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Abstract001

Rapid, fine-grained disaster damage assess-002
ment is essential for effective emergency re-003
sponse, yet remains challenging due to limited004
ground sensors and delays in official report-005
ing. Social media provides a rich, real-time006
source of human-centric observations, but its007
multimodal and unstructured nature presents008
challenges for traditional analytical methods.009
In this study, we propose a structured Mul-010
timodal, Multilingual, and Multidimensional011
(3M) pipeline that leverages multimodal large012
language models (MLLMs) to assess disaster013
impacts. We evaluate three foundation mod-014
els across two major earthquake events using015
both macro- and micro-level analyses. Results016
show that MLLMs effectively integrate image-017
text signals and demonstrate a strong correla-018
tion with ground-truth seismic data. However,019
performance varies with language, epicentral020
distance, and input modality. This work high-021
lights the potential of MLLMs for disaster as-022
sessment and provides a foundation for future023
research in applying MLLMs to real-time crisis024
contexts. The code and data are released at:025
/r/EMNLP25_earthquake-52D6/026

1 Introduction027

Efficient and comprehensive disaster damage as-028

sessment is critical for informing emergency oper-029

ations and disaster relief (Ma et al., 2024b; Shan030

et al., 2019; Miura et al., 2021). Conventional031

techniques such as hazard models, expert inspec-032

tions, and ground-based instruments have sup-033

ported the characterization of post-disaster condi-034

tions (Butenuth et al., 2011; Torok et al., 2014; Tate035

et al., 2015). Recently, social media crowdsourcing036

has emerged as an additional source of information037

(Kryvasheyeu et al., 2016; Ma et al., 2024b), of-038

fering large volumes, near-real-time insights from039

those affected communities (Li et al., 2021; Ma040

et al., 2024a). More importantly, social media of-041

fers passive human observations, often capturing042

nuanced perspectives such as emotional reactions, 043

indoor damage, and first-hand observations (Ma 044

et al., 2024b; Li et al., 2023). These human-centric 045

signals add a layer of damage representation to the 046

conventional methods. 047

However, earlier machine learning methods fre- 048

quently relied on hand-crafted features and domain- 049

specific models, which required significant manual 050

effort to extract structured insight (Devaraj et al., 051

2020; O’Mahony et al., 2020; Ma et al., 2024b). 052

Moreover, they often lack the generalizability to 053

apply across multiple disasters occurring in differ- 054

ent locations with different languages, or involving 055

varying damage levels, as models trained on one 056

dataset (e.g., data from a specific disaster or spo- 057

ken language) may not perform well on another. 058

Additionally, diverse multimodal inputs pose chal- 059

lenges for analysis. Recent advances in foundation 060

MLLMs have demonstrated potential for cross- 061

modal and multilingual understanding across di- 062

verse data sources. Though promising, it is unclear 063

whether MLLMs can support fine-grained damage 064

assessment, including structural and environmental 065

impacts, interior damage, and human experiences 066

across different language regions. Moreover, their 067

scalability and generalizability across disasters and 068

geographies have not been systematically evalu- 069

ated, as this could be critical for supporting disaster 070

managers in implementing quick disaster relief. 071

To address these gaps, we propose a structured 072

“Multimodal, Multilingual, and Multidimensional” 073

(3M) pipeline integrating data collection, multi- 074

modal damage classification, and model evaluation. 075

Our pipeline relies on the reasoning abilities of 076

MLLM to extract interpretable, event-relevant in- 077

sights from large-scale social media streams. We 078

evaluate this pipeline using two sudden-onset earth- 079

quake events: the 2019 Ridgecrest earthquake in 080

California and the 2021 Fukushima earthquake in 081

Japan. Across these two case studies, we assess 082

three top-performing foundation models, includ- 083
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ing Gemini-2.5-Flash (hereafter Gemini) (Team084

et al., 2023), LLaVA 3-8B (hereafter LLaVA) (Labs,085

2024), and Qwen 2.5-VL-7B (hereafter Qwen)086

(Qwen Team, Alibaba Cloud, 2024), to explore087

their ability to understand multilingual content,088

reason across modalities, and generate consistent089

damage-level predictions. The study aims to an-090

swer the following questions through macro- and091

micro-perceptions:092

• Can MLLMs provide reliable and fine-grained093

damage assessments of textual and image in-094

formation posted on social media after disas-095

ters?096

• To what extent do MLLMs generalize across097

disaster contexts, with respect to factors such098

as input modality and prompt sensitivity?099

Our findings suggest that MLLMs exhibit strong100

capabilities in event localization, image-text fu-101

sion, and perceptual damage estimation. The mod-102

els correlate near-moderate positive (r=~0.5) to103

high (r=0.78) with ground-truth seismic intensity104

data and demonstrate interpretable reasoning pat-105

terns. However, we also observe variations in106

performance depending on linguistic context and107

event proximity. These findings highlight both the108

promise and limitations of current LLMs, and point109

toward future directions for model adaptation and110

disaster-specific fine-tuning.111

2 Related Work112

2.1 Earthquake Damage Assessment113

Recent advances in earthquake damage assessment114

span physics-based models, machine learning, and115

new sensing modalities, each balancing trade-offs116

in accuracy, scalability, and timeliness. Traditional117

approaches, such as FEMA’s HAZUS and P-58118

frameworks (Schneider and Schauer, 2006; Ham-119

burger et al., 2012), rely on structural mechanics120

to estimate probabilistic damage and losses. While121

interpretable and robust, these methods are compu-122

tationally demanding, depend on expert input, and123

often lack the spatial resolution and speed needed124

for rapid, localized assessments. Their reliance125

on coarse, regional building inventories and cat-126

egorical outputs (e.g., “moderate” or “extensive”127

damage) limits their utility in dynamic, real-world128

disaster response. Moreover, their reliance on phys-129

ical instrumentation limits deployment coverage130

and often excludes human-centered perspectives131

on impact.132

Building on machine learning advances, re- 133

searchers have begun exploring novel data sources, 134

such as crowdsourced social media. Existing liter- 135

ature has used sentiment analysis (Li et al., 2025; 136

Myint et al., 2024; Amangeldi et al., 2024; Subba- 137

iah et al., 2024), topic modeling (Ma et al., 2024a; 138

Mihunov et al., 2022; Mehmood et al., 2024), and 139

text classification (Xie et al., 2022; Yin et al., 2024; 140

García-Tapia-Mateo et al., 2025) to support hazard 141

monitoring, communication, damage assessment, 142

and behavioral analysis (Ma et al., 2024b). Yet 143

despite their promise, these sources are often used 144

in isolation. Most existing frameworks do not in- 145

tegrate these diverse inputs into a unified pipeline. 146

They are commonly limited to a single data type 147

(text or image), rely heavily on English-language 148

content, and lack systematic incorporation of dam- 149

age granularity aligned with MMI levels. This 150

leads to a fragmented understanding of earthquake 151

impacts, with missed opportunities for timely, con- 152

textualized, and community-aware responses. 153

2.2 Multi-modal LLMs Applications 154

Multimodal foundation models have emerged as 155

powerful tools for integrating diverse data types, 156

revolutionizing capabilities across scientific do- 157

mains. Models such as GPT-4V (Wu et al., 2023), 158

Gemini (Team et al., 2023), and Claude 3 (Ke- 159

vian et al., 2024) are capable of understanding and 160

reasoning over multimodal data, including text, im- 161

ages, video, and numerical data, demonstrating 162

remarkable performance in tasks requiring cross- 163

modal understanding. These models have shown ef- 164

fectiveness in analyzing complex scientific imagery 165

alongside textual annotations, enabling new ap- 166

proaches to data fusion in fields ranging from bioin- 167

formatics (Luo et al., 2024; Wang et al., 2025b; 168

Liu et al., 2024) to astronomy (Rizhko and Bloom, 169

2024; Mishra-Sharma et al., 2024). 170

The application of multimodal foundation mod- 171

els has expanded beyond traditional scientific do- 172

mains to critical social applications, particularly 173

in disaster response (Hughes and Clark, 2025; 174

Odubola et al., 2025; Lei et al., 2025) and social 175

media analysis (Thapa et al., 2025; de Zarzà et al., 176

2023). These models are leveraged to interpret 177

structural damage by aerial imagery (Jiang et al., 178

2025) and social media post analysis (Sharma et al., 179

2024) to prioritize emergency response resources 180

(Yu and Wang, 2024), using both visual and tex- 181

tual contents to achieve a nuanced understanding 182

of real-time information during crisis events. 183
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3 3M Pipeline184

To achieve fine-grained earthquake damage as-185

sessment from social media, we develop the 3M186

pipeline, illustrated in Figure 1. The pipeline con-187

sists of three primary stages, and each component188

is detailed in the following subsections.189

Data Preparation Twitter (now rebranded as X)190

is a microblogging and social networking platform191

that allows users to share short messages known as192

“tweets.” Since the data in this study are collected193

prior to the rebranding, we refer to the platform194

as “Twitter” and use the term “tweets” for consis-195

tency. This study focuses on two representative196

earthquake events: (1) the 2019 Ridgecrest earth-197

quake in California and (2) the 2021 Fukushima198

earthquake in Japan. These cases are selected be-199

cause they occurred in seismically active regions200

with established disaster response systems.201

Then, tweets are collected using the Twitter202

Search API in “near-real-time” with the keyword203

“earthquake.” For the Ridgecrest event, tweets204

are collected from July 4 to 10, 2019; for the205

Fukushima event, from February 13 to 17, 2021.206

Following the compilation of the initial dataset, a207

filtering process is applied to identify tweets con-208

taining damage-related content. Guided by prior209

research (Li et al., 2023), we construct a library210

of filter terms (e.g., “damage,” “injury,” “hurt,”211

“die,” “kill”), accounting for common word variants212

(e.g., “damage,” “damages,” “damaged”). This fil-213

tering yields a refined dataset, referred to as the214

“damage-related dataset.” After applying these cri-215

teria, the final dataset consists of 41,431 damage-216

related tweets for the 2019 Ridgecrest earthquake217

and 49,539 for the 2021 Fukushima earthquake,218

which are used for the subsequent analysis. The219

full list of filter terms is provided in the Appendix.220

Damage Evaluation Framework The evalua-221

tion of earthquake damage through social media222

content necessitates a structured and multi-stage223

analytical framework. For any given Twitter post,224

the assessment initially establishes event relevance225

through a two-fold verification process. First, spa-226

tial contextualization is conducted using a tiered227

approach that incorporates (1) geotag metadata,228

(2) content-based geographic references, and (3)229

user profile registration information. Among these,230

we prioritize geotagged metadata, which provides231

the most precise spatial signal (Stock, 2018; Do-232

ran et al., 2014). When geotag data is unavailable233

or ambiguous, we rely on content-based inference 234

(e.g., mentions of place names or landmarks) and, 235

subsequently, on user profile location. In cases 236

where multiple geographic scales are mentioned 237

(e.g., city and neighborhood), the framework re- 238

turns to the most granular location available. Sec- 239

ond, the framework verifies the targeted seismic 240

event to ensure analytical specificity. 241

Upon confirmation of relevance, the damage as- 242

sessment protocol follows a hierarchical classifi- 243

cation approach. The primary analysis differen- 244

tiates between human-impact scenarios and non- 245

human structural consequences. This bifurcation 246

enables specialized examination of non-human im- 247

pacts, which are further categorized into interior 248

non-structural damage (e.g., cracked interior walls, 249

broken windows) and exterior structural damage 250

(e.g., building façade collapse, fallen infrastruc- 251

ture). It employs MLLMs to synthesize both textual 252

narratives and visual documentation from social 253

media posts. Based on the aggregated damage indi- 254

cators, each post is assigned a Modified Mercalli 255

Intensity (MMI) level. The MMI scale is a qualita- 256

tive, ten-point system that characterizes earthquake 257

intensity based on human perception and observ- 258

able environmental and structural effects. Unlike 259

instrumental magnitude scales, MMI provides a 260

human-centered measure of impact, making it a 261

widely adopted standard in post-earthquake report- 262

ing and risk communication. Detailed descriptors 263

of the MMI scale used in this study are provided 264

in the Appendix 7.2. The use of MMI levels en- 265

ables standardized comparisons of seismic impacts 266

across geographic regions and disaster events. We 267

leverage few-shot (Brown et al., 2020) chain-of- 268

thought (CoT) (Wei et al., 2022) prompting for 269

model evaluation. 270

Model Selection and Validation This stage in- 271

volves both quantitative and interpretive evalua- 272

tion. We evaluate eight state-of-the-art multimodal 273

foundation models, including leading commercial 274

and open-source systems: GPT-4.1, GPT-4.1-mini, 275

GPT-4.1-nano, GPT-4o, GPT-4o-mini, Gemini-2.5- 276

Flash, LLaVA 3–8B, and Qwen 2.5-VL-7B. These 277

models are selected based on their reported per- 278

formance in vision-language tasks and their ac- 279

cessibility for benchmarking (Wang et al., 2024; 280

Guruprasad et al., 2024). 281

Using a randomly selected sample of damage- 282

related tweets, each model generated MMI levels 283

through the previous stage. Human-labeled ground- 284
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Figure 1: Proposed 3M pipeline, which integrates data preparation, damage evaluation framework, and model
selection and validation for social media–based earthquake assessment.

truth classes are based on the agreement of two285

independent annotators using the same damage286

framework. Pearson correlation scores are used287

to rank each model’s performance in terms of align-288

ment with official seismic intensity data. The full289

comparative results are provided in the Appendix290

7.3. Based on this analysis, Gemini, LLaVA, and291

Qwen were selected for following analysis, con-292

sidering computational efficiency and practical de-293

ployment constraints. To assess the overall accu-294

racy, we perform a correlation analysis between295

the model-generated MMI levels and ground-truth296

labels derived from the USGS "Did You Feel It?"297

(DYFI) survey (Wald et al., 2011), a crowdsourced298

platform that collects public reports of perceived299

shaking intensity following an earthquake.300

Following quantitative validation, we further in-301

vestigate the reasoning transparency of the top-302

performing models to understand how MLLMs es-303

timate MMI levels. Specifically, we analyze the304

textual justifications generated by each model, fo-305

cusing on the lexical features that underlie their306

classification decisions. To this end, we conduct307

a unigram-level TF-IDF analysis to identify high-308

weighted terms associated with different MMI lev-309

els. This analysis reveals the most influential words310

contributing to the model’s classification decision.311

By analyzing the alignment between high-weighted312

terms and relevant damage descriptors, we assess313

whether a model’s internal logic aligns with human-314

interpretable features.315

4 Experiments and Results 316

In this section, we present the main experimental re- 317

sults and analysis. The first part focuses on macro- 318

level evaluation at the pipeline level, including two 319

earthquake case studies and an assessment of epi- 320

central distance effects on model performance. The 321

second part provides a micro-level analysis at the 322

model level, examining impact of input modality, 323

model prompt sensitivity, and detailed analysis of 324

MLLM reliability based on CoT outputs. 325

4.1 Macro-level Analysis 326

2019 Ridgecrest Earthquake Figure 2(a) shows 327

the spatial distributions of social media-derived 328

locations identified by three selected MLLMs in 329

comparison to DYFI MMI scales. Overall, the re- 330

sults suggest that the models are capable of extract- 331

ing relevant location and event information from 332

tweets, as evidenced by the clustering of identi- 333

fied points near the earthquake epicenter (35.766°N 334

117.605°W). Qwen demonstrates relatively weak 335

performance in spatial coverage, with fewer iden- 336

tified points and reduced geographic spread. This 337

may be due to its pretraining focus on Chinese- 338

language data. 339

We further assess the models’ ability to infer 340

earthquake damage levels. Figure 3(a) presents the 341

city-level correlations between model-estimated 342

average damage levels and DYFI MMI data. All 343

models show near-moderate to high positive agree- 344

ments, as measured by Pearson correlation coef- 345

ficients. Interestingly, Qwen achieves the highest 346
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(a) (b)LLaVA LLaVA

Figure 2: Spatial distribution of (a) Ridgecrest and (b) Fukushima data points identified by LLaVA, Qwen, and
Gemini compared to DYFI MMI reports.

correlation (r = 0.78), suggesting that although its347

spatial recall is limited, it may still be effective348

at identifying intensity-related cues from text and349

imagery.350

2021 Fukushima Earthquake Similarly, we ap-351

ply 3M pipeline to the 2021 Fukushima Earthquake352

in Japan with predominantly Japanese social media353

content.354

Most of the identified data points cluster near355

the earthquake epicenter (37.730°N, 141.595°E),356

and their spatial distributions align closely with the357

DYFI MMI data (Figure 2 (b)). All three models358

capture nearly the full range of earthquake-affected359

locations. Their performance diverges when it360

comes to fine-grained damage level assessment. As361

shown in Figure 3 (b), Gemini exhibits a weak cor-362

relation between model-inferred damage levels and363

DYFI MMI scores (r = 0.04), In contrast, LLaVA364

and Qwen achieve near-moderate correlations (r =365

0.47 for both), reflecting a better understanding of366

MMI-scale damage in Japanese content. Although367

the overall correlation values for LLaVA and Qwen368

are similar, their strengths differ by intensity range.369

Qwen demonstrates a more precise differentiation370

between MMI levels 3 and 4, indicating sensitivity371

to moderate damage. LLaVA, on the other hand,372

performs more reliably in the lower MMI range373

(levels 1 to 3).374

Epicenter Distance We examine the correlation 375

between estimated MMI levels and epicentral dis- 376

tance to assess the spatial sensitivity of model es- 377

timations, using results from the best-performing 378

models for each case: Gemini for the Ridgecrest 379

event and LLaVA for the Fukushima event (Fig- 380

ure 4). In both cases, a negative correlation was 381

observed, consistent with the principle of seismic 382

attenuation, where shaking intensity typically de- 383

creases with increasing distance from the epicenter. 384

The trend was stronger in the English-language 385

Ridgecrest case, suggesting language familiarity 386

may influence a model’s ability to learn physically 387

grounded patterns. Notably, Gemini identified a 388

concentration of high-MMI predictions within 200 389

km of the epicenter, especially in densely popu- 390

lated areas (e.g., Los Angeles), indicating its ability 391

to focus on high-risk urban zones. 392

4.2 Micro-level Analysis 393

Input Modality. The choice of input modality di- 394

rectly influences the framework’s evaluation perfor- 395

mance. While social media platforms are primarily 396

text-driven, the effectiveness of visual information 397

and its combination with text for damage assess- 398

ment remains underexplored. Thus, we evaluate 399

model performance across three input configura- 400

tions: text-only, image-only, and text-image fu- 401

sion, as implemented in 3M pipeline. Correlation 402

analysis between predicted and DYFI MMI lev- 403

5



P
a
g
e
 1

3

Gemini LLaVA Qwen

Gemini LLaVA Qwen

(a)

(b)
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Figure 3: Correlation between model-estimated average damage levels and DYFI MMI levels for (a) Ridgecrest and
(b) Fukushima earthquakes.

els across these settings is shown in Figure 5. In404

both earthquake cases, models fusing textual and405

visual content strongly correlated with observed406

MMI, reinforcing prior findings in multimodal lit-407

erature that show the benefit of cross-modal inte-408

gration (Merlo et al., 2010; Maragos et al., 2008;409

Wang et al., 2025a). Conversely, models relying410

solely on visual inputs show diminished perfor-411

mance, particularly in the non-English Fukushima412

dataset, where image-only analysis was often based413

on non-damage-related content visuals, such as414

selfies, emojis, or screenshots, which lacked direct415

evidence of structural damage or event relevance.416

Prompt Sensitivity Given that variations in417

prompt phrasing could impact model performance,418

it is crucial to evaluate the sensitivity of MLLMs419

to different prompt formulations (Sclar et al., 2023;420

Zhuo et al., 2024; Chatterjee et al., 2024). This421

section builds on our earlier results by examin-422

ing whether slight variations in prompts affect the423

models’ outputs. To explore this, we randomly424

selected 50 tweets. For each tweet, we created425

seven paraphrased versions of the original prompt426

using GPT-4o. These paraphrases reword the in-427

structions while keeping the meaning the same. All428

rewritten prompts were manually checked to en-429

sure clarity and correctness. The full list of prompt430

versions is provided in the Appendix 7.7. We an-431

alyzed the impact of prompt variation across four432
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(a) (b)

Figure 4: Epicentral distance vs. model estimated MMI
values for the (a) Ridgecrest earthquake;(b) Fukushima
earthquake.
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(a) (b)

Figure 5: Correlation between model-estimated and
DYFI MMI levels across input types for (a) Ridgecrest
and (b) Fukushima earthquakes.

output types: damage level, confidence score, and 433

categorical judgments such as damage type and 434

human impact. For numerical outputs, we used 435

mean and standard deviation to measure variabil- 436

ity. For categorical outputs, we used Cramér’s V 437

(Cramér, 1999) (Equation 1) to measure how of- 438

6



ten the predictions changed across prompts, where439

values closer to 0 mean low sensitivity, and values440

closer to 1 mean high sensitivity.441

V =

√
χ2

n · (k − 1)
(1)442

where (1) V is Cramér’s V coefficient (2) χ2 is the443

chi-squared statistic derived from the contingency444

table (3) n is the total number of observations, and445

(4) k is the number of categories in the smaller of446

the two variables, i.e., min(rows, columns).447

As shown in Table 1 and Table 2, models eval-448

uated on the Fukushima dataset exhibit greater449

sensitivity than those tested on Ridgecrest data.450

This pattern was particularly pronounced for Gem-451

ini, which demonstrates substantial response vari-452

ability when processing Japanese-language tweets.453

Conversely, Qwen displays the most stable per-454

formance, showing minimal variation in damage455

level assessments and confidence scores, though456

it exhibits greater inconsistency in damage type457

classification.458

Despite variations in categorical classifications,459

most models maintain relatively stable MMI level460

predictions, with standard deviations typically rang-461

ing between 1 and 2. This indicates that while462

prompt formulation can influence specific classifi-463

cation details, overall assessments remain reason-464

ably consistent. A similar pattern is observed in465

confidence scores, suggesting that models main-466

tain comparable levels of certainty regardless of467

instructional phrasing.468

Reasoning Reliability Evaluation To better un-469

derstand how models arrive at their predictions, we470

conduct an analysis of the language used in their471

free-text justifications for estimated MMI levels,472

presenting a taxonomy of lexical patterns associ-473

ated with different intensity levels. For the Ridge-474

crest earthquake (Figure 6 (a)), Gemini exhibits475

a progression in reasoning. At lower MMI lev-476

els (0–3), the model frequently uses terms such as477

“minimal,” “preparation,” “indoors,” and “worries,”478

suggesting a focus on psychological response and479

perceived safety. As the MMI increases to mod-480

erate levels (4–5), emotionally charged terms like481

“shock” and “fearful” become more common. At482

higher intensity levels (6–9), the model increas-483

ingly references concrete environmental and struc-484

tural cues, using terms like “rockslides,” “cracked,”485

and “roadway.” It later shifts toward cascading im-486

pact language with words like “fires” and “burned.” 487
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Figure 6: Reasoning reliability evaluation for (a) Ridge-
crest and (b) Fukushima.

488

For the Fukushima earthquake (Figure 6(b)), 489

LLaVA centers on perceived safety and emotional 490

state, with terms like “visual,” “safe,” and “scary” 491

at a lower MMI level. At moderate to higher 492

MMI levels, the model references physical ob- 493

jects with increasing specificity, such as terms of 494

“building,” “ground,” and “chair.” For severe im- 495

pacts, the model incorporates stronger terms such 496

as “injured,” “suspend,” and “severely.” Interest- 497

ingly, LLaVA often uses hedging terms (e.g., ‘pos- 498

sible’, ‘indicating’), suggesting a more cautious or 499

probabilistic reasoning style. 500

5 Discussion 501

Can MLLMs provide reliable and fine-grained 502

damage assessments using multilingual textual 503

and image information posted on social media 504

after disasters? Our experimental results demon- 505

strate that state-of-the-art MLLMs possess substan- 506

tial potential for fine-grained earthquake damage 507

assessment. The effectiveness of the 3M pipeline 508

across both English- and non-English-language 509

contexts further demonstrates the multilingual ca- 510

pabilities of MLLMs. With appropriate language- 511

aligned foundation models, the pipeline can be 512

generalized to additional languages and extended 513

to other disaster types (e.g., wildfires, hurricanes) 514

through prompt adaptations. This flexibility un- 515

derscores the scalability of our approach across 516

geographic and hazard domains. 517

Despite promising results, we observed some 518

model-level performance variation. Qwen demon- 519

strated the most consistent performance across lan- 520

guages, making it suitable for multilingual con- 521

texts, while Gemini and LLaVA excelled in ur- 522

ban, English-dominant settings. All models were 523

more reliable at low to moderate damage levels, 524

with reduced accuracy at higher intensities. It is 525
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Table 1: Cramér’s V scores for human impact and damage type across prompt versions and models

Event Prompt Gemini Qwen LLaVA

Human Impact Damage Type Human Impact Damage Type Human Impact Damage Type

2019 Ridgecrest earthquake v1-v7 0.170 0.225 0.218 0.464 0.636 0.511

2022 Fukushima earthquake v1-v7 0.502 0.771 0.224 0.624 0.578 0.587

Table 2: Damage level and confidence scores across prompt versions and models

Event Prompt Gemini Qwen LLaVA

DL_mean DL_std Conf_mean Conf_std DL_mean DL_std Conf_mean Conf_std DL_mean DL_std Conf_mean Conf_std

2019 Ridgecrest
earthquake

v1 3.333 1.325 0.786 0.073 3.600 1.694 0.850 0.059 1.867 1.548 0.853 0.090
v2 2.795 1.490 0.847 0.098 2.588 2.311 0.887 0.054 0.769 1.945 0.915 0.141
v3 2.317 1.572 0.906 0.101 2.606 2.304 0.911 0.066 0.769 2.026 0.962 0.070
v4 2.683 1.980 0.894 0.094 3.100 1.919 0.883 0.091 1.867 1.388 0.915 0.097
v5 3.095 1.923 0.875 0.091 3.152 2.224 0.809 0.109 2.104 2.479 0.840 0.184
v6 2.683 1.559 0.848 0.082 3.212 2.162 0.800 0.080 1.940 0.752 0.876 0.072
v7 1.93 1.486 0.900 0.105 4.188 2.583 0.883 0.066 2.720 2.777 0.832 0.118

2022 Fukushima
earthquake

v1 3.838 1.041 0.722 0.062 3.222 1.502 0.85 0.069 3.333 1.325 0.786 0.073
v2 3.563 1.105 0.731 0.098 2.667 2.075 0.837 0.099 3.167 1.324 0.782 0.100
v3 2.333 1.875 0.942 0.063 2.444 2.470 0.815 0.151 3.167 1.998 0.915 0.060
v4 4.000 1.732 0.797 0.077 3.124 2.378 0.805 0.076 2.625 2.042 0.863 0.078
v5 4.63 1.245 0.687 0.071 2.667 1.637 0.873 0.070 2.167 2.681 0.633 0.334
v6 2.214 1.528 0.786 0.063 3.955 2.645 0.763 0.127 0.167 0.817 0.852 0.26
v7 1.243 0.760 0.801 0.092 4.239 2.508 0.787 0.239 1.000 2.703 0.850 0.269

likely due to training and data sparsity. Addition-526

ally, model estimation were influenced by epicen-527

tral distance, with better performance in densely528

populated urban areas. This pattern suggests that529

MLLMs capture attenuation effects but are also530

shaped by spatial disparities in social media activ-531

ity. For real-world applications, decision-makers532

should account for these biases and consider com-533

plementary data sources or localized calibration534

when applying the 3M pipeline beyond densely535

populated regions.536

To what extent do MLLMs generalize across537

disaster contexts, with respect to factors, such538

as input modality and prompt sensitivity? Our539

micro-level analysis further guides for the deploy-540

ment of MLLMs in disaster contexts. First, modal-541

ity analysis confirms that multimodal input fusion542

improve both accuracy and robustness in damage543

classification. We recommend extending this ap-544

proach to include cross-modal fusion of additional545

modalities such as video, audio, and geospatial data546

(e.g., satellite imagery, street-level views). Sec-547

ond, prompt sensitivity evaluation reveals that cur-548

rent MLLMs exhibit variability in multilingual con-549

texts, especially in response to subtle changes in550

instruction phrasing. While categorized classifi-551

cation outputs (e.g., damage type, human impact)552

are relatively stable, inconsistencies may arise in553

edge cases. We recommend prompt standardiza-554

tion, pre-deployment testing, and ensemble prompt-555

ing strategies to reduce sensitivity in multilingual556

or low-resource environments. Lastly, our reason-557

ing analysis highlights differences in model inter- 558

pretability and internal logic. For example, Gemini 559

shifts from emotional to structural and cascading- 560

impact cues as damage severity increases, while 561

LLaVA adopts a more visually grounded but cau- 562

tious reasoning style. These patterns suggest that 563

decision-makers should consider not only perfor- 564

mance metrics but also reasoning transparency and 565

alignment with operational needs when selecting 566

models for deployment. 567

6 Conclusion 568

This study introduces a structured 3M pipeline for 569

social media–based earthquake damage assessment. 570

The pipeline systematically integrates data prepa- 571

ration, multimodal classification, and model eval- 572

uation, providing a scalable framework for rapid 573

and fine-grained disaster analysis. Applied to two 574

real-world earthquake events, the pipeline demon- 575

strates its effectiveness across languages, geogra- 576

phies, and damage dimensions. We also evaluate 577

leading MLLMs and find that they effectively lo- 578

calize events, integrate text and image inputs, and 579

produce damage estimates aligned with seismic 580

data. However, performance varies by language, 581

modality, and prompt design, highlighting the need 582

for further adaptation and robustness testing in real- 583

world deployments. Our findings provide the first 584

step toward globally scalable, cross-lingual disaster 585

sensing with foundation models, and the released 586

codes and prompts to support replication and future 587

research. 588
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Broader Impact and Ethics589

Broader Impact590

Societal Relevance and Intended Use This591

work presents a scalable and multilingual frame-592

work for fine-grained earthquake damage assess-593

ment that leverages social media and MLLMs. By594

incorporating both textual and visual data, the sys-595

tem captures dimensions of disaster impact such as596

interior structural damage or personal distress, that597

are difficult to observe with conventional sensing598

systems. Our pipeline offers a lightweight, exten-599

sible tool for situational awareness, particularly in600

the early hours of a crisis when actionable informa-601

tion is limited. Through evaluations in Japan and602

the United States, we demonstrate the framework’s603

potential for global applicability. The methods and604

code are intended to be adaptable for other hazards605

(e.g., floods, wildfires) and use cases (e.g., infras-606

tructure monitoring, rapid needs assessment).607

Inclusivity and Linguistic Diversity Disaster608

communication varies significantly across lan-609

guages and cultures. Our framework is intention-610

ally designed to support multilingual and multi-611

modal inputs, allowing for more inclusive analy-612

sis across different user populations and platforms.613

The case study in Japan highlights the feasibility of614

applying foundation models beyond English-only615

settings, contributing to the growing body of work616

on equitable and linguistically diverse NLP appli-617

cations. We encourage further development toward618

supporting low-resource languages and culturally619

grounded interpretations of crisis content.620

Interpretability and Human-AI Collaboration621

We use prompting strategies such as chain-of-622

thought and few-shot examples to improve the623

transparency of multimodal model outputs. In addi-624

tion to comparing predictions with official ground-625

truth seismic data (e.g., MMI levels), we include626

qualitative reasoning traces to assist with human627

interpretation. These steps enhance trust and trace-628

ability in model behavior, while positioning the629

system as a decision-support tool, not a replace-630

ment for expert review. This approach supports the631

responsible integration of LLMs into high-stakes632

environments like emergency management.633

Ethics634

Responsible Data Use and Privacy All data635

used in this study are drawn from publicly avail-636

able social media posts, accessed via Twitter’s API637

under permitted use. Recognizing that disaster- 638

related content is often shared under emotional 639

duress, we employ several safeguards: no direct 640

quotes or images are reproduced, user identifiers 641

are removed, and results are reported only in ag- 642

gregated spatial formats. Future deployments may 643

benefit from further privacy-preserving measures 644

such as differential privacy or on-device inference, 645

particularly in operational settings. 646

Robustness and Misinformation Risks Crisis- 647

related social media can contain misinformation, 648

rumors, or manipulated content. Our pipeline cur- 649

rently includes relevance filtering and heuristics 650

for disaster-date alignment, but does not yet imple- 651

ment automated credibility detection. We view this 652

as a key future direction, and recommend integra- 653

tion with source trustworthiness scoring and stance 654

detection models for robust performance in noisy 655

environments. These safeguards are particularly 656

important in deployments where system outputs 657

influence resource allocation or public messaging. 658

Scope of Use and Deployment Guidance This 659

pipeline is developed exclusively for public-interest 660

applications such as disaster response, risk analy- 661

sis, and resilience planning. It is not intended for 662

use in surveillance, punitive actions, or insurance 663

investigations. Responsible deployment requires 664

human oversight, transparency about model limi- 665

tations, and collaboration with emergency profes- 666

sionals and affected communities. We advocate 667

for community-informed design and transparent 668

documentation as this framework is adapted for 669

real-world use. 670

7 Appendices 671

7.1 Damage-related filtering terms 672

7.2 MMI description 673

7.3 Model comparison 674

Two annotators independently labeled a randomly 675

selected sample of 50 tweets to evaluate inter- 676

annotator reliability. We used Krippendorff’s Al- 677

pha (α) (Equation 2) to measure agreement, as it is 678

a robust metric capable of handling multiple anno- 679

tators, various data types (e.g., nominal, ordinal), 680

and missing data (Artstein, 2017). It also adjusts 681

for chance agreement based on observed versus 682

expected disagreement. The final alpha score was 683

0.67, indicating substantial agreement. This level 684

of consistency is considered reasonable for subjec- 685
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Table 3: A list of terms used to filter “damage-related” tweets.

Language Damage-related words
English blackout, broke, broken, burn, burned, burning, burns, catastrophe, catastrophes, catastrophic,

chaos, collapse, collapsed, collapses, crack, cracked, cracking, cracks, crash, crashed, crashes,
cripple, cripples, crumble, crush, crushed, crushes, damage, damaged, damaging, dead, death,
deaths, deform, deformed, deforms, demonish, destruct, destructed, destructing, destructs,
destroy, destroyed, destroying, destroys, devastate, devastated, devastates, devastating, die,
died, dies, displace, displaced, disrupt, disrupted, disrupting, disrupts, fatalities, fatality, fissure,
fissures, fire, flood, flooded, flooding, hurt, hurting, hurts, injuries, injured, injury, kill, killed,
killing, leak, leaked, leaking, leaks, massive, outage, rockslide, rubble, rupture, ruptures, safe,
safety, scatter, scattered, scatters, severe, shatter, shattered, shatters, smash, smashed, smashes,
smashing, suffer, suffered, suffering, suffers, trauma, warp, warps, wreck, wrecked, wrecks

Japanese 停電(blackout，poweroutage),壊れた(broke, broken),燃える(burn),燃えた(burned),燃え
ている(burning), 大災害(catastrophe, catastrophes), 壊滅的(catastrophic), 混乱(chaos), 崩
壊(collapse, collapsed, collapses),ひび(crack, cracked, cracking, cracks),墜落(crash, crashed,
crashes), 無力(cripple, cripples, helpless), 崩れる(crumble), 押しつぶす(crush, crushed,
crushes),損傷(damage, damaged, damaging),死んだ(dead, died, die, dies),死亡(death, deaths),
変形する(deform, deformed, deforms),破壊(destruct, destructed, destructing, destructs),破
壊する(destroy, destroyed, destroying, destroys), 壊滅させる(devastate, devastated, devas-
tates, devastating), 死ぬ(die, died, dies), 避難する(displace, displaced), 混乱する(disrupt,
disrupted, disrupting, disrupts),死者(fatalities, fatality),裂け目(fissure, fissures),火事(fire),
洪水(flood, flooded, flooding), 傷つく(hurt, hurting, hurts), けが(injuries, injury), 負傷し
た(injured)，殺す(kill, killed, killing),漏れ(leak, leaked, leaking, leaks),巨大な(massive),が
け崩れ(rockslide),土砂崩れ(Landslide),瓦礫(rubble),破裂(rupture, ruptures),安全(safe),散
らす(scatter, scattered, scatters),厳しい(severe),粉々にする(shatter, shattered, shatters),打ち
砕く(smash, smashed, smashes, smashing),苦しむ(suffer, suffered, suffering, suffers),トラウ
マ(trauma),ゆがむ(warp, warps)

tive tasks involving nuanced, fine-grained classifi-686

cation.687

α = 1− Do

De
(2)688

Observed disagreement Do is calculated as:689

Do =
1

N

N∑
i=1

δ(ai1, ai2) (3)690

where:691

• N is the number of items,692

• ai1, ai2 are the annotations by two coders for693

item i,694

• δ(a, b) = 1 if a ̸= b, and 0 if a = b.695

Expected disagreement De is computed from the696

marginal frequencies:697

De =
∑
c1 ̸=c2

p(c1) · p(c2) (4)698

where:699

• p(c) = nc
2N is the proportion of annotations700

assigned to category c,701

• nc is the total number of times category c is702

used by both annotators,703

• the denominator 2N is the total number of 704

annotations across both coders. 705

Interpretation: 706

• α = 1: perfect agreement 707

• α = 0: agreement equals chance 708

• α < 0: worse than chance 709

To assess the cost-effectiveness of closed-source 710

MLLMs, we monitored pricing across all eight eval- 711

uated models. Among them, Gemini-2.5-Flash was 712

the most economically efficient and also demon- 713

strated high alignment with human annotations. As 714

a result, it was selected as the preferred closed- 715

source multimodal model for our damage estima- 716

tion tasks. For large-scale processing, we utilized 717

the New York University High Performance Com- 718

puting (NYU HPC) infrastructure, specifically the 719

Greene cluster, which offers GPU-enabled nodes 720

with NVIDIA Tesla V100 GPUs (New York Uni- 721

versity, 2024). Within this environment, the com- 722

plete analysis was executed in 2 to 3 days per event 723

dataset. 724

7.4 Prompt design 725

726
1 LOCATION_PROMPT = """ 727
2 Task: 728
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Table 4: MMI Intensity

MMI People’s Reaction Furnishings Built Environment Natural Environment

I Not felt. Changes in level and
clarity of well water
are occasionally associ-
ated with great earth-
quakes at distances be-
yond which the earth-
quakes felt by people.

II Felt by a few. Delicately suspended
objects may swing.

III Felt by several; vibra-
tion like passing of
truck.

Hanging objects may
swing appreciably.

IV Felt by many; sensation
like heavy body striking
building.

Dishes rattle. Walls creak; windows
rattle.

V Felt by nearly all; fright-
ens a few.

Pictures swing out of
place; small objects
move; a few objects fall
from shelves within the
community.

A few instances of
cracked plaster and
cracked windows within
the community.

Trees and bushes
shaken noticeably.

VI Frightens many; people
move unsteadily.

Many objects fall from
shelves.

A few instances of
fallen plaster, broken
windows, and damaged
chimneys within the
community.

Some fall of tree limbs
and tops, isolated rock-
falls and landslides, and
isolated liquefaction.

VII Frightens most; some
lose balance.

Heavy furniture over-
turned.

Damage negligible
in buildings of good
design and construction,
but considerable in
some poorly built or
badly designed struc-
tures; weak chimneys
broken at roof line, fall
of unbraced parapets.

Tree damage, rockfalls,
landslides, and liquefac-
tion are more severe
and widespread with in-
creasing intensity.

VIII Many find it difficult to
stand.

Very heavy furniture
moves conspicuously.

Damage slight in
buildings designed to
be earthquake resistant,
but severe in some
poorly built structures.
Widespread fall of chim-
neys and monuments.

IX Some forcibly thrown to
the ground.

Damage considerable
in some buildings de-
signed to be earthquake
resistant; buildings shift
off foundations if not
bolted to them.

X Most ordinary masonry
structures collapse;
damage moderate to
severe in many build-
ings designed to be
earthquake resistant.
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Table 5: Model comparison

Model Name Open Source Accuracy Price ($)
GPT-4.1 No 0.694 0.45
GPT-4.1-mini No 0.145 0.02
GPT-4.1-nano No -0.841 0.02
GPT-4o No 0.957 0.85
GPT-4o-mini No 0.706 0.15
Gemini-2.5-Flash No 0.775 0.15
LLaVA 3-8B Yes 0.113 0.00
Qwen 2.5VL-7B Yes 0.791 0.00

3 You are a location identification729
expert. Your task is to determine730
whether a tweet is from a U.S.-731

based location , based on all732
available metadata and the tweet733
content.734

4 Use the information below to infer735
the most granular geographic736
scale location if possible. Your737
output results must be generated738
after reasoning through textual739
information.740

5741
6 Input:742
7 Longitude: {longitude}743
8 Latitude: {latitude}744
9 Tweet Text: {tweet}745

10 Location: {location}746
11747
12 Instruction:748
13 Please follow the following749

identification steps750
14 Step 1: Check if Longitude , or751

Latitude exist. If so, infer the752
location and return it.753

Otherwise , move to Step 2.754
15 Step 2: Analyze the Tweet Text to755

find any explicit or implicit756
mention of a location (\emph{e.g757
.}, city , county , state , street ,758
neighborhood , national park).759

If found , use it as the final760
location and return the most761
granular geographic information762
available. if not , move to step763
3.764

16 Step 3: If neither one found in Step765
1 and Step 2, use location766

fields from the input to infer767
location.768

17769
18 Output Instructions:770
19 If a U.S. location can be confidently771

identified , return it in plain772
text (\emph{e.g.}, "San Francisco773
, CA"). Avoid including non -774
physical locations (\emph{e.g.},775
Earth , Galaxy).776

20 If the tweet is not within the U.S.777
or the indeterminable , return "No778
".779

21 If the tweet contains multiple780
locations , return the most781
granular geographic information.782

22 If the final location information is783
abbreviated (\emph{e.g.}, "LV"784

for Las Vegas), return the full 785
location name. 786

23 If the final location information 787
contains distance information (\ 788
emph{e.g.}, "10 miles from LA"), 789
or other vague details (\emph{e.g 790
.}, "38th floor of hotel"), 791
return "No". 792

24 Output must be in strict JSON format 793
with the following structure: 794

25 {{ 795
26 "reasoning ": "<Brief explanation 796

of the reasoning steps taken 797
>", 798

27 "location ": "<Provide final 799
location information >" 800

28 }} 801
29 """ 802803

804
1 EVENT_PROMPT = """ 805
2 Task: 806
3 You are an earthquake engineer. Your 807

task is to determine whether an 808
input tweet is related to <2019 809
ridegcrest > earthquake in any 810
meaningful way , such as their 811
impact , damage , or aftermath. 812

4 Please read the tweet carefully and 813
decide if it is about an 814
earthquake. 815

5 816
6 Input: 817
7 Tweet Text: {tweet} 818
8 819
9 Instruction: 820

10 Examples of tweets related to 821
earthquakes: 822

11 -Last night she said that I needed to 823
not stack all these shoe boxes 824

up so high because an earthquake 825
will happen and they will all 826
fall on me! I am more worried 827
about damaging the boxes and not 828
being able to pass as Deadstock 829
TBH than falling on me. 830

12 -My outdoor pillows fell and my 831
pancake is now burnt. This is the 832
extent of the damage of the 833

earthquake in Vegas for me. 834
13 - Devi Bhujel , making tea in her 835

kitchen in her village in Nepal. 836
#water here is very hard. I take 837
one jerrycan in a basket , it’s 838
about 10 liters maybe. The usual 839
walking road is destroyed by the 840
earthquake and construction. 841
WaterAid/ Sibtain Haider #July4th 842

14 Examples of tweets not related to 843
earthquakes: 844

15 -we were watching CNN when they broke 845
the news about the earthquake 846

and the weather dude was like it 847
"originated here" and circled the 848
area near Tehachapi which is 849

where I’m going today and staying 850
for the next couple days. 851

16 -I knew those Trump tanks would cause 852
damage. #earthquake 853

17 854
18 Restrictions: Exclude input tweet 855
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information if it solely contains856
magnitudes <\emph{e.g.},6.4857

magnitudes >, distances from the858
epicenter <\emph{e.g.}, 10km> or859
other standard seismological data860
.861

19 Your output results must be generated862
after reasoning through extual863

and/or visual information.864
20865
21 Output:866
22 Respond only with Yes if the tweet is867

related to an earthquake.868
23 Respond only with No if the tweet is869

not related to an earthquake.870
24 Output must be in strict JSON format871

with the following structure:872
25 {{873
26 "reasoning ": "<Brief explanation874

of the reasoning steps taken875
>",876

27 "is_event_related ": "<Yes | No >"877
28 }}878
29 """879880

881
1 IMAGE_ONLY_PROMPT:882
2 f"""883
3 Task:884
4 You are the earthquake damage885

assessment experts. Your task is886
to identify the damage level887
align with Modified Mercalli888
Intensity(MMI) levels from a889
given tweet.890

5 Your output must be generated based891
on evidence from the given tweet892
content.893

6894
7 Input:895
8896
9 Image Description:897

10 Please analyze the image to assess898
the severity of the earthquake ’s899
damage.900

11901
12 Instructions:902
13903
14 1. Human Impact Evaluation:904
15 Look for language or visual905

evidence suggesting that906
people experienced or907
emotionally reacted to the908
earthquake. Indicators may909
include expressions or signs910
of: fear(\emph{e.g.}, "people911
were terrified", "panic in the912
streets "), shock or confusion913

(\emph{e.g.}, "people didn’t914
know what to do"), physical915
presence or impact (\emph{e.g916
.}, "people ran outside", "917
rescue teams helping trapped918
residents "), sensation919
reporting (\emph{e.g.}, "I920
felt the floor shake", "it was921
the strongest I’ve ever felt922

"), etc. Then return:923
16 1: if there is any mention or924

evidence of human emotional925
or physical experience of the926

earthquake. 927
17 0: if there is no indication that 928

humans were present or 929
affected emotionally/ 930
physically. 931

18 932
19 2. Damage Type Classification: 933
20 Classify the damage type as either 934

: 935
21 Interior: Damage that is clearly 936

observed inside a building (e 937
,g, cracked or collapsed 938
interior walls , broken 939
windows or glass , displaced 940
or fallen indoor furniture , 941
ceiling or floor cracks , 942
shaking fixtures (\emph{e.g 943
.}, light fixtures , shelves)) 944
. 945

22 Exterior: Damage that is clearly 946
observed on the outside of 947
buildings or in the 948
surrounding environment (\ 949
emph{e.g.}, Collapsed 950
buildings , shifts in building 951
foundation or roof collapse , 952
partial structural failure , 953

cracked roads/sidewalks/ 954
bridges , fallen trees or 955
utility poles , visible debris 956
or rubble outside). 957

23 Both: Evidence of damage is 958
present both inside and 959
outside of structures. The 960
content includes clear 961
indicators of both categories 962
listed above. 963

24 None: The input does not provide 964
enough information to 965
determine whether the damage 966
is interior , exterior , or 967
both. 968

25 969
26 3. Damage Level Classification (MMI 970

Scale): 971
27 After identifying the damage type 972

(Interior , Exterior , Both , or 973
None) and human impact ("1" or 974
"o"), classify the earthquake 975
damage level align with MMI 976

scale. 977
28 If human impact is 1 from the 978

previous step (human can feel 979
the earthquake), consider both 980
human impact and damage level 981
classification. 982

29 If human impact is 0 from the 983
previous step (human can’t 984
feel the earthquake), proceed 985
based solely with damage level 986
classification. 987

30 988
31 Damage Level Categories (MMI Scale 989

): 990
32 1 - Not felt: No noticeable damage 991

. 992
33 2 - Weak: Felt by only a few 993

people at rest; no damage to 994
buildings. 995

34 3 - Light: Felt indoors , 996
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especially on upper floors; no997
significant structural damage998

.999
35 4 - Moderate: Felt by most people;1000

some damage to buildings ,1001
such as minor cracks.1002

36 5 - Strong: Felt by everyone;1003
damage to buildings , minor1004
cracks , but no collapse.1005

37 6 - Very Strong: Damage to1006
buildings , visible structural1007
deformation.1008

38 7 - Severe: Significant damage ,1009
some collapses or structural1010
failures.1011

39 8 - Very Severe: Many buildings1012
collapse or are severely1013
damaged.1014

40 9 - Violent: Total destruction in1015
some areas , severe damage.1016

41 10 - Extreme: Complete destruction1017
of all structures in the1018

affected area.1019
421020
431021
44 Output:1022
45 Output must be in strict JSON format1023

with the following structure:1024
46 {{1025
47 "human_impact ": <1 or 0>,1026
48 "damage_type ": "<Interior |1027

Exterior | Both | None >",1028
49 "damage_level ": <1-10>,1029
50 "reasoning ": "<Explain how you1030

get the human_impact ,1031
damage_type , damage_level1032
based on the input1033
information >",1034

51 "confidence ": "<Return how1035
confident (scale 0-1) you are1036
in the final MMI damage1037

level >"1038
52 }}1039
53 """1040
541041
55 TEXT_IMAGE_FUSION_PROMPT:1042
56 f"""1043
57 Task:1044
58 You are the earthquake damage1045

accessment experts. Your task is1046
to identify the damage level1047
align with Modified Mercalli1048
Intensity(MMI) levels from a1049
given tweet.1050

59 Your output must be generated based1051
on evidence from the given tweet1052
content.1053

601054
61 Input:1055
62 Text Description:1056
63 {tweet}1057
641058
65 Image Description:1059
66 Please analyze the image to assess1060

the severity of the earthquake ’s1061
damage based on MMI Scale.1062

671063
68 Instructions:1064
691065
70 1. Human Impact Evaluation:1066

71 Look for language or visual 1067
evidence suggesting that 1068
people experienced or 1069
emotionally reacted to the 1070
earthquake. Indicators may 1071
include expressions or signs 1072
of: fear(\emph{e.g.}, "people 1073
were terrified", "panic in the 1074
streets "), shock or confusion 1075

(\emph{e.g.}, "people didn’t 1076
know what to do"), physical 1077
presence or impact (\emph{e.g 1078
.}, "people ran outside", " 1079
rescue teams helping trapped 1080
residents "), sensation 1081
reporting (\emph{e.g.}, "I 1082
felt the floor shake", "it was 1083
the strongest I’ve ever felt 1084

"), etc. Then return: 1085
72 1: if there is any mention or 1086

evidence of human emotional 1087
or physical experience of the 1088
earthquake. 1089

73 0: if there is no indication that 1090
humans were present or 1091

affected emotionally/ 1092
physically. 1093

74 1094
75 2. Damage Type Classification: 1095
76 Classify the damage type as either 1096

: 1097
77 - Interior: Damage that is 1098

clearly observed inside a 1099
building (e,g, cracked or 1100
collapsed interior walls , 1101
broken windows or glass , 1102
displaced or fallen indoor 1103
furniture , ceiling or floor 1104
cracks , shaking fixtures (\ 1105
emph{e.g.}, light fixtures , 1106
shelves)). 1107

78 - Exterior: Damage that is 1108
clearly observed on the 1109
outside of buildings or in 1110
the surrounding environment 1111
(\emph{e.g.}, Collapsed 1112
buildings , shifts in building 1113
foundation or roof collapse , 1114
partial structural failure , 1115

cracked roads/sidewalks/ 1116
bridges , fallen trees or 1117
utility poles , visible debris 1118
or rubble outside). 1119

79 - Both: Evidence of damage is 1120
present both inside and 1121
outside of structures. The 1122
content includes clear 1123
indicators of both categories 1124
listed above. 1125

80 - None: The input does not 1126
provide enough information to 1127
determine whether the damage 1128
is interior , exterior , or 1129

both. 1130
81 1131
82 3. Damage Level Classification (MMI 1132

Scale): 1133
83 After identifying the damage type 1134

(Interior , Exterior , Both , or 1135
None) and human impact ("1" or 1136

14



"o"), classify the earthquake1137
damage level align with MMI1138

scale.1139
84 If human impact is 1 from the1140

previous step (human can feel1141
the earthquake), consider both1142
human impact and damage level1143
classification.1144

85 If human impact is 0 from the1145
previous step (human can’t1146
feel the earthquake), proceed1147
based solely with damage level1148
classification.1149

861150
87 Damage Level Categories (MMI Scale1151

):1152
88 1 - Not felt: No noticeable damage1153

.1154
89 2 - Weak: Felt by only a few1155

people at rest; no damage to1156
buildings.1157

90 3 - Light: Felt indoors ,1158
especially on upper floors; no1159
significant structural damage1160

.1161
91 4 - Moderate: Felt by most people;1162

some damage to buildings ,1163
such as minor cracks.1164

92 5 - Strong: Felt by everyone;1165
damage to buildings , minor1166
cracks , but no collapse.1167

93 6 - Very Strong: Damage to1168
buildings , visible structural1169
deformation.1170

94 7 - Severe: Significant damage ,1171
some collapses or structural1172
failures.1173

95 8 - Very Severe: Many buildings1174
collapse or are severely1175
damaged.1176

96 9 - Violent: Total destruction in1177
some areas , severe damage.1178

97 10 - Extreme: Complete destruction1179
of all structures in the1180

affected area.1181
981182
991183

100 Output:1184
101 Output must be in strict JSON format1185

with the following structure:1186
102 {{1187
103 "human_impact ": <1 or 0>,1188
104 "damage_type ": "<Interior |1189

Exterior | Both | None >",1190
105 "damage_level ": <1-10>,1191
106 "reasoning ": "<Explain how you1192

get the human_impact ,1193
damage_type , damage_level1194
based on the input1195
information >",1196

107 "confidence ": "<Return how1197
confident (scale 0-1) you are1198
in the final MMI damage1199

level >"1200
108 }}1201
109 """12021203

7.5 Example of LLMs outputs 1204

The following table 6 presents a representative ex- 1205

ample of how the three selected MLLMs—LLaVA, 1206

Qwen, and Gemini—analyze a tweet containing 1207

both text and image information. All three mod- 1208

els accurately identify the location (El Monte, CA) 1209

and confirm the tweet’s event relevance. While 1210

their MMI level estimates and confidence scores 1211

are similar, the models differ slightly in how they 1212

classify damage type (interior vs. exterior) and 1213

assess human impact. The reasoning outputs pro- 1214

vide further insight into each model’s interpretive 1215

process, revealing how text and image inputs are 1216

integrated to support the final prediction. This ex- 1217

ample highlights the overall consistency of model 1218

outputs while also illustrating subtle differences in 1219

how damage is inferred from multimodal content. 1220

7.6 Integrated maps 1221

To better understand the spatial distribution and 1222

alignment of model-predicted damage levels, we 1223

present integrated visualizations of the MLLM out- 1224

puts overlaid with official ground-truth MMI con- 1225

tours. These maps allow for intuitive comparison 1226

between predicted damage intensity and observed 1227

seismic impacts, offering insight into each model’s 1228

spatial coverage, localization precision, and capac- 1229

ity for fine-grained damage differentiation. The 1230

visualizations highlight both the geographic extent 1231

and spatial resolution of the models’ estimation, 1232

facilitating a qualitative assessment of model per- 1233

formance across different regions. 1234

7.7 Prompt rewritten versions 1235

1236
1 PROMPT_V2: """ 1237
2 Task: 1238
3 You are an earthquake damage 1239

assessment expert. For each tweet 1240
, follow these three steps to 1241
classify the damage: 1242

4 1243
5 Step 1: Describe any human emotional 1244

or physical reactions mentioned 1245
in the tweet or shown in the 1246
image. 1247

6 Step 2: Describe any structural or 1248
environmental damage observed in 1249
the image. 1250

7 Step 3: Based on both observations , 1251
classify the earthquake ’s 1252
Modified Mercalli Intensity (MMI) 1253
level. 1254

8 1255
9 Input: 1256

10 Text Description: 1257
11 {tweet} 1258
12 1259

15



Table 6: Comparison of model responses to a tweet example.

Tweet Example Model Responses LLaVA Qwen Gemini

Location Response El Monte, CA El Monte, CA El Monte, CA

Event Response Yes Yes Yes

Human-impacted No No Yes

Damage Type Exterior Interior Interior

MMI levels 3 4 4

Voted candidate Text and Image Text and Image Text and Image

Confidence 0.8 0.9 0.9

Reasoning for LLaVA The tweet describes a 6.4 earthquake that damaged a friend’s window in El Monte.
The image shows a window with visible damage, but there is no indication of human
impact or damage to the interior of the building. The damage is classified as exterior
damage, and the damage level is classified as MMI 3, which corresponds to a light
earthquake felt indoors, especially on upper floors; no significant structural damage

Reasoning for Qwen The image shows a broken window, indicating interior damage. The text does not
mention any human emotional or physical reaction to the earthquake, so the human
impact is considered 0. The broken window suggests moderate damage, which aligns
with the MMI scale category of ’Moderate’ (4)

Reasoning for Gemini Both the text and image contribute to the assessment. The text indicates that a window
was damaged, implying human impact as the earthquake was felt. The image confirms
that the damage is to the interior of the building, specifically a broken window. This
level of damage aligns with MMI level 4, which includes minor damage to buildings
such as broken windows or minor cracks. The combined evidence gives a more
reliable assessment

Figure 7: Integrated map for the 2019 Ridgecrest earthquake from (a) LLaVA 3-8B, (b) Qwen-2.5-VL-7B, and (c)
Gemini-2.5-Flash

Figure 8: Integrated map for the 2022 Fukushima earthquake from (a) LLaVA 3-8B, (b) Qwen-2.5-VL-7B, and (c)
Gemini-2.5-Flash
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13 Image Description:1260
14 Please analyze the image to assess1261

visible earthquake damage.1262
151263
16 Output:1264
17 Respond in JSON format:1265
18 {{1266
19 "human_impact ": <1 or 0>,1267
20 "damage_type ": "<Interior |1268

Exterior | Both | None >",1269
21 "damage_level ": <1-10>,1270
22 "reasoning ": "<Step -by-step1271

breakdown >",1272
23 "confidence ": "<0.0-1.0>"1273
24 }}1274
25 """12751276

1277
1 PROMPT_V3: f"""1278
2 Task:1279
3 Your primary role is to assess1280

earthquake damage using visual1281
cues in the image provided. Use1282
the tweet text only if needed to1283
resolve ambiguities.1284

41285
5 Input:1286
6 Image Description:1287
7 Analyze for any visible earthquake1288

damage -structural collapse ,1289
debris , road cracks , etc.1290

81291
9 Text Description:1292

10 {tweet}1293
111294
12 Output:1295
13 Return the damage classification in1296

JSON:1297
14 {{1298
15 "human_impact ": <1 or 0>,1299
16 "damage_type ": "<Interior |1300

Exterior | Both | None >",1301
17 "damage_level ": <1-10>,1302
18 "reasoning ": "<Visual evidence1303

used to support the output >",1304
19 "confidence ": "<0.0-1.0>"1305
20 }}1306
21 """13071308

1309
1 PROMPT_4: f"""1310
2 Analyze the tweet and associated1311

image to determine the earthquake1312
damage level according to the1313

MMI scale.1314
31315
4 Input:1316
5 Text: {tweet}1317
6 Image: [image provided]1318
71319
8 Output:1320
9 Strictly return JSON:1321

10 {{1322
11 "human_impact ": <1 or 0>,1323
12 "damage_type ": "<Interior |1324

Exterior | Both | None >",1325
13 "damage_level ": <1-10>,1326
14 "reasoning ": "<Why each field was1327

chosen >",1328
15 "confidence ": "<0.0-1.0>"1329
16 }}1330

17 """ 13311332

1333
1 PROMPT_5: f""" 1334
2 Task: 1335
3 Please answer the following questions 1336

based on the tweet and image: 1337
4 1338
5 1. Did people seem to experience or 1339

react to the earthquake? 1340
6 2. Where did the damage occur -inside , 1341

outside , both , or unclear? 1342
7 3. What is the MMI level based on the 1343

human and structural impact? 1344
8 1345
9 Tweet: {tweet} 1346

10 Image: [Analyze the image] 1347
11 1348
12 Output: 1349
13 Output must be in strict JSON format 1350

with the following structure: 1351
14 {{ 1352
15 "human_impact ": <1 or 0>, 1353
16 "damage_type ": "<Interior | 1354

Exterior | Both | None >", 1355
17 "damage_level ": <1-10> 1356
18 "reasoning ": "<Explain how you 1357

get the human_impact , 1358
damage_type , damage_level 1359
based on the input 1360
information >", 1361

19 "confidence ": "<Return how 1362
confident (scale 0-1) you are 1363
in the final MMI damage 1364

level >" 1365
20 }} 1366
21 """ 13671368

1369
1 PROMPT_6: f""" 1370
2 Task: 1371
3 Review the following examples and 1372

then analyze the new tweet and 1373
image. 1374

4 1375
5 Example 1: 1376
6 Tweet: "People ran outside screaming 1377

after their house walls cracked ." 1378
7 Image: [shows rubble and collapsed 1379

roof] 1380
8 Output: 1381
9 {{ 1382

10 "human_impact ": 1, 1383
11 "damage_type ": "Both", 1384
12 "damage_level ": 7, 1385
13 "reasoning ": "Clear human fear 1386

and both interior (walls) and 1387
exterior (roof) damage.", 1388

14 "confidence ": "0.85" 1389
15 }} 1390
16 1391
17 Now classify: 1392
18 Tweet: {tweet} 1393
19 Image: [Analyze the image] 1394
20 1395
21 Output: 1396
22 Output must be in strict JSON format 1397

with the following structure: 1398
23 {{ 1399
24 "human_impact ": <1 or 0>, 1400
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25 "damage_type ": "<Interior |1401
Exterior | Both | None >",1402

26 "damage_level ": <1-10>1403
27 "reasoning ": "<Explain how you1404

get the human_impact ,1405
damage_type , damage_level1406
based on the input1407
information >",1408

28 "confidence ": "<Return how1409
confident (scale 0-1) you are1410
in the final MMI damage1411

level >"1412
29 }}1413
30 """14141415

1416
1 PROMPT_7: f"""1417
2 Task:1418
3 Classify the tweet and image below1419

according to the following strict1420
schema.1421

41422
5 Input:1423
6 Tweet Content: {tweet}1424
7 Image Content: [image provided]1425
81426
9 Output Format:1427

10 All fields must match format:1428
11 - human_impact: (0 or 1)1429
12 - damage_type: "Interior", "Exterior1430

", "Both", or "None"1431
13 - damage_level: Integer from 1 to 101432
14 - reasoning: Text , <400 characters1433
15 - confidence: Float between 0 and 11434
161435
17 Output:1436
18 Output must be in strict JSON format1437

with the following structure:1438
19 {{1439
20 "human_impact ": <1 or 0>,1440
21 "damage_type ": "<Interior |1441

Exterior | Both | None >",1442
22 "damage_level ": <1-10>,1443
23 "reasoning ": "<Explain how you1444

get the human_impact ,1445
damage_type , damage_level1446
based on the input1447
information >",1448

24 "confidence ": "<Return how1449
confident (scale 0-1) you are1450
in the final MMI damage1451

level >"1452
25 }}1453
26 """14541455

7.8 Satellite image results1456

Remote sensing offers critical supplementary in-1457

sights into the environmental repercussions of seis-1458

mic events. Building upon our prior reasoning1459

analysis, we conduct an in-depth evaluation of en-1460

vironmental impacts, with a particular emphasis on1461

damage typologies, to further assess the model’s1462

inferential capabilities.1463

Initially, we acquire remote sensing data through1464

the utilization of the Scene Classification Map1465

(SCM) derived from Sentinel-2 Level-2A prod- 1466

ucts(Copernicus, 2022). The SCM is generated 1467

via the Sen2Cor processor, which implements a 1468

series of threshold-based assessments on top-of- 1469

atmosphere reflectance data across multiple spec- 1470

tral bands to categorize each pixel into predefined 1471

classes, including vegetation, water, soil/desert, 1472

snow, clouds, and shadows(Aybar, 2022). This clas- 1473

sification facilitates the differentiation of land cover 1474

types and the detection of alterations attributable to 1475

seismic disturbances. The SCM is available at spa- 1476

tial resolutions of 20 m and 60 m and encompasses 1477

quality indicators for cloud and snow probabili- 1478

ties(Jelének and Kopačková-Strnadová, 2021). 1479

Furthermore, we integrate ground-truth seismic 1480

intensity data from the United States Geological 1481

Survey (USGS) in the form of Modified Mercalli 1482

Intensity (MMI) maps. The MMI scale evalu- 1483

ates earthquake intensity based on observed effects 1484

on individuals, structures, and the Earth’s surface, 1485

ranging from imperceptible shaking to catastrophic 1486

destruction. These maps are constructed using data 1487

from seismic instruments and eyewitness accounts, 1488

offering a spatial representation of shaking inten- 1489

sity across affected regions. By correlating remote 1490

sensing classifications with MMI values, we aimed 1491

to elucidate the relationship between observed en- 1492

vironmental changes and seismic intensity. 1493

Subsequently, we analyze the correlation be- 1494

tween tweets referencing exterior damage and the 1495

ground-truth MMI values, as depicted in Table 7 1496

and 8. Our observations indicate that, in the two ex- 1497

amined seismic events—Japan’s 2022 Fukushima 1498

earthquake and California’s 2019 Ridgecrest earth- 1499

quake—the city-level mean MMI levels predicted 1500

by the LLM model deviated from the ground-truth 1501

MMI levels by no more than two levels within the 1502

95% confidence interval. This finding underscores 1503

the model’s high accuracy in predicting environ- 1504

mental damage resulting from seismic events. 1505

Limitations 1506

While this study provides a scalable and general- 1507

izable pipeline for multimodal earthquake damage 1508

assessment, it has several limitations that should be 1509

considered when interpreting the results. First, the 1510

use of social media introduces inherent sampling 1511

biases. Prior studies have shown that Twitter users 1512

are disproportionately younger, more educated, ur- 1513

ban, and male, which limits the demographic rep- 1514

resentativeness of the data (Pew Research Center, 1515
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Table 7: Fukushima, Japan Validation Result between MMI Ground Truth(Extorior)

Gemini Qwen LLaVA

Pearson- R 0.54 0.05 0.12

Number of Tweets 1207 86 24

Table 8: Ridgecrest, CA Validation Result between MMI Ground Truth(Exterior)

Gemini Qwen LLaVA

Pearson- R 0.38 0.09 0.26

Number of Tweets 1185 264 53

2022). This population bias can reduce the general-1516

izability of findings, particularly in contexts where1517

equitable disaster response is critical. Moreover,1518

disparities in internet access and digital infrastruc-1519

ture further constrain data coverage. Global digital1520

divides and infrastructural disruptions in disaster-1521

affected regions may result in missing or delayed1522

social media signals. These conditions reduce the1523

utility of social media as a ground-level informa-1524

tion source during large-scale disasters.1525

Second, the data retrieval process itself imposes1526

restrictions. In our study, tweets were collected us-1527

ing a single keyword (“earthquake”) and filtered us-1528

ing a manually defined set of damage-related terms.1529

While this approach provides a focused dataset,1530

it may miss relevant posts that use alternative vo-1531

cabulary or regional expressions. Consequently,1532

reliance on fixed keyword libraries can limit recall1533

and introduce topic filtering bias, especially across1534

languages and local dialects.1535

Third, our study employs foundation MLLMs1536

without task-specific fine-tuning. While our ap-1537

proach highlights the models’ general capabilities,1538

fine-tuning on domain-specific or multilingual dis-1539

aster corpora could improve prediction accuracy,1540

robustness, and contextual alignment.1541

Fourth, we limited our full-scale evaluation to1542

three selected models (from an initial pool of eight)1543

based on a balance of performance and computa-1544

tional cost. This choice reflects practical deploy-1545

ment considerations, especially for real-time use1546

in embodied agents. However, further exploration1547

with larger or instruction-tuned models may yield1548

different performance dynamics and should be ex-1549

plored in future work.1550

Finally, the use of human-reported DYFI data as1551

ground truth introduces subjectivity and potential1552

inconsistencies. These crowd-sourced labels, while1553

widely adopted in earthquake research, are subjec- 1554

tive and may vary due to perceptual or reporting 1555

biases. Incorporating additional data sources, such 1556

as structural damage assessments, seismic sensor 1557

data, or building inspection records, could provide 1558

a more comprehensive benchmark for future evalu- 1559

ations. 1560
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