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ABSTRACT

One of the main organizational principles of artificial and biological intelligence
systems is their reliance on signed inputs: positive and negative weights in artifi-
cial networks, and excitatory and inhibitory synapses in the brain. However, little
is known about the role of inhibitory activity in high-level visual cortex such as
inferotemporal cortex, or how artificial neural networks (ANNs) trained for ob-
ject recognition segregate their learned representations into positive and negative
weights. Here, we dissected high-level visual mechanisms in ANNs trained with
ImageNet. We investigated how learned representations of ANN classification
units depended on their positive or negative inputs using ablation experiments and
feature visualization. We found that unit representations changed more when ab-
lating positive- vs. negative inputs. Object-related features were abolished when
ablating positive inputs, while still preserving background textures. This effect
was more pronounced in adversarially trained robust networks. This segregation
persisted in networks trained with unsupervised learning, but was not present in
a ResNet18 trained with Tanh instead of ReLU. We found a consistent functional
segregation when we trained models to replicate the activity of neurons in monkey
visual cortex, across the ventral stream (V1, V4, and IT). Feature visualization of
the neuron models produced images containing local features preferred by actual
neurons. Analogous to units trained for classification, the learned representations
of units trained to simulate neurons changed more upon ablating positive than
negative inputs. We conclude that ANNs for classification segregate object or
foreground information into the positive weights, with background or contextual
information into the negative weights, in their last layer before softmax. These re-
sults hint at the relevance of signal rectification and inhibition into shaping feature
selectivity in the primate ventral stream, a hypothesis we are testing in vivo.

1 INTRODUCTION

Artificial and biological intelligence systems rely on units that influence each other via signed mech-
anisms: hidden units interact via positive and negative weights in artificial networks, and neurons
interact via excitatory and inhibitory synapses in the brain. Cortical neurons divide into types defined
by their genetic, anatomic and functional properties (Zeng, 2022). Excitatory neurons are thought
to compute the main features, and inhibitory neurons are thought to provide contextual information
to excitatory neurons, gate and route the information in cortical circuits. Object classification in
humans relies on the occipitotemporal visual system, the ”ventral stream”. Neurons in the ventral
stream are selective to more complex visual features along the hierarchy, similar to how features
increase in complexity along the depth of convolutional neural networks (CNNs) trained for object
classification. In the early visual system, including the retina, lateral geniculate nucleus, and primary
visual cortex (V1), inhibitory neurons provide lateral inhibition, which defines the center-surround
receptive field organization. Lateral inhibition spatially sharpens receptive fields and enhances fea-
ture selectivity by suppressing redundant information in the surround of the excitatory receptive
field center. This is clear when the excitatory receptive field features are spots or sine-wave gratings.
However, the role of inhibition in the highest levels of the hierarchy in the primate ventral stream
remains unkown, particularly in V4, posterior, central, and anterior inferotemporal cortex (pIT, cIT,
aIT).
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ANNs compute with positive and negative weights, analogous to excitation and inhibition in the
brain. However, it is not known how visual information is parsed across positive and negative
weights. Particularly, for object classification networks, it is not clear how the selectivity to different
object categories emerges in their output layers, where each unit corresponds to one object category.
One hypothesis is that information is largely segregated across absolute weight strengths (Li et al.,
2023). Because classification CNNs are good models of the ventral stream, we hypothesize that
CNN units might also segregate different kinds of visual information into their positive and negative
input weights.

To test the hypothesis of functional segregation across positive and negative weights in classification
networks, we performed ablation experiments and feature visualizations of output units of different
ImageNet-trained CNNs. By performing ablations of varying magnitude, we studied how visual
information was organized across and within excitatory and inhibitory weights, and if and how dif-
ferent ranges of weight strengths corresponded to different parts of objects and backgrounds. We
found that both positive and negative ablations resulted in activity changes, but only the ablation
of positive weights significantly changed the preferred images obtained from feature visualizations.
The ablation of negative inputs resulted in images with contextual variations, i.e., changes in colors
of the object in the foreground or in the background. For example, negative input ablation resulted in
images with white backgrounds for a robust ResNet50. Gradual removal of positive inputs produced
gradual deformations of the object, but not in a parts-based fashion. Surprisingly, such representa-
tional changes upon input ablations were more pronounced in robust networks, which are trained to
resist noise perturbations to images (Szegedy et al., 2014; Salman et al., 2020; Elsayed et al., 2018).
Total positive input ablation led to the removal of objects while preserving background features,
this was also quantified by an object detection network, YOLOv7 (Wang et al., 2022). To test if
this functional segregation generalized to other objective functions such as prediction, we used the
same networks as models that predicted the images responses of neurons in the ventral stream. The
models were simply a re-weighting of the same inputs to the final fully-connected layers of Ima-
geNet CNNs obtained via linear regression between the neuron responses and the neural network
penultimate layer activations. Thus, if neurons had the same object bias as CNNs, they will show
a similar functional segregation to CNNs. And if neurons did not have such object bias, but still
showed a functional segregation, it would reveal another form of functional segregation. To identify
their preferred features of the biological neurons that were modeled, we used a (model-free) closed-
loop image synthesis approach that bypassed the CNN-fitting stage (Ponce et al., 2019). Feature
visualization of the neuron-fitted CNN models (neuron-model units) produced images containing
features that were also exciting to the the neuron and qualitatively similar to the biological model-
free features. Neurons responded more to the visualized preferred images of the model than to the
natural images used for model training. Consistent with the classification units, neuron-model units
were also more robust to negative than positive input ablation. Yet, unlike the classification units,
the preferred images of neuron model units did not seem to contain objects. In sum, our work re-
veals that for object classification and neuron model units, respectively, the foregrounds or preferred
visual features are represented in the positive input weights, while the backgrounds or contextual
features are represented in the negative input weights.

2 RELATED WORK

Mechanistic interpretability of computer and biological vision There has been progress in
mechanistic interpretability in ANNs from work using perspectives from circuit dissection, like
those in neuroscience (Olah et al., 2020). This area of explainable artificial intelligence explains
model behavior by leveraging smaller network subgraphs to identify relevant features, how they
arise from input weights, and how they can be used to build new features hierarchically. It has
revealed motifs of positive and negative connections between related features that resemble the or-
ganization of the early visual system. Related work has focused on characterizing the object-shape-
and texture biases in feature visualizations by choosing sparse sets of weights to reconstruct indi-
vidual images (Li et al., 2023). Here we focus on the division between positive and negative inputs
across the whole range of weight strengths, which was not covered in that study.

Feature visualization by closed-loop optimization To understand the information learned by
neural networks, it serves to analyze their learned representations. For vision networks, both bio-
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logical and artificial, the longest-standing approach is to generate images that strongly activate in-
dividual units, either by hand (Hubel & Wiesel, 1959) or more recently, using discriminative and/or
generative networks. In silico, where gradients are available, features can be obtained by performing
gradient-ascent from the target unit to the image pixels (Erhan et al., 2009; Nguyen et al., 2016a;b;
Olah et al., 2017). Because gradients are not available in vivo, gradient-free algorithms have been
developed to optimize images preferred by biological neurons in real-time (Ponce et al., 2019; Xiao
& Kreiman, 2020; Wang & Ponce, 2022). These gradient-free algorithms rely on black-box opti-
mization of an input to a generative adversarial network (GAN). This constraints the image search
space to the natural image priors learned by the GAN, avoiding high-frequency noise which can also
be highly activating to the target unit but does not seem to relate well to natural images (Nguyen
et al., 2016a). Other approaches rely on first training a neural network to predict neuronal responses
to images, and then performing gradient-ascent on the network (Bashivan et al., 2019; Walker et al.,
2019). Those methods have been largely used with gray-scale images. Here, we deal with color
images using the gradient-free approach in both our investigations in CNNs and our experimental
recordings of non-human primates.

Robustness Neural networks are susceptible to adversarial attacks, where noise that is nearly im-
perceptible by humans can be added to natural images, changing output classification (Szegedy et al.,
2014; Salman et al., 2020; Elsayed et al., 2018). A proposed solution to the adversarial attacks is
robust training, which introduces noise (or another attacks) into the training phase of the network
with the aim to build resistance against that particular attack. In theory, robust networks should
function more like the primate brain, which shows limited vulnerability to such attacks. Here, we
study how trained robustness relates to image representations after weight ablations.

3 METHODS

An extended methods section is in the Appendix A.1.

Networks We performed our ablation studies in CNNs pretrained on the ImageNet dataset:
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan & Zisserman, 2015), ResNet50 (He et al.,
2015), and robust ResNet50 (L∞ ∈ {0.5, 1, 2, 4, 8}, Salman et al. (2020)). To reduce comput-
ing time, we used the imagenette dataset (Fas, 2024) and the ImageNet macaque category. For all
networks, we visualized the representations of the units in the fully-connected output layer (pre-
softmax) matching those classes under different ablation conditions.

Ablation We ablated weights that were either (1) only positive or (2) only negative. We used a
cumulative approach: we first sorted the positive (or negative) weights by their (absolute) decreasing
value. Then, we defined a fraction of the total positive or total negative weights to ablate α (ablation

strength), identifying the top k weights such that
∑k

i=1 wi∑
i wi

≤ α, and set them to zero. We covered
the range of ablations from 0 to 1.

Feature visualization For each ablation condition, we performed feature visualization by optimiz-
ing a GAN latent code to create an activity-maximizing image. We used this closed-loop, zeroth-
order-search approach to allow comparison with our neuronal experiments, where gradient ascent
would not be possible. To increase the span of the stimulus space, we used two GANs: AlexNet
fc6 DeePSiM (Dosovitskiy & Brox, 2016) which can render textures and objects, and BigGAN
(Brock et al., 2019) that can render photo-realistic images with objects. For optimization, we used
a variant of covariance matrix adaptation evolutionary strategy or CMAES (Wang & Ponce, 2022;
Loshchilov, 2015). We optimized ten images per GAN, resulting in 20 feature visualizations per
output unit and ablation condition. Diverse visualizations better capture the multifaceted high-level
representations in CNNs (Nguyen et al., 2016b). For our examples, we show the best of the 20 vi-
sualizations, but used all for quantitative analyses. For visualizations of neural networks predicting
biological neuron responses, due to experimental time restrictions, we used five visualizations per
ablation condition, via DeePSim only. Our experiments are performed in a PC with Nvidia 4090
GPU, and each visualization takes about 3 mins.
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Feature analysis We computed image similarity using an ensemble of CNNs, including AlexNet,
ResNet50, and ResNet50 with robustness in L∞ ∈ {0.5, 1, 2, 4, 8}, inspired by (Feather et al., 2023)
And confirmed the results with LPIPS (Zhang et al., 2018) in the appendix. We computed their
activations and defined similarity as the average pairwise cosine similarity between control activity
vs input-ablated activity. We averaged the results over all networks. We computed objectness as the
maximum bounding box score provided by YOLOv7 (Wang et al., 2022).

Visual cortex electrophysiology We collected data from two animals (monkey C and monkey
D), each implanted chronically with multielectrode arrays of 32 or 16 channels (monkey C, N =
96 electrodes, monkey D, 64), in areas V1, V4 and posterior inferotemporal cortex (PIT). Some
electrodes captured the activity of single units, but most showed multi-unit activity (reflecting the
pooled activity of microclusters of neurons). The animals performed a simple fixation task, which
required them to keep their eyes on a 0.25-diameter spot at the center of the screen, within a square
fixation window measuring 0.7–1◦ per side. Images were presented for 100 milliseconds ON, 150-
ms off, 4-5 images per trial, after which the animal received water or juice.

Image dataset We collected a reference image dataset to activate neurons in the monkey along
the hierarchy of V1, V4, and PIT. Because neurons vary in their preferred features, we constructed
a dataset spanning the image space as represented by the neural embedding of ImageNet-trained
AlexNet. The embedding is the output of the last layer before softmax of AlexNet, a vector space
of 1000-dimensions. The images from this dataset also spanned uniformly the 1000-dimensional
output space of a semi-supervised trained network, trained on a billion images, ResNet50SS (Yalniz
et al., 2019). To define this embedding space, we performed PCA on the output activations from
AlexNet to the 50k ImageNet validation images, we kept the top 300 components (accounting for
about 95% of total explained variance). Then we partitioned the space into a defined number of
clusters k, according to the desired dataset size, using batched k-means to reduce computational
burden. After finding the k cluster centers, we could feed arbitrary images to the network, map
them to the PCA space, and then pick the nearest neighbors to the cluster centers from the desired
image space. In addition to the ImageNet validation set, we added other common neuroscience
datasets (Brady et al., 2008; Kar et al., 2019; Allen et al., 2022; Hung et al., 2005) to form our image
space. We selected k = 160 images, as a set that was diverse but small enough to be used in every
experimental session. We called this image dataset diverseSet .

Models fit on neuronal activity We recorded responses of many neurons in the ventral stream to
diverseSet. We performed partial least-squares linear regression (80/20 train/test split) between the
neuron responses to images and the activations of the penultimate layer of AlexNet. We selected
one neuron or microcluster per experimental session, and performed the ablation and feature visu-
alizations in silico. Whenever possible, we also performed the feature visualization of the modeled
neuron in vivo using a gradient-free approach (Ponce et al., 2019), within the same experimental
session. To test whether features learned by the model were relevant to the biological neuron, we
recorded the neuronal responses to the preferred images of the model.

4 RESULTS

4.1 NETWORKS TRAINED ON IMAGENET ALLOCATED OBJECT INFORMATION INTO POSITIVE
WEIGHTS

Hypothesis The visual system often organizes excitation and inhibition into the center and surround
of receptive fields, where the surround is inhibitory and provides contextual information. Thus, we
hypothesized that the output units of neural networks for object recognition and classification would
also segregate object information to the positive weights and background/contextual information to
the negative weights. We tested this hypothesis with ablation experiments and feature visualization
in CNNs pretrained in ImageNet.

While units differ in their input weight distribution across networks, all have a total ratio of positive
and negative weights close to one. Thus, weights are balanced across polarities (Table 2), support-
ing the notion that both weight polarities contain relevant information for object recognition and
classification.
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Figure 1: Mean activation scores of units used in ablation experiments. For all networks, units scores
come from the last fully-connected layer, with 1000 units, before the softmax. The units correspond
to the 10 imagenette categories ([0, 217, 482, 491, 497, 566, 569, 571, 574, 701]) plus the macaque
category (373). Error bars are 95% confidence intervals over units (categories tested), where each
unit response is the mean of its 20 visualizations. Control refers to the feature visualizations in the
intact networks for the same units, we extended it as a horizontal line to ease visual comparisons to
the different ablation strengths.

To test the visual information encoded into the positive and negative weights, we performed feature
visualization of the units under different ablation strengths of only positive or only negative weights.
Ablation of positive input weights decreased the maximum achievable activation of the feature vi-
sualization, while ablation of negative input weights slightly increased it (Fig. 1). This indicated
a functional difference in the contributions of positive and negative input weights to the learned
features.

Figure 2: Preferred feature changes for different ablation strengths of input weights to the macaque
373 output unit of AlexNet (last fc layer of 1000 units before softmax). Images are the most acti-
vating images out of the 20 visualizations per ablation strength. Ablation strengths are below each
image, and activation scores are above.

To identify the functional contributions to the learned representations, we examined the images (see
macaque unit example Fig. 2). Visual inspection revealed images changed more with ablation of
positive vs negative inputs (Fig. 3). We quantified the changes in representation elicited by ablations
as the mean pairwise cosine similarity between images from intact units and images from input-
weight-ablated units. Indeed, ablating positive input weights produced representations that differed
more from the original representations, while ablating negative input weights resulted in similar
representations (Fig. 4). We further verified the changes induced by ablations on the representations
of units corresponding to ImageNet classes by doing experiments using a 10x larger dataset made
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Figure 3: Changes in preferred features to different ablations of example AlexNet output units. Units
from the last fully-connected layer of AlexNet, before softmax: 0 tench, 574 golf ball, and 482 cas-
sette player. Each image is the most activating image out of 20 feature visualizations, above image
is (ablation strength, activation score) for strengths 0, 0.5 and 1. Top row shows positive ablations,
bottom row shows negative ablations. Notice the large image changes for positive ablations.

Figure 4: Representational similarity of intact vs input-ablated units across recognition networks
tested, measured by the pairwise cosine similarity of control vs ablation images over an ensemble
of networks. Error bars are 95% confidence intervals over units, each unit is the mean of its 20
visualizations. The units correspond to the 10 imagenette categories ([0, 217, 482, 491, 497, 566,
569, 571, 574, 701]) plus the macaque category (373).

out of 100 ImageNet classes Fig. 14, also reproduced using a different representational similarity
metric, LPIPS (Zhang et al., 2018) Fig. 15. Thus, ablation of positive but not negative weights
significantly changes the output representations of ImageNet-trained CNNs.

Figure 5: Objectness scores across units per
ablation condition. As in previous figures, we
tested 11 units from the 1000-unit
fully-connected output layer (pre-softmax) of:
AlexNet, VGG16, ResNet50, and robust
ResNet50 (L∞ ∈ {0.5, 1, 2, 4, 8}). For each
network, we averaged over the objectness scores
of 20 visualizations per unit and all units. The
plot shows the mean over previously described
network averages. Error bars are 95% confidence
interval over network averages.

Because we observed that complete ablation of positive weights often led to representations lacking
the object related to the category, we hypothesized the positive weights encode the object informa-
tion. To quantify to what extent objects disappear from the preferred images under ablations, we
used an object-detection network, YOLOv7 (Wang et al., 2022). Because the CNN units where
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Figure 6: Robust network ResNet50 L∞ = 8 shows a large change in preferred features upon input
ablation

trained on ImageNet, visualizations of original features of intact units produced images containing
objects, which produce a baseline ”objectness” score. If ablation removes the object from the visu-
alizations, the objectness score should decrease from baseline. Indeed, ablation of positive weights
resulted in a decreased objectness score from baseline (Fig. 5). Therefore, object information is
segregated to the positive weights during network training.

4.2 SEGREGATION DEPENDS ON RELU BUT NOT ON UNSUPERVISED PRETRAINING

To test whether training the networks under supervision for classification is required for the segrega-
tion of object information to the positive weights, we performed ablation experiments in a network
trained without supervision. We used the publicly available siamese network ResNet50SimSiam
(Chen & He, 2020), consisting of a ResNet50 backbone trained without supervision, then its weights
frozen, it was coupled to a fully-connected layer and fine-tuned to solve ImageNet1000. This net-
work also segregated the main features to the positive weights, but the features vanished under
smaller ablation strengths than the CNNs trained on classification (Fig. 20, 19). The representation
of this network also had small changes upon negative weight ablations. Thus, inputs from unsu-
pervised representations also organize themselves such that positive weights convey most of the
relevant features. We hypothesized that ReLU’s rectification, which yields non-negative activations,
causes a split into positive and negative weights. In ReLU networks, the weights define the sign
contributions to the next layer. Maximizing a unit’s activation involves enhancing positive inputs
and reducing negative ones, allowing relevant features to activate positive weights and suppress
negative ones. Conversely, a network using a non-rectified activation function like Tanh can encode
relevant features as positive inputs with positive activations and weights, or negative activations and
weights. To investigate whether functional segregation is influenced by the shape of the activation
function, we trained a ResNet18 model using the Tanh activation function instead of ReLU. Unlike
ReLU, the Tanh function is not rectified; it is anti-symmetric about zero and sigmoid-like, with out-
put values ranging from -1 to 1, centered at an input value of zero. Both ResNet18 networks were
trained using the FFCV library (Leclerc et al., 2023) for 16 epochs on the ImageNet 1000 dataset.
The top-5 classification accuracy was 0.797 for the network with Tanh activations and 0.870 for
the network with ReLU activations. The ResNet18-ReLU network behaved consistently to other
networks, being more susceptible to changes upon ablation of positive weights (Fig. 21, 22). In
contrast, the ResNet18-Tanh network exhibited similar changes in activity and representational sim-
ilarity for both positive and negative ablations, maintaining relevant features despite the elimination
of either input polarity. Thus, rectification in activation functions is a critical factor in segregating
features into positive and negative weights.

4.3 ROBUST NETWORKS ARE LESS ROBUST TO ABLATIONS

Robust networks are better models of some aspects of biological vision. The term robust networks
refers to networks trained to be invariant to small perturbations of its inputs, which can cause normal
networks, but not humans, to misclassify the image. (Szegedy et al., 2014; Madry et al., 2019). Here,
we observed the intact representations of robust networks seemed more object-like, and ablations of
negative input weights resulted in background color changes, usually turning white (Fig. 6). Analyz-
ing the effects of ablation revealed that increasing the level of robustness in training ResNet50, while
increasing their robustness against adversarial attacks, also increased their vulnerability to ablations.
This is seen by the larger change from control versus complete ablation of positive inputs (Fig. 7).
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Figure 7: Representational changes upon input ab-
lation increase with robust training for ResNet50.
Top are the raw cosine similarities to control repre-
sentations. Bottom are the representational changes
relative to control.

Table 1: Spearman correlation of repre-
sentational change upon ablation vs ro-
bustness (L∞ norm)

type Positive Negative
ρ (pvalue) ρ (pvalue)

α

0.1 -0.17 (2e-1) -0.10 (4e-1)
0.2 -0.39 (1e-3) -0.21 (8e-2)
0.3 -0.34 (4e-3) -0.14 (3e-1)
0.4 -0.38 (1e-3) -0.34 (5e-3)
0.5 -0.47 (6e-5) -0.46 (9e-5)
0.6 -0.48 (3e-5) -0.34 (5e-3)
0.7 -0.51 (9e-6) -0.52 (6e-6)
0.8 -0.50 (2e-5) -0.49 (2e-5)
0.9 -0.48 (4e-5) -0.62 (2e-8)
1.0 -0.47 (6e-5) -0.57 (5e-7)

The robust networks also were more susceptible to ablation of negative input weights, which produce
background changes, but to a lesser extent (Table 1). Overall, our results showed that classification
CNNs learn to segregate object information into the positive weights and texture/background infor-
mation into their negative weights, and robust training enhances this segregation.

Figure 8: Neuron model units recover features relevant for the biological neurons. Left: Responses
vs predicted responses of neurons to the training images, and the extrapolated features visualized
from the intact models, which are extrapolations because the training data did not cover those high
response ranges. Permutation t-test of neuron responses shows higher responses to images from
model features than the natural images of the training dataset (diverseSet). Right: three neuron
examples that show the feature visualization of the preferred feature of the neuron masked by the
full-width at half-maximum obtained from perturbations to the image, and to their right the five
feature visualizations of the intact model with the real neuron responses to those images on top.

4.4 BIOLOGICAL MODELS BASED ON IMAGENET NETWORKS SEGREGATE LOCAL FEATURE
INFORMATION INTO POSITIVE WEIGHTS

Because the ventral stream in primates is thought to underlie object recognition, and recognition
networks are used to model the ventral stream, we hypothesized that a similar segregation of positive
and negative inputs may occur in the brain. However, our current experimental tools preclude a
similar ablations as performed here in CNNs.
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Figure 9: Preferred features of neuronal network models of visual neurons in the primate ventral
stream. Pos: are positive ablations, neg are negative ablations, number indicates ablation strength.

To test this hypothesis and also whether the functional segregation in classification units extends to
other tasks, we used the same inputs to classification units in AlexNet to predict responses of bio-
logical neurons in the ventral stream. We recorded responses from V1, V4, and IT cortex neurons to
a set of 160 diverse images, diverseSet, uniformly covering the embedding space of AlexNet. Then,
we used partial least squares to do a linear regression between each neuron responses and the acti-
vations from the penultimate layer of AlexNet (4096 units). While intermediate layers may provide
better fits, we wanted to test if a simple reconfiguration of the same inputs that achieve ImageNet
classification would still segregate information into positive and negative weights. We performed
the ablation experiments on the best neuron models (defined by the test r2 score, overall mean 0.274
with 0.096 std). Model weights had both positive and negative values with a ratio of 1.17 total posi-
tive to total negative weights (Fig. 16). The number of neurons modeled per area (V1, V4, pIT) is (7,
5, 23) for Monkey C and (1, 5, 18) for Monkey D. Thus, our results are largely representative of the
pIT cortex neurons. We presented the images from the feature visualizations of the neuron models
under ablations to the monkey in the same session. Because the image optimization of the model
predicted neuronal responses that were larger than the responses in the training data, the models ef-
fectively performed extrapolation — we found that the optimized images of the models activated the
neurons more than the training set by over one standard deviation (Fig. 8, left). When possible, we
also performed feature visualization in vivo for the modeled neuron. In these cases, we found that
models based on just 160 images were able to capture the preferred visual features of the neuron
(Fig. 8, right). While the neuron features obtained in vivo were spatially localized (procedure in
A.1), the model features obtained in silico were not not necessarily restricted to one location, and
appeared in several locations, also in mirrored or rotated versions. This reflects invariances in the
networks that may not exist in the neurons. Unlike the images from recognition units, images from
the neuron models did not resemble objects (Fig. 8, 9). The images from the neuron models under
positive input ablations elicited a consistent decrease of activity in the biological neurons providing
further support to the models despite the limited training dataset (Fig. 10, left panels). Interestingly,
the images from ablation experiments of single neuron models were also able to elicit changes in the
average response of the neuronal population. Thus, the feature changes elicited by weight ablation
translate to meaningful changes in the images perceived beyond the modeled neurons to across the
ventral stream (Fig. 10, rightmost panel).

Alike the representation changes of the recognition networks, representations of the neuron models
changed most with positive than negative ablations (Fig. 10). Therefore, the segregation of ablation
effects are not restricted to a classification objective, but also to a regression objective, as the neuron
models are just the same input activations that feed into the classification output of ImageNet CNNs
reweighted via linear regression. While our dataset precluded fitting models following Dale’s law,
we found models using only positive weights had lower training and test performance compared to
unconstrained models (Fig. 17). Thus, receiving negative inputs from the artificial network features
improved the response predictions of our biological neurons. We found features that were consis-
tently assigned positive/negative weights in most neurons models (more than 90%). Visualizing
these intermediate layer features from AlexNet fc ReLU layer (4096 units) showed positive features
had smaller scale edges, curvatures and spots, while negative features had more textures and larger
patches (Fig. 18). These features are a hypothesis for excitatory and inhibitory neurons in IT cortex,
which require genetic tools in the primate to be adressed experimentally. This suggests a functional
segregation of contextual information to inhibitory inputs in high-level visual cortex, a hypothesis
testable with new genetic tools in non-human primates.
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Figure 10: Left: predicted and actual neuron responses of model to ablations. Images obtained from
positive ablations in the neuron models elicited a consistent activity drop on the biological neurons
modeled. Right: Representational change of model to ablations measured by our cosine similarity
metric on the neuron model feature visualizations upon ablation; and cortical population response to
the images obtained from feature visualization from ablation of model units, neurons were z-scored
before computing the population average. Plots show averages over 59 models, (35 for monkey C,
and 24 for monkey D), shaded regions are the 95% C.I of the mean. For all plots the positive ablation
condition was statistically different to the control.

5 LIMITATIONS

Our results hold in the last layer units of multiple networks. Due to limited computing time, we did
not test all 1000 categories in as many networks as possible, our largest test consisted of 100 units.
While larger scale simulations will provide exhaustive evidence, we are confident our main claims
will stand. We limited our neuron recordings to a 160 image dataset for regressing neuron responses
via CNNs. While we observed good fits and recovered relevant feature to the neurons, more images
may improve the models, especially when those images are larger-scale versions of our diverseSet.
The neuroscience results would need to follow Dale’s law to be mapped one-to-one to excitatory
and inhibitory neurons, but we make no claim to such strict mapping in this work.

6 DISCUSSION AND CONCLUSION

Our study combined ablations with feature visualization guided by naturalistic image priors to reveal
the functional segregation of class-level features in the output layer of ImageNet trained CNNs:
positive weights contribute object information, while negative weights contribute background or
contextual information. This effect was enhanced in robust networks, it was present in networks
with unsupervised pretraining, but was absent in network trained with Tanh instead of ReLU. Our
results explain how the background contribution to classification observed in (Xiao et al., 2020)
emerges, backgrounds are primarily encoded by the negative inputs.

Importantly for neuroscience, the observed functional segregation in neuron model units in CNNs
hints at a functional segregation in the brain beyond the center-surround classically studied in V1.
And we crafted a diverse dataset for visual neuroscience recordings that is scalable. Neuron re-
sponses to a smaller but diverse set of naturalistic, colored images, with complex foregrounds and
backgrounds, led to models capturing relevant features obtained experimentally from the neuron.
Thus, using both model-based and model-free approaches revealed richer neuronal representations.
Preferred images from neuron models with positive input ablations elicited smaller average pop-
ulation responses of cortical neurons. This suggests that ablation in networks modeling neurons
holds potential as a method to control the population activity in the brain. To relate ablation-induced
changes in the images to the population responses is a future direction. This ablation based on the
natural division of positive and negative weights can be easily extended into arbitrary layers, e.g.,
using gradients to define positive and negative contributions to any arbitrary unit. And our ablation
approach proposes baselines for the functional differences between excitatory and inhibitory neu-
rons in higher cortical visual areas. Understanding the circuit mechanism of biological vision could
aid further understanding and development of computer vision models.
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A APPENDIX

A.1 EXTENDED METHODS

Networks The ablation studies were performed on CNNs pretrained on the ImageNet dataset:
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan & Zisserman, 2015), ResNet50 (He et al.,
2015), and robustly-trained ResNet50 (L∞ ∈ {0.5, 1, 2, 4, 8}, Salman et al. (2020)). All these
networks end on a 1000-unit fully connected layer, each unit corresponding to one of the 1000
ImageNet categories. Neural networks were used in Pytorch.

ImageNet subsampling To reduce computing time, for most of the experiments, we used a subset
of ImageNet, the imagenette dataset (Fas, 2024) and the macaque category, 11 classes in total. These
classes and their corresponding output units in each network trained on the 1000-class ImageNet
dataset are as follows: (0, tench), (207, English Springer), (482, cassette player), (491, chain saw),
(566, church), (569, French horn), (571, garbage truck), (574, gas pump), (701, golf ball), (970,
parachute), and (373, macaque). We visualized the representations of the output layer units of
those classes under different ablation conditions. For Fig. 14, to sample 100 diverse classes out
of the 1000 ImageNet classes, the 50k validation images were first clustered into 100 clusters via
agglomerative clustering of the L2 distance matrix from the 1000-d output features of ResNet50,
which was pre-trained on ImageNet. Then, one new unique class is selected from each cluster.

Ablation We used two ablation conditions: we ablated weights that were (1) only positive or (2)
only negative. We ablated weights cumulatively by first sorting the positive (or negative) weights
by their (absolute) decreasing value. We defined the ablation strength, α, as a fraction of the total
positive or total negative weights to a unit. We identified the top k weights necessary to reach the
silencing strength, i.e.,

∑k
i=1 wi ≤ α, and set them to zero. We covered the range of ablations from

0 to 1. For most experiments with ANNs, we used silencing strengths in 0.1 steps, from 0 (intact) to
1 (complete ablation).

Figure 11: Schematic of feature visualization workflow in ANNs and brains. Optimizer is CMAES,
image generators are DeePSim fc6 or BigGAN.

Feature visualization For each ablation condition, we performed feature visualization by optimiz-
ing a GAN latent code to create an activity-maximizing image Fig. 11. We used this closed-loop,
zeroth-order-search approach to allow comparison with our neuronal experiments, where gradient
ascent would not be possible. To increase the span of the stimulus space, we used two GANs:
AlexNet fc6 DeePSiM (Dosovitskiy & Brox, 2016) and BigGAN (Brock et al., 2019). For optimiza-
tion, we used a variant of covariance matrix adaptation evolutionary strategy or CMAES (Wang &
Ponce, 2022; Loshchilov, 2015). Initial conditions for the CMAES were given as standard deviation
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Figure 12: Illustration of a diverse dataset construction using AlexNet output feature space. The em-
bedding is the output of the last layer before softmax of AlexNet, a vector space of 1000-dimensions.
Left: PCA showing the coverage of the feature space by the diverseSet 160, only for illustration pur-
poses. Right: images from diverseSet 160 used to fit neuron models.

of 3.0 for DeePSim, and 0.2 for BigGAN. Initial images for the algorithm were small norm vectors
for both GANs, close to the origin of the latent spaces. For BigGAN, we generated a fixed noise
vector by scaling a 128-dimensional truncated noise sample (-1.4, 1.4), and concatenated it with a
128-dimensional zero vector of the class embedding, to form the required 256-dimensional input
code. The remaining parameters are determined by the dimensionality of the search space of each
GAN. We optimized ten images per GAN, resulting in 20 feature visualizations per output unit and
ablation condition. Diverse visualizations better capture the multifaceted high-level representations
in CNNs (Nguyen et al., 2016b). For our examples, we show the best of the 20 visualizations, but
used all for quantitative analyses. For visualizations of neural networks predicting biological neuron
responses, due to experimental time restrictions, we used five visualizations per ablation condition,
via DeePSim only. Our experiments are performed in a PC with Nvidia 4090 GPU, and each visu-
alization running 100 iterations takes about 3 mins. For in vivo experiments, we ran from 20 to 60
iterations of the AlexNet fc6 DeePSiM with the CMAES algorithm implemented in Matlab, linked
to our real-time spike-sorting data acquisition. The responses fed to the CMAES algorithm were the
average firing rate on the window 70-170 ms from image onset.

Feature analysis We computed image similarity using an ensemble of CNNs, including AlexNet,
ResNet50, and ResNet50 with robustness in L∞ ∈ {0.5, 1, 2, 4, 8}, inspired by (Feather et al.,
2023) And confirmed the results with LPIPS (Zhang et al., 2018) in the appendix. We computed
their activations and defined similarity as the average pairwise cosine similarity (LPIPS) between
control activity vs input-ablated activity. We averaged the results of the CNNs ensemble, resulting in
one quantity per ablation condition. We computed objectness as the maximum bounding box score
provided by YOLOv7 (Wang et al., 2022), this was averaged over visualizations per unit, units per
network, and then across networks.

Visual cortex electrophysiology We collected data from two animals (monkey C and monkey D),
each implanted chronically with floating multielectrode arrays (Microprobes for Life Sciences, MD)
of 32 or 16 channels (monkey C, N = 96 electrodes, monkey D, 64), in areas V1, V4 and posterior
inferotemporal cortex (PIT). All institutional procedures were followed. Channels were distributed
as (V1, V4, PIT): monkey C (32, 32, 32), monkey D (16, 16, 32). Some electrodes captured the
activity of single units, but most showed multi-unit activity (reflecting the pooled activity of micro-
clusters of neurons). The animals performed a simple fixation task, which required them to keep
their eyes on a 0.25-deg diameter spot at the center of the screen, within a square fixation window
measuring 0.5–1◦ per side. Images were presented for 100 milliseconds ON, 150-ms off, 4-5 images
per trial, after which the animal received water or juice. Images were presented to monkey C were
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2 deg in size, and 4-8 deg for monkey D to match the receptive field centers of most channels in
all cortical areas (V1, V4 and PIT). Image presentation and data acquisition (electrophysiology, eye
tracking) were integrated by the MonkeyLogic2 software (Hwang et al., 2019) and OmniPlex Neu-
ral Recording Data Acquisition Systems (Plexon Inc.), interfaced through custom Matlab code. We
performed online spike sorting using the PlexControl client based on waveforms. We used ViewPixx
EEG monitors (ViewPixx Technologies), at a resolution of 1920x1080 pixels with 120 Hz refresh
rate. Eye tracking used ISCAN cameras (ISCAN Inc.). And reward was delivered using the DARIS
Control Module System (Crist Instruments).

Feature localization in vivo We conducted a perturbation-based localization to identify relevant
image regions from a feature visualization performed in vivo, where gradient information from the
animal brain is unavailable. We perturbed a circular region with a 50-pixel diameter within the
256-pixel image by randomly shuffling the pixels inside this circle, effectively disrupting the local
image structure while maintaining local contrast. We selected 30 such regions for perturbation at
random, excluding those that extended beyond the image boundaries. The modified images were
then presented to the monkey. We hypothesized that perturbing regions crucial for driving the neu-
ron response would lead to a decreased firing rate. To assess local image importance, we calculated
the normalized response change: the difference between the firing rate response to the intact image
and the firing rate response to the perturbed image, divided by the firing rate response to the intact
image. A normalized response change of 0.5 indicates the neuron response decreased by half due to
perturbation. To generate the localized response mask, we averaged the circular masks correspond-
ing to each perturbed region, weighted by their response change. This response mask was further
smoothed using a Gaussian kernel with a 30-pixel standard deviation. We defined relevant regions
as those causing a normalized response change of 0.5 or greater. Finally, we applied this mask to
the original feature visualization image to highlight the local features.

Image dataset We collected a reference image dataset to activate neurons in the monkey along
the hierarchy of V1, V4, and PIT. Because neurons vary in their preferred features, we constructed
a dataset spanning the image space as represented by the neural embedding of ImageNet-trained
AlexNet. The embedding is the output of the last layer before softmax of AlexNet, a vector space
of 1000-dimensions. The images from this dataset also spanned uniformly the 1000-dimensional
output space of a semi-supervised trained network, trained on a billion images, ResNet50SS (Yalniz
et al., 2019). To define this embedding space, we performed PCA on the output activations from
AlexNet to the 50k ImageNet validation images, we kept the top 300 components (accounting for
about 95% of total explained variance). Then we partitioned the space into a defined number of
clusters k, according to the desired dataset size, using batched k-means to reduce computational
burden. After finding the k cluster centers, we could feed arbitrary images to the network, map
them to the PCA space, and then pick the nearest neighbors to the cluster centers from the desired
image space. In addition to the ImageNet validation set, we added other common neuroscience
datasets (Brady et al., 2008; Kar et al., 2019; Allen et al., 2022; Hung et al., 2005) to form our image
space. We selected k = 160 images, as a set that was diverse but small enough to be used in every
experimental session. We called this image dataset diverseSet .

Models fit on neuronal activity We recorded responses of neurons in the ventral stream to a 160
image dataset, our diverseSet Fig. 13. We relied on a small dataset to fit neuron responses and
perform feature visualizations within the same experimental session. We performed partial least-
squares linear (PLS) regression (80/20 train/test split) between the neuron responses to images and
the activations of the penultimate layer of AlexNet. We used one component for the PLS regression.
We selected one neuron or microcluster per experimental session, fitted a model, and performed the
ablation and feature visualizations in silico for that model. We selected the best fitted neuron per
session, based on the r2 on the 20 % held out test set, usually in the range of 0.15 to 0.5. When
time allowed, we also performed the feature visualization of the modeled neuron in vivo using a
gradient-free approach (Ponce et al., 2019), within the same experimental session. To test whether
features learned by the model were relevant to the biological neuron, we recorded the neuronal
responses to the preferred images of the model. We then analyzed the representational similarity
of the model features under ablations using ANNs. And analyzed the responses of the biological
neuron populations from V1, V4 and IT.
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Figure 13: Schematic of model fitting using the dataset diverseSet. 160 images were split into
train/test datasets (80/20).

A.2 SUPPORTING RESULTS

Table 2: Ratio of positive to negative weights. We divided the sum of positive weights by the sum
of the absolute values of the negative weights.

Model Ratio (mean ± std)

AlexNet 1.03 ± 0.08
VGG16 1.01 ± 0.09
ResNet50 1.00 ± 0.06
ResNet50 (L∞ = 0.5) 1.00 ± 0.05
ResNet50 (L∞ = 1) 0.99 ± 0.05
ResNet50 (L∞ = 2) 1.00 ± 0.04
ResNet50 (L∞ = 4) 1.00 ± 0.05
ResNet50 (L∞ = 8) 1.01 ± 0.05
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Figure 14: Functional segregation holds in a 10x larger dataset. 100 classes out of the 1000 Im-
ageNet categories were selected by clustering the 50k validation images embedded in the 1000-d
output space of ResNet50 picking one class per cluster. Thus, we now have 10x more data points
that should span the representational space of the output layer we study. Consistent with the smaller
dataset, the main object features degrade into more uniform background images upon positive abla-
tion. Here we show examples from 10 of the 100 classes.
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Figure 15: Functional segregation holds in a 10x larger dataset with LPIPS (Zhang et al., 2018) as
representational similarity measure. We measured the representational similarity of the images as 1
- LPIPS among control images and between control images and ablation images. We average results
per class, and show the mean and 95% C.I. across the 100 classes. The representational similarity
degrades upon positive input ablations, confirming results obtained from the imagenette dataset.

Figure 16: Left: Distribution of the model weights from neuronal fits with AlexNet penultimate layer
features. Each model maps 4096 parameters from penultimate layer of AlexNet to the response of
one biological neuron. Models use positive and negative weights. Model weights were normalized
by their standard deviation to plot them on the same scale, for sake of visualization. Right: Ratio
of total positive to total negative weights, per neuron model. Models use slightly larger positive
weights with a mean of 1.17 and std of 0.17. Model numbers: 35 for monkey C, and 24 for monkey
D.

Figure 17: Using negative weights improves neuron models obtained via Lasso regression. Lasso
regression models were fit with and without the positive constraint, over a 5-fold cross validation.
Models were a linear regression from the 4096 features to a single neuron, over all neurons modeled
from both animals. Left: performance on the training set measured by r2 score. Middle: r2 perfor-
mance on the test set. Right: Model improvement by using positive and negative weights vs using
only positive weights given by the difference in r2 on the test set. Unconstrained models perform
better than the positively constrained model, across the range of L1 penalties (sparseness penalty)
tested, suggesting negative inputs from artificial network features are useful to predict biological
neuron responses.
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Figure 18: Features that had positive or negative weights in most of the neurons models ( 91%
of the 56 neurons). These features are the closest approximation to features respecting Dale’s law
from our models. Left: best of 20 feature visualizations for the features with positive weights across
neurons, feature index is on top of the image. Features are from the penultimate fc layer post ReLU,
containing 4096 units. Right: best feature visualization from the negatively weighted features across
neurons. Positively weighted features contain more local features like curved edges, while negative
features contain textures or larger image patches. Sign consistency tested for statistical significance
against the Bernoulli distribution of 0.5 probability with Bonferroni correction for testing 4096
features.

Figure 19: Effect of unsupervised pretraining on ablation studies using ResNet50-SimSiam.
ResNet50SimSiam (Chen & He, 2020) trained without supervision, with frozen weights, was cou-
pled to a fully connected layer, only this layer was fine-tuned to classify ImageNet1000. Left:
Mean activation scores of units used in ablation experiments. Units scores come from the last fully-
connected layer, with 1000 units, before the softmax. Right: Representational similarity of intact vs
input-ablated units measured by the pairwise cosine similarity of control vs ablation images over an
ensemble of networks. The units correspond to the 10 imagenette categories ([0, 217, 482, 491, 497,
566, 569, 571, 574, 701]) plus the macaque category (373). Error bars are 95% confidence intervals
over units (categories tested), each unit response is the mean of its 10 visualizations. Control refers
to the feature visualizations in the intact networks for the same units, we extended it as a horizontal
line to ease visual comparisons to the different ablation strengths.
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Figure 20: Feature visualizations of ablation experiments in a network pretrained with unsupervised
learning. ResNet50SimSiam (Chen & He, 2020). The unsupervised network with frozen weights
was coupled to a fully connected layer, only this layer was fine-tuned to classify ImageNet1000.
Network units changed starting with small positive weight ablations, see unit 574 golf ball. Smaller
changes are visible upon negative weight ablations, however object relevant features remain. Overall
behavior is consistent with CNNs trained directly on ImageNet1000 classification.

Figure 21: Effect of nonlinearity of the activation function in ablation studies, ReLU vs Tanh in
ResNet18. Left: Mean activation scores of units used in ablation experiments. For all networks,
units scores come from the last fully-connected layer, with 1000 units, before the softmax. Right:
Representational similarity of intact vs input-ablated units across recognition networks tested, mea-
sured by the pairwise cosine similarity of control vs ablation images over an ensemble of networks.
The units correspond to the 10 imagenette categories ([0, 217, 482, 491, 497, 566, 569, 571, 574,
701]) plus the macaque category (373). Error bars are 95% confidence intervals over units (cate-
gories tested), each unit response is the mean of its 20 visualizations. Control refers to the feature
visualizations in the intact networks for the same units, we extended it as a horizontal line to ease
visual comparisons to the different ablation strengths.
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Figure 22: Feature visualizations of units in the last fc layer of ResNet18 with ReLU (left) and
ResNet18 with Tanh (right) upon input ablations. ResNet18 with Tahn conserves relevant features
of the corresponding categories even when all positive or all negative weights have been ablated.
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