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Abstract

Time-series forecasting (TSF) finds broad applica-
tions in real-world scenarios. Due to the dynamic
nature of time-series data, it is crucial to equip
TSF models with out-of-distribution (OOD) gen-
eralization abilities, as historical training data and
future test data can have different distributions. In
this paper, we aim to alleviate the inherent OOD
problem in TSF via invariant learning. We iden-
tify fundamental challenges of invariant learning
for TSF. First, the target variables in TSF may
not be sufficiently determined by the input due
to unobserved core variables in TSF, breaking
the conventional assumption of invariant learn-
ing. Second, time-series datasets lack adequate
environment labels, while existing environmental
inference methods are not suitable for TSF.

To address these challenges, we propose FOIL,
a model-agnostic framework that enables time-
series Forecasting for Out-of-distribution gener-
alization via Invariant Learning. FOIL employs
a novel surrogate loss to mitigate the impact of
unobserved variables. Further, FOIL implements
a joint optimization by alternately inferring envi-
ronments effectively with a multi-head network
while preserving the temporal adjacency structure,
and learning invariant representations across in-
ferred environments for OOD generalized TSF.
We demonstrate that the proposed FOIL signifi-
cantly improves the performance of various TSF
models, achieving gains of up to 85%.
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1. Introduction
Time-series (TS) data are ubiquitous across various domains,
including public health (Kamarthi et al., 2021b; Rodriguez
et al., 2021), finance (Sezer et al., 2020), and urban com-
puting (Tabassum et al., 2021). Time-series forecasting
(TSF), a foundational task in analyzing TS data, involving
predicting future events or trends based on historical TS
data, has received a longstanding research focus. TSF faces
certain challenges due to the dynamic and complex nature
of TS data: First, distributions of TS data change over time.
Second, the inherent complexity of TSF is compounded by
unforeseen exogenous factors, such as policy interventions
and climate changes in the context of influenza forecasting.

Given the dynamic nature of TS data, where unforeseen
distribution shifts can occur between historical training and
future testing data, the TSF task asks for robust out-of-
distribution (OOD) generalization abilities. Instead, existing
TSF models employ empirical risk minimization to greedily
incorporate all correlations within the data to minimize aver-
age training errors. However, as not all correlations persist
in unknown test distributions, these models may lack OOD
generalization abilities. Note that existing works on tempo-
ral distribution shifts (Du et al., 2021; Kim et al., 2021; Liu
et al., 2022; Fan et al., 2023) merely focus on mitigating
the marginal distribution shifts of the input. These methods
are not generalizable enough for the OOD problem, which
consists of various types of distribution shifts (Liu et al.,
2021c), such as conditional distribution shifts, etc.

In this paper, we propose to alleviate the OOD generaliza-
tion problem of TSF via invariant learning (IL). IL seeks
to identify and utilize invariant features that maintain sta-
ble relationships with targets across different environments
while discarding unstable correlations introduced by vari-
ant features. Although IL has witnessed wide theoretical
and empirical success in various domains (Koyama & Yam-
aguchi, 2020; Ye et al., 2023; Weber et al., 2022), it remains
unexplored yet non-trivial to apply IL for TSF because of
the following challenges: First, TS data breaks IL’s conven-
tional assumption. In TS data, there are always variables
that directly affect targets but remain unobserved, such as
the outbreak of an epidemic, sudden temperature changes,
policy adjustments, etc. IL fails to consider these unob-
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served core variables, leading to poor OOD generalization
in TSF. Second, TS data are usually collected without ex-
plicit environment labels. Although some general IL with
environment inference methods have been proposed, their
neglect of TS data characteristics results in suboptimal in-
ferred time-series environments.

Thus, we propose a novel TSF approach for out-of-
distribution generalization, namely FOIL (Forecasting
for Out-of-distribution TS generalization via Invariant
Learning). Our contributions are summarized as follows:

• We investigate the out-of-distribution generalization
problem of time-series forecasting. To the best of our
knowledge, we are the first to introduce invariant learn-
ing to TSF and identify two essential gaps, including
the non-compliance of IL’s conventional assumption
and the lack of environment labels.

• We propose FOIL, a practical and model-agnostic in-
variant learning framework for TSF. FOIL leverages a
simple surrogate loss to ensure the applicability of IL
and designs an efficient environment inference module
tailored for time-series data.

• We conduct extensive experiments on diverse datasets
along with three advanced forecasting models (‘back-
bones’). FOIL proves effectiveness by uniformly out-
performing all baselines in better forecasting accuracy.

2. Preliminaries and Problem Definition
We formally introduce the TSF task and discuss why it is
an OOD generalization problem. We then introduce the
problem OOD-TSF, formulating TSF as an OOD problem.

We denote slanted upper-cased letters such as X as ran-
dom variables and calligraphic font letters X as its sample
space. Upright bold upper-cased letters such as X, bold
lower-cased letters such as x and regular lower-cased letters
such as x denote deterministic matrices, vectors and scalars,
respectively.

2.1. Time-Series Forecasting: An Out-of-Distribution
Generalization View

TSF models take a time series as input and output future
values of some or all of its features. Let the input time-series
variable be denoted as X ∈ Rl×din , where l is the length of
the lookback window decided by domain experts and din is
the feature dimension at each time step. The output variable
of the forecasts generated of horizon window length h is
denoted as Y ∈ Rh×dout , where dout is the dimension of
targets at each time step. For the sample at time step t,
denoted as (Xt,Yt), Xt ∈ X = [xt−l+1,xt−l+2, . . . ,xt]
and Yt ∈ Y = [yt+1,yt+2, . . . ,yt+h]. Thus, the TSF
model parameterized by θ is denoted as fθ : X → Y . In this

paper, we focus on univariate forecasting with covariates,
i.e., dout = 1 and din ≥ 1, but our method can be easily
generalized to the multivariate forecasting setting by using
multiple univariate forecasting (Gruver et al., 2023; Lim &
Zohren, 2021).

Existing TSF models usually assume the training distribu-
tion is the same as the test distribution and use empirical risk
minimization (ERM) for model training. However, training
and test sets of TSF represent historical and future data,
respectively. Given the dynamic nature of time series, the
test distribution may diverge from the training distribution.
In this paper, we consider TSF under the more realistic situ-
ation where P train(X,Y ) ̸= P test(X,Y ), i.e., unknown
P test(X,Y ), which can be defined as follows:

Problem 1. Out-of-Distribution Generalization for Time-
Series Forecasting (OOD-TSF): Given a time-series train-
ing dataset Dtrain = {(Xt,Yt)}Tt=1, the task is to learn an
out-of-distribution generalized forecasting model f∗

θ : X →
Y parameterized by θ which achieves minimum error on
testing set Dtest with unknown distribution P test(X,Y ).

2.2. Invariant Learning: Out-of-Distribution
Generalization with Environments

Environment Labels. Invariant learning (IL), backed by
the invariance principle (Arjovsky et al., 2019) from causal-
ity, is a popular solution for OOD generalization. IL as-
sumes heterogeneity in observed data: dataset is collected
from multiple environments, formulated as D = ∪eDe =

∪e{(Xe
i ,Y

e
i )}

|De|
i=1 ; each environment e has a distinct dis-

tribution P e(X,Y ), termed heterogeneous environments.
In time-series data, temporal environments can be seasons,
temperatures, policies, etc. Let supp(E) denote all environ-
ments, the objective function is formulated as:

RIL(fθ) = max
e∈supp(E)

EP (X,Y |e) [ℓ(fθ(X),Y))|e] , (1)

where OOD generalization is achieved by minimizing the
empirical risk under the worst-performing environment.

Invariant Features. To optimize Eq. 1, IL proposes to iden-
tify and utilize invariant features that maintain stable rela-
tionships with target variables across different environments.
For instance, in forecasting the number of flu cases, temper-
ature changes belong to invariant features (Mourtzoukou &
Falagas, 2007; Mäkinen et al., 2009), while hospital records
are variant features since the proportion of influenza cases
over all records may vary across different seasons.

Sufficiency and Invariance Assumption. Most IL methods
are proposed based on the following conventional assump-
tion (Gong et al., 2016; Rojas-Carulla et al., 2018; Kuang
et al., 2020; Arjovsky et al., 2019; Liu et al., 2021a; Lin
et al., 2022):
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Assumption 2.1 (Conventional Assumption of Invariant
Learning). The input features X is a mixture of invariant
features XI and variant features XV. XI possesses the
following properties:

a. Sufficiency property: Y = g(XI) + ϵ, where g(·)
can be any mapping function, and ϵ is random noise.

b. Invariance property: for all ei, ej ∈ supp(E), we
have P ei(Y |XI) = P ej (Y |XI) holds.

Thus, XI is assumed to provide sufficient and invariant pre-
dictive power for Y and is theoretically proven to guarantee
optimal OOD performance for Eq. 1 (Liu et al., 2021a).

To better understand the above, we employ the structural
causal model (SCM) (Pearl et al., 2000) shown in Fig-
ure 1(a). We define invariant features XI as the subset of
input features X that directly cause Y , following (Arjovsky
et al., 2019; Peters et al., 2016; Lin et al., 2022). Environ-
ment E can be interpreted as the confounder between XI

and XV. Specifically, the correlation between XV and Y
is spurious, mediated through XV ← E → XI → Y .
Conversely, the causal relationship XI → Y is invariant.
Generally, IL aims to achieve OOD generalization using
such XI to predict Y .

3. Challenges
Considering the theoretical and empirical successes of in-
variant learning (Arjovsky et al., 2019; Koyama & Yam-
aguchi, 2020; Krueger et al., 2021; Ye et al., 2023), a natural
question arises: Can we directly apply invariant learning
(IL) to OOD-TSF? Unfortunately, there are two main rea-
sons rendering a direct application problematic. Firstly, the
existence of unobserved variables in time-series (TS) data
breaks the conventional Assumption 2.1 of IL. Secondly, TS
datasets usually lack adequate environment labels.

TS data break IL’s conventional assumption. Recall As-
sumption 2.1, where invariant features XI are assumed to
provide sufficient and invariant predictive power for Y in
IL. However, in TSF tasks, there are always variables that
directly affect Y but are not included in the input features
X , such as the outbreak of a novel epidemic, sudden temper-
ature changes, policy adjustments, etc. These unobserved
core variables, denoted as Z, exist due to their absence
from the whole dataset or the lookback window.

In the SCM shown in Figure 1(a), we use Z → Y and the
dash circle to describe the core effect of Z on Y and the
unobserved issue of Z respectively. Clearly, there exists a
gap between the SCM modeled by the existing IL methods
and the SCM underlying TS data , due to the existence of
Z.

The existence of unobserved Z breaks both two parts of

the IL’s conventional assumption 2.1: First, Z breaks the
sufficiency property part, obviously. Thus, existing IL meth-
ods actually absorb the influence of Z on Y , leading to
the overfitting issue, especially with deep models. Second,
Z breaks the invariance property part when Z and E are
not independent, for example, influenza outbreaks occur
more frequently in winter. Formally, if there exists ei, ej ∈
supp(E) such that P ei(Z|XI) ̸= P ej (Z|XI), then
we have P ei(Y |XI) =

∑
Z P (Y |XI,Z)P

ei(Z|XI) ̸=
P ej (Y |XI). Thus, existing IL methods lacks reliable OOD
generalization ability for TSF.

(a) Existing IL methods. (b) Our proposed method.

Figure 1. The structural causal model (SCM) for (a) existing in-
variant learning methods and (b) our proposed method. The key
difference is that our method targets the sufficiently predictable
part of the target, i.e., Y suf rather than the raw Y , thus making
invariant learning feasible.

TS datasets usually lack environment labels. Firstly,
most IL methods (Arjovsky et al., 2019; Ahuja et al., 2021;
Krueger et al., 2021; Pezeshki et al., 2021; Sagawa et al.,
2019) require explicit environment labels as input, which are
often unavailable in TSF datasets. Due to the complexity of
temporal environments, manual annotation is often difficult,
expensive, and sometimes suboptimal. Secondly, existing IL
with environment inference methods are fundamentally not
applicable for TSF: (1) Existing IL methods show certain
limitations when applying to TSF tasks: HRM (Liu et al.,
2021a) and KernelHRM (Liu et al., 2021b) are based on
low-dimensional raw features, while TS data are typically
high-dimensional; EIIL (Creager et al., 2021) needs delicate
initialization; ZIN (Lin et al., 2022) requires additional infor-
mation satisfying specific conditions; and EDNIL (Huang
et al., 2022) is designed for classification tasks. (2) Existing
IL methods primarily cater to static data and thus overlook
the characteristics of time-series data, leading to suboptimal
inferred environments.

4. Our Methodology
We propose FOIL (Forcasting for-Out-of-distribution gen-
eralization via Invariant Learning), a model-agnostic
environment-aware invariant learning framework, serving
as a practical solution for the OOD-TSF problem.
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4.1. Overview

High-level Idea. Our main idea is to use IL with environ-
ment inference targeting at the sufficiently predictable part
of the target (we call it Y suf), see Figure 1(b). Specifically,
inspired by the Wold’s decomposition theorem (Anderson,
2011; Nerlove et al., 2014), we assume that Y can be de-
composed into deterministic and uncertain parts relative to
the input X . Formally, Y = q(Y suf,Z), with q(·, ·) as
any mapping function. Here, Y suf ∈ Y , determined by the
input X , is deterministic, i.e., sufficiently predictable. Thus,
targeting at Y suf, the Assumption 2.1 of sufficiency and in-
variance property holds, making invariant learning feasible.
Additionally, considering the unpredictability of unobserved
Z, the optimal OOD prediction can be achieved if we are
able to uncover Y suf via invariant features XI. To this end,
we propose FOIL, which serves as a practical solution for
applying IL to the OOD-TSF problem.

Overall Framework. As shown in Figure 2, FOIL consists
of three parts:

(1) Label Decomposing Component (CLD), which decom-
poses sufficiently predictable Y suf from observed Y .

(2) Time-Series Environment Inference Module (MTEI),
which infers temporal environments based on learned repre-
sentations from MTIL.

(3) Time-Series Invariant Learning Module (MTIL), which
learns invariant representations across inferred environ-
ments from MTEI.

In FOIL, CLD is the preliminary step for MTIL and MTEI;
MTIL and MTEI are then jointly optimized via alternating
updates. During the testing phase, only MTIL is utilized
for prediction.

As the first work of IL for TSF, FOIL is designed as a model-
agnostic framework that seamlessly incorporates various
off-the-shelf deep TSF models. Specifically, the backbone
model can be any deep TSF model, denoted ϕ(X). We
append a regressor ρ(·), typically a fully connected layer, on
top of the learned output representations from the backbone
model ϕ(·). We denote the combined model succinctly
as as fθ(X) = ρ (ϕ(X)). MTIL and MTEI leverage
the output representation ϕ(X), both for achieving model-
agnostic and for accommodating high-dimensional inputs
of TSF. We will next introduce each part.

4.2. The Label Decomposing Component

CLD is used to decompose the sufficiently predictable Y suf

from the observed Y . However, accurately obtaining Y suf

is nearly unfeasible, owing to the lack of information about
the underlying generation function and unobserved variables
Z. Instead of introducing additional data, such as external
datasets as the agent for Z, we aim to alleviate this problem

Figure 2. The overall framework of our proposed FOIL.

more practically via a surrogate loss to mitigate the effect
of Z. Firstly, we add the following assumption:

Y = q(Y suf,Z) = α(Z)(Y suf) + β(Z)1, (2)

where α(·) : RdZ → R and β(·) : RdZ → R could be
any mapping function, and 1 ∈ Rh×dout is an all-one ma-
trix. This assumption follows the dynamic nature of ob-
served Y ’s distribution (Cheng et al., 2015). Specifically,
this assumption encompasses two aspects: (1) The relation-
ships between Z and Y suf are additive and multiplicative,
which is a widely adopted assumption about unobserved
variables (Hoyer et al., 2008; Maeda & Shimizu, 2021; San-
cho et al., 1982; Wooldridge, 1997). (2) Z exerts a consis-
tent influence in one horizon window, which can be readily
extended by partitioning the horizon window into multiple
segments.

Thus, the residual Res between ground truth Y and pre-
dicted Ŷ , i.e., Res = Y − Ŷ , absorb the effect of Z on Y
via values of mean µ(Res) and standard deviation σ(Res).
Thus, we propose an Instance Residual Normalization (IRN)
method to mitigate the effect of Z. For the residual Rest
of instance t, IRN method can be formulated as:

R̃est =
Yt − µ (Yt)

σ(Yt)
−

Ŷt − µ
(
Ŷt

)
σ(Ŷt)

= Ỹt − ˜̂
Yt (3)

IRN in Eq. 3 ensures the residuals to have a mean of 0
and a variance of 2− 2cov(Ŷ,Y), where cov denotes the
covariance.

Finally, we derive the following simple and effective sur-
rogate loss to mitigate the effect of Z, instead of directly
decoupling Y suf in CLD:

ℓsuf(Ŷ ,Y ) = MSE(R̃es,0) = ℓ(
˜̂
Y , Ỹ ), (4)

where MSE(R̃es,0) = 1
h

∑h
j=1(R̃est+j)

2. Note that our
IRN fundamentally differs from the existing instance nor-
malization (IN) methods. Existing methods adopt IN to X ,
and reverse IN to Ŷ based on µ(X) and σ(X), aiming to
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address non-stationary problem of X (Kim et al., 2021; Liu
et al., 2022). While, our IRN method directly aligns the
mean and variance between Ŷ = f(X) and Y , thus re-
moving error caused by Z under the introduced assumption.
Since Z is not contained in X , existing methods usually
fail to achieve our goal.

4.3. The Time-Series Environment Inference Module

MTEI aims to infer environments Einfer, thereby provid-
ing environment labels for the time-series invariant learning
module MTIL. We consider inferring effective and reason-
able temporal environments with two goals:

(1) Sensitive to the encoded invariant features. In FOIL,
MTEI and MTIL are adversarial: MTEI infers environ-
ments based on the variant features not discarded by MTIL;
MTIL discards variant features based on inferred environ-
ments from MTEI. Ultimately, when MTIL only utilizes
invariant features, MTEI is unable to infer effective envi-
ronments. Thus, we propose to infer informative environ-
ments that are sensitive to the variant features encoded in
the currently learned representations, formulated as:

min
Einfer

H
(
Y suf|ϕ∗(X),Einfer

)
−H

(
Y suf|ϕ∗(X)

)
, (5)

where H is Shannon conditional entropy, ϕ∗(X) are learned
representations from MTIL and frozen in MTEI.

(2) Preserving the temporal adjacency structures. To
ensure that the inferred environments are reasonable in the
context of TSF, we consider preserving the inherent char-
acteristic of time-series data, i.e., the temporal adjacency
structure. Specifically, instances that are temporally adja-
cent should possess similar temporal environments. This
can also be viewed as a type of regularization to prevent
inferred environments from overfitting to random noises.

Intuitively, the approach to infer environments is to optimize
Eq. 5, with a plugin for preserving the temporal adjacency
structure. To this end, we present an EM-based clustering
solution in the representation space, implemented through a
multi-head neural network. Each head is an environment-
specific regressor, playing the role of each cluster’s center.
Specifically, the regressor ρ(e) is specific for environment
e. And the representation ϕ∗(X) is shared and frozen in
MTEI. We describe the M step and E step next.

M Step: Optimizing Environment-Specific Regressors
In the M step, we optimize {ρ(e)} to better fit the data from
current environment partition Einfer of E step as:

min
{ρ(e)}

LTEI = Ee∈Einfer
R(e)

suf(ρ
(e), ϕ∗)

=
∑

e∈Einfer

1

|De|
∑

(X,Y)∈De

ℓsuf

(
ρ(e) (ϕ∗(X)) ,Y

) (6)

E Step: Estimating Environment Labels
Next, in the E step, we reallocate the environment partitions.
For instance (Xt,Yt), we reassign its environment label
Einfer(t) via the following two steps:

• Step 1: Reallocating based on the distances with the
center of each cluster (environment). We use the loss
with respect to regressor ρ(e) to describe the distance
with the center of cluster e. Thus, we reassign Einfer(t)
according to the shortest distance, as follows:

Einfer(t)← arg min
e∈Einfer

{
ℓsuf

(
ρ(e) (ϕ∗(Xt)) ,Yt

)}
(7)

• Step 2: Reallocating to preserve temporal adjacency
structure. We propose an environment label propaga-
tion solution to achieve this goal, as follows:

Einfer(t)← mode {Einfer(t+ j)}rj=−r , (8)

where mode implements majority voting by considered
temporal neighbors selected via the radius r ∈ Z+.

In summary, we iteratively execute M step and E step to
obtain the inferred environments E∗

infer. Due to the fixed
second term of Eq. 5, our solution represents a practical
instantiation of Eq. 5.

4.4. The Time-Series Invariant Learning Module

MTIL is used to learn invariant representations ϕ∗(X)
across inferred environments E∗

infer from MTEI. Specif-
ically, MTIL aims to learn the ϕ∗(X) which encode and
solely encode all the information of invariant features XI

thus achieving both invariant and sufficient predictive capa-
bility targeting at Y suf. Such ϕ∗(X) has been theoretically
proven (Liu et al., 2021a) to be obtained by optimizing the
following objective function:

ϕ∗ = argmax
ϕ

I(Ysuf ;ϕ(X)− I(Ysuf ;E∗
learn|ϕ(X)),

(9)
where I(·; ·) measures Shannon mutual information. The
first and second terms correspond to ensure sufficiency and
invariance property of ϕ(X), respectively.

Considering the unavailability of Y suf, we present the fol-
lowing practical loss function as the instantiation of Eq. 9
via our surrogate loss in Eq. 4:

min
ρ,ϕ
LTIL =Ee∈E∗

infer
R(e)

suf(ρ, ϕ) + λ1RERM(ρ, ϕ)

+ λ2Vare∈E∗
infer

[
R(e)

suf(ρ, ϕ)
]
,

(10)

where λ1, λ2 are hyper-parameters, RERM(ρ, ϕ) =
EX,Y [ℓ(ρ(ϕ(X)),Y)] is the ERM loss on raw Y ,
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Re
suf(ρ, ϕ) defined in Eq. 10 is the loss of inferred environ-

ment e on Y suf, and Vare∈E∗
infer

[
R(e)

suf(ρ, ϕ)
]

implies the
variance of loss across inferred environments. The first and
second terms are jointly used to ensure the sufficient predic-
tive power of ϕ(X) for Y suf, where λ1 controls the trade-off
between introducing information of µ(Y suf), σ(Y suf) and
the influence of Z. The third term further balanced by λ2 en-
sures the invariance property and is robust to marginal distri-
bution shifts of input, theoretically guaranteed by (Krueger
et al., 2021) and further balanced by λ2.

The overall algorithm is summarized in Appendix A. Com-
pared to the backbone, FOIL slightly increases the parameter
count due to additional multiple regressors.

5. Experiments
5.1. Setup

Datasets. We conduct experiments on four popular real-
world datasets commonly used as benchmarks: the daily re-
ported exchange rates dataset (Exchange) (Lai et al., 2018),
the weekly reported ratios of patients seen with influenza-
like illness dataset (ILI) (Kamarthi et al., 2021a), and two
hourly reported electricity transformer temperature datasets
(ETTh1 and ETTh2) (Zhou et al., 2021). We adhere to
the general setups and target variables selections, following
previous literatures (Wu et al., 2021; 2022; Nie et al., 2022).

Backbones. As previously mentioned, our proposed FOIL
is a model-agnostic framework. We select three different
types of TSF models as backbones. Informer (Zhou et al.,
2021) proposes an efficient transformer for long-term TSF.
Crossformer (Zhang & Yan, 2022) better utilizes cross-
dimension dependency, making it more sensitive to spu-
riouse correlations. PatchTST (Nie et al., 2022) employs
channel-independent and patching strategies to achieve state-
of-the-art performance.

Baselines. We comprehensively compare the following
twelve distribution shifts baselines: (1) Two advanced
methods for handling temporal distribution shifts in TSF:
NST (Liu et al., 2022) and RevIN (Kim et al., 2021).
(2) Six well-acknowledged general OOD methods follow-
ing (Gagnon-Audet et al., 2022), adopted due to the lack of
OOD methods for TSF: (a) Methods requiring environment
labels: GroupDRO (Sagawa et al., 2019), IRM (Arjovsky
et al., 2019), IB-ERM (Ahuja et al., 2021), VREx (Krueger
et al., 2021) and SD (Pezeshki et al., 2021). (b) Methods not
requiring environment labels: EIIL (Creager et al., 2021).
(3) Two hybrid methods: IRM+RevIN and EIIL+RevIN.

Implementation. Regarding the horizon window length,
we considered a range from short to long-term TSF tasks.
For ETTh1, ETTh2, and Exchange, the lengths are [24, 48,
96, 168, 336, 720] with a fixed lookback window size of

96 and a consistent label window size of 48 for the decoder.
For the weekly reported ILI, the lengths are [4, 8, 12, 16, 20,
24], representing the next one month to six months, with
a fixed lookback window size of 36 and a consistent label
window size of 18 for the decoder.. Note that, we lack the
availability of suitable environment labels. We address this
by dividing the training set into k, tuned from 2 to 10, equal-
length time segments to serve as predefined environment
labels. When the backbone is equipped with our FOIL, the
model architecture of the backbone remains unchanged.

Evaluation. We employ the widely-adopted evaluation
metrics: mean squared error (MSE) and mean absolute
error (MAE). We report average performance over three
independent runs for each model.

Reproducibility. All training data, testing data and code are
available at: https://github.com/AdityaLab/
FOIL. More experimental details are revealed in Ap-
pendix B.

5.2. Results

As shown in Table 1, we present results for both original
versions and corresponding FOIL equipped versions of back-
bones, yielding the following observations:

(1) Overall, FOIL consistently and significantly improves
the performance of various TSF backbones across all
datasets and forecasting lengths with improvements reach-
ing up to 85% on MSE, thereby demonstrating FOIL’s ef-
fectiveness. For the state-of-the-art PatchTST, FOIL con-
sistently enhances performance, achieving up to 30% im-
provement. For the lower-performing Informer, FOIL shows
more significant improvements, frequently by an order of
magnitude, yielding competitive results.

(2) FOIL excels in short-term forecasting compared to long-
term forecasting, as the higher uncertainty of the latter hin-
ders learning invariant features. Moreover, FOIL’s most
significant improvement in the ILI dataset is attributed to
the serious OOD shifts in its test data, particularly during
the unseen COVID-19 period.

5.3. Comparison with Distribution Shifts Methods

In this section, we conduct a comparative analysis of the per-
formance disparities between FOIL and existing distribution
shifts methods. We employ the Informer as the forecasting
backbone. The forecasting length is set as 16 for ILI and
96 for others. Similar observations are found in other set-
tings. We measure the relative improvement compared to
the best-performing baseline on each metric and dataset.

As shown in Table 2, our observations include:

(1) FOIL achieves the best performance across all datasets.
The average improvements on MSE and MAE are more
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Method Informer(AAAI’21) with FOIL Crossformer(ICLR’23) with FOIL PatchTST(ICLR’23) with FOIL
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xchange

24 0.812 0.736 0.036 0.146 0.083 0.233 0.029 0.129 0.092 0.229 0.031 0.136
48 0.715 0.682 0.063 0.191 0.164 0.328 0.054 0.175 0.090 0.243 0.052 0.171
96 0.782 0.710 0.142 0.274 0.214 0.381 0.111 0.240 0.142 0.291 0.107 0.235

192 0.708 0.701 0.236 0.369 0.709 0.716 0.213 0.349 0.364 0.468 0.226 0.351
336 1.587 1.063 0.546 0.591 2.158 1.231 0.471 0.500 0.512 0.540 0.465 0.486
720 3.922 1.793 0.712 0.679 2.093 1.215 1.193 0.833 0.957 0.738 0.925 0.722
IMP. 80.58% 61.24% 61.90% 45.06% 30.60% 21.11%

IL
I

4 3.212 1.530 0.736 0.593 2.147 1.232 0.332 0.400 1.043 0.587 0.616 0.507
8 3.668 1.642 0.881 0.667 2.678 1.403 0.569 0.512 0.638 0.557 0.586 0.546
12 3.974 1.722 1.069 0.768 2.914 1.476 0.706 0.575 0.959 0.795 0.560 0.519
16 4.187 1.773 1.047 0.779 3.496 1.628 0.701 0.568 0.726 0.563 0.696 0.555
20 4.296 1.806 1.011 0.797 3.589 1.653 0.702 0.596 0.807 0.705 0.571 0.541
24 4.445 1.844 1.014 0.806 3.513 1.633 0.686 0.604 1.072 0.850 0.663 0.625

IMP. 75.80% 57.37% 79.99% 64.03% 27.04% 16.91%

E
T

T
h1

24 0.219 0.392 0.038 0.146 0.194 0.400 0.028 0.126 0.031 0.136 0.027 0.126
48 0.474 0.638 0.065 0.190 0.270 0.465 0.042 0.156 0.044 0.160 0.041 0.154
96 0.965 0.892 0.088 0.224 0.146 0.312 0.056 0.181 0.061 0.190 0.056 0.182

192 1.029 0.967 0.148 0.299 0.241 0.420 0.075 0.209 0.082 0.223 0.078 0.215
336 0.677 0.769 0.136 0.296 0.246 0.425 0.088 0.233 0.100 0.246 0.092 0.237
720 1.086 0.973 0.132 0.288 0.392 0.554 0.104 0.254 0.154 0.310 0.120 0.272
IMP. 85.38% 68.14% 73.04% 54.43% 10.48% 5.80%

E
T

T
h2

24 0.668 0.705 0.121 0.275 0.136 0.299 0.071 0.198 0.080 0.215 0.071 0.197
48 0.999 0.866 0.258 0.407 0.122 0.274 0.106 0.248 0.106 0.248 0.103 0.241
96 3.070 1.628 0.222 0.369 0.256 0.408 0.137 0.286 0.156 0.309 0.140 0.289

192 3.548 1.768 0.699 0.682 1.257 1.034 0.198 0.352 0.217 0.374 0.201 0.356
336 2.663 1.526 0.801 0.756 1.305 1.027 0.234 0.389 0.233 0.390 0.216 0.372
720 2.335 1.422 0.730 0.725 1.579 1.158 0.253 0.402 0.317 0.448 0.238 0.391
IMP. 78.03% 58.82% 59.61% 44.42% 10.65% 6.64%

Table 1. Performance comparison between original and FOIL equipped versions of backbones. The top-performing version is marked in
bold. IMP. is the average percentage improvement across lengths of horizon window compared to the original version. FOIL consistently
and significantly enhances the performance of various TSF backbones on all datasets and metrics across horizon window lengths.

than 10% and 5.5% respectively, showing the benefits of
FOIL over existing distribution shift methods. Notably,
though hybrid models additionally alleviate the temporal
distribution shift problem and exhibit better performance
than general OOD baselines, FOIL still outperforms hybrid
models by over 11%. Therefore, our proposed surrogate loss
in Eq. 4 is irreplaceable by current instance normalization
methods as discussed in Section 4.2 and exhibits important
benefits for alleviating unobserved core covariates issues in
the TSF task.

(2) General OOD methods exhibit poor performances. This
verifies that directly applying existing invariant learning
methods for the TSF task is inappropriate, as discussed in
Section 3.

(3) Among the existing general OOD methods, EIIL exhibits
better performance than other baselines, due to their capa-
bility to infer proper environments from the data. Besides,
the performances of EIIL also suggest the advantages of in-
ferring environments at representation spaces as opposed to
raw feature spaces for TSF’s high-dimensional input. These
observed advantages align with the considerations made in
FOIL.

5.4. Ablation Study

To demonstrate the effectiveness of each module or loss in
FOIL, we conduct an ablation study that introduces three ab-
lated versions of FOIL: (1) FOIL \Suf: remove the surrogate
loss in Eq. 4 for decomposing Sufficiently predictable Y suf

(2) FOIL \TEI: remove the whole Time-series Environment
Inference module detailed in Section 4.3,i.e. set the num-
ber of environment as 1.(3) FOIL \LP: removed the Label
Propagation approach in MTEI in Eq. 8. All other experi-
ment setups follow Section 5.3. The ablation study results
are shown in Figure 3(a).

Though FOIL outperforms all ablated versions in forecast-
ing accuracy, all designed modules and loss in FOIL show
individual effectiveness through the ablation study. Specifi-
cally, the performance FOIL \Suf drops significantly more
than other ablated versions, which indicates the necessity
of mitigating unobserved covariate issues when applying in-
variant learning for TSF. Moreover, FOIL \TEI consistently
outperforms FOIL \LP across all datasets, which validates
the effectiveness of preserving the temporal adjacency struc-
ture for Time Series Forecasting (TSF).
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Dataset Exchange ILI ETTh1 ETTh2
Type Env. Known? Method MSE MAE MSE MAE MSE MAE MSE MAE
Base No ERM 0.782 0.710 3.974 1.722 0.965 0.892 3.070 1.628

General
OOD

(Invariant
Learning)

Yes

GroupDRO 0.781 0.715 3.721 1.888 0.880 0.863 3.192 1.647
IRM 0.716 0.688 3.608 1.732 0.495 0.646 2.910 1.581

VREx 0.781 0.715 3.671 1.875 0.874 0.859 3.238 1.662
SD 0.782 0.716 3.674 1.677 0.891 0.870 3.246 1.664

IB-ERM 0.787 0.719 3.673 1.677 0.883 0.865 3.209 1.654
No EIIL 0.540 0.630 3.251 1.648 0.673 0.783 1.252 1.013

Temporal
Shifts NA RevIN 0.169 0.296 1.350 0.867 0.108 0.248 0.236 0.387

NST 0.151 0.281 1.351 0.871 0.118 0.260 0.258 0.406

Hybrid Yes IRM+RevIN 0.160 0.291 1.328 0.863 0.105 0.244 0.234 0.381
No EIIL+RevIN 0.170 0.309 1.205 0.820 0.097 0.241 0.343 0.483

Ours No FOIL 0.136 0.274 1.047 0.768 0.088 0.224 0.210 0.358
Improvement(%) +9.93 +2.50 +12.94 +5.00 +9.27 +7.05 +10.26 +6.04

Table 2. Comparison with existing distribution shifts methods across four datasets using Informer backbone. The best results are in bold.
NA means not considering environments. Our FOIL outperforms all existing distribution shift methods on all datasets and both metrics.

5.5. Case Study: Analysis of Inferred Environments

To justify the reasonableness of the environments inferred by
FOIL, we conduct a case study on the ILI dataset by demon-
strating the contribution disparities among three major com-
ponents (Summer, i.e., June to August annually; Winter, i.e.,
December to February annually; and the H1N1-09 period,
i.e., April 2009 to August 2010) when the total number of
inferred environments is set to 2. The visualization of contri-
butions from each component is shown in Figure 3(b). The
visualization results align with public health perspectives in
two ways: First, the major components of Environment 1
and 2 are distinguished by Winter and Summer, as influenza
is a seasonal disease and typically spreads during the winter
and ends before the summer. Second, the H1N1-09 period
has more contributions in Environment 1 than 2, which
aligns with the fact that the H1N1-09 period and winter
flu seasons exhibit similarities. These observations support
the ability of FOIL to infer meaningful environments in
real-world TSF applications.

6. Additional Related Works
6.1. Time Series Forecasting

Classical TSF models (Tsay, 2000; Ariyo et al., 2014; Box
et al., 2015) often face limitations in capturing complex
patterns due to their inherent model constraints. Recent
advancements in deep learning methods, such as Recur-
rent Neural Networks (RNN) and Transformer (Rumelhart
et al., 1986; Hochreiter & Schmidhuber, 1997; Vaswani
et al., 2017), have led to sophisticated deep TSF models
including Informer, Reformer, Autoformer, Fedformer, and
PatchTST (Zhou et al., 2021; Kitaev et al., 2020; Wu et al.,
2021; Zhou et al., 2022; Nie et al., 2022), significantly im-

(a) Ablation study of our
method and three ablated ver-
sions showing the effectiveness
of the model design.

(b) Analysis of two inferred en-
vironments on ILI showing sig-
nificant differences in compo-
nent weights.

Figure 3. Results of analytical experiments.

proving forecasting accuracy. However, these advanced
models primarily rely on ERM with simple IID assump-
tions. Consequently, they exhibit shortcomings in OOD
generalization when faced with potential distribution shifts
in TS data.

6.2. Distribution Shifts in Time-Series Forecasting.

In addition to the aforementioned TSF methods in handling
marginal distribution shifts (Passalis et al., 2019; Kim et al.,
2021; Liu et al., 2022; Fan et al., 2023; Du et al., 2021),
there are some efforts that have tackled OOD challenges
in TSF. However, all have certain limitations. For exam-
ple, DIVERSITY (Lu et al., 2022; 2023) is specifically
designed for time series classification and detection tasks.
OneNet (Zhang et al., 2023) is tailored for online forecast-
ing scenarios by online ensembling. Pets (Zhao et al., 2023)
focuses on distribution shifts induced by the specific phe-
nomenon of performativity. This highlights the need for a
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general OOD method applicable across diverse TSF scenar-
ios and models.

Despite the existing benchmark WOODS (Gagnon-Audet
et al., 2022) that evaluates IL methods combined with TSF
models with a focus on TS classification tasks, our pro-
posed approach addresses diverse datasets under realistic
TSF scenarios, offering different and comprehensive prob-
lem formulation, methodology, and evaluations.

7. Conclusion and Discussion
In this paper, we formally study the fundamental out-
of-distribution challenges in time-series forecasting tasks
(OOD-TSF). We identify specific gaps when applying ex-
isting invariant learning methods to OOD-TSF, including
theoretical violations of sufficiency and invariance assump-
tions and the empirical absence of environment labels in
time-series datasets. To address these challenges, we in-
troduce a model-agnostic framework named FOIL, which
employs an innovative surrogate loss to alleviate the impact
of unobserved variables. FOIL features a joint optimiza-
tion strategy, which learns invariant representations and
preserves temporal adjacency structure. Empirical evalua-
tions demonstrate the effectiveness of FOIL by consistently
improving the performances of different TSF models and
outperforming other OOD solutions.

Beyond the scope of FOIL, it is important to recognize that
invariant learning is not the only solution to enhance OOD
generalization in TSF tasks. Alternative approaches or in-
terpretations can require advanced causal analysis, feature
selections, or learning dynamic temporal patterns. The us-
ing of additional information to enhance the sufficiency of
predictions also deserves to be explored. We also emphasize
the need for conscientious evaluations on underrepresented
subgroups when implementing our approach in real-world
scenarios for promoting fairness among subgroups. We ex-
pect that future research will delve into these open questions,
contributing both theoretically and practically to advance the
understanding of OOD-TSF challenges and achieve more
reliable TSF models.

Impact Statement
Our work introduces a new methodology to improve the
out-of-distribution generalization of time-series forecasting
models and is applicable across wide range of domains
and real-world applications including sensitive applications
in public health, economics, etc. Therefore, care should
be taken in alleviating biases and disparities in dataset as
well as making sure the predictions of model do not pose
ethical risks or lead to inequitable outcomes across various
stakeholders relevant to specific applications our methods
are used.
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Peters, J., Bühlmann, P., and Meinshausen, N. Causal in-
ference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical So-
ciety Series B: Statistical Methodology, 78(5):947–1012,
2016.

Pezeshki, M., Kaba, O., Bengio, Y., Courville, A. C., Pre-
cup, D., and Lajoie, G. Gradient starvation: A learning
proclivity in neural networks. Advances in Neural Infor-
mation Processing Systems, 34:1256–1272, 2021.

Rodriguez, A., Tabassum, A., Cui, J., Xie, J., Ho, J., Agar-
wal, P., Adhikari, B., and Prakash, B. A. Deepcovid: An
operational deep learning-driven framework for explain-
able real-time covid-19 forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 15393–15400, 2021.

Rojas-Carulla, M., Schölkopf, B., Turner, R., and Peters, J.
Invariant models for causal transfer learning. The Journal
of Machine Learning Research, 19(1):1309–1342, 2018.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Sancho, J. M., San Miguel, M., Katz, S., and Gunton, J.
Analytical and numerical studies of multiplicative noise.
Physical Review A, 26(3):1589, 1982.

Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M. Fi-
nancial time series forecasting with deep learning: A
systematic literature review: 2005–2019. Applied soft
computing, 90:106181, 2020.

Tabassum, A., Chinthavali, S., Tansakul, V., and Prakash,
B. A. Actionable insights in multivariate time-series for
urban analytics. 2021.

Tsay, R. S. Time series and forecasting: Brief history and
future research. Journal of the American Statistical Asso-
ciation, 95(450):638–643, 2000.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Weber, M. G., Li, L., Wang, B., Zhao, Z., Li, B., and Zhang,
C. Certifying out-of-domain generalization for black-
box functions. In International Conference on Machine
Learning, pp. 23527–23548. PMLR, 2022.

Wooldridge, J. M. Multiplicative panel data models without
the strict exogeneity assumption. Econometric Theory,
13(5):667–678, 1997.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. Advances in Neural Information Pro-
cessing Systems, 34:22419–22430, 2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
Timesnet: Temporal 2d-variation modeling for general
time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Ye, N., Zhu, L., Wang, J., Zeng, Z., Shao, J., Peng, C.,
Pan, B., Li, K., and Zhu, J. Certifiable out-of-distribution
generalization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 10927–10935,
2023.

Zhang, Y. and Yan, J. Crossformer: Transformer utilizing
cross-dimension dependency for multivariate time series
forecasting. In The Eleventh International Conference on
Learning Representations, 2022.

Zhang, Y.-F., Wen, Q., Wang, X., Chen, W., Sun, L., Zhang,
Z., Wang, L., Jin, R., and Tan, T. Onenet: Enhancing time
series forecasting models under concept drift by online
ensembling. arXiv preprint arXiv:2309.12659, 2023.

11



Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning

Zhao, Z., Rodriguez, A., and Prakash, B. A. Performative
time-series forecasting. arXiv preprint arXiv:2310.06077,
2023.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
pp. 11106–11115, 2021.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. In International
Conference on Machine Learning, pp. 27268–27286.
PMLR, 2022.

12



Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning

A. Algorithm

Algorithm 1 The training procedure of our FOIL.

Require: Time-series dataset D = {(Xi,Yi)}Ni=1

Ensure: An optimized predictor ρ(ϕ(·)) : X → Y
1: Initialize ρ(·), {ρ(e)(·)}, ϕ(·)
2: Random assign environment label for each (Xi,Yi).
3: while not converged do
4: Stage 1: Time-series Invariant Learning: Update ϕ(·), ρ(·) according to Equation 10.
5: Stage 2: Time-series Environment Inference:
6: M Step: Fit models according to Equation 6, update {ρ(e)}.
7: E Step: Reallocate environment labels according to Equation 7 and Equation 8.
8: end while
9: return ρ(·) and ϕ(·).

B. Additional Experimental Details

B.1. Datasets

We conduct experiments on four real-world datasets, commonly used as benchmark datasets:

• Exchange dataset records the daily exchange rates of eight currencies.

• ETTh1 and ETTh2 datasets record the hourly electricity transformer temperature, comprising two years of data
collected from two separate counties in China. They include seven variables. We omitted ETTm1 and ETTm2 as they
share the same data source as ETTh1 and ETTh2, but with different sampling frequencies.

• ILI dataset collects data on influenza-like illness patients weekly, with eight variables. We mainly follow (Wu et al.,
2022) to preprocess data, split datasets into train/validation/test sets and select the target variables. All datasets are
preprocessed using the zero-mean normalization method.

B.2. Backbones

As aforementioned, our proposed FOIL is a model-agnostic framework. We select three different types of TSF models as
backbones. Informer (Zhou et al., 2021) proposes an efficient transformer for long-term TSF. Crossformer (Zhang & Yan,
2022) better utilizes cross-dimension dependency, making it more sensitive to spuriouse correlations. PatchTST (Nie et al.,
2022) employs channel-independent and patching strategies to achieve state-of-the-art performance.

B.3. Baselines: General OOD Methods

• Methods with Environment Labels: IRM (Arjovsky et al., 2019) introduces a penalty to learn invariant predictors
across different environments. On the basis of the invariance principle of IRM, IB-ERM (Ahuja et al., 2021) incorpo-
rates the information bottleneck constraint. VREx (Krueger et al., 2021) propose a penalty on the variance of training
risks between environments as a simple agent of risk extrapolation. SD (Pezeshki et al., 2021) proposes a regularization
method aimed at decoupling feature learning dynamics to achieve better OOD generalization.GroupDRO (Sagawa
et al., 2019), a regularizer for worst-case group generalization, often considered to have general OOD generalization
capabilities.

• Methods without Environment Labels: EIIL (Creager et al., 2021) infers the most informative environments for
downstream learning invariant predictors by maximizing the penalty in IRM.

We omit AdaRNN (Du et al., 2021) for not being model-agnostic; DIVERSITY (Lu et al., 2022; 2023), as it’s specific
to time series classification and detection tasks; and multi-view TSF methods (Kamarthi et al., 2022), which treat each
covariate as one view and inflate the parameter count, leading to unfair comparison.
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B.4. Implementation

For the backbones, we utilize implementations and hyperparameter settings from the Time Series Library1. For general
OOD methods, we employ the implementations and tune hyperparameter suggested by DomainBed2. For TSF methods, we
use the implementations and hyperparameter settings from their corresponding papers. We have added an MLP to the end of
PatchTST to utilize covariates effectively. For our proposed framework FOIL, we also incorporate RevIN like PatchTST to
address the issue of non-stationarity. We perform affine transformation on each dimension of the raw covariate through
learnable weight variables to better find invariant features and improve out-of-distribution generalization capabilities.

1https://github.com/thuml/Time-Series-Library
2https://github.com/facebookresearch/DomainBed
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