
Diffusion Generative Inverse Design

Marin Vlastelica 1 2 Tatiana López-Guevara 2 Kelsey Allen 2 Peter Battaglia 2 Arnaud Doucet 2

Kimberly Stachenfeld 2 3

Abstract
Inverse design refers to the problem of optimiz-
ing the input of an objective function in order to
enact a target outcome. For many real-world en-
gineering problems, the objective function takes
the form of a simulator that predicts how the sys-
tem state will evolve over time, and the design
challenge is to optimize the initial conditions that
lead to a target outcome. Recent developments
in learned simulation have shown that graph neu-
ral networks (GNNs) can be used for accurate,
efficient, differentiable estimation of simulator
dynamics, and support high-quality design op-
timization with gradient- or sampling-based op-
timization procedures. However, optimizing de-
signs from scratch requires many expensive model
queries, and these procedures exhibit basic fail-
ures on either non-convex or high-dimensional
problems. In this work, we show how denoising
diffusion models (DDMs) can be used to solve
inverse design problems efficiently and propose
a particle sampling algorithm for further improv-
ing their efficiency. We perform experiments on
a number of fluid dynamics design challenges,
and find that our approach substantially reduces
the number of calls to the simulator compared to
standard techniques.

1. Introduction
Substantial improvements to our way of life hinge on devis-
ing solutions to engineering challenges, an area in which
Machine Learning (ML) advances is poised to provide posi-
tive real-world impact. Many such problems can be formu-
lated as designing an object that gives rise to some desirable
physical dynamics (e.g. designing an aerodynamic car or

1Max Planck Institute for Intelligent Systems, Tübingen,
Germany 2Google DeepMind, London, UK 3Columbia Uni-
versity, New York, NY. Correspondence to: Marin Vlastel-
ica <marin.vlastelica@tue.mpg.de>, Kimberly Stachenfeld
<stachenfeld@deepmind.com>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling

a watertight vessel). Here we are using ML to accelerate
this design process by learning both a forward model of the
dynamics and a distribution over the design space.

Prior approaches to ML-accelerated design have used neural
networks as a differentiable forward model for optimization
(Challapalli et al., 2021; Christensen et al., 2020; Gómez-
Bombarelli et al., 2018). We build on work in which the
forward model takes the specific form of a GNN trained
to simulate fluid dynamics (Allen et al., 2022). Since the
learned model is differentiable, design optimization can
be accomplished with gradient-based approaches (although
these struggle with zero or noisy gradients and local minima)
or sampling-based approaches (although these fare poorly
in high-dimensional design spaces). Both often require
multiple expensive calls to the forward model. However,
generative models can be used to propose plausible designs,
thereby reducing the number of required calls (Forte et al.,
2022; Zheng et al., 2020; Kumar et al., 2020).

In this work, we use DDMs to optimize designs by sampling
from a target distribution informed by a learned data-driven
prior. DDMs have achieved extraordinary results in im-
age generation (Song et al., 2020a;b; Karras et al., 2022;
Ho et al., 2020), and has since been used to learn efficient
planners in sequential decision making and reinforcement
learning (Janner et al., 2022; Ajay et al., 2022), sampling
on manifolds (De Bortoli et al., 2022) or constrained opti-
mization formulations (Graikos et al., 2022). Our primary
contribution is to consider DDMs in the setting of physi-
cal problem solving. We find that such models combined
with continuous sampling procedures enable to solve de-
sign problems orders of magnitude faster than off-the-shelf
optimizers such as CEM and Adam. This can be further
improved by utilizing a particle sampling scheme to update
the base distribution of the diffusion model which by cheap
evaluations (few ODE steps) with a learned model leads
to better designs in comparison to vanilla sampling proce-
dures. We validate our findings on multiple experiments in
a particle fluid design environment.

2. Method
Given some task specification c, we have a target distribu-
tion of designs π(x) which we want to optimize w.r.t. x. To

Diffusion Generative Inverse Design

Figure 1. (a) Given initial conditions governed by θIC, energy function parameters θE , and learned GNN dynamics model fM , design
samples x from the diffusion model are assigned a cost E(x). (b) Schematic of the DDM training (c) Gradients ∇E and conditioning set
(θE and E) inform energy and conditional guidance, resp.

simplify notation, we do not emphasize the dependence of
π on c. This distribution is a difficult object to handle, since
a highly non-convex cost landscape might hinder efficient
optimization. We can capture prior knowledge over ‘sen-
sible’ designs in form of a prior distribution p(x) learned
from existing data. Given a prior, we may sample from the
distribution

π̃(x) ∝ p(x)π(x), (1)

which in this work is achieved by using a diffusion method
with guided sampling. The designs will subsequently be
evaluated by a learned forward model comprised of a pre-
trained GNN simulator and a reward function (Allen et al.,
2022; Pfaff et al., 2021; Sanchez-Gonzalez et al., 2020) (see
Appendix A).

Let E : X 7→ R be the cost (or “energy”) of a design x ∈ X
for a specific task c under the learned simulator (dependence
of E on c is omitted for simplicity). The target distribution
of designs π(x) is defined by the Boltzmann distribution

π(x) :=
1

Z
exp

(
−E(x)

τ

)
, (2)

where Z denotes the unknown normalizing constant and τ a
temperature parameter. As τ → 0, this distribution concen-
trates on its modes, that is on the set of the optimal designs
for the cost Ec(x). Direct methods to sample from π(x)
rely on expensive Markov chain Monte Carlo techniques or
variational methods minimizing a reverse KL criterion.

We will rely on a data-driven prior learned by the diffu-
sion model from previous optimization attempts. We col-
lect optimization trajectories of designs for different task
parametrizations c using Adam (Kingma & Ba, 2015) or
CEM (Rubinstein, 1999) to optimize x. Multiple entire

optimization trajectories of designs are included in the train-
ing set for the generative model, providing a mix of design
quality. These optimization trajectories are initialized to
flat tool(s) below the fluid (see Figure 5), which can be
more easily shaped into successful tools than a randomly
initialized one. Later, when we compare the performance
of the DDM to Adam and CEM, we will be using randomly
initialized tools for Adam and CEM, which is substantially
more challenging.

2.1. Diffusion generative models

We use DDMs to fit p(x) (Ho et al., 2020; Song et al.,
2020b). The core idea is to initialize using training data
x0 ∼ p, captured by a diffusion process (xt)t∈[0,1] defined
by

dxt = −βtxtdt+
√
2βtdwt, (3)

where (wt)t∈[0,1] denotes the Wiener process. We denote by
pt(x) the distribution of xt under (3). For βt large enough,
p1(x) ≈ N (x; 0, I). The time-reversal of (3) satisfies

dxt = −βt[xt + 2∇x log pt(xt)]dt+
√

2βtdw
−
t , (4)

where (w−
t)t∈[0,1] is a Wiener process when time flows

backwards from t = 1 to t = 0, and dt is an in-
finitesimal negative timestep. By initializing (4) using
x1 ∼ p1, we obtain x0 ∼ p. In practice, the gener-
ative model is obtained by sampling an approximation
of (4), replacing p1(x) by N (x; 0, I) and the intractable
score ∇x log pt(x) by sθ(x, t). The score estimate sθ(x, t)
is learned by denoising score matching, i.e. we use the
fact that ∇x log pt(x) =

∫
∇x log p(xt|x0)p(x0|xt)dx0

where p(xt|x0) = N (xt;
√
αtx0,

√
1− αtI) is the tran-

sition density of (3), αt being a function of (βs)s∈[0,t]

(Song et al., 2020b). It follows straightforwardly that the

Diffusion Generative Inverse Design

score satisfies ∇x log pt(x) = −E[ϵ|xt = x]/
√
1− αt for

xt =
√
αtx0 +

√
1− αtϵ. We then learn the score by

minimizing

L(θ) = Ex0∼p,t∼U(0,1),ϵ∼N (0,I)∥ϵθ(xt, t)− ϵ∥2, (5)

where ϵθ(x, t) is a denoiser estimating E[ϵ|xt = x]. The
score function sθ(x, t) ≈ ∇x log pt(x) is obtained using

sθ(x, t) = − ϵθ(x, t)√
1− αt

. (6)

Going forward, ∇ refers to ∇x unless otherwise stated. We
can also sample from p(x) using an ordinary differential
equation (ODE) developed in (Song et al., 2020b).

Let us define xt = xt/
√
αt and σt =

√
1− αt/

√
αt.

Then by initializing x1 ∼ N (0, I), equivalently x1 ∼
N (0, α−1

1 I) and solving backward in time

dxt = ϵ
(t)
θ

(
xt√
σ2
t + 1

)
dσt, (7)

then x0 =
√
αt x0 is an approximate sample from p(x).

2.2. Approximately sampling from target π̃(x)

We want to sample π̃(x) defined in (1) where p(x) can be
sampled from using the diffusion model. We describe two
possible sampling procedures with different advantages for
downstream optimization.

Energy guidance. Observe that

π̃t(xt) =

∫
π̃(x0)p(xt|x0)dx0,

and the gradient satisfies

∇ log π̃t(xt) = ∇ log pt(xt) +∇ log πt(xt),

where πt(xt) =
∫
π(x0)p(x0|xt)dx0. We approximate

this term by making the approximation

x̂(xt, t) =

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
︸ ︷︷ ︸

“ estimated x0”

,

πt(xt) ≈ π(x̂t(xt, t)).

(8)

Now, by (6), and the identity ∇ log π(x) = −τ−1∇E(x),
we may change the reverse sampling procedure by a modi-
fied denoising vector

ϵ̃θ(xt, t) = ϵθ(xt, t) + λτ−1
√
1− αt∇E(x̂(xt, t)), (9)

with λ being an hyperparameter. We defer the results on
energy guidance Appendix E.

Algorithm 1 Particle optimization of base distribution.
input energy function E, diffusion generative model pθ , temperature τ , noise
scale σ, rounds K.

2: S01 = {xi
1}

N
i=1 for xi

1
i.i.d.∼ N (0, I)

S0 = ∅, S1 = ∅ # t = 0 and t = 1 sample sets
4: for k ∈ {0 . . . K} do

Compute Sk0 = {xi
0}

N
i=1 from Sk1 by solving reverse ODE in Eq. (7).

6: S0 = S0 ∪ Sk0 , S1 = S1 ∪ Sk1
Compute normalized importance weights

W =
{
w | w ∝ exp

(
− E(x0)

τ

)
, x0 ∈ S0

}
8: Set Sk+1

1 = {xi
1}

|S1|
i=1 for xi

1
i.i.d.∼

∑|S1|
i=1 wiδ

xi
1
(x)

Set Sk+1
1 = {x̃i

1}
|S1|
i=1 for x̃i

1 ∼ N (x;xi
1, σ

2I)

10: end for

return argminx∈S0 E(x)

Conditional guidance. Similarly to classifier-free guid-
ance (Ho & Salimans, 2022), we explore conditioning on
cost (energy) e and task c. A modified denoising vector in
the reverse process follows as a combination between the
denoising vector of a conditional denoiser ϵϕ and uncondi-
tional denoiser ϵθ

ϵ̃(xt, c, e, t) = (1 + λ)ϵϕ(xt, c, e, t)− λϵθ(xt, t), (10)

where ϵϕ is learned by conditioning on c and cost e from op-
timization trajectories. In our experiments we shall choose
c to contain the design cost percentile and target goal desti-
nation θE for fluid particles (Figure 1c).

2.3. A modified base distribution through particle
sampling

Our generating process initializes samples at time t = 1
from N (x; 0, I) ≈ p1(x). The reverse process with modifi-
cations from subsection 2.2 provides approximate samples
from π̃(x) at t = 0. However, as we are approximately
solving the ODE of an approximate denoising model with
an approximate cost function, this affects the quality of sam-
ples with respect to E1. Moreover, “bad” samples from
N (x; 0, I) are hard to correct by guided sampling.

To mitigate this, instead of using samples from N (x; 0, I) to
start the reverse process of π̃(x), we use a multi-step particle
sampling scheme which evaluates the samples {xi

1}Ni=1 by a
rough estimate of the corresponding {xi

0}Ni=1 derived from a
few-step reverse process and evaluation with E. The particle
procedure relies on re-sampling from a weighted particle
approximation of π(x) and then perturbing the resampled
particles, see 1. This heuristic does not provide samples
from π̃ but we found that it provides samples of lower energy
samples across tasks. However, with N samples in each
of the k rounds, it still requires O(Nk) evaluations of E,
which may be prohibitively expensive depending on the
choice of E.

1Ideally at test time we would evaluate the samples with the
ground-truth dynamics model, but we have used the approximate
GNN model due to time constraints on the project.

Diffusion Generative Inverse Design

0 200 400 600 800
queries

2000

1500

1000

500

Co
st

without shift

0 200 400 600 800
queries

Co
st

with shift

Diff
CEM
Adam

Figure 2. Performance of the different optimization methods in the
angle optimization task. We observe that the diffusion generative
model requires a small number of model queries, whereas Adam
in comparison requires many expensive model queries.

3. Experiments
We evaluate our approach on a 2D fluid particle environment
with multiple tasks of varying complexity, which all involve
shaping the tool (Figure 1a, black lines) such that the fluid
particles end up in a region of the scene that minimizes the
cost E (Allen et al., 2022). As baselines, we use the Adam
optimizer combined with a learned model of the particles
and the CEM optimizer which also optimizes with a learned
model. For all experiments we have used a simple MLP as
the denoising model and GNN particle simulation model for
evaluation of the samples.

The first task is a simple “Contain” task with a single source
of water particles, a goal position above the floor speci-
fied by c = (x, y), and an articulated tool with 16 joints
whose angles are optimized to contain the fluid near the
goal (see Allen et al. (2022)). In Figure 2a, we see that
both the Adam optimizer and CEM are able to optimize the
task. However with training a prior distribution on optimiza-
tion trajectories and guided sampling we are able to see the
benefits of having distilled previous examples of optimized
designs into our prior, and achieve superior performance
with fewer samples in unseen tasks sampled in-distribution.

Re
w

ar
d

(-E
)

Figure 3. Generative models were trained on a dataset of designs
produced from CEM- and Adam-optimized designs on either of
two tasks Matching, Non-matching, or Both. Designs in the train
dataset were filtered to have costs below the specified cutoff.

If we modify the task by introducing a parameter controlling
x, y shift parameter, we observe that Adam fails. This is
because there are many values of the shift for which the
tool makes no contact with the fluid (see Figure 2b), and
therefore gets no gradient information from E. We provide
results for more complex tasks in Appendix C (Figure 5).
Overall, we find that this approach is capable of tackling
a number of different types of design challenges, finding
effective solutions when obstacles are present, for multi-
modal reward functions, and when multiple tools must be
coordinated.

3.1. Dataset quality impact

We analyzed how the model performs with conditional guid-
ance when trained on optimization trajectories of CEM that
optimize the same task (matching), a different task (non-
matching), or a mix of tasks (Figure 3). The two tasks were
“Contain” (described above) and “Ramp” (transport fluid to
the far lower corner). Unsurprisingly, the gap between de-
signs in the training dataset and the solution for the current
task has a substantial impact on performance. We also con-
trol the quality of design samples by filtering out samples
above a certain cost level for the c with which they were gen-
erated. Discarding bad samples from the dataset does not
improve performance beyond a certain point: best perfor-
mance is obtained with some bad-performing designs in the
dataset. Intuitively, we believe this is because limiting the
dataset to a small set of optimized designs gives poor cov-
erage of the design space, and therefore generalizes poorly
even to in-distribution test problems. Further, training the
generative model on samples from optimization trajectories
of only a non-matching task has a substantial negative im-
pact on performance. We expect the energy guidance not to
suffer from the same transfer issues as conditional guidance,
since more information about the task is given through the
energy function. Since we indeed obtain data to fit p(x)
from Adam and CEM runs, why is diffusion more efficient?
We discuss this in Appendix B.

3.2. Particle optimization in base distribution

We also observe performance improvements by using the
particle search scheme from subsection 2.3, see Figure 4.

Gauss
PS

Figure 4. Gaussian base distribution vs. particle sampling (PS).

Diffusion Generative Inverse Design

We hypothesize that the reason for this is because of func-
tion approximation. Since we are dealing with approxi-
mate scores, it is hard for the learned generative model to
pinpoint the optima, therefore a sampling-based search ap-
proach helps. We note that the evaluation of a sample with
E requires solving the ODE for sample x1, we use a 1-step
reverse process making use of the relation in (8). Conse-
quently, we can expect that linearizing the sampling will
improve the particle search.

4. Conclusion
In this work we have demonstrated the benefits of using
diffusion generative models in simple inverse designs tasks
where we want to sample from high probability regions
of a target distribution π(x) defined via E, while having
access to optimization data. We analyzed energy-based and
conditional guidance where the energy function involves
rolling out a GNN. We find that energy guidance is a viable
option, but conditional guidance works better in practice,
and that performance depends heavily on the generative
model’s training data. Finally, we have introduced particle
search in the base distribution as a means to improve quality
of the samples and demonstrated this on multiple tasks.

5. Acknowledgments
We would like to thank Conor Durkan, Charlie Nash, George
Papamakarios, Yulia Rubanova, and Alvaro Sanchez-
Gonzalez for helpful conversations about the project. We
would also like to thank Alvaro Sanchez-Gonzalez for com-
ments on the manuscript.

References
Ajay, A., Du, Y., Gupta, A., Tenenbaum, J. B., Jaakkola,

T. S., and Agrawal, P. Is conditional generative modeling
all you need for decision-making? In NeurIPS 2022
Foundation Models for Decision Making Workshop, 2022.

Allen, K. R., Lopez-Guevara, T., Stachenfeld, K. L.,
Sanchez-Gonzalez, A., Battaglia, P. W., Hamrick, J. B.,
and Pfaff, T. Physical design using differentiable learned
simulators. CoRR, abs/2202.00728, 2022. URL https:
//arxiv.org/abs/2202.00728.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Challapalli, A., Patel, D., and Li, G. Inverse machine learn-
ing framework for optimizing lightweight metamaterials.
Materials & Design, 208:109937, 2021.

Christensen, T., Loh, C., Picek, S., Jakobović, D., Jing, L.,
Fisher, S., Ceperic, V., Joannopoulos, J. D., and Soljačić,
M. Predictive and generative machine learning models
for photonic crystals. Nanophotonics, 9(13):4183–4192,
2020.

De Bortoli, V., Mathieu, E., Hutchinson, M., Thornton, J.,
Teh, Y. W., and Doucet, A. Riemannian score-based
generative modelling. In Advances in Neural Information
Processing Systems, 2022.

Forte, A. E., Hanakata, P. Z., Jin, L., Zari, E., Zareei, A.,
Fernandes, M. C., Sumner, L., Alvarez, J. T., and Bertoldi,
K. Inverse design of inflatable soft membranes through
machine learning. Advanced Functional Materials, 32,
2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
2017.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J., Sánchez-Lengeling, B., Sheberla,
D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P.,
and Aspuru-Guzik, A. Automatic chemical design us-
ing a data-driven continuous representation of molecules.
ACS Central Science, 4(2):268–276, 02 2018.

Graikos, A., Malkin, N., Jojic, N., and Samaras, D. Dif-
fusion models as plug-and-play priors. In Advances in
Neural Information Processing Systems, 2022.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. In
International Conference on Machine Learning, 2022.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
In Advances in Neural Information Processing Systems,
2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kumar, S., Tan, S., Zheng, L., and Kochmann, D. M.
Inverse-designed spinodoid metamaterials. npj Computa-
tional Materials, 6:1–10, 2020.

https://arxiv.org/abs/2202.00728
https://arxiv.org/abs/2202.00728

Diffusion Generative Inverse Design

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International Conference on Learning Rep-
resentations, 2021.

Rubinstein, R. The cross-entropy method for combinatorial
and continuous optimization. Methodology and Comput-
ing in Applied Probability, 1:127–190, 1999.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate
complex physics with graph networks. In International
Conference on Machine Learning, 2020.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2020a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2020b.

Zheng, L., Kumar, S., and Kochmann, D. M. Data-driven
topology optimization of spinodoid metamaterials with
seamlessly tunable anisotropy. ArXiv, abs/2012.15744,
2020.

Diffusion Generative Inverse Design

Appendix for Diffusion Generative Inverse Design

A. Learned simulation with graph neural
networks

As in Allen et al. (2022), we rely on the recently developed
MESHGNN model (Pfaff et al., 2021), which is an exten-
sion of the GNS model for particle simulation (Sanchez-
Gonzalez et al., 2020). MESHGNN is a type of message-
passing graph neural network (GNN) that performs both
edge and node updates (Battaglia et al., 2018; Gilmer et al.,
2017), and which was designed specifically for physics sim-
ulation.

We consider simulations over physical states represented
as graphs G ∈ G. The state G = (V,E) has nodes V
connected by edges E, where each node v ∈ V is associated
with a position uv and additional dynamical quantities qv.
In this environment, each node corresponds to a particle and
edges are computed dynamically based on proximity.

The simulation dynamics on which the model is trained
are given by a “ground-truth” simulator which maps the
state Gt at time t to the state Gt+1 at time t + ∆t. The
simulator can be applied iteratively over K time steps to
yield a trajectory of states, or a “rollout,” which we denote
(Gt0 , ..., GtK). The GNN model M is trained on these
trajectories to imitate the ground-truth simulator fS . The
learned simulator fM can be similarly applied to produce
rollouts (G̃t0 , G̃t1 , ..., G̃tK), where G̃t0 = Gt0 represents
initial conditions given as input.

B. Further discussion on results
We trained the diffusion model on data generated from
Adam and CEM optimization runs and noticed an improve-
ment over Adam and CEM on the evaluation tasks. The
reason for this is that both Adam and CEM need good ini-
tializations to solve the tasks efficiently, for example in Fig-
ure 2 for each run the initial design for Adam has uniformly
sampled angles and x, y coordinates within the bounds of
the environment, which would explain why we obtain worse
results on average for Adam than Allen et al. (2022). Sim-
ilarly, for CEM we use a Gaussian sampling distribution
which is initialized with zero mean and identity covariance.
If most of the density of the initial CEM distribution is not
concentrated near the optimal design, then CEM will require
many samples to find it.

In comparison, the diffusion model learns good initializa-
tions of the designs through p(x) which can further be
improved via guided sampling, as desired.

C. Particle environments
For evaluation, we consider similar fluid particle-simulation
environments as in Allen et al. (2022). The goal being to
design a ‘tool’ that brings the particles in a specific configu-
ration. We defined the energy as the radial basis function

E(x) =
∑
p∈P

exp

(
−
∥xt

p − x⋆
p∥

σ

)
,

Figure 5. Examples of guided-diffusion generated designs for different tasks c that we consider in this work. The initial designs start off
completely at random, and the optimized ones solve the task.

Diffusion Generative Inverse Design

Figure 6. Examples of designs optimized with Adam, CEM, and guided diffusion using the generative model. Designs are initialized as
random joint angles. Each design shown is the top scoring design for that optimizer, evaluated under the learned model, after having been
trained on 1000 calls to the simulator (the limit of the x-axis in Figure 2).

where xt
p are the coordinates of particle p after rolling out

the simulation with the model fM with initial conditons θIC
and parameters θE . Note that the energy is evaluated on the
last state of the simulation, hence ∇E needs to propagate
through the whole simulation rollout.

In additon to the “Contain” environments described in sec-
tion 3, we provide further example environments that we
used for evaluation with the resulting designs from guided
diffusion can be seen in Figure 5.

The task with the obstacle required that the design is fairly
precise in order to bring the fluid into the cup, this is to high-
light that the samples found from the diffusion model with
conditional guidance + particle sampling in base distribution
are able to precisely pinpoint these types of designs.

For the bi-modal task, where we have two possible minima
of the cost function, we are able to capture both of the modes
with the diffusion model.

In the case where we increase the dimensionality of the
designs where we have x, y shift parameters for each of the
tool joints, and the tools are disjoint, the diffusion model
is able to come up with a parameterization that brings the
particles in a desired configuration. However, the resulting
designs are not robust and smooth, indicating that further
modifications need to be made in form of constraints or
regularization while guiding the reverse process to sample
from π̃(x).

D. Discussion on choice of guidance
As we will see in section 3, conditional guidance with cor-
rected base distribution sampling tends to work better than
energy guidance. In cases where the gradient of the energy
function is expensive to evaluate, an energy-free alternative
might be better, however this requires learning a conditional

Gauss PS

Figure 7. Sampling (random search) from p1(x) and particle sam-
pling in the bi-modal environment. We observe that even after
increasing the number of samples, particle search further improves
performance with same number of samples.

model, i.e. necessitates access to conditional samples.

E. Energy guidance
We have found that using the gradient of the energy function
as specified in equation (9) is a viable way of guiding the
samples, albeit coming with the caveat of many expensive
evaluations, see Figure 8. The guidance is very sensitive
to the choice of the scaling factor λ, in our experiments
we have found that a smaller scaling factor with many in-
tegration steps achieves better sample quality. Intuitively,
this follows from the fact that it is difficult to guide ‘bad’
samples in the base distribution p1(x), which motivates
the particle energy-based sampling scheme introduced in
algorithm 1.

Further, we have looked at how to combine the gradient of
the energy with the noised marginal score. We have found
that re-scaling to have the same norm as the noised marginal
improves the stability of guidance, as shown in Figure 8.
Here, we have analyzed multiple functions with which we
combined the energy gradient and the noised marginal score,
we have looked at the following variants:

Diffusion Generative Inverse Design

linear linear-unit linear-norm cvx

Figure 8. Performance of energy guidance depending on guidance
scale λ (x axis) for different modifications to score of noised
marginal.

• linear - simple linear addition of λ∇E.

• linear-unit - linear addition of λ ∇E
∥∇E∥ .

• cvx - convex combination of ∇E and ϵθ.

• linear-norm - linear addition of λ∇E∥ϵθ∥
∥∇E∥

Diffusion Generative Inverse Design

Contain Ramp With obstacle Bi-modal Multi-tool

Environment size 1x1 1x1 1x1 1x1 1x1
Rollout length 150 150 150 150 150

Initial fluid box(es)
left 0.2 0.2 0.45 0.25, 0.65 0.2

right 0.3 0.3 0.55 0.35, 0.75 0.3
bottom 0.5 0.5 0.5 0.5 0.5

top 0.6 0.6 0.6 0.6 0.6

Reward sampling box
left 0.4 0.8 0.2 0.25, 0.65 0.2

right 0.6 1.0 0.2 0.35, 0.75 0.3
bottom 0.1 0.0 0.2 0.1 0.2

top 0.3 0.2 0.2 0.2 0.5

Reward σ 0.1 0.1 0.05 0.1 0.1

tools 1 1 1 1 16
joint angles 16 16 16 16 1

Design parameters joint angles, joint angles joint angles, joint angles, shift
shift (optional) shift shift

Tool position (left) [0.15, 0.35] [0.15, 0.35] [0.25, 0.35] [0.3, 0.6] [0.15–0.2, 0.35–0.4]

Tool Length 0.8 0.8 0.6 0.4 0.1

Additional obstacles — — barrier halfway — —
between cup and fluid,

cup around goal

Table 1. Task Parameters.

