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Abstract

In the field of AI security, deep neural networks (DNNs)

are highly sensitive to adversarial examples (AEs), which

can cause incorrect predictions with minimal input pertur-

bations. Although AEs exhibit transferability across mod-

els, targeted attack success rates (TASRs) are low due to

differences in feature dimensions and decision boundaries.

To enhance targeted AE transferability, we propose a novel

approach using Inverse Target Gradient Competition (ITC)

and Spatial Distance Stretching (SDS) in the optimiza-

tion process. Specifically, we employ a siamese-network-

like framework to generate both non-targeted and targeted

AEs. The ITC mechanism applies non-targeted adversar-

ial gradients each epoch to impede the optimization of tar-

geted perturbations, thereby improving robustness. Addi-

tionally, a top-k SDS strategy guides AEs to penetrate target

class regions in the latent space while distancing from non-

targeted regions, achieving optimal transferability. Com-

pared to state-of-the-art competition-based attacks, our

method significantly improves transferable TASRs by 16.1%

and 21.4% on mainstream CNNs and ViTs, respectively, and

demonstrates superior defense-breaking capabilities. Our

code is available here.

1. Introduction

Adversarial attacks involve adding small, often impercep-

tible perturbations to input data, which can lead otherwise

high-performing models to produce incorrect outputs. The

concept of adversarial attacks was first introduced by [23]

and further developed by [7], who demonstrated the vulner-

ability of deep neural networks (DNNs) to these perturba-

tions. With the rapid advancement of DNNs in recent years,

the security risks revealed by adversarial attacks have be-

come a critical issue. Adversarial attacks are now widely

used to assess model security, improve model robustness,

and drive research in defense technologies.

However, the significance of adversarial attacks extends

beyond these applications, as they have inadvertently be-

come a widely used defense mechanism in real-world sce-

narios. A prime example is Google’s login verification sys-

tem, reCAPTCHA, which aims to distinguish real users

from bots to prevent abuse. Adversarial examples (AEs) are

one of the primary image verification methods employed,

as illustrated in Figure 1. This raises an important ques-

tion: is it secure enough? Since we do not know the bot’s

model architecture or training domain, the transferability of

AEs becomes especially crucial. Most current research on

adversarial transferability focuses on non-targeted attacks

[14, 40], even extending to cross-architecture and cross-

domain attacks [15, 37], achieving notable performance. In

contrast, targeted attacks face a significant increase in diffi-

culty due to the substantial changes in decision boundaries,

and as a result, they still maintain a relatively low success

rate. However, for login verification, given that the output

category of non-targeted attacks is uncontrollable, and even

the original verification images without perturbation may

have “low-quality” issues (leading to misidentification by

bots), in such cases, targeted AEs are often safer and more

reliable than non-targeted AEs that may cause the deployed

bots to misjudge into the ground truth category.

Currently, effective targeted attack methods are primar-

ily based on transformation [1, 18, 29, 34], achieving trans-

ferability through input augmentation. However, the re-

lentless pursuit and stacking of a greater variety of trans-

formations, although enhancing transferability to some ex-

tent, does not guarantee robust performance in white-box

attacks. Moreover, this stacking approach based on affine

and perspective transformations offers limited insight into

the complexity and vulnerability of DNNs. Recently,

competition-based attacks have been proposed [2, 30], of-

fering a unique perspective. Their advantage lies in com-

pelling AEs to consider the more complex and diverse fea-

ture representations within DNNs during their generation,

simulating various noise interferences and attack strategies,
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Figure 1. Example of Google’s web login verification system, re-

CAPTCHA. It determines whether a user is human or a bot based

on whether they can correctly match text to corresponding images.

and promoting the learning of more robust feature combi-

nations. The competitive mechanism, by delving into the

model’s decision boundaries, helps to uncover the latent

vulnerabilities of DNNs and provides a new perspective for

understanding and improving the model’s generalization ca-

pabilities. However, no matter what the attack method is, it

cannot conceal the widespread insufficiency in the transfer-

ability performance of current targeted adversarial attacks.

To address this challenge, we propose a new targeted ad-

versarial attack method called ITDS, which consists of two

components: Inverse Target Gradient Competition (ITC)

and Spatial Distance Stretching (SDS), aimed at enhanc-

ing the transferability of targeted AEs. In the first part,

we adopt a siamese-network-like framework, innovatively

leveraging the ground truth gradients of multiple target

class non-targeted AEs at intermediate stages to exert in-

verse “competitiveness” on non-target class targeted AEs

during the optimization process. In the second part, to

tackle the multi-dimensional complexity of decision bound-

aries in targeted attacks, we introduce a top-k SDS strategy

to seek stable perturbation update directions. This guides

AEs to penetrate target class regions within the latent multi-

dimensional space while globally distancing from several

closest non-target region boundaries. The experimental

results demonstrate that the proposed ITDS method has

achieved significant advantages in enhancing the transfer-

ability and defense-breaking capabilities of targeted AEs,

surpassing the existing state-of-the-art (SOTA) methods.

2. Related Work

In this section, we will briefly overview the background of

adversarial attacks. Then focus on various targeted attack

techniques that demonstrate effective transferability.

2.1. Adversarial Attacks

Goodfellow et.al first designed a simple yet effective

method called Fast Gradient Sign Method (FGSM) [7]. This

method generates AEs by making small adjustments to the

input x (original sample) along the direction of the gradient,

i.e., xadv = x + δ. In the case of targeted attacks, FGSM

updates the input x in the direction that minimizes the clas-

sification loss for a given target class y, with the objective

function as follows:

  \arg \min _{x^{adv}} \mathcal {J}(x^{adv},y;\theta ) \;\text { s.t. } \;\|x - x^{adv}\|_\infty \leq \epsilon , \label {eq1} 


         (1)

where θ is the model parameters, J denotes the Cross-

Entropy (CE) loss function, and the ℓ∞ norm is used to

constrain the perturbation within the range ϵ.
I-FGSM [13] is an iterative extension of FGSM, which

gradually refines adversarial perturbation with small step

sizes. To address gradient vanishing issues in targeted at-

tacks, [39] proposes using Logits loss instead of CE loss,

significantly enhancing targeted attack effectiveness. Based

on this, [33] further proposes downscaling logit calibration

with a temperature factor and an adaptive margin. While

these methods provide a foundation for enhancing targeted

attack effectiveness, their transferability remains limited.

2.2. Transferable Adversarial Attacks

In this section, we introduce advanced transferable attacks

that can successfully deceive other models using AEs gen-

erated on a single surrogate model without additional train-

ing. We categorize these methods into transformation-based

and competitive-based attacks, focusing primarily on trans-

ferable targeted attacks, along with certain non-targeted at-

tacks that can also be adapted for targeted attacks.

Transformation-Based Attacks. DIM [34] is a represen-

tative transformation-based attack, which resizes and pads

images with a certain probability at each step of the multi-

step attack process. SSM [18] applies frequency domain

augmentations through spectrum transformations on the in-

put. ODIM [1] method significantly improves the targeted

attack transferability by mapping input images to random

3D objects and applying varied rendering techniques. SIA

[31] generates structurally diverse AEs by applying vari-

ous random transformations to the images. Both ODIM and

SIA integrate DIM into their implementation principles and

share a similar lineage in transformation strategies. BSR

[29] randomly shuffles and rotates the blocks within im-

ages, calculates the ensemble gradients of this new set of

images, reduces attention heatmap differences across vari-

ous models, and significantly enhances transferability.

Competition-based Attacks. Admix [30] combines fea-

tures from different categories in the input domain, creating

multiple images for gradient computation, and enhancing

transferability without degrading white-box performance.

FIA [32] employs aggregated gradients to disrupt essential

object-aware features while suppressing model-specific fea-

tures, boosting AE transferability. RPA [38] adopts a simi-

lar approach to FIA, introducing random patch transforma-
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tions to benign images. To alleviate the overfitting dilemma

common in an AE crafted by simple iterative attacks, FFT

[35] encourages features conducive to the target class while

discouraging those associated with the original class in an

intermediate layer of the source model. CFM [2] introduces

a competitive strategy, crafting targeted adversarial pertur-

bations with diverse features by introducing two types of

competitor noises: adverse perturbations toward different

target classes and friendly perturbations towards the correct

class, achieving SOTA results.

3. The Design of ITDS

This section consists of two parts: the Inverse Target Gra-

dient Competition mechanism and the Spatial Distance

Stretching strategy. In each part, we first explain the mo-

tivation and then propose the corresponding method.

3.1. Inverse Target Gradient Competition (ITC)

3.1.1. Motivation of ITC

The motivation for the first part of our research arises from a

question: What is a competition mechanism? From existing

work related to competition mechanisms, we summarize it

as a way to enhance the transferability of AEs by promot-

ing diversified attack strategies through simulating various

noise interferences. Since noise interference is involved, the

essence of competitiveness can be interpreted as an inverse

force. For targeted attacks, could we identify the most com-

petitive noise? We believe this is the key issue. To address

this critical question, we turn to target class samples and

consider the gradients of the target label for these samples.

These gradients essentially represent the optimal force link-

ing target class samples with the target label, which can be

used in both forward and inverse directions. Therefore, we

have a bold hypothesis: when using this gradient in inverse,

it not only effectively generates non-targeted AEs but also

serves as the optimal competitiveness for targeted attacks.

3.1.2. Method of ITC

Figure 2 shows the overall framework of our Inverse Target

Gradient Competition mechanism, which is jointly driven

by both non-targeted and targeted attacks within a siamese-

network-like architecture. Our strategy is to utilize the in-

verse target gradient to introduce resistance during the op-

timization process of targeted AEs. This inverse target gra-

dient can be generated for any samples; but which inverse

target gradient should we choose? As mentioned earlier,

we seek the strongest resistance, which is the inverse gradi-

ent of the target label with respect to the target class sam-

ple. The approach of generating the inverse target gradient

is illustrated in the lower part of Figure 2, where we use

‘cock’ as the target label as an example. In each sub-epochs

(epochssub), multiple target class images that are correctly

classified by the siamese classifier are selected to generate

non-targeted AEs. The optimization goal is to minimize the

logit value of the target label. We set epochssub to be one-

tenth of the total epochs, as we believe that target class sam-

ples need a certain number of iterations to transform into ro-

bust non-targeted AEs. Accordingly, the non-targeted AEs

generated in each epochssub contain different levels and in-

creasingly deeper latent features of target class. Therefore,

we consider the inverse target gradient perturbations gener-

ated in each epochssub to also have diverse potential com-

petitive characteristics, and during the generation of non-

targeted AEs in each epoch, multiple inverse target pertur-

bations are generated to enrich competitive characteristics.

The formulas are as follows:

  \tilde {g}_t^z=\nabla _{z_t^{adv}} \mathcal {L} (z_t^{adv},y;\theta ), \label {eq2}  



    (2)

  g_{t+1}^z = \mu \cdot g_t^z + \tilde {g}_t^z, \label {eq3}         (3)

  z_{t+1}^{adv}=\operatorname {Clip}_{z,\epsilon } \{z_t^{adv}-\alpha \cdot \operatorname {sign}(g_{t+1)}^z )\}, \label {eq4}  

     (4)

where z is the target class sample, g̃zt represents the inverse

target gradient, and we follow [1, 2, 39] to use the Logit

loss L (opposite to CE loss optimization). gzt+1 represents

the momentum gradient without normalization for z, and

zadvt+1 is the non-targeted AE generated in each round.

Figure 2. The overall framework of the ITC, e.g., combined with

DIM, utilizes a siamese-network-like architecture to generate tar-

geted and non-targeted AEs simultaneously. The upper part fo-

cuses on targeted attacks against non-target class samples, while

the lower part addresses non-targeted attacks on target class sam-

ples. Note that for non-targeted attacks, the optimization condition

utilizes the logits value of the target label, whereas the goal of the

targeted attack is to stretch the spatial distance proposed in SDS.

The process of generating targeted AEs is shown in the

upper part of Figure 2, where the input is a non-target im-

age, and the optimization goal is to maximize the spatial

distance, which we introduce in the SDS of the next sec-

tion. Each round of generated targeted AEs competes with
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a certain proportion of inverse target gradients from differ-

ent stages. The formulas are as follows:

  \bar {g}_{t}^{cpt}=\frac {1}{n\cdot m}\sum _{z\in Z}\sum _{i=0}^{m-1}\nabla _{x_{t}^{adv}}\mathcal {L}\big (\delta _{i}\cdot (x_{t}^{adv}-\beta \cdot \tilde {g}_{t}^{z}),y;\theta \big ), \label {eq5} 




















 

      





(5)

  g_{t+1}=\mu \cdot g_{t}+\bar {g}_{t}^{cpt}, \label {eq6}         (6)

  x_{t+1}^{adv}=\operatorname {Clip}_{x,\epsilon }\{x_{t}^{adv}+\alpha \cdot \operatorname {sign}(g_{t+1})\}, \label {eq7} 
 


     (7)

where n represents the number of target class samples in per

epochssub, δi and m are the scaling factor and level, β is the

competition ratio, and each round of targeted AEs competes

with the corresponding inverse target gradient.

There are two notable points. The first point (P1) is

whether, for targeted or non-targeted attacks, the calcula-

tion of momentum gradients differs from the traditional MI-

FGSM [3], and we have not employed norm normalization

(N-norm). One of the reasons is the absence of gradient

explosion in our experimental evaluations, and more im-

portantly, our experiments have shown that using N-norm

would limit our attack performance. We believe that N-

norm might restrict the magnitude of gradient updates, re-

sulting in less aggressive generation of AEs. Without N-

norm, gradient updates could become more flexible, allow-

ing for more effective exploration of the model’s decision

boundary, thereby generating more aggressive AEs.

The second point (P2) is that we did not use the mo-

mentum gradient as the competitive gradient. The reason

is that the momentum gradient is essentially a cumulative

gradient. It weakens the strength of the inverse target fea-

tures in the corresponding round. Since we want to maintain

the integrity of the inverse target features, using it without

any normalization operation in conjunction with P1 would

cause excessive damage to the input features. This would

be catastrophic for targeted attacks. These two points will

also be discussed in subsequent ablation experiments.

Figure 3. Comparison of targeted AEs with strong and weak trans-

ferability. Panels (a) and (c) show AEs with weak transferability,

while (b) and (d) show AEs with strong transferability.

3.2. Spatial Distance Stretching (SDS)

3.2.1. Motivation of SDS

The motivation for the second part of our study arises from

an interesting phenomenon commonly observed in highly

Label Figure 1 2 3 4 5

motor scooter
(a) 42.0% 5.5% 4.3% 3.6% 3.2%

(b) 83.3% 4.9% 2.1% 1.1% 0.3%

siamese cat
(c) 49.6% 5.6% 5.3% 5.1% 5.0%

(d) 90.5% 2.1% 1.3% 0.7% 0.2%

Table 1. The average top-5 confidence on black-box models suc-

cessfully attacked by targeted AEs as shown in Figure 3.

Algorithm 1 The ITDS Attack Algorithm

Input: Siamese classifier f with parameters θ, Logit loss

L, our Distance loss D, and an original sample x with

target label y
Input: The maximum perturbation ϵ, the step size α, the

number of epochs T and epochssub Tsub

Input: The decay factor µ, scaling level m, and n random

target class samples Z (z ∈ Z)

Input: The competition ratio β, and topk classifications k
Output: An adversarial example xadv .

1: gz0 = 0; g0 = 0; zadv0 = z; xadv
0 = x;

2: for t in range(T ) do

3: if t % Tsub == 0 then

4: Reselect n random target class samples Z
5: end if

6: Get the inverse target gradient for each g̃zt of n ran-

dom target class samples by Eq.(2)

7: Get the momentum inverse target gradient for each

gzt+1 by Eq.(3)

8: Update each zadvt+1 by Eq.(4)

9: Get the set Q of top-k classifications by f(xadv
t )

10: Calculate the integrate gradient of competition exam-

ples by:

ḡcptt =
1

n ·m

∑

z∈Z

m−1
∑

i=0

∇xadv

t

D
(

δi ·(x
adv
t −β ·g̃zt ), y

)

11: Get the momentum gradient by Eq.(6)

12: Update the adversarial example xadv
t+1 by Eq.(7)

13: end for

14: return xadv = xadv
T .

transferable targeted AEs. As shown in Figure 3, we present

two ‘cock’-targeted examples as representatives: targeted

AEs generated using ResNet50 with strong and weak trans-

ferability, from left to right. In (a) and (c), we have AEs that

can only fool fewer than three black-box models into pre-

dicting the target class, while (b) and (d) show AEs capable

of misleading over twelve black-box models to the target

class. Table 1 presents the top-5 average confidence scores

for each AE on the successfully misled black-box models.

It can be seen that the average confidence for the target la-
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bel (top-1) in highly transferable AEs is significantly higher

than that in low-transferability AEs. Notably, highly trans-

ferable AEs not only exhibit higher top-1 confidence but

also have lower confidence scores for subsequent rankings

(rank-2 and beyond) compared to low-transferability AEs,

with each subsequent rank showing an even larger gap.

3.2.2. Method of SDS

Based on this observation, we naturally propose a hypothe-

sis by inverse inference: increasing the gap between the tar-

get class and other classes under a top-k setting can enhance

adversarial transferability. Therefore, the key question be-

comes how to widen this gap. To address this, we devised

two strategies from different perspectives, as shown in the

following formulas:

  f_{untg}(x)=\frac {1}{k-1}\sum _{q\in Q}f_{q}(x)\quad \mathrm {s.t.}\quad y\notin Q, \label {eq8} 


 





     (8)

  \mathcal {D}_{S1}(x_{t}^{adv},y)=f_{y}(x_{t}^{adv})-f_{untg}(x_{t}^{adv}), \label {eq9} 

   


 


  (9)

  \mathcal {D}_{S2}(x_{t}^{adv},y)=\frac {f_{y}(x_{t}^{adv})-f_{untg}(x_{t}^{adv})}{\left \|\nabla _{x_{t}^{adv}}f_{y}(x_{t}^{adv})-\nabla _{x_{t}^{adv}}f_{untg}(x_{t}^{adv})\right \|_{2}}. \label {eq10} 

  



 































(10)

The first strategy (S1) maximizes the target class logit value

relative to the aggregated logits of other classes within the

top-k setting, enhancing target class features in the latent

feature space and diminishing those of similar other classes,

thus widening the latent feature gap, as shown in Equa-

tion (9). The second strategy (S2), inspired by DeepFool’s

approach to calculating point-to-hyperplane distances [19],

guides AEs to deeply infiltrate the target class region in

multi-dimensional geometric space while maintaining a

global distance from the aggregated boundaries of the clos-

est non-target regions, as detailed in Equation (10). In these

equations, f(·) represents the classifier, Q denotes the set of

top-k classes (excluding y), and fq(x) and fy(x) represent

the output values of f(x) corresponding to q and y, respec-

tively. The algorithm of ITDS is shown in Algorithm 1.

4. Experiments

We first outline the experimental setup, then evaluate the

targeted-attack performance of both competition-based and

transformation-based methods separately. Afterward, we

evaluate the ability of our ITDS to break through defenses

and conduct ablation studies.

4.1. Experimental Setup

Dataset. To ensure rigorous evaluation, we randomly se-

lected 2,000 high-quality images from 1,000 classes in the

ILSVRC2012 validation set [21]. These images were cor-

rectly identified by all models tested, including CNNs, ViTs

and adversarial training models, using intersection extrac-

tion, with more than 90% top-1 average confidence. The tar-

get class images of our method were randomly drawn from

the corresponding category in the ILSVRC2012 dataset.

Models. We choose four normally pre-trained CNNs,

i.e., ResNet50 (RN50) [9], VGG16 [22], MobileNet-v3-

large (MN-v3) [11], RegNet-y-32gf (RegN) [20] as sur-

rogate (white-box) models. Concurrently, we choose

four white-box independent normally pre-trained CNNs,

i.e., Inception-v3 (Inc-v3) [24], ResNet101 (RN101),

DenseNet161 (DN161) [12], EfficientNet-b7 (ENet) [25],

and four ViTs, i.e., VisionTransformer-b-16 (ViT) [5],

DeiT-base (DeiT) [26], ConViT-base (ConViT) [6] and PiT-

base (PiT) [10] to serve as target black-box models.

Baselines. We adopt six challenging adversarial attacks as

our baselines, which have released the code and provide the

necessary parameters for reproduction, i.e., Competition-

based: Admix [30], CFM [2], Transformation-Based: DIM

[34], ODIM [1], SIA [31], and BSR [29]. All the baselines

are combined with MI-FGSM.

Defenses. To further demonstrate the effectiveness of

ITDS, we consider four additional advanced defense meth-

ods, i.e., JPEG [8], FD [17], GDMP [28], Score-Opt (SO)

[36], and three adversarial training defense models [27],

i.e., Deflinf4 (Def4), Deflinf8 (Def8) and Defl2−3 (Defl2)

from ResNet50, which are proven to be robust to adversar-

ial attacks on ImageNet datasets.

Attack setting. For all methods, we set the maximum per-

turbation of ϵ = 16, the number of epochs T = 100, the

step size α = 1.6. We adopt the decay factor µ = 1.0 for

all the methods that employ the MI-FGSM, and a transfor-

mation probability of p = 0.7 for DIM and ODIM. Further-

more, all parameters for Admix, SIA, CFM, and BSR are

set as described in their respective published papers. For

our ITDS, we set the number of epochssub to T/10, scaling

level m = 5 with δi = 1/2i, the number of random tar-

get class samples n = 3, the competition ratio β = 1.5, and

k = 10 of the top-k. For each AE of the trial, the target label

is randomly chosen from the other 999 classes excluding its

true label, and the final results are averaged over three trials.

4.2. Evaluation on Competition-based Attacks

We first evaluate the attack performance of various

competition-based attacks. Since the FIA and RPA intro-

duced in related work are only applicable to non-targeted

attacks, and FFT must be combined with existing methods

to be usable, we ultimately chose Admix and CFM as com-

petitors for ITDS. To demonstrate the versatility of our ap-

proach, the surrogate models we use to craft AEs are struc-

turally independent of each other. The targeted attack suc-

cess rates (TASRs) are shown in Table 2, where the upper

row indicates the targeted model under attack, and the left

column lists the tested surrogate models. To test the feasi-
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Model Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT BAvg.

RN50

Admix 100* 7.9 2.1 4.9 1.6 38.6 19.8 0.6 0.3 0.1 0.2 0.1 6.9

CFM 100* 45.0 17.7 35.5 9.5 87.7 60.7 5.6 2.0 1.5 1.5 3.9 24.6

ITDSfs 100* 47.6 34.8 50.8 26.9 90.1 81.5 15.4 9.3 3.7 4.7 6.4 33.7

ITDSgs 100* 46.2 35.0 49.3 28.4 87.6 80.4 17.9 10.0 4.1 4.4 6.6 33.6

VGG16

Admix 4.3 88.4* 1.4 7.7 0.7 0.9 4.1 0.5 0.1 0.1 0.1 0.5 1.8

CFM 3.9 86.1* 1.2 8.4 0.8 1.0 2.8 0.6 0.1 0.2 0.1 0.3 1.7

ITDSfs 18.8 100* 12.0 20.6 8.0 7.6 18.4 5.6 1.0 0.6 0.5 1.5 8.6

ITDSgs 18.7 100* 12.0 19.9 9.0 8.2 18.5 5.7 1.4 0.5 0.8 1.9 8.7

MN-v3

Admix 0.6 0.4 99.3* 0.3 0.6 0.3 0.4 0.4 0.2 0.1 0.2 0.1 0.3

CFM 10.4 8.9 100* 10.4 7.4 9.6 7.7 14.3 7.2 2.7 4.0 3.1 7.8

ITDSfs 16.4 9.6 100* 15.2 11.8 16.0 15.2 19.8 14.5 3.8 4.2 4.4 11.9

ITDSgs 16.7 9.9 100* 14.9 11.7 15.9 15.6 16.8 14.4 3.2 4.8 3.8 11.6

RegN

Admix 1.4 1.1 1.6 95.8* 0.4 0.5 1.6 0.5 0.3 0.2 0.2 0.4 0.7

CFM 21.4 23.3 14.1 92.3* 4.4 12.1 19.6 9.0 1.4 1.2 1.1 5.9 10.3

ITDSfs 38.2 16.0 25.0 100* 17.8 24.8 40.6 23.9 11.1 7.6 7.2 14.0 20.5

ITDSgs 41.2 17.7 26.8 99.9* 19.7 27.7 43.1 25.0 13.3 9.6 8.4 17.4 22.7

Table 2. TASRs (%) on twelve pre-trained models with various competition-based attacks. The AEs are crafted on the RN50, VGG16,

MN-v3, and RegN models, respectively. An asterisk (*) indicates white-box attacks, and BAvg means average black-box TASR. ITDSfs

and ITDSgs represent the integration of S1 and S2 in SDS, respectively, and the boldface represents their results.

Model Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT BAvg.

RN50

DIM 100* 33.6 14.1 31.9 15.3 65.0 59.1 13.5 3.1 1.9 2.6 3.8 22.2

ODIM 99.9* 52.8 33.2 49.8 37.5 70.2 65.8 30.1 14.5 9.2 10.4 15.5 35.3

SIA 100* 86.8 56.3 86.5 40.4 99.0 93.5 34.3 30.6 21.7 24.0 40.3 55.7

BSR 100* 87.6 48.7 87.2 31.0 97.6 92.8 27.8 18.1 16.9 16.2 41.5 51.4

Admix-DIM 100* 51.9 25.5 53.6 29.1 83.8 77.2 28.8 8.0 4.3 5.1 10.1 34.3

CFM-DIM 99.7* 68.4 47.9 66.0 49.2 88.4 79.5 41.9 18.0 12.5 14.9 20.0 46.0

ITDS-DIM 100* 79.3 70.3 82.8 69.6 95.6 94.6 62.0 44.4 23.6 24.7 31.6 61.7

VGG16

DIM 12.9 85.8* 3.4 18.2 2.9 3.5 10.6 3.5 0.2 0.3 0.2 1.4 5.2

ODIM 33.5 78.8* 10.0 28.2 11.2 13.1 25.1 13.6 2.6 1.4 1.3 4.1 13.1

SIA 50.4 81.7* 13.5 55.6 7.3 20.5 43.7 7.7 2.1 1.2 1.6 9.2 19.3

BSR 24.3 84.7* 3.8 34.6 1.7 7.5 25.1 1.4 0.4 0.3 0.3 2.1 9.2

Admix-DIM 20.2 88.0* 6.8 23.9 5.7 5.4 16.0 8.0 0.8 0.5 0.5 2.1 8.2

CFM-DIM 19.2 86.3* 4.1 23.7 3.9 5.9 14.0 6.1 0.4 0.6 0.4 1.6 7.2

ITDS-DIM 42.0 100* 24.8 34.8 25.7 19.8 35.3 24.9 8.5 2.8 3.2 7.8 20.9

MN-v3

DIM 6.3 2.5 99.2* 4.9 6.9 4.5 5.5 16.2 6.0 1.8 2.5 2.3 5.4

ODIM 24.9 17.3 99.4* 21.2 22.1 22.8 23.2 36.1 20.0 9.6 11.6 11.2 20.0

SIA 32.7 21.4 98.7* 29.2 14.1 26.1 25.4 24.2 19.1 7.9 10.6 10.3 20.1

BSR 22.0 12.5 98.9* 18.3 8.7 14.4 13.0 15.9 11.0 4.4 6.5 7.8 12.2

Admix-DIM 18.0 6.3 99.4* 11.9 14.8 12.1 13.0 32.0 12.5 3.7 5.5 4.4 7.5

CFM-DIM 34.7 24.9 99.8* 31.6 29.4 33.4 27.8 44.2 28.1 11.8 14.2 11.6 26.5

ITDS-DIM 49.5 27.3 100* 39.9 39.2 44.9 41.6 58.0 46.7 18.1 17.0 13.7 36.0

RegN

DIM 24.8 15.2 12.4 92.9* 9.3 12.3 31.4 21.4 3.6 3.6 3.0 13.0 13.6

ODIM 51.3 43.3 31.2 90.3* 29.2 35.6 56.9 49.3 15.7 12.9 11.6 26.1 33.0

SIA 71.2 72.1 38.6 95.7* 15.6 48.0 72.0 33.1 19.7 17.9 18.6 47.7 41.3

BSR 49.0 63.0 22.1 94.1* 6.1 24.9 47.7 15.6 7.0 8.8 8.9 38.0 26.4

Admix-DIM 39.4 25.2 20.6 92.6* 14.8 23.1 47.7 33.1 7.6 7.1 7.3 22.9 22.6

CFM-DIM 71.5 61.9 50.8 93.0* 38.3 61.0 72.3 61.6 22.5 21.7 22.1 43.3 47.9

ITDS-DIM 82.2 50.5 68.9 99.9* 64.6 73.1 84.9 75.6 56.5 43.0 40.8 54.7 63.2

Table 3. TASRs (%) on twelve pre-trained models with various transformation-based attacks. The AEs are crafted on the RN50, VGG16,

MN-v3, and RegN models, respectively. An asterisk (*) indicates white-box attacks. ITDS-DIM represents the combination of ITDS,

which integrates S1, with DIM, and the boldface represents the results of this combination.

bility of the two strategies in SDS, ITDS is implemented in

two forms: ITDSfs for S1 (feature space) and ITDSgs for

S2 (geometric space).

It can be seen that, compared to other competition-based

attacks, ITDS demonstrates an overwhelming advantage.

Taking ITDSgs as an example, its average black-box TASR

(BAvg.) is 9.0%, 7.0%, 3.8%, and 12.4% higher than the

existing SOTA method CFM on RN50, VGG16, MN-v3,

and RegN, respectively. From the perspective of cross-

architecture models, the largest gaps in average black-box
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Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT BAvg.

ITDSI 100* 41.5 24.3 40.4 18.9 84.6 70.2 11.5 5.5 2.9 2.7 4.2 27.9

ITDSI+S 100* 47.6 34.8 50.8 26.9 90.1 81.5 15.4 9.3 3.7 4.7 6.4 33.7

ITDSI -DIM 99.9* 71.1 58.6 73.3 56.8 92.5 87.1 48.4 35.1 18.8 19.1 23.6 53.1

ITDSI+S-DIM 100* 79.3 70.3 82.8 69.6 95.6 94.6 62.0 44.4 23.6 24.7 31.6 61.7

Table 4. Evaluation of the effectiveness of two modules in ITDS, where ‘I’ represents ITC and ‘S’ represents SDS. The AEs are crafted in

RN50. An asterisk (*) indicates white-box attacks. Boldface represents the best results. Note that single SDS requires combination with

existing attack methods, which we discuss in the appendix.

TASR between it and CFM on CNNs and ViTs are 13.9%

and 9.7% on RegN, respectively. It should be noted that the

white-box attack performance of our ITDS is also signifi-

cantly superior, being the best in terms of white-box TASR

in any surrogate model, especially on VGG16 and RegN,

where it is 13.9% and 7.6% higher than CFM, respectively.

In the comparison between ITDSfs and ITDSgs, the results

seem to be evenly matched, with each showing their own

merits in the three trials. Therefore, we believe that both

strategies are viable, which precisely proves the effective-

ness and diversity of the proposed SDS principle.

4.3. Evaluation on Transformation-based Attacks

Currently, transformation-based methods are the main ap-

proach to adversarial attacks and are the most effective way

to improve the transferability of attacks. Numerous studies

[2, 4, 16] have shown that non-transformation-based meth-

ods combined with DIM can further enhance the transfer-

ability of crafted AEs. This combination approach has be-

come a common standard in industry, frequently compared

to transformation-based methods for fairness. In this sec-

tion, we evaluate the TASR of transformation-based and

DIM-combined competition-based adversarial attacks. The

former includes DIM, ODIM, SIA, and BSR, while the lat-

ter includes Admix-DIM, CFM-DIM, and ITDS-DIM. It

should be noted that, due to the similar performance of

S1 and S2 in SDS, in all subsequent experiments involv-

ing ITDS-DIM, we selected ITDSfs as the representative to

combine with DIM. The results are shown in Table 3.

It can be observed that all competition-based methods

show a significant improvement in attack performance af-

ter being combined with DIM. Compared to the strongest

competition-based attack CFM-DIM, ITDS-DIM achieved

average black-box TASR improvements of 15.7%, 13.7%,

9.5%, and 15.3% on RN50, VGG16, MN-v3, and RegN,

respectively. The maximum average black-box TASR gap

between the two on CNNs and ViTs is 16.1% on RN50

and 21.4% on RegN. Even when compared with the SOTA

transformation-based attacks, our method is not inferior,

and even surpasses them in all aspects. Compared to

the strongest transformation-based attack SIA, ITDS-DIM

achieved average black-box TASR improvements of 15.9%

and 21.9% on MN-v3 and RegN, respectively. The max-

imum average black-box TASR gap between the two on

CNNs and ViTs is 21.3% and 22.8% on RegN, respectively.

(a) (b)

(c) (d)

Figure 4. Ablation studies on the RN50 model. (a) - (d): TASRs

(%) on the other eleven models with the adversaries crafted by

ITDS-DIM, where the default value for n, β, k and Tsub are set to

3, 1.5, 10 and 10 respectively, when test parameters for each other.

4.4. Ablation Studies

We first present a series of ablation studies conducted on

RN50 to assess the impact of each parameter in ITDS on

attack performance, including the number of random tar-

get class samples n, the competitive ratio of the inverse tar-

get gradient β, the value of k in top-k, and the number of

epochssub for non-targeted attack Tsub. In all ablation ex-

periments, unless otherwise specified, all parameters other
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Ablation Target Model

Norm (P1) MI (P2) RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT BAvg.

✓ 7.1* 0.5 1.0 0.4 0.4 0.8 0.3 0.2 0.2 0.2 0.1 0.1 0.4

✓ 100* 72.8 66.1 75.8 65.1 90.1 88.2 54.7 37.2 16.9 17.4 23.7 55.3

✓ ✓ 100* 59.7 41.3 66.1 52.8 90.9 91.3 45.1 27.8 14.5 16.2 21.1 47.9

100* 79.3 70.3 82.8 69.6 95.6 94.6 62.0 44.4 23.6 24.7 31.6 61.7

Table 5. TASRs (%) of ITDS-DIM by ablating inner modules of the ITC. The AEs are crafted in RN50. An asterisk (*) indicates white-box

attacks. In which Norm and MI correspond to P1 and P2 in Section 3.1.2, respectively. Boldface represents the best results.

Attack JPEG FD SO GDMP Def4 Def8 Defl2
SIA 83.2 89.8 44.3 1.5 39.0 14.0 54.7

Admix-DIM 80.0 92.9 47.7 1.9 34.8 14.5 53.1

CFM-DIM 82.5 92.6 51.5 4.1 25.2 8.7 45.5

ITDS-DIM 99.4 99.9 91.3 31.2 50.2 25.6 66.8

Table 6. TASRs (%) of breaking-through four defense methods

and three adversarial training defense models. The results for

defense methods are based on the average performance of AEs

crafted on RN50, VGG16, MN-v3, and RegN respectively, while

the results for defense models are based on the performance of

AEs crafted by the corresponding models. Bolder for the best.

than the test parameters are fixed according to the experi-

mental setup.

As shown in Figure 4a, TASR increases with n, as the di-

versity of target class images directly affects attack perfor-

mance. However, the curve levels off after n = 3, and con-

sidering computational costs, we selected n = 3. In Figure

4b, most models achieve optimal performance at β = 1.5,

with a few exceptions (e.g., MN-v3). We believe a moderate

competitive gradient provides an “exercise” effect, while an

overly strong gradient disrupts input features, reducing at-

tack performance. In Figure 4c, optimal performance gen-

erally occurs at k = 5 or k = 10. We posit that an overly

small k under-covers classes and fails to enlarge global mar-

gins, whereas an overly large one blurs the optimization. At

k = 10, cross-architecture transferability is even better. In

Figure 4d, evaluating epochssub (Tsub) for non-targeted at-

tacks, we found that larger values do not always lead to bet-

ter performance. As discussed in the ITC section, inverse

target gradient perturbations generated at each Tsub have

diverse potential competitive features, boosting attack per-

formance. At Tsub = 1, though it involves more target class

samples, it lacks deeper latent features of the target class,

limiting attack performance. Beyond a certain Tsub value,

missing target class features reduce the diversity of inverse

gradients, causing performance to regress.

Furthermore, to verify the effectiveness of the ITC and

SDS components in ITDS, we conducted experimental eval-

uations as shown in Table 4. The results indicate that ITDS

using only ITC has already surpassed the attack perfor-

mance of CFM in Table 2. Regardless of whether DIM is

combined or not, SDS can bring additional performance im-

provements to ITDS. These findings collectively support the

key roles of ITC and SDS in ITDS.

To verify the impact of internal modules within the ITC

on attack performance, we conducted ablation experiments

as shown in Table 5. It can be observed that the use of N-

norm may limit the scale of gradient updates, which could

result in generated AEs lacking sufficient aggressiveness.

On the contrary, if we do not use N-norm (P1), gradient

updates will gain greater freedom, which helps to explore

the model’s decision boundary more deeply, and may thus

produce more aggressive AEs. Simultaneously, momentum

gradients, as a technique for accumulating previous gradi-

ents, will weaken the intensity of inverse target features in

the current iteration. Since we wish to maintain the integrity

of inverse target features and avoid any normalization, the

inverse target momentum gradients in each round will com-

pete with the AE when combined with P1, leading to ex-

cessive deformation of AE features, which is disastrous for

implementing precisely targeted attacks.

4.5. Evaluation on Advanced Defenses

In this section, we evaluate the capabilities of various at-

tacks to break through different defense mechanisms. As

shown in Table 6, our method exhibits exceptional robust-

ness against a wide range of defense strategies and models.

For example, when the Score-OPT method is employed, the

average TASR of our approach is nearly 40% higher than

that of CFM-DIM. Furthermore, our method achieves the

best performance in all three defense models evaluated.

5. Conclusion

This paper introduces a novel method named ITDS, which

significantly improves the transferability of targeted AEs

by incorporating the ITC mechanism and the SDS strat-

egy. Experimental results demonstrate that ITDS achieves

a substantial increase in average transferable TASRs across

various mainstream CNN and ViT models, outperforming

SOTA competition-based and transformation-based meth-

ods. Our ablation studies further confirmed the key roles

of the ITC and SDS components in enhancing attack per-

formance. Moreover, ITDS exhibits superior effectiveness

in countering multiple defense methods and models. These

findings confirm the effectiveness and practicality of ITDS

in enhancing the transferability of targeted AEs and provide

a new perspective for the field of adversarial research.

3723



Acknowledgments

This work was supported by funding from the National Nat-

ural Science Foundation of China (NSFC) under Grants

62272486, 62172154, and 62372473, the Natural Science

Foundation of Hunan Province under Grant 2023JJ70016,

the Hong Kong Research Grants Council (RGC) Gen-

eral Research Fund under Grants 152244/21E, 152169/22E,

152228/23E, and 162161/24E, the Research Impact Fund

under Grant R5011-23F, the Collaborative Research Fund

under Grant C1042-23GF, the NSFC/RGC Collaborative

Research Scheme under Grant CRS HKUST602/24, the

Areas of Excellence Scheme under Grant AoE/E-601/22-

R, and the InnoHK initiative (HKGAI). Professor Shigeng

Zhang is the corresponding author of this paper.

References

[1] Junyoung Byun, Seungju Cho, Myung-Joon Kwon, Hee-

Seon Kim, and Changick Kim. Improving the transferabil-

ity of targeted adversarial examples through object-based di-

verse input. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 15244–

15253, 2022. 1, 2, 3, 5

[2] Junyoung Byun, Myung-Joon Kwon, Seungju Cho, Yoonji

Kim, and Changick Kim. Introducing competition to boost

the transferability of targeted adversarial examples through

clean feature mixup. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

24648–24657, 2023. 1, 3, 5, 7

[3] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun

Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-

tacks with momentum. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

9185–9193, 2018. 4

[4] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.

Evading defenses to transferable adversarial examples

by translation-invariant attacks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4312–4321, 2019. 7

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 5
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