: The role of edge offload for
hardware-accelerated mobile devices. In: IWMCSA (2021)

82. Schneider, N., Piewak, F., Stiller, C., Franke, U.: Regnet: Multimodal sensor registration
using deep neural networks. In: IV (2017)

83. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimiza-
tion algorithms. arXiv (2017)

84. Shah, D., Osiński, B., Levine, S., et al.: LM-Nav: Robotic navigation with large pre-trained
models of language, vision, and action. In: CoRL (2023)

85. Shangguan, Z., Lin, L., Wu, W., Xu, B.: Neural process for black-box model optimization
under bayesian framework. arXiv (2021)

86. Shao, Y.S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B., Kline-
felter, A., Pinckney, N., Raina, P., et al.: Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In: MICRO (2019)

87. Sudhakar, S., Sze, V., Karaman, S.: Data centers on wheels: emissions from computing
onboard autonomous vehicles. Micro (2022)

88. Tang, S., Wang, Y., Kong, Z., Zhang, T., Li, Y., Ding, C., Wang, Y., Liang, Y., Xu, D.:
You need multiple exiting: Dynamic early exiting for accelerating unified vision language
model. In: CVPR (2023)

89. Teng, S., Chen, L., Ai, Y., Zhou, Y., Xuanyuan, Z., Hu, X.: Hierarchical interpretable imi-
tation learning for end-to-end autonomous driving. T-IV (2022)

90. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al.: LLaMA: Open and efficient foundation language
models. arXiv (2023)

91. Treuillet, S., Royer, E.: Outdoor/indoor vision-based localization for blind pedestrian navi-
gation assistance. Int. J. Image Graph. (2010)

92. Tsai, C.E., Oh, J.: A generative approach for socially compliant navigation. In: ICRA (2020)
93. Van Tam, N., Hieu, N.Q., Van, N.T.T., Luong, N.C., Niyato, D., Kim, D.I.: Adaptive task

offloading in coded edge computing: A deep reinforcement learning approach. COMML
(2021)

94. Wang, J.: Lightweight and real-time object detection model on edge devices with model
quantization. In: JPCS (2021)

95. Wang, J., Hu, J., Min, G., Zhan, W., Ni, Q., Georgalas, N.: Computation offloading in multi-
access edge computing using a deep sequential model based on reinforcement learning.
Commun. Mag. (2019)



Unified Local-Cloud Decision-Making via Reinforcement Learning 19

96. Wang, J., Hu, J., Min, G., Zomaya, A.Y., Georgalas, N.: Fast adaptive task offloading in
edge computing based on meta reinforcement learning. TPDS (2020)

97. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: Hardware-aware automated quantization
with mixed precision. In: CVPR (2019)

98. Wang, T., Chang, D.E.: Robust navigation for racing drones based on imitation learning and
modularization. In: ICRA (2021)

99. Wiering, M.A., Van Otterlo, M.: Reinforcement learning. Adapt. Learn. Optim. (2012)
100. Wu, H., Zhang, Z., Guan, C., Wolter, K., Xu, M.: Collaborate edge and cloud computing

with distributed deep learning for smart city internet of things. IoT-J (2020)
101. Wu, N., Wang, H.: Deep learning adaptive dynamic programming for real time energy man-

agement and control strategy of micro-grid. J. Clean. Prod. (2018)
102. Wu, T., Song, C., Zeng, P.: Model pruning based on filter similarity for edge device deploy-

ment. Front. Neurorobot. (2023)
103. Xia, G., Bouganis, C.S.: Window-based early-exit cascades for uncertainty estimation:

When deep ensembles are more efficient than single models. In: ICCV (2023)
104. Yang, T.J., Chen, Y.H., Sze, V.: Designing energy-efficient convolutional neural networks

using energy-aware pruning. In: CVPR (2017)
105. Yao, S., Li, J., Liu, D., Wang, T., Liu, S., Shao, H., Abdelzaher, T.: Deep compressive

offloading: Speeding up neural network inference by trading edge computation for network
latency. In: SenSys (2020)

106. Zhang, J., Huang, Z., Ohn-Bar, E.: Coaching a teachable student. In: CVPR (2023)
107. Zhang, J., Huang, Z., Ray, A., Ohn-Bar, E.: Feedback-guided autonomous driving. In:

CVPR (2024)
108. Zhang, J., Zheng, M., Boyd, M., Ohn-Bar, E.: X-World: Accessibility, vision, and autonomy

meet. In: ICCV (2021)
109. Zhang, J., Zhu, R., Ohn-Bar, E.: SelfD: Self-learning large-scale driving policies from the

web. In: CVPR (2022)
110. Zhang, W., He, J.: Modeling end-to-end delay using pareto distribution. In: ICIMP (2007)
111. Zhang, X., Zhang, H., Zhou, X., Yuan, D.: Energy minimization task offloading mechanism

with edge-cloud collaboration in iot networks. In: VTC (2021)
112. Zhu, K., Zhang, T.: Deep reinforcement learning based mobile robot navigation: A review.

TST (2021)
113. Zhu, R., Huang, P., Ohn-Bar, E., Saligrama, V.: Learning to drive anywhere. CoRL (2023)
114. Zhu, W., Rosendo, A.: Psto: Learning energy-efficient locomotion for quadruped robots.

Machines (2022)
115. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.: Target-driven

visual navigation in indoor scenes using deep reinforcement learning. In: ICRA (2017)
116. Zhuang, Z., Fu, Z., Wang, J., Atkeson, C., Schwertfeger, S., Finn, C., Zhao, H.: Robot

parkour learning. In: CoRL (2023)



20 Sengupta et al.

Unified Local-Cloud Decision-Making via
Residual Reinforcement Learning

Abstract. This supplementary provides additional implementation and ablative
details. Specifically, we discuss additional details regarding the introduced cloud
and energy-aware environment as well as additional ablative analysis. Our sup-
plementary video depicts qualitative results, comparing roll-outs generated by the
proposed model to baseline models.

1 Environment Implementation

Energy Cost Model: To quantify energy consumption, we assume a standard cost per
floating point operation model [26, 40]. For instance, a 675 Kb 480 × 480 × 3 image
and a 1.37 M parameters MobileVIT [65] model would result in energy consumption
on a local GPU that is 0.15 J (based on a factor of 0.095 J per flop [40]). We further add
an energy cost for every communication, i.e., transmitting raw data or an embedding to
the cloud [39]. Here, energy consumed for local-cloud communication is computed as
6.94 × 10−5 J per byte [40]. When transmitting only an embedding (a 24 × 24 array)
from the local policy as an intermediate input to the cloud policy, the communication
energy consumption decreases, e.g., from the original image which requires 1.55 J to
25.18 mJ.

Cloud Communication Model: Cloud transmission involves a latency, which the model
should optimize over, e.g., in safety-critical scenarios based on the task. Our communi-
cation model resembles the one used by Kang etal [40], where latency is modeled as a
Gaussian with an average time of 0.5 s and variance of 0.1 s. To extend our research, we
also experimented with modeling latency using a Pareto distribution. Under the Pareto
distribution, we observed a 7% reduction in ENS, with an ENS value of 80.45, in-
fractions at 0.03 /m, and energy consumption at 2.76 J/m. While this is a conservative
estimate, we will release our simulation, code, and models to facilitate the analysis of
RL agents across diverse computational and latency configurations.

1.1 Reward Design

Reward Progression: Fig. 3 shows our reward analysis for RL baselines and UniLCD
models. The reward progression indicates that the baselines fail to learn any meaning-
ful information throughout the training and continue to oscillate within a very narrow
range. Our UniLCD demonstrates a slight improvement in the initial episodes but ex-
hibits delayed convergence due to its slower learning rate. Remarkably, the UniLCD
with history model displays a distinct pattern of rapid advancement, characterized by a
steep rise in the initial episodes. Consequently, it is clear that this configuration learns
and adapts to the desired behavior more efficiently than the comparative approaches,
even within a few iterations. The primary benefits in sample efficiency stem from the
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Fig. 3: Training Progression. We evaluate the rewards for our overall framework throughout the
training process against baseline models. We demonstrate high sample-efficiency compared to
prior methods, particularly when the routing module is given a history input, i.e., prior actions
and their source (cloud or local decision). Despite common instabilities in training reinforcement
learning models, UniLCD is shown to achieve significantly higher reward early in the training
process.

definition of the reward function definition and the careful design of the routing module
and its inputs.

Comparison with Standard Additive Reward: In the main paper, we find it crucial
to carefully shape the reward function in order to effectively optimize for several dif-
ferent types of rewards. Our reward is contrasted with current standard approaches that
linearly combine the rewards [5, 45, 116], i.e.,

rstandard = αgrgeo + αsrspeed + αerenergy + αcrcollision (12)

adding the geodesic, speed, energy, and collision rewards and αg , αs, αe, αc, are tuned
scalar hyperparameters (we perform careful tuning of these with a grid search).

Impact of Reward Components: Table 4 analyzes the impact of various reward terms
on task performance. We show each term to contribute to the overall task performance.
We note that we do not multiply the collision reward with the other terms in order to
emphasize it during training. This provides a major negative disadvantage to avoid
collisions, as it dominates the overall reward once it occurs (and results in episode
termination). Moreover, we show that without penalizing energy consumption of com-
munication to and processing in the cloud, the model effectively learns to rely on the
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Table 4: Reward Component Ablation. We investigate the impact of each reward component
in our reward design for UniLCD. ENS is Ecological Navigation Score (%), NS is Navigation
Score (%), SR is Success Rate (%), RC is Route Completion (%), Infract. is Infraction Rate
(/m), Energy is measured in Joules per meter (J/m), and FPS is Frames Per Second (empirically
measured and averaged throughout the trials).

Reward ENS↑ NS↑ SR↑ RC↑ Infract.↓ Energy↓ FPS↑
All Terms 85.97 94.58 93.33 95.90 0.02 2.90 26.49
w/o rgeo 67.04 74.65 0.00 76.22 0.03 7.42 58.82
w/o rspeed 66.05 72.66 0.00 77.34 0.09 6.61 65.40
w/o renergy 0.00 93.53 90.00 95.50 0.03 43.75 6.42

more powerful model. Finally, while the imitation-learned models take as input the
goal, adding a geodesic reward term is found to help ensure the routing module and
final action prediction do not result in a policy that deviates from the planned path.

Real-world Validation: Our simulation experiments are based on real-world network
latency calculations, as detailed in Sec 1. To extend our research into real-world vali-
dations, we conducted a small-scale experiment using an RC vehicle platform (Traxxas
X-Maxx) equipped with a Jetson Nano. In this setup, reward terms were computed in
a self-supervised manner using an EAI XL2 LiDAR with a minimum range of 0.1 me-
ters. Given the need for high sample efficiency in real-world reinforcement learning
(RL), we performed an ablation study comparing Proximal Policy Optimization (PPO)
and CrossQ. In Line 16 of Algorithm 1, CrossQ learns a policy in approximately five
minutes, demonstrating a 21% improvement over [31].

Further Work: While our work takes a step towards developing vision-based systems
and effectively address multifaceted objectives, several simplifications were necessary.
Due to the difficulty and sample inefficiency associated with the optimization of RL
agents for energy, latency, and safety constraints – all are crucial in real-world set-
tings – we adopted a step-by-step training approach. Specifically, the local and cloud
policies were trained using imitation learning by assuming expert trajectories. Our
UniLCD pipeline can readily support additional model fine-tuning and incorporation
of consumption-based reward terms, e.g., both the cloud and local models can be fine-
tuned using RL, yet this requires additional study in the future.

1.2 Performance Over Task Difficulty

The results in the main paper are shown for the high (30 pedestrians) density settings
of our environment, spawned along the route (Fig. 4). For completeness, we report in
Table 5 the model performance across additional pedestrian density settings along the
path, starting from a low-density scenario with 5 pedestrians to a crowded scenario
with 70 pedestrians. As shown in the table, several models degrade in performance,
particularly in crowded settings. Remarkably, our final UniLCD model exhibits only
slight degradation (1%), in terms of ENS, in the most challenging and crowded settings.
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Fig. 4: Examples of Different Environmental Settings in Our Robot Navigation Environ-
ment. We vary the pedestrian density in order to stress-test the proposed UniLCD method. Pedes-
trian count along the path ranges from 5 (Low), 15 (Medium), 30 (High), and 70 (Crowd).
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Table 5: Pedestrian Density Ablation. Model performance is shown for different pedestrian
densities along the path, from Low (mostly empty, 5 pedestrians), Medium (15 pedestrians),
High (30 pedestrians), and up to Crowded (70 pedestrians). † denotes methods transmitting to the
cloud raw input data instead of an embedding. ENS is Ecological Navigation Score (%), NS is
Navigation Score (%), SR is Success Rate (%), RC is Route Completion (%), Infract. is Infraction
Rate (/m), Energy is measured in Joules per meter (J/m), and FPS is Frames Per Second.

Method Setting ENS↑ NS↑ SR↑ RC↑ Infract.↓ Energy↓ FPS↑

† Cloud-Only [79]

Low 0.00 98.41 95.00 99.10 0.01 33.93 8.91
Medium 0.00 97.14 93.33 98.50 0.02 35.11 8.74
High 0.00 96.47 93.33 98.50 0.03 36.49 7.11
Crowd 0.00 88.24 92.00 95.24 0.11 48.93 6.52

Local-Only [80]

Low 66.18 69.70 0.00 75.23 0.11 3.78 78.19
Medium 65.99 69.70 0.00 75.23 0.11 3.98 73.67
High 63.43 67.33 0.00 75.23 0.16 4.33 68.40
Crowd 35.47 37.55 0.00 63.16 0.75 4.94 65.40

Baseline Methods:

SPINN [51]

Low 43.71 85.13 70.00 95.12 0.16 16.88 23.84
Medium 39.94 80.60 66.66 93.24 0.21 16.74 24.21
High 36.31 72.75 60.00 92.73 0.35 18.94 20.37
Crowd 32.07 53.22 60.00 90.76 0.77 17.16 21.84

Compressive Offloading [105]

Low 11.81 80.43 0.00 80.43 0.00 88.23 2.46
Medium 12.38 80.16 0.00 80.16 0.00 89.12 2.17
High 13.98 80.16 0.00 80.16 0.00 90.66 1.82
Crowd 10.06 75.66 0.00 75.66 0.00 92.66 1.19

† Selective Query [39]

Low 27.87 64.78 0.00 82.68 0.03 42.64 21.57
Medium 25.40 60.63 0.00 80.12 0.08 44.87 19.39
High 24.14 61.28 0.00 82.68 0.11 45.35 18.14
Crowd 14.90 44.27 0.00 79.36 0.52 51.72 14.38

Neurosurgeon [40]

Low 43.79 67.62 0.00 85.12 0.01 25.62 12.53
Medium 42.12 65.12 0.00 82.54 0.02 26.48 13.21
High 39.85 63.10 0.00 80.54 0.03 28.31 12.53
Crowd 32.94 51.19 0.00 75.58 0.24 29.18 9.61

† Adaptive Offloading [93]

Low 89.38 97.15 90.0 98.51 0.02 5.02 34.91
Medium 51.87 55.56 80.00 97.42 0.81 4.22 33.39
High 37.42 40.37 70.00 94.05 1.22 4.80 30.14
Crowd 33.96 37.67 80.00 95.38 1.34 6.39 28.71

Deep Sequential RL [95]

Low 70.15 73.02 0.00 79.36 0.12 3.07 78.10
Medium 66.66 69.56 0.00 79.36 0.19 3.25 78.03
High 58.84 61.83 0.00 79.36 0.36 3.77 77.94
Crowd 26.47 27.93 0.00 75.28 1.43 4.30 76.12

UniLCD Variations:

† Standard Reward

Low 49.37 56.15 0.00 75.23 0.10 2.47 52.63
Medium 49.37 56.15 0.00 75.23 0.10 3.12 51.18
High 48.35 54.99 0.00 75.23 0.13 3.57 50.20
Crowd 30.60 34.80 0.00 75.23 0.79 4.86 47.74

† Standard Reward w/ History

Low 51.44 58.81 10.00 77.71 0.08 7.02 51.42
Medium 50.38 57.60 10.00 77.71 0.11 7.57 50.20
High 50.04 57.20 10.00 77.71 0.12 8.38 49.07
Crowd 35.22 40.26 10.00 75.23 0.58 10.57 43.16

† Our Reward

Low 51.82 85.73 60.00 90.00 0.07 18.49 20.82
Medium 51.20 84.71 60.00 92.70 0.13 20.57 17.14
High 48.30 79.90 56.66 91.15 0.19 21.72 16.05
Crowd 38.79 64.16 60.00 86.45 0.43 24.57 11.20

† Our Reward w/ History

Low 73.72 90.17 83.33 94.66 0.07 5.78 36.61
Medium 72.20 88.32 83.33 94.66 0.10 6.51 34.73
High 71.70 87.71 83.33 94.66 0.11 7.83 33.98
Crowd 59.04 72.22 83.33 93.33 0.37 10.83 30.62

Our Reward

Low 61.88 94.54 60.00 95.20 0.01 5.51 14.18
Medium 60.68 92.71 60.00 94.66 0.03 5.88 13.72
High 57.20 87.39 60.00 91.10 0.06 6.60 12.49
Crowd 50.22 76.74 60.00 90.00 0.23 8.43 10.73

Our Reward w/ History

Low 88.10 96.92 93.33 97.60 0.01 2.58 30.02
Medium 87.06 95.77 90.00 96.44 0.01 2.63 29.12
High 85.97 94.58 93.33 95.90 0.02 2.90 26.49
Crowd 83.04 91.36 93.33 95.90 0.07 3.12 22.84
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