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Abstract

Agentic Retrieval-Augmented Generation001
(RAG) systems enhance Large Language Mod-002
els (LLMs) by enabling dynamic, multi-step003
reasoning and information retrieval. However,004
these systems often exhibit sub-optimal005
search behaviors like over-search (retrieving006
redundant information) and under-search007
(failing to retrieve necessary information),008
which hinder efficiency and reliability. This009
work formally defines and quantifies these010
behaviors, revealing their prevalence across011
multiple QA datasets and agentic RAG systems012
(e.g., one model could have avoided searching013
in 27.7% of its search steps). Furthermore,014
we demonstrate a crucial link between these015
inefficiencies and the models’ uncertainty016
regarding their own knowledge boundaries,017
where response accuracy correlates with018
model’s uncertainty in its search decisions.019
To address this, we propose β-GRPO, a rein-020
forcement learning-based training method that021
incorporates confidence threshold to reward022
high-certainty search decisions. Experiments023
on seven QA benchmarks show that β-GRPO024
enable a 3B model with better agentic RAG025
ability, outperforming other strong baselines026
with a 4% higher average exact match score1.027

1 Introduction028

Recent advances in Large Language Models029

(LLMs) have propelled their use in information-030

intensive tasks such as question answering and031

knowledge synthesis, especially when paired with032

retrieval capabilities (Wang et al., 2025b). Agen-033

tic Retrieval-Augmented Generation (RAG) frame-034

works (Jin et al., 2025a; Song et al., 2025a; Chen035

et al., 2025) push this further by empowering LLMs036

to perform multi-step reasoning (Li et al., 2025)037

and dynamically decide when and what to retrieve038

(Guan et al., 2025), closely emulating sophisticated039

human research processes. However, despite these040

1We will release all our codes and data upon acceptance.

advancements, current agentic RAG systems of- 041

ten struggle with efficiency and reliability due to 042

sub-optimal search behaviors (Shen et al., 2024; 043

Qian et al., 2025; Wang et al., 2025a). In particu- 044

lar, two major challenges: 1) over-search, where 045

the model retrieves information it already knows , 046

and 2) under-search, where it fails to seek external 047

knowledge when necessary, have been identified as 048

critical obstacles that degrade performance. 049

In this work, we conduct a thorough quantita- 050

tive analysis to identify and measure the preva- 051

lence of over-search and under-search. Our exper- 052

iments on several multi-hop QA datasets (2Wiki- 053

MultiHopQA (Ho et al., 2020), Bamboogle (Press 054

et al., 2023), HotpotQA (Yang et al., 2018), and 055

MuSiQue (Trivedi et al., 2022)) using contempo- 056

rary LLMs like R1-Searcher (Song et al., 2025a) 057

and Search-R1 (Jin et al., 2025a) reveal significant 058

instances of sub-optimal search. We also further 059

explore the connection between these behaviors 060

and a model’s awareness of its knowledge bound- 061

aries, finding that candidate responses generated 062

with higher certainty about the necessity of a search 063

query tend to achieve better accuracy. 064

To address this, we introduce β-GRPO, a variant 065

of GRPO (Shao et al., 2024) where the confidence 066

of search calls are modeled as the minimal token 067

probability of the search queries produced by the 068

model and a confidence threshold is incorporated 069

into the reward function, only encouraging gener- 070

ations with high-certainty search calls leading to 071

correct answer. Through extensive experiments 072

on seven QA benchmarks, we show that β-GRPO 073

enables a 3B model with better agentic RAG abil- 074

ity compared to strong baselines with a 4% higher 075

average exact match score and 1.21% fewer over- 076

searches and 7.33% fewer under-searches. 077

2 Identifying Sub-optimal Search 078

To investigate the prevalence of over-search and 079

under-search, we conduct three experiments with 080
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Figure 1: Percentage for all search steps that can be
answered without performing searches of R1-Searcher
and Search-R1 on 4 datasets combined, with respect to
the number of searches of each test sample.

the test sets of four widely recognized multihop081

QA datasets: 2WikiMultiHopQA (Ho et al., 2020),082

Bamboogle (Press et al., 2023), HotpotQA (Yang083

et al., 2018), and MuSiQue (Trivedi et al., 2022).084

We mainly investigate two recent LLMs that inter-085

act with search engines: R1-Searcher (Song et al.,086

2025b) and Search-R1 (Jin et al., 2025b). We adopt087

the version trained based on Qwen2.5-7B (Qwen088

et al., 2025) for a fair comparison.089

2.1 Step-wise Analysis090

To directly measure whether a search step was truly091

necessary, we separate all outputs into individual092

steps and identify if each of them matches with093

the definition of over-search and under-search. For094

over-search rate measurement, we prompted the095

model to answer sub-queries from all the steps with096

search behavior using only their internal knowledge097

and the preceding context. For under-search rate098

measurement, we examine steps without searching099

and evaluate the correctness of the generated in-100

formation. A detailed explanation of the analysis101

pipeline is provided in Appendix A.2.102

Capability to Answer from Memory The re-103

sults in Figure 1 show that a significant portion104

of search actions were instances of over-search.105

R1-Searcher could have answered correctly with-106

out searching in 20.2% of its search steps over-107

all, while Search-R1 could have done so in 27.7%108

of its search steps. This highlights a substantial109

room for efficiency improvement. Figure 1 also110

shows the over-search rate for each subset of test111

samples grouped by the total number of search112

steps an agent used to solve an entire problem in-113

stance. The results per each subset indicates that114

over-search is a persistent issue irrespective of the115

overall search complexity adopted by the model116

for a given problem. Despite the step-wise analy-117

Figure 2: Error rate for all non-search steps of R1-
Searcher and Search-R1 on 4 datasets combined, with
respect to the number of searches of each test sample.

sis, we also conduct an analysis on comparing the 118

number of searches versus the pre-given number of 119

hops from the dataset in Appendix A.3, which also 120

supports our conclusion. 121

Error Rate in Non-Search Steps Figure 2 ana- 122

lyzes the error rate in non-search steps, which can 123

be seen as the rate of under-search. Both mod- 124

els exhibited high error rates (R1-Searcher: 63%, 125

Search-R1: 33.98%) in non-search steps, suggest- 126

ing a strong tendency towards under-search leading 127

to incorrect reasoning or hallucination. For R1- 128

Searcher, this error rate was particularly high with 129

fewer total searches (over 72% if no searches were 130

made). For Search-R1, errors in non-search steps 131

remained notable even when performing many 132

searches overall (e.g., 48.70% for 4-search prob- 133

lems), possibly due to decision complexity in later 134

stages. (See Figure 2 for detailed error rates by 135

search step count). 136

2.2 Sub-optimal Search & Knowledge 137

Boundary 138

The observed tendencies towards over-search and 139

under-search, combined with our definition, sug- 140

gest a core deficiency in how agentic RAG models 141

perceive knowledge boundaries—the limits of what 142

they know versus what they need to find out. To 143

illustrate the link between better knowledge bound- 144

ary awareness and improved outcomes, we analyze 145

the performance of 4 Qwen2.5-3B based Search-R1 146

models (including PPO and GRPO trained, Base 147

and Instruct variants). We generate 5 candidate 148

responses for each question and group these re- 149

sponses based on each output’s minimum proba- 150

bilities within all the search query tokens as the 151

indication of certainty on knowledge boundary. 152

As shown in Table 1, candidate responses gener- 153

ated with lower intrinsic uncertainty generally lead 154

to higher final accuracy (as high as 6% on Bam- 155
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Model Config Prob. Group 2Wiki Bamboogle HotpotQA Musique

Base + PPO
Max 0.184 0.096 0.152 0.038
Min 0.168 0.096 0.114 0.038

Base + GRPO
Max 0.249 0.112 0.327 0.085
Min 0.234 0.104 0.289 0.056

Instruct + PPO
Max 0.333 0.250 0.262 0.138
Min 0.297 0.250 0.262 0.116

Instruct + GRPO
Max 0.402 0.125 0.343 0.116
Min 0.402 0.063 0.302 0.116

Table 1: Cover EM scores on multi-hop QA datasets,
comparing groups of responses with higher vs. lower
uncertainty (derived from average of minimum proba-
bility of search query tokens) on knowledge boundary.
Bold indicates instances where the Max Prob. group
achieved a strictly better performance.

boogle and 3.8% on HotpotQA), across different156

training methods and base models. This suggests157

that when the model exhibits higher confidence158

(lower uncertainty) in its generation path, it is more159

likely to be on a correct trajectory. Therefore, im-160

proving an agent’s ability to accurately gauge its in-161

ternal knowledge state—effectively sharpening its162

knowledge boundary detection and reducing undue163

uncertainty—is a crucial step towards mitigating164

both over-search and under-search, thereby enhanc-165

ing the overall efficiency and reliability of agentic166

RAG systems. Our approach is motivated by this167

principle, aiming to train agents to better assess168

and reduce uncertainty at each search decision.169

3 Approach170

Current RL powered agentic RAG methods (Jin171

et al., 2025a; Song et al., 2025a; Chen et al.,172

2025) do not explicitly model the knowledge self-173

awareness during the training process, resulting in174

generations with low confidence, which are not175

desired and shown to easily contain wrong an-176

swer compared to generations with higher confi-177

dence (Table 1). To this end, we propose a simple178

yet effective variant of GRPO (Shao et al., 2024),179

β-GRPO, which leverages the uncertainty of the180

search query spans for more effective rewarding181

and training.182

Agentic RAG with RL (Search-R1 (Jin et al.,183

2025a)) Given a question, we prompt the pol-184

icy model to explicitly reason enclosed within185

<think></think> tags about whether to use186

an off-the-shelf search tool, and, if so, to generate a187

search query within <search></search> tags.188

The search tool then returns relevant documents in-189

side <information></information> tags.190

Once obtaining new information, the policy191

model can either continue searching for addi-192

tional information or provide a final answer within 193

<answer></answer> tags. The instruction 194

given to the policy model could be found in 195

Appendix A.4. If the final answer match the 196

groundtruth, the response will be given a reward 1, 197

otherwise 0. And the policy are updated via policy 198

gradient methods like GRPO (Shao et al., 2024). 199

β-GRPO Motivated by the observation that roll- 200

outs with low-confidence search calls are more 201

likely to be incorrect, we incorporate model con- 202

fidence into the RL reward process. Specifically, 203

for each rollout containing search calls (enclosed 204

within <search></search> tags), we extract 205

the probabilities of the search tokens including the 206

tags and use the minimum probability among them 207

as a measure of the model confidence for the search 208

calls within a rollout (Jiang et al., 2023). We then 209

set a confidence threshold β: only rollouts with the 210

confidence of search calls (if exist) above β and 211

correct answers receive a reward of 1, otherwise 0. 212

4 Experiments 213

Datasets We follow Search-R1 (Jin et al., 2025a) 214

using a mixture of the NQ (Kwiatkowski et al., 215

2019) and HotpotQA (Yang et al., 2018) training 216

sets for model training. For evaluation, we con- 217

sider seven QA benchmarks, including general QA 218

datasets, NQ, TriviaQA (Joshi et al., 2017), and 219

PopQA (Mallen et al., 2023), as well as multi-hop 220

QA datasets: HotpotQA, 2WikiMultiHopQA (Ho 221

et al., 2020), Bamboogle (Press et al., 2023), and 222

MuSiQue (Trivedi et al., 2022). Exact match (EM) 223

is used as our main evaluation metric. 224

Baselines We compare our method with several 225

baselines: methods that do not use a retriever 226

including direct prompting, Chain-of-Thought 227

(CoT) (Wei et al., 2022) prompting, supervised fine- 228

tuning (SFT) (Chung et al., 2022), and reinforce- 229

ment learning-based fine-tuning (R1) (DeepSeek- 230

AI et al., 2025); methods that use a retriever but 231

do not perform agentic retrieval, such as Retrieval- 232

Augmented Generation (RAG) (Lewis et al., 2020) 233

and IRCoT (Trivedi et al., 2023); and finally, agen- 234

tic retrieval methods, including Search-o1 (Li et al., 235

2025) and Search-R1 (Jin et al., 2025a). 236

Based on our preliminary experiments, we found 237

that training the policy model from scratch us- 238

ing our confidence-based rewards prevents it from 239

learning effective search behavior. Therefore, we 240

use Qwen2.5-3B (Qwen et al., 2025) and initial- 241

ize it with the parameters from Search-R1. Then 242
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Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Average

Direct Prompting 0.106 0.288 0.108 0.149 0.244 0.020 0.024 0.134
CoT Prompting 0.023 0.032 0.005 0.021 0.021 0.002 0.000 0.015
IRCoT 0.111 0.312 0.200 0.164 0.171 0.067 0.240 0.181
Search-o1 0.238 0.472 0.262 0.221 0.218 0.054 0.320 0.255
RAG 0.348 0.544 0.387 0.255 0.226 0.047 0.080 0.270
SFT 0.249 0.292 0.104 0.186 0.248 0.044 0.112 0.176
R1 0.226 0.455 0.173 0.201 0.268 0.055 0.224 0.229
Search-R1 0.406 0.587 0.435 0.284 0.273 0.049 0.088 0.303
Search-R1-GRPO 0.432 0.578 0.413 0.294 0.271 0.067 0.112 0.309
Search-R1-β-GRPO (ours) 0.468 0.625 0.449 0.334 0.304 0.086 0.144 0.344

Table 2: Main results. The best performance is set in bold. †/⋆ represents in-domain/out-domain datasets.

Search-R1-GRPO Search-R1-β-GRPO (ours)

Question: In what Country is Sul America Esporte Clube in? Gener-
ation: <think> The question asks for the country hosting Sul America
Esporte Clube, a team in the brazilian C1 and C2 league, thus the direct
reasoning is likely to be Brazilian football team residing in Brazil.

Question: In what Country is Sul America Esporte Clube in? Gen-
eration: <search> in what Country is Sul America Esporte Clube in
</search> <information> Doc 1: ... Doc 2: ... Doc 3: ... </information>
<answer> Brazil </answer> (Confidence: 0.99)

Table 3: Case Study. The retrieved documents are omitted for clarity.

we continue training using GRPO with different243

reward functions: one using the original answer-244

based reward (Search-R1-GRPO), and the other us-245

ing our proposed confidence-based reward (Search-246

R1-β-GRPO). We set the value of β as 0.4 accord-247

ing to the analysis in Section 5. Detailed training248

configurations could be found in Appendix A.5.249

Results As shown in Table 2, agentic search with250

RL training (Search-R1*) significantly outperforms251

other baselines, indicating that incorporating search252

through autonomous reasoning and RL training is253

more effective than non-agentic or prompting meth-254

ods. Our model, Search-R1-β-GRPO, achieves255

the highest overall average EM score across the256

datasets. Figure 3 in Appendix A.5 shows the train-257

ing rewards for Search-R1-GRPO and Search-R1-258

β-GRPO. We observe that the rewards for Search-259

R1-GRPO fluctuate and do not show clear improve-260

ment over training steps. In contrast, Search-R1-261

β-GRPO achieves higher and more stable rewards.262

This improved performance suggests that our pro-263

posed reward assignment based on the confidence264

of search calls within a rollout is effective.265

5 Analysis266

Ablation on β & Case Study Following Jiang267

et al. (2023), we experiment with three confidence268

threshold values: 0.2, 0.4, and 0.6. The aver-269

age EM scores are 0.341, 0.344 and 0.336 with270

a threshold of 0.4 yields the best result. More-271

over, we find 115 test cases from the multi-hop272

QA datasets where Search-R1-β-GRPO produces 273

a correct answer with higher confidence, while 274

Search-R1-GRPO gives an incorrect answer. These 275

cases clearly benefit from the increased model con- 276

fidence enabled by the proposed β-GRPO. An ex- 277

ample is shown in Table 3: Search-R1-GRPO lacks 278

confidence and fails to provide a definite answer, 279

whereas Search-R1-β-GRPO generates a confident 280

search query and produces the correct answer. 281

Under-searches & Over-searches We also mea- 282

sure the rate of over-search and under-search of 283

our Search-R1-β-GRPO and the baseline Search- 284

R1-GRPO trained based on Qwen2.5-3B with the 285

methods in Section 2.1. Compared with Search- 286

R1-GRPO, which has overall 21.10% over-search 287

rate and 42.04% under-search rate%, our Search- 288

R1-β-GRPO achieves 19.89% over-search rate and 289

34.71% under-search rate, which are lower than the 290

baseline method. This shows that our method effec- 291

tively reduces both types of sub-optimal searches. 292

6 Conclusion 293

In this work, we formally define and quantify sub- 294

optimal search behaviors, over-search and under- 295

search, in agentic RAG systems, revealing their 296

prevalence and impact. By introducing β-GRPO, 297

a confidence-aware policy gradient method, we 298

enable a 3B model with better agentic RAG ability 299

than strong baselines. 300
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7 Limitations301

We formally define and quantify sub-optimal302

search behaviors in agentic RAG systems and pro-303

pose β-GRPO to train agentic RAG models with304

improved self-knowledge awareness. However,305

we acknowledge that sub-optimal search behav-306

iors, over-search and under-search, are persistent307

challenges that require further investigation, es-308

pecially in more open-ended tasks like deep re-309

search (Alzubi et al., 2025). Additionally, due to310

limited computational resources, we are unable to311

train larger models and leave it for future work.312

References313

Salaheddin Alzubi, Creston Brooks, Purva Chiniya,314
Edoardo Contente, Chiara von Gerlach, Lucas Irwin,315
Yihan Jiang, Arda Kaz, Windsor Nguyen, Sewoong316
Oh, Himanshu Tyagi, and Pramod Viswanath. 2025.317
Open deep search: Democratizing search with open-318
source reasoning agents. arXiv [cs.LG].319

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,320
Chenzheng Zhu, Fan Yang, Zenan Zhou, Weipeng321
Chen, Haofen Wang, Jeff Z Pan, Wen Zhang, and322
Huajun Chen. 2025. ReSearch: Learning to reason323
with search for LLMs via reinforcement learning.324
arXiv [cs.AI].325

Hyung Won Chung, Le Hou, Shayne Longpre, Barret326
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi327
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-328
bert Webson, Shixiang Shane Gu, Zhuyun Dai,329
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-330
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,331
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams332
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,333
Hongkun Yu, Slav Petrov, Ed H Chi, Jeff Dean, Ja-334
cob Devlin, Adam Roberts, Denny Zhou, Quoc V Le,335
and Jason Wei. 2022. Scaling instruction-finetuned336
language models. arXiv [cs.LG].337

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,338
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,339
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,340
Xingkai Yu, Yu Wu, Z F Wu, Zhibin Gou, Zhihong341
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,342
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,343
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,344
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,345
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,346
Guangbo Hao, Guanting Chen, Guowei Li, H Zhang,347
Han Bao, Hanwei Xu, Haocheng Wang, Honghui348
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,349
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang350
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J L351
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai352
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai353
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong354
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan355

Zhang, Minghua Zhang, Minghui Tang, Meng Li, 356
Miaojun Wang, Mingming Li, Ning Tian, Pan- 357
pan Huang, Peng Zhang, Qiancheng Wang, Qinyu 358
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe 359
Pan, Runji Wang, R J Chen, R L Jin, Ruyi Chen, 360
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 361
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 362
Zhou, Shuting Pan, S S Li, Shuang Zhou, Shaoqing 363
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 364
T Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 365
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 366
Zhang, W L Xiao, Wei An, Xiaodong Liu, Xiaohan 367
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 368
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan 369
Li, Xuecheng Su, Xuheng Lin, X Q Li, Xiangyue Jin, 370
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 371
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 372
Xinxia Shan, Y K Li, Y Q Wang, Y X Wei, Yang 373
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 374
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 375
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 376
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 377
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 378
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 379
Yuxuan Liu, Yuyang Zhou, Y X Zhu, Yanhong Xu, 380
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 381
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 382
Z Z Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 383
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 384
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 385
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 386
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 387
Zhang, and Zhen Zhang. 2025. DeepSeek-R1: Incen- 388
tivizing reasoning capability in LLMs via reinforce- 389
ment learning. arXiv [cs.CL]. 390

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, 391
Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and 392
Jie Zhou. 2025. Deeprag: Thinking to retrieval step 393
by step for large language models. 394

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, 395
and Akiko Aizawa. 2020. Constructing a multi- 396
hop QA dataset for comprehensive evaluation of 397
reasoning steps. In Proceedings of the 28th Inter- 398
national Conference on Computational Linguistics, 399
pages 6609–6625, Barcelona, Spain (Online). Inter- 400
national Committee on Computational Linguistics. 401

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, 402
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie 403
Callan, and Graham Neubig. 2023. Active retrieval 404
augmented generation. arXiv [cs.CL]. 405

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, 406
Hamed Zamani, and Jiawei Han. 2025a. Search-R1: 407
Training LLMs to reason and leverage search engines 408
with reinforcement learning. arXiv [cs.CL]. 409

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, 410
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei 411
Han. 2025b. Search-r1: Training llms to reason and 412
leverage search engines with reinforcement learning. 413

5

http://arxiv.org/abs/2502.01142
http://arxiv.org/abs/2502.01142
http://arxiv.org/abs/2502.01142
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
http://arxiv.org/abs/2503.09516
http://arxiv.org/abs/2503.09516
http://arxiv.org/abs/2503.09516


Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke414
Zettlemoyer. 2017. TriviaQA: A large scale distantly415
supervised challenge dataset for reading comprehen-416
sion.417

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick418
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A Appendix654

A.1 Formal Definition of Under-search &655

Over-search656

Formally, let an LLM agent’s interaction for a ques-657

tion be a sequence of steps T = {s1, s2, . . . , sN}.658

Each step st comprises a reasoning component rt.659

If the model decides to retrieve information, the re-660

trieval step sRt = (rt, qt, ct) includes a search sub-661

query qt and the retrieved context ct = search(qt).662

The sub-answer at for this step sRt is typically de-663

rived using ct and reflected in rt+1. If the model664

does not retrieve, the non-retrieval step sNR
t = (rt)665

relies on the existing context {s1, s2, . . . , st−1}666

and the model’s internal knowledge M to derive at667

reflected in rt. Let a∗t be the ground-truth answer668

step st. Over-search occurs if a retrieval step sRt ’s669

answer at could have been derived from M and670

{s1, s2, . . . , st−1} only. Under-search occurs if a671

non-retrieval step sNR
t leads to at ̸= a∗t .672

A.2 Detailed Step-wise Analysis Procedure673

To empirically measure the rates of over-search and674

under-search, we conducted a detailed step-wise675

analysis of the agent’s decision-making process.676

The interactions of the agent are logged as a se-677

quence of steps, where each step can involve in-678

ternal reasoning (thinking), querying a search tool,679

processing retrieved context, and generating an an-680

swer. We define specific procedures to identify and681

quantify each type of sub-optimal search behavior:682

1. Step Extraction: We parse the agent’s in-683

teraction log following the definition in Ap-684

pendix A.1. Each distinct thinking process is685

a decision point and considered a step, typi-686

cally delineated by <step> and </step> tags687

(or a similar structured logging format). A688

"search step" is identified as any step where all689

three relevant operations—think (the model’s690

reasoning), search (the search query issued),691

context (the information retrieved). A "non-692

search step" typically only consists of think-693

ing. In this work specifically, the Step Extrac-694

tion is done by prompting QwQ-32B (Qwen695

et al., 2025) as we discover that reasoning696

LLM typically perform better on such task.697

2. Extraction of Partial Input: For each identi-698

fied search step, we reconstruct the input that699

would have been available to the model be-700

fore it decided to search. This is achieved by701

taking the complete output generated by the702

agent from the beginning of the interaction up 703

to and including the content of the think field 704

of the current search step. 705

3. Querying with Internal Knowledge for 706

Over-search Analysis: For over-search rate 707

measurement, the extracted partial output is 708

then appended with a specific instructional 709

prompt: "I will use my own knowledge to 710

answer this query and provide my answer 711

to this query enclosed in <query_answer> 712

</query_answer> tags." This combined text 713

serves as a new input to the original RL-tuned 714

model (e.g., Search-R1-β-GRPO and Search- 715

R1-GRPO), which is tasked with generating 716

an answer without performing any new search. 717

The over-search rate is then measured by com- 718

puting the percentage of steps that provide 719

equivalent answer (determined by QwQ-32B 720

in our analysis) for both with and without 721

searching, among all "search steps". 722

4. Generation of Reference Answer for Under- 723

search Analysis: For each identified non- 724

search step, the original query or sub-query 725

that the agent was attempting to answer at that 726

point is presented to a more powerful, state- 727

of-the-art language model (e.g., ChatGPT-4o 728

(OpenAI et al., 2024)) with recent knowledge 729

cutoff date. This model generates a "refer- 730

ence answer," which is assumed to be of high 731

quality. The reference answer obtained is com- 732

pared with the actual answer generated by the 733

agent for that non-search step. The under- 734

search rate is calculated as the proportion of 735

non-search steps where the agent’s answer 736

does not match (determined by QwQ-32B in 737

our analysis) the reference answer, quantify- 738

ing how often the agent fails to search when 739

doing so would have likely led to a more ac- 740

curate or complete answer. 741

A.3 Search Frequency vs. Optimal Hops 742

One indicator of potential over-search is when the 743

number of search queries generated by an agent 744

exceeds the optimal number of reasoning hops re- 745

quired to answer a question. A significantly higher 746

search count often points to redundant information 747

gathering. For this experiment, we only use the 748

test set from Bamboogle (Press et al., 2023) and 749

MuSiQue (Trivedi et al., 2022) as they are the only 750

two datasets providing pre-defined number of hops 751

for each test sample. 752
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Model Dataset Search vs. Hops Correct (%) Incorrect (%) Sum (%)

Less 2.8 19 21.8
R1-Searcher Musique Match 21.8 45.8 67.6

More 1.8 8.8 10.6

Less 0 0 0
R1-Searcher Bamboogle Match 40.8 52.8 93.6

More 3.2 3.2 6.4

Less 1.8 7 8.8
Search-R1 Musique Match 12.4 27.6 40

More 8.8 42.4 51.2

Less 0.8 1.6 2.4
Search-R1 Bamboogle Match 28.8 28 56.8

More 12 28.8 40.8

Table 4: Comparison of the number of searches gener-
ated vs. annotated hops on Bamboogle and Musique
datasets. "More" indicates potential over-search as
number of searchers exceeds pre-defined optimal hops.
"Less" may indicate a potential under-search.

R1-Searcher exhibits a tendency to perform753

more searches than hops in 10.6% of Musique754

cases and 6.4% of Bamboogle cases. Search-R1755

shows a more pronounced tendency, with 51.2%756

(Musique) and 40.8% (Bamboogle) of cases issu-757

ing more searches than annotated hops. This result758

suggests that models trained with different methods759

do not inherently solve over-search and might even760

exacerbate it under certain configurations if not761

properly guided. While "Less" searches than hops762

might indicate efficient reasoning or under-search,763

the "More" category strongly suggests instances of764

over-searching.765

A.4 Instruction766

Answer the given question. You must con-
duct reasoning inside <think> and </think>
first every time you get new information.
After reasoning, if you find you lack some
knowledge, you can call a search engine by
<search> query </search>, and it will return
the top searched results between <informa-
tion> and </information>. You can search
as many times as you want. If you find no
further external knowledge needed, you can
directly provide the answer inside <answer>
and </answer> without detailed illustrations.
For example, <answer> Beijing </answer>.
Question: question.

767

A.5 Training Configuration & Rewards768

We train Search-R1-GPRO and Search-R1-β-769

GPRO for 200 steps, with a learning rate of 1e-6770

and batch size of 512. For a question, we produce 5771

generations with temperature of 1 to form a GPRO772

group. For the search engine, for fair compari-773
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Figure 3: Training Rewards for Search-R1-GRPO and
Search-R1-β-GRPO.

son, we also use 2018 Wikipedia dump (Karpukhin 774

et al., 2020) as the knowledge source and E5 (Wang 775

et al., 2022) as the retriever as Search-R1 and for 776

each search query, top-3 documents are returned. 777

Our training are conducted on two A100 GPUs. 778
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